Computability properties of While $e_{\{\text {cons }\}}$

Mohamed EL-AQQAD, Guillaume Bonfante, Mathieu Hoyrup

Institutes: Loria , Mines Nancy mohamed.el-aqqad1@etu.univ-lorraine.fr

April 28, 2015

The language While (Neil Jones 1997)

(1) While is a simple imperative language whose data structure are abstract binary trees
(2) While Data The set \mathbb{D} of trees is the smallest set defined by

$$
\mathbb{D}::=\operatorname{nil} \mid(\mathbb{D} \cdot \mathbb{D})
$$

Example:

Figure 1: two elements of \mathbb{D}

While Data

- Definition

Definition (height and length)

We define the integer evaluated functions h the height of a tree and l its length by:

$$
\begin{array}{ll}
h(\text { nil })=1 \forall u, v \in \mathbb{D} & h((u, v))=1+\max (h(u), h(v)) \\
I(\text { nil })=1 \forall u, v \in \mathbb{D} & I((u, v))=I(u)+I(v)
\end{array}
$$

(1) Example: Consider the following tree d

While Data

- Definition

Definition (height and length)

We define the integer evaluated functions h the height of a tree and l its length by:

$$
\begin{array}{ll}
h(\text { nil })=1 \forall u, v \in \mathbb{D} & h((u, v))=1+\max (h(u), h(v)) \\
I(\text { nil })=1 \forall u, v \in \mathbb{D} & I((u, v))=I(u)+I(v)
\end{array}
$$

(1) Example: Consider the following tree d

While Data

- Definition

Definition (height and length)

We define the integer evaluated functions h the height of a tree and l its length by:

$$
\begin{array}{ll}
h(\text { nil })=1 \forall u, v \in \mathbb{D} & h((u, v))=1+\max (h(u), h(v)) \\
I(\text { nil })=1 \forall u, v \in \mathbb{D} & I((u, v))=I(u)+I(v)
\end{array}
$$

(1) Example: Consider the following tree d

While Data

- Definition

Definition (height and length)

We define the integer evaluated functions h the height of a tree and l its length by:

$$
\begin{array}{ll}
h(\mathrm{nil})=1 \forall u, v \in \mathbb{D} & h((u, v))=1+\max (h(u), h(v)) \\
I(\mathrm{nil})=1 \forall u, v \in \mathbb{D} & I((u, v))=I(u)+I(v)
\end{array}
$$

(9) Example: Consider the following tree d

Language While

(3) Expressions :

Expressions	X t hd E tl E cons E F $E=? F$	\#A variable \#A constant \#The first projection \#e.g hd((u,v))==u \#The second projection \#e.g tl((u,v))==v \#The tree constructors \#e.g cons u v == (u,v) \#Test of the equality \#e.g ($u=? v$) ==nil iff $u \neq v$

Language While

(1) Commands:

Commands $::=\mathrm{X}:=\mathrm{E}$
C; D while (E) do $\{C\}$
\# Assignement
\# Sequence of two commands \# The while loop
(6) Programs : the set of programs \mathbb{P} contains all elements of the form:

$$
\text { read } \mathrm{X}_{1}, \ldots, \mathrm{X}_{n} ; \mathrm{C} ; \text { write } \mathrm{Y}
$$

where C is a command and $\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}, \mathrm{Y}$ are variables. Example :

$$
\mathbf{p} \triangleq \operatorname{read} X_{1}, X_{2} ; Y:=X_{1} ; \text { write } Y
$$

we write then $\forall t_{1}, t_{2} \in \mathbb{D} \llbracket p \rrbracket\left(t_{1}, t_{2}\right)=t_{1}$.

The Language While $\backslash\{$ cons $\}$

- Origin of While $\backslash\{$ cons $\}$
- Considered by Neil Jones to establish some complexity properties in while
- We continue the study of this Language because of its interesting properties.
- While ${ }_{\backslash\{\text { cons }\}}$ is a restricted language of While which does not contain the tree constructors, the subset of its expressions is:

Expressions $:$\begin{tabular}{lll}
X \& \#A variable

\& $|$| t | \#A constant |
| :--- | :--- |
| hd E | \#the first projection |
| tl E | \#the second projection |
| $\mathrm{E}=? \mathrm{~F}$ | \#The test of equality |

\end{tabular}

Implicit complexity

(1) Earlier by Neil Jones: As we already noticed the first results in complexity about While $\backslash\{$ cons $\}$ was proved by Neil Jones.

- While $\backslash_{\text {\{cons\} }}$

Theorem (Neil Jones 1997)

While $_{\backslash\{\text { cons\} }}$ is LOGSPACE-complete, i.e it computes exactly functions which can be done in a logarithmic amount of space on I(d).

- While $\backslash\{$ cons $\}$ with recursion

Theorem (Neil Jones 1997)

The set of computable functions in While ${ }_{\text {\{cons\} }}$ with recursion is identical to the set of functions computable in PTIME on I(d).

In computer virology

(1) While $\backslash\{$ cons $\}$ is not acceptable:

Theorem (CIE 2015)

While $_{\backslash \text { \{cons }\}}$ has no smh program.
(2) Klenne's theorem in While $\backslash\{$ cons $\}$:

Theorem (CIE 2015)
The Kleene's fix-point theorem does not hold in While $\backslash\{$ cons $\}$.
(3) Consequence It is hard to write viruses in this language.

Today: the equality problem

(1) Motivation

- Let's consider the set of expressions in While :
$\mathrm{X}|\mathrm{t}|$ hd $\mathrm{E} \mid$ tl $\mathrm{E} \mid$ cons $\mathrm{EF} \mathrm{E}=$? F

Today: the equality problem

(1) Motivation

- Let's consider the set of expressions in While :
X $|\mathrm{t}|$ hd $\mathrm{E} \mid$ tl $\mathrm{E} \mid$ cons $\mathrm{EF} \mathrm{E}=$? F

Atomic expressions \Longrightarrow constant time computing

Today: the equality problem

(1) Motivation

- Let's consider the set of expressions in While :
$\mathrm{X}|\mathrm{t}|$ hd $\mathrm{E} \mid$ tle | cons EF $\mathrm{E}=$? F

Atomic expressions \Longrightarrow constant time computing Not atomic expression

Today: the equality problem

(1) Motivation

- Let's consider the set of expressions in While :
X $|\mathrm{t}|$ hd $\mathrm{E} \mid$ tl $\mathrm{E} \mid$ cons $\mathrm{EF} \mathrm{E}=? \mathrm{~F}$Atomic expressions \Longrightarrow constant time computing Not atomic expression
- Why not the atomic equality E ? = nil which can be clearly computed in a constant time?

Today: the equality problem

(1) Motivation

- Let's consider the set of expressions in While :
X $|\mathrm{t}|$ hd $\mathrm{E} \mid$ tl $\mathrm{E} \mid$ cons $\mathrm{EF} \mathrm{E}=$? FAtomic expressions \Longrightarrow constant time computing Not atomic expression
- Why not the atomic equality \mathbf{E} ? = nil which can be clearly computed in a constant time?
(2) In while

Theorem (Jones 1999)

We can compute the equality in While, this means that there exists a program \mathbf{p} in While using only atomic expressions such that:

$$
\left.\llbracket \mathbf{p} \rrbracket\left(\mathrm{t}, \mathrm{t}^{\prime}\right)=n i l \quad \text { if } \mathrm{t} \neq \mathrm{t}^{\prime} \text { and }(n i\urcorner, n i l\right) \text { otherwise }
$$

The equality problem

(3) Using tree constructors \Longrightarrow Computing equality in While
(9) But what happens in While $\backslash\{$ cons $\}$?
(5) The language While_Atomic $\backslash\{$ cons $\} \subseteq$ While $\backslash\{$ cons $\}$ We consider the language While_Atomic $\backslash\{$ cons $\}$ which uses only atomic expressions, in other terms:

$$
\text { Expressions }::=\mathrm{X}|\mathrm{t}| \text { hd } \mathrm{E}|\mathrm{tl} \mathrm{E}| \mathrm{E}=\text { ?nil }
$$

(0) Do they compute the same functions While_Atomic $\backslash\{$ cons $\} \simeq$ While $\backslash\{$ cons $\} ?$

The equality problem

(3) Let us try to compute equality in While_Atomic $\backslash\{$ cons $\}$.
(8) Formulation of the problem

Question.

Is there a program \mathbf{p} in While_Atomic $\backslash\{$ cons $\}$ such that:

$$
\llbracket \mathbf{p} \rrbracket\left(\mathrm{t}, \mathrm{t}^{\prime}\right)=\mathrm{nil} \quad \text { if } \mathrm{t} \neq \mathrm{t}^{\prime} \text { and (nil, nil) otherwise ? }
$$

The equality problem

- The equality in While $\backslash\{$ cons $\}$

Theorem

There is no program which computes the equality in While_Atomic $\backslash\{$ cons $\}$

- sketch of the proof
- For simplification, we will use the following equivalences:

$$
\begin{array}{rlr}
\mathrm{x}_{i}:=\mathrm{hdX}_{j} & \equiv \mathrm{x}_{i}:=\overline{\mathrm{O}} \mathrm{x}_{j} \\
\mathrm{x}_{i}:=\mathrm{tlX}_{j} & \equiv \mathrm{x}_{i}:=\overline{1} \mathrm{x}_{j} \\
\Longrightarrow \mathrm{x}_{i}:=\mathrm{hd} \mathrm{tl} \text { tl tl } \mathrm{x}_{j} & \equiv x_{i}:=\overline{0111} \mathrm{x}_{j}
\end{array}
$$

Definition

Given an element $d \in \mathbb{D}$ and a program p we say that a word $w \in \Sigma=\{0,1\}^{*}$ is visited if there exists a variable x_{i} such that value $\left(x_{i}\right)=\bar{w}(d)$ at some moment of the execution of the program p over the input d.

The equality problem

- Example:

$$
\begin{aligned}
& \mathbf{p} \triangleq \mathrm{read} \mathrm{X}_{1} ; \\
& \mathrm{X}_{2}:=\mathrm{x}_{1} ; \\
& \mathrm{X}_{2}:=\mathrm{hd} \quad \mathrm{X}_{1} ; \\
& \mathrm{X}_{1}:=\mathrm{tl} \quad \mathrm{X}_{1} ; \\
& \mathrm{X}_{1}:=\mathrm{tl} \quad \mathrm{X}_{2} ; \\
& \mathrm{X}_{1}:=\mathrm{tl} \quad \mathrm{X}_{1} ; \\
& \mathrm{X}_{1}:=\mathrm{tl} \quad \mathrm{X}_{1} ; \\
& \text { write } \mathrm{X}_{1}
\end{aligned}
$$

The equality problem

- Example:

$$
\begin{aligned}
& \mathbf{p} \triangleq \mathrm{read} \mathrm{X}_{1} ; \\
& \mathrm{X}_{2}:=\mathrm{X}_{1} ; \\
& \mathrm{X}_{2}:=\mathrm{hd} \quad \mathrm{X}_{1} ; \\
& \mathrm{X}_{1}:=\mathrm{tl} \quad \mathrm{X}_{1} ; \\
& \mathrm{X}_{1}:=\mathrm{tl} \quad \mathrm{X}_{2} ; \\
& \mathrm{X}_{1}:=\mathrm{tl} \quad \mathrm{X}_{1} ; \\
& \mathrm{X}_{1}:=\mathrm{tl} \mathrm{X}_{1} ; \\
& \\
& \\
& \\
& \text { write } \mathrm{X}_{1}
\end{aligned}
$$

The equality problem

- Example:

$$
\begin{aligned}
& \mathbf{p} \triangleq \text { read } X_{1} \text {; } \\
& \mathrm{X}_{2}:=\mathrm{X}_{1} \text {; } \\
& \mathrm{X}_{2}:=\mathrm{hd} \mathrm{X}_{1} \text {; } \\
& \mathrm{X}_{1}:=\mathrm{tl} \mathrm{X}_{1} \text {; } \\
& \mathrm{X}_{1}:=\mathrm{tl} \mathrm{X}_{2} \text {; } \\
& \mathrm{X}_{1}:=\mathrm{tl} \mathrm{X}_{1} \text {; } \\
& \mathrm{X}_{1}:=\mathrm{tl} \mathrm{X}_{1} \text {; } \\
& \text { write } \mathrm{X}_{1}
\end{aligned}
$$

The equality problem

- Example:

$$
\begin{aligned}
& \mathbf{p} \triangleq \mathrm{read} \mathrm{X}_{1} ; \\
& \mathrm{X}_{2}:=\mathrm{X}_{1} ; \\
& \mathrm{X}_{2}:=\mathrm{hd} \quad \mathrm{X}_{1} ; \\
& \mathrm{X}_{1}:=\mathrm{tl} \quad \mathrm{X}_{1} ; \\
& \mathrm{X}_{1}:=\mathrm{tl} \quad \mathrm{X}_{2} ; \\
& \mathrm{X}_{1}:=\mathrm{tl} \quad \mathrm{X}_{1} ; \\
& \mathrm{X}_{1}:=\mathrm{tl} \mathrm{X}_{1} ; \\
& \\
& \\
& \\
& \text { write } \mathrm{X}_{1}
\end{aligned}
$$

The equality problem

- Example:

$$
\begin{aligned}
& \mathbf{p} \triangleq \mathrm{read} \mathrm{X}_{1} ; \\
& \mathrm{X}_{2}:=\mathrm{X}_{1} ; \\
& \mathrm{X}_{2}:=\mathrm{hd} \quad \mathrm{X}_{1} ; \\
& \mathrm{X}_{1}:=\mathrm{tl} \quad \mathrm{X}_{1} ; \\
& \mathrm{X}_{1}:=\mathrm{tl} \quad \mathrm{X}_{2} ; \\
& \mathrm{X}_{1}:=\mathrm{tl} \quad \mathrm{X}_{1} ; \\
& \mathrm{X}_{1}:=\mathrm{tl} \mathrm{X}_{1} ; \\
& \text { write } \mathrm{X}_{1}
\end{aligned}
$$

The equality problem

- Example:

$$
\begin{aligned}
& \mathbf{p} \triangleq \mathrm{read} \mathrm{X}_{1} ; \\
& \mathrm{X}_{2}:=\mathrm{X}_{1} ; \\
& \mathrm{X}_{2}:=\mathrm{hd} \quad \mathrm{X}_{1} ; \\
& \mathrm{X}_{1}:=\mathrm{tl} \quad \mathrm{X}_{1} ; \\
& \mathrm{X}_{1}:=\mathrm{tl} \quad \mathrm{X}_{2} ; \\
& \mathrm{X}_{1}:=\mathrm{tl} \quad \mathrm{X}_{1} ; \\
& \mathrm{X}_{1}:=\mathrm{tl} \quad \mathrm{X}_{1} ; \\
& \\
& \\
& \\
& \text { write } \mathrm{X}_{1}
\end{aligned}
$$

The equality problem

- Example:

$$
\begin{aligned}
& \mathbf{p} \triangleq \mathrm{read} \mathrm{X}_{1} ; \\
& \mathrm{X}_{2}:=\mathrm{X}_{1} ; \\
& \mathrm{X}_{2}:=\mathrm{hd} \quad \mathrm{X}_{1} ; \\
& \mathrm{X}_{1}:=\mathrm{tl} \quad \mathrm{X}_{1} ; \\
& \mathrm{X}_{1}:=\mathrm{tl} \quad \mathrm{X}_{2} ; \\
& \mathrm{X}_{1}:=\mathrm{tl} \quad \mathrm{X}_{1} ; \\
& \mathrm{X}_{1}:=\mathrm{tl} \quad \mathrm{X}_{1} ; \\
& \\
& \\
& \\
& \text { write } \mathrm{X}_{1}
\end{aligned}
$$

The equality problem

- Example:

- The set of visited points is

$$
\begin{aligned}
& \mathbf{p} \triangleq \mathrm{read} \mathrm{X}_{1} ; \\
& \mathrm{X}_{2}:=\mathrm{x}_{1} ; \\
& \mathrm{X}_{2}:=\mathrm{hd} \quad \mathrm{x}_{1} ; \\
& \mathrm{X}_{1}:=\mathrm{tl} \quad \mathrm{X}_{1} ; \\
& \mathrm{X}_{1}:=\mathrm{tl} \quad \mathrm{X}_{2} ; \\
& \mathrm{X}_{1}:=\mathrm{tl} \quad \mathrm{X}_{1} ; \\
& \mathrm{X}_{1}:=\mathrm{tl} \quad \mathrm{X}_{1} ; \\
& \\
& \\
& \\
& \text { write } \mathrm{X}_{1}
\end{aligned}
$$

$$
S(\mathbf{p}, d)=\{\epsilon, 0,1,01,011,0111\}
$$

The equality problem

Proposition

For any given program \mathbf{p} there exists a polynomial P such that for any complete binary tree d of height h the number of visited points $|S(\mathbf{p}, d)|$ is less than or equal to $P(h)$.

- The graph of all possible states of an executing program has vertices the value of tuple ($\mathrm{X}_{1}, \cdots, \mathrm{X}_{m}, L$) where $\mathrm{X}_{1}, \cdots, \mathrm{X}_{m}$ are variables and L a location in the program.
- The number of possible values of the tuple $\left(\mathrm{X}_{1}, \cdots, \mathrm{X}_{m}, L\right)$ is $I(h+1)^{m}, m$ is the number of variables and I the length of the program.
- A walk in such a graph is either a path or a cycle and the number of visited points is less than

$$
|S(\mathbf{p}, d)| \leq P(h)=I(h+1)^{m}
$$

The equality problem

proof of the principal theorem

changing slightly the inputs \Longrightarrow the same output

Assume that the equality is computable in While_Atomic $\backslash\{$ cons $\}$ so that there exists a program \mathbf{p} which compute the equality, and let d be a perfect binary tree of height $h=h(d)$.

- First we have $\llbracket \mathbf{p} \rrbracket(d, d)=($ nil, nil $)$
- The number of visited points $|S(p, d)|$ is polynomial on h
- The number of leafs of d is 2^{h}
- There exists a non visited leaf in d
- It turns out that if we insert an element in a non-visited leaf of d we will have the same flow of execution
- Let d^{\prime} be the element obtain from d by changing the non-visited leaf of d by (nil, nil) we will have

$$
\llbracket \mathbf{p} \rrbracket\left(d^{\prime}, d\right)=(\text { nil }, \text { nil }) \quad \text { and } d^{\prime} \neq d
$$

Thank you for your attention

