Computability properties of While \{cons}

Mohamed EL-AQQAD, Guillaume Bonfante, Mathieu Hoyrup

Institutes: Loria , Mines Nancy mohamed.el-aqqad1@etu.univ-lorraine.fr

April 28, 2015

Mohamed EL-AQQAD (Loria, Mines Nancy)

Properties of While \{cons}

April 28, 2015 1 / 16

The language While (Neil Jones 1997)

- While is a simple imperative language whose data structure are abstract binary trees
- **2** While **Data** The set \mathbb{D} of trees is the smallest set defined by

 $\mathbb{D} ::= \texttt{nil} \mid (\mathbb{D} \cdot \mathbb{D})$

Example :

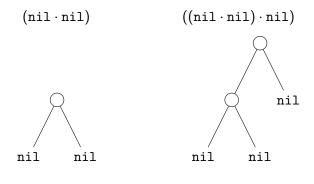


Figure 1: two elements of \mathbb{D}_{\rightarrow}

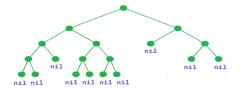
Operation 1

Definition (height and length)

We define the integer evaluated functions h the height of a tree and l its length by:

$$egin{aligned} h(\texttt{nil}) &= 1 orall u, v \in \mathbb{D} \quad h((u,v)) = 1 + max(h(u),h(v)) \ l(\texttt{nil}) &= 1 orall u, v \in \mathbb{D} \quad l((u,v)) = l(u) + l(v) \end{aligned}$$

Section 2018 Secti



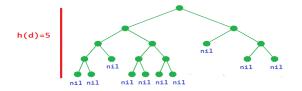
Operation 1

Definition (height and length)

We define the integer evaluated functions h the height of a tree and l its length by:

$$egin{aligned} h(\texttt{nil}) &= 1 orall u, v \in \mathbb{D} \quad h((u,v)) = 1 + max(h(u),h(v)) \ l(\texttt{nil}) &= 1 orall u, v \in \mathbb{D} \quad l((u,v)) = l(u) + l(v) \end{aligned}$$

Section 2018 Secti



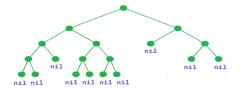
Operation 1

Definition (height and length)

We define the integer evaluated functions h the height of a tree and l its length by:

$$egin{aligned} h(\texttt{nil}) &= 1 orall u, v \in \mathbb{D} \quad h((u,v)) = 1 + max(h(u),h(v)) \ l(\texttt{nil}) &= 1 orall u, v \in \mathbb{D} \quad l((u,v)) = l(u) + l(v) \end{aligned}$$

Section 2018 Secti



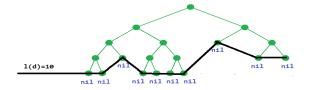
Operation 1

Definition (height and length)

We define the integer evaluated functions h the height of a tree and I its length by:

$$egin{aligned} h(\texttt{nil}) &= 1 orall u, v \in \mathbb{D} \quad h((u,v)) = 1 + max(h(u),h(v)) \ l(\texttt{nil}) &= 1 orall u, v \in \mathbb{D} \quad l((u,v)) = l(u) + l(v) \end{aligned}$$

Section 2018 Secti



Properties of While \{cons}

Solution Expressions :

Expressions	::=	Х	#A variable
_		t	#A constant
		hd E	#The first projection
			#e.g hd((u,v))==u
		tl E	#The second projection
			#e.g tl((u,v))==v
		cons E F	#The tree constructors
			#e.g cons u v == (u,v)
		E =? F	#Test of the equality
			#e.g (u=?v)==nil iff u≠v

Image: A match a ma

Commands :

§ Programs : the set of programs \mathbb{P} contains all elements of the form:

read X_1, \ldots, X_n ; C; write Y

where C is a command and X_1, \ldots, X_n, Y are variables. Example :

$$\mathbf{p} riangleq \mathtt{read} \ \mathtt{X}_1, \mathtt{X}_2; \ \mathtt{Y} := \mathtt{X}_1; \ \mathtt{write} \ \mathtt{Y}$$

we write then $\forall t_1, t_2 \in \mathbb{D} \ \llbracket p \rrbracket(t_1, t_2) = t_1.$

Origin of While \{cons}

- Considered by Neil Jones to establish some complexity properties in while
- We continue the study of this Language because of its interesting properties.
- While_{\{cons}} is a restricted language of While which does not contain the tree constructors, the subset of its expressions is:

Expressions	::=	Х	#A variable
		t	#A constant
		hd E	#the first projection
		tl E	#the second projection
		E = ? F	#The test of equality

Earlier by Neil Jones : As we already noticed the first results in complexity about While\{cons} was proved by Neil Jones.

• While $\setminus \{cons\}$

Theorem (Neil Jones 1997)

 $While_{cons}$ is LOGSPACE-complete, i.e it computes exactly functions which can be done in a logarithmic amount of space on I(d).

• $While_{cons}$ with recursion

Theorem (Neil Jones 1997)

The set of computable functions in $While_{cons}$ with recursion is identical to the set of functions computable in PTIME on I(d).

イロト イヨト イヨト

() $While_{cons}$ is not acceptable:

Theorem (CIE 2015)

While $\{cons\}$ has no smh program.

2 Klenne's theorem in $While_{(cons)}$:

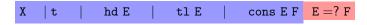
Theorem (CIE 2015)

The Kleene's fix-point theorem does not hold in While_{\{cons}}.

Sonsequence It is hard to write viruses in this language.

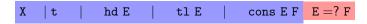
Motivation

• Let's consider the set of expressions in While :



Motivation

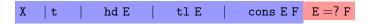
• Let's consider the set of expressions in While :

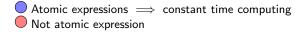


igle Atomic expressions \implies constant time computing

O Motivation

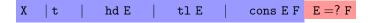
• Let's consider the set of expressions in While :





Motivation

• Let's consider the set of expressions in While :

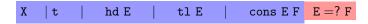


Atomic expressions \implies constant time computing Not atomic expression

• Why not the **atomic equality E**? = **nil** which can be clearly computed in a constant time?

Motivation

• Let's consider the set of expressions in While :



• Why not the **atomic equality E**? = **nil** which can be clearly computed in a constant time?

In while

Theorem (Jones 1999)

We can compute the equality in While, this means that there exists a program **p** in While using only atomic expressions such that:

 $[\![\textbf{p}]\!](\texttt{t},\texttt{t}') = \textit{nil} \quad \textit{ if } \texttt{t} \neq \texttt{t}' \textit{ and (nil,nil) otherwise}$

- O Using tree constructors \implies Computing equality in <code>While</code>
- But what happens in While \{cons}?
- S The language While_Atomic\{cons} ⊆ While\{cons} We consider the language While_Atomic\{cons} which uses only atomic expressions, in other terms:

Expressions ::=
$$X | t | hd E | tl E | E =?nil$$

O bo they compute the same functions While_Atomic_{{cons}} ~ While_{{cons}}?

- Let us try to compute equality in While_Atomic_{{cons}}.
- Solution of the problem

Question.Is there a program p in While_Atomic_{{cons}} such that:[p](t,t') = nil if $t \neq t'$ and (nil,nil) otherwise ?

• The equality in While_{\{cons}}

Theorem

There is no program which computes the equality in While_Atomic_{{cons}}

- sketch of the proof
- For simplification, we will use the following equivalences :

$$\begin{array}{rcl} X_i := \operatorname{hd} X_j &\equiv & X_i := \overline{0} X_j \\ & X_i := \operatorname{tl} X_j &\equiv & X_i := \overline{1} X_j \\ & \Longrightarrow & x_i := \operatorname{hd} \operatorname{tl} \operatorname{tl} \operatorname{tl} X_j &\equiv & x_i := \overline{0111} X_j \end{array}$$

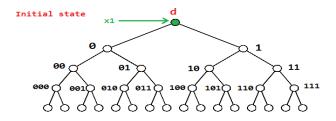
Definition

Given an element $d \in \mathbb{D}$ and a program p we say that a word $w \in \Sigma = \{0,1\}^*$ is visited if there exists a variable x_i such that $value(x_i) = \overline{w}(d)$ at some moment of the execution of the program p over the input d.

Mohamed EL-AQQAD (Loria, Mines Nancy)

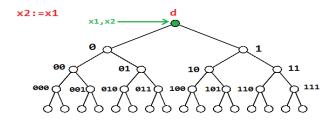
Properties of While \{cons}

• Example:



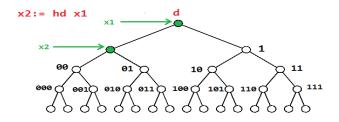
 $p \triangleq \text{read } X_1; \\ X_2 := X_1; \\ X_2 := \text{hd } X_1; \\ X_1 := \text{tl } X_1; \\ X_1 := \text{tl } X_2; \\ X_1 := \text{tl } X_2; \\ X_1 := \text{tl } X_1; \\ \text{write } X_1$

• Example:



 $p \triangleq read X_1; \\ X_2 := X_1; \\ X_2 := hd X_1; \\ X_1 := tl X_1; \\ X_1 := tl X_2; \\ X_1 := tl X_2; \\ X_1 := tl X_1; \\ X_1 := tl X_1; \\ write X_1$

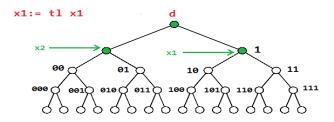
• Example:



$$p \triangleq read X_1; \\ X_2 := X_1; \\ X_2 := hd X_1; \\ X_1 := tl X_1; \\ X_1 := tl X_2; \\ X_1 := tl X_2; \\ X_1 := tl X_1; \\ X_1 := tl X_1; \\ write X_1$$

3

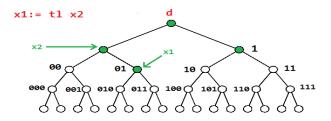
• Example:



 $p \triangleq read X_1; \\ X_2 := X_1; \\ X_2 := hd X_1; \\ X_1 := tl X_1; \\ X_1 := tl X_2; \\ X_1 := tl X_2; \\ X_1 := tl X_1; \\ x_1 :=$

write X_1

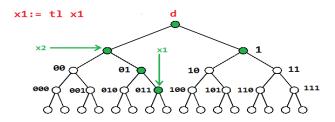
• Example:



 $p \triangleq read X_1; \\ X_2 := X_1; \\ X_2 := hd X_1; \\ X_1 := tl X_1; \\ X_1 := tl X_2; \\ X_1 := tl X_2; \\ X_1 := tl X_1; \\ X_1 := tl X_1; \\ x_1 := tl X_1;$

write X_1

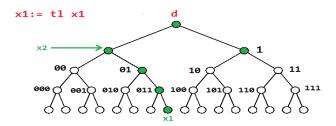
• Example:



 $p \triangleq read X_1; \\ X_2 := X_1; \\ X_2 := hd X_1; \\ X_1 := tl X_1; \\ X_1 := tl X_2; \\ X_1 := tl X_2; \\ X_1 := tl X_1; \\ X_1 := tl X_1;$

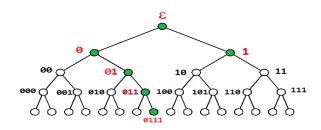
write X_1

• Example:



 $p \triangleq read X_1; \\ X_2 := X_1; \\ X_2 := hd X_1; \\ X_1 := tl X_1; \\ X_1 := tl X_2; \\ X_1 := tl X_2; \\ X_1 := tl X_1; \\ X_1 := tl X_1; \\ write X_1$

• Example:



 $p \triangleq \text{read } X_1; \\ X_2 := X_1; \\ X_2 := \text{hd } X_1; \\ X_1 := \text{tl } X_1; \\ X_1 := \text{tl } X_2; \\ X_1 := \text{tl } X_2; \\ X_1 := \text{tl } X_1; \\ \text{write } X_1$

• The set of visited points is

 $S(\mathbf{p}, d) = \{\epsilon, 0, 1, 01, 011, 0111\}$

Proposition

For any given program \mathbf{p} there exists a polynomial P such that for any complete binary tree d of height h the number of visited points $|S(\mathbf{p}, d)|$ is less than or equal to P(h).

- The graph of all possible states of an executing program has vertices the value of tuple (X_1, \dots, X_m, L) where X_1, \dots, X_m are variables and L a location in the program.
- The number of possible values of the tuple (X_1, \dots, X_m, L) is $l(h+1)^m$, *m* is the number of variables and *l* the length of the program.
- A walk in such a graph is either a path or a cycle and the number of visited points is less than

$$|S(\mathbf{p},d)| \le P(h) = l(h+1)^m$$

proof of the principal theorem

changing slightly the inputs \implies the same output

Assume that the equality is computable in While_Atomic_{{cons}} so that there exists a program \mathbf{p} which compute the equality, and let d be a perfect binary tree of height h = h(d).

- First we have $\llbracket \mathbf{p} \rrbracket (d, d) = (\texttt{nil}, \texttt{nil})$
- The number of visited points |S(p, d)| is polynomial on h
- The number of leafs of *d* is 2^{*h*}
- There exists a non visited leaf in d
- It turns out that if we insert an element in a non-visited leaf of *d* we will have the same flow of execution
- Let d' be the element obtain from d by changing the non-visited leaf of d by (*nil*, *nil*) we will have

$$\llbracket \mathbf{p}
rbracket (d',d) = (t nil, t nil) \ \ \, ext{and} \ \, d'
eq d$$

Thank you for your attention