
The problem Historical results New results Limitations

On the information carried by programs
about the objects they compute

Mathieu Hoyrup and Cristóbal Rojas

LORIA - Inria, Nancy (France)

The problem Historical results New results Limitations

The problem

Let p be a program. Two possible types of access to p:
(i) Running p.
(ii) Reading the code of p.

Having the code of p enables one to execute p, but not vice-versa.

Main questions

• Does it make a difference?
• Does the code of a program give more information about what it
computes?

The problem Historical results New results Limitations

The problem

Let p be a program. Two possible types of access to p:
(i) Running p.
(ii) Reading the code of p.

Having the code of p enables one to execute p, but not vice-versa.

Main questions

• Does it make a difference?
• Does the code of a program give more information about what it
computes?

The problem Historical results New results Limitations

The problem

Historical results

New results

Limitations

The problem Historical results New results Limitations

Halting problem

Running p, one can only semi-decide whether p halts.

Theorem (Turing, 1936)

Reading the code of p, a computer cannot do better.

The problem Historical results New results Limitations

Halting problem

Running p, one can only semi-decide whether p halts.

Theorem (Turing, 1936)

Reading the code of p, a computer cannot do better.

The problem Historical results New results Limitations

Rice theorem
A program p computes a partial function f .

n p
f(n)

What can be decided about f?

Answer
Running p, only trivial properties: the decision about λx.⊥ applies to
every f .

Theorem (Rice, 1953)

Reading the code of p, a computer cannot do better.

The problem Historical results New results Limitations

Rice theorem
A program p computes a partial function f .

n p
f(n)

What can be decided about f?

Answer
Running p, only trivial properties: the decision about λx.⊥ applies to
every f .

Theorem (Rice, 1953)

Reading the code of p, a computer cannot do better.

The problem Historical results New results Limitations

Rice theorem
A program p computes a partial function f .

n p
f(n)

What can be decided about f?

Answer
Running p, only trivial properties: the decision about λx.⊥ applies to
every f .

Theorem (Rice, 1953)

Reading the code of p, a computer cannot do better.

The problem Historical results New results Limitations

Rice-Shapiro theorem
A program p computes a partial function f .

n p
f(n)

What can be semi-decided about f?

Answer
Running p, exactly the properties of the form:

(f(a1) = u1 ∧ . . . ∧ f(ai) = ui)
∨ (f(b1) = v1 ∧ . . . ∧ f(bj) = vj)
∨ (f(c1) = w1 ∧ . . . ∧ f(ck) = wk)
∨ . . .

Theorem (Rice-Shapiro, 1956)

Reading the code of p, a computer cannot do better.

The problem Historical results New results Limitations

Rice-Shapiro theorem
A program p computes a partial function f .

n p
f(n)

What can be semi-decided about f?

Answer
Running p, exactly the properties of the form:

(f(a1) = u1 ∧ . . . ∧ f(ai) = ui)
∨ (f(b1) = v1 ∧ . . . ∧ f(bj) = vj)
∨ (f(c1) = w1 ∧ . . . ∧ f(ck) = wk)
∨ . . .

Theorem (Rice-Shapiro, 1956)

Reading the code of p, a computer cannot do better.

The problem Historical results New results Limitations

Rice-Shapiro theorem
A program p computes a partial function f .

n p
f(n)

What can be semi-decided about f?

Answer
Running p, exactly the properties of the form:

(f(a1) = u1 ∧ . . . ∧ f(ai) = ui)
∨ (f(b1) = v1 ∧ . . . ∧ f(bj) = vj)
∨ (f(c1) = w1 ∧ . . . ∧ f(ck) = wk)
∨ . . .

Theorem (Rice-Shapiro, 1956)

Reading the code of p, a computer cannot do better.

The problem Historical results New results Limitations

Kreisel-Lacombe-Schœnfield/Ceitin theorem
Now assume that program p computes a total function f .

n p
f(n)

What can be decided/semi-decided about f?

The problem Historical results New results Limitations

Kreisel-Lacombe-Schœnfield/Ceitin theorem
Now assume that program p computes a total function f .

n p
f(n)

What can be decided/semi-decided about f?

Theorem (Kreisel-Lacombe-Schœnfield/Ceitin, 1957/1962)

For properties of total computable functions,

read-decidable ⇐⇒ run-decidable.

It makes a difference!

Theorem (Friedberg, 1958)

For properties of total computable functions,

read-semi-decidable 6=⇒ run-semi-decidable.

The problem Historical results New results Limitations

Kreisel-Lacombe-Schœnfield/Ceitin theorem
Now assume that program p computes a total function f .

n p
f(n)

What can be decided/semi-decided about f?

Theorem (Kreisel-Lacombe-Schœnfield/Ceitin, 1957/1962)

For properties of total computable functions,

read-decidable ⇐⇒ run-decidable.

It makes a difference!

Theorem (Friedberg, 1958)

For properties of total computable functions,

read-semi-decidable 6=⇒ run-semi-decidable.

The problem Historical results New results Limitations

Sum up

Two computation models: read1 and run2.

Class of functions Decidability Semi-decidability
Partial read ≡ run

Rice
read ≡ run
Rice-Shapiro

Total
read ≡ run

Kreisel-Lacombe-
Schœnfield/Ceitin

read > run
Friedberg

Let’s now look at Friedberg’s example.

1usually called Markov computability
2usually called Type-2 computability

The problem Historical results New results Limitations

Sum up

Two computation models: read1 and run2.

Class of functions Decidability Semi-decidability
Partial read ≡ run

Rice
read ≡ run
Rice-Shapiro

Total
read ≡ run

Kreisel-Lacombe-
Schœnfield/Ceitin

read > run
Friedberg

Let’s now look at Friedberg’s example.

1usually called Markov computability
2usually called Type-2 computability

The problem Historical results New results Limitations

Kolmogorov complexity

Introduced by Solomonoff (1960), Kolmogorov (1965), Chaitin (1966).

• Let K(n) = min{|p| : program p computes n}.
• K(n) ≤ log(n) +O(1).
• n is compressible if K(n) < log(n).
• There are infinitely many incompressible numbers.
• Inequality K(n) ≤ k is semi-decidable.

The problem Historical results New results Limitations

Friedberg’s property
Given a total function f 6= λx.0, let

nf = min{n : f(n) 6= 0}.

Friedberg’s property is

P = {λx.0} ∪ {f : nf is compressible}.

Semi-deciding f ∈ P

n 0 1 2 3 4 5 6 . . .
f(n)

When is it time to accept f?

• If f is given by running p, we can never know.
• If f is given by the code of p then evaluate f up to 2|p|.

The problem Historical results New results Limitations

Friedberg’s property
Given a total function f 6= λx.0, let

nf = min{n : f(n) 6= 0}.

Friedberg’s property is

P = {λx.0} ∪ {f : nf is compressible}.

Semi-deciding f ∈ P

n 0 1 2 3 4 5 6 . . .
f(n)

When is it time to accept f?

• If f is given by running p, we can never know.
• If f is given by the code of p then evaluate f up to 2|p|.

The problem Historical results New results Limitations

Friedberg’s property
Given a total function f 6= λx.0, let

nf = min{n : f(n) 6= 0}.

Friedberg’s property is

P = {λx.0} ∪ {f : nf is compressible}.

Semi-deciding f ∈ P

n 0 1 2 3 4 5 6 . . .
f(n) 0

When is it time to accept f?

• If f is given by running p, we can never know.
• If f is given by the code of p then evaluate f up to 2|p|.

The problem Historical results New results Limitations

Friedberg’s property
Given a total function f 6= λx.0, let

nf = min{n : f(n) 6= 0}.

Friedberg’s property is

P = {λx.0} ∪ {f : nf is compressible}.

Semi-deciding f ∈ P

n 0 1 2 3 4 5 6 . . .
f(n) 0 0

When is it time to accept f?

• If f is given by running p, we can never know.
• If f is given by the code of p then evaluate f up to 2|p|.

The problem Historical results New results Limitations

Friedberg’s property
Given a total function f 6= λx.0, let

nf = min{n : f(n) 6= 0}.

Friedberg’s property is

P = {λx.0} ∪ {f : nf is compressible}.

Semi-deciding f ∈ P

n 0 1 2 3 4 5 6 . . .
f(n) 0 0 0

When is it time to accept f?

• If f is given by running p, we can never know.
• If f is given by the code of p then evaluate f up to 2|p|.

The problem Historical results New results Limitations

Friedberg’s property
Given a total function f 6= λx.0, let

nf = min{n : f(n) 6= 0}.

Friedberg’s property is

P = {λx.0} ∪ {f : nf is compressible}.

Semi-deciding f ∈ P

n 0 1 2 3 4 5 6 . . .
f(n) 0 0 0 0

When is it time to accept f?

• If f is given by running p, we can never know.
• If f is given by the code of p then evaluate f up to 2|p|.

The problem Historical results New results Limitations

Friedberg’s property
Given a total function f 6= λx.0, let

nf = min{n : f(n) 6= 0}.

Friedberg’s property is

P = {λx.0} ∪ {f : nf is compressible}.

Semi-deciding f ∈ P

n 0 1 2 3 4 5 6 . . .
f(n) 0 0 0 0 0

When is it time to accept f?

• If f is given by running p, we can never know.
• If f is given by the code of p then evaluate f up to 2|p|.

The problem Historical results New results Limitations

Friedberg’s property
Given a total function f 6= λx.0, let

nf = min{n : f(n) 6= 0}.

Friedberg’s property is

P = {λx.0} ∪ {f : nf is compressible}.

Semi-deciding f ∈ P

n 0 1 2 3 4 5 6 . . .
f(n) 0 0 0 0 0 0

When is it time to accept f?

• If f is given by running p, we can never know.
• If f is given by the code of p then evaluate f up to 2|p|.

The problem Historical results New results Limitations

Friedberg’s property
Given a total function f 6= λx.0, let

nf = min{n : f(n) 6= 0}.

Friedberg’s property is

P = {λx.0} ∪ {f : nf is compressible}.

Semi-deciding f ∈ P

n 0 1 2 3 4 5 6 . . .
f(n) 0 0 0 0 0 0 0

When is it time to accept f?

• If f is given by running p, we can never know.
• If f is given by the code of p then evaluate f up to 2|p|.

The problem Historical results New results Limitations

Friedberg’s property
Given a total function f 6= λx.0, let

nf = min{n : f(n) 6= 0}.

Friedberg’s property is

P = {λx.0} ∪ {f : nf is compressible}.

Semi-deciding f ∈ P

n 0 1 2 3 4 5 6 . . .
f(n) 0 0 0 0 0 0 0

When is it time to accept f?

• If f is given by running p, we can never know.
• If f is given by the code of p then evaluate f up to 2|p|.

The problem Historical results New results Limitations

Friedberg’s property
Given a total function f 6= λx.0, let

nf = min{n : f(n) 6= 0}.

Friedberg’s property is

P = {λx.0} ∪ {f : nf is compressible}.

Semi-deciding f ∈ P

n 0 1 2 3 4 5 6 . . .
f(n) 0 0 0 0 0 0 0

When is it time to accept f?

• If f is given by running p, we can never know.

• If f is given by the code of p then evaluate f up to 2|p|.

The problem Historical results New results Limitations

Friedberg’s property
Given a total function f 6= λx.0, let

nf = min{n : f(n) 6= 0}.

Friedberg’s property is

P = {λx.0} ∪ {f : nf is compressible}.

Semi-deciding f ∈ P

n 0 1 2 3 4 5 6 . . .
f(n) 0 0 0 0 0 0 0

When is it time to accept f?

• If f is given by running p, we can never know.
• If f is given by the code of p then evaluate f up to 2|p|.

The problem Historical results New results Limitations

The problem

Historical results

New results

Limitations

The problem Historical results New results Limitations

Let x be an object. All the programs computing x share some common
information about x:

• The information needed to recover x,
• Plus some extra information about x.

Question
What is the extra information?

Answer
They bound the Kolmogorov complexity of x!

The problem Historical results New results Limitations

Let x be an object. All the programs computing x share some common
information about x:

• The information needed to recover x,
• Plus some extra information about x.

Question
What is the extra information?

Answer
They bound the Kolmogorov complexity of x!

The problem Historical results New results Limitations

We define
K(f) = min{|p| : p computes f}.

Theorem
Let P be a property of total functions. The following are equivalent:

• f ∈ P is read-semi-decidable,
• f ∈ P is run-semi-decidable given any upper bound on K(f).

In other words, the only useful information provided by a program p for f
is:

• the graph of f (by running p),
• an upper bound on K(f) (namely, |p|).

The problem Historical results New results Limitations

More general results

The result is much more general and holds for:
• many classes of objects other than total functions

(real numbers, subsets of N, points of a countably-based topological
space)

• many computability notions other than semi-decidability
(computable functions, n-c.e. properties, Σ0

2 properties).

For instance,

Theorem (Computable functions)

Let X,Y be effective topological spaces and f : X → Y .

f is read-computable ⇐⇒ f is (run,K)-computable.

The problem Historical results New results Limitations

More general results

The result is much more general and holds for:
• many classes of objects other than total functions

(real numbers, subsets of N, points of a countably-based topological
space)

• many computability notions other than semi-decidability
(computable functions, n-c.e. properties, Σ0

2 properties).

For instance,

Theorem (Computable functions)

Let X,Y be effective topological spaces and f : X → Y .

f is read-computable ⇐⇒ f is (run,K)-computable.

The problem Historical results New results Limitations

Example: n-c.e. properties of partial functions

Theorem (Selivanov, 1984)

There is a property of partial functions that is
• 2-c.e. in the read-model,
• not 2-c.e. (and not even Π0

2) in the run-model.

Again,

Theorem
Let P be a property of partial functions. The following are equivalent:

• P is n-c.e. in the read-model,
• P is n-c.e. in the (run,K)-model.

The problem Historical results New results Limitations

Example: n-c.e. properties of partial functions

Theorem (Selivanov, 1984)

There is a property of partial functions that is
• 2-c.e. in the read-model,
• not 2-c.e. (and not even Π0

2) in the run-model.

Again,

Theorem
Let P be a property of partial functions. The following are equivalent:

• P is n-c.e. in the read-model,
• P is n-c.e. in the (run,K)-model.

The problem Historical results New results Limitations

Applications
Effective Borel complexity of semi-decidable properties

Theorem
Every property that is read-semi-decidable is Π0

2.

This is tight.

Theorem
There is a read-semi-decidable property of binary sequences that is not
Σ0

2.

x ∈ P iff ∀n,K(x0 . . . xn−1) < log(n).

The problem Historical results New results Limitations

Applications
Effective Borel complexity of semi-decidable properties

Theorem
Every property that is read-semi-decidable is Π0

2.

This is tight.

Theorem
There is a read-semi-decidable property of binary sequences that is not
Σ0

2.

x ∈ P iff ∀n,K(x0 . . . xn−1) < log(n).

The problem Historical results New results Limitations

Applications
Space of objects : N = N ∪ {∞}. A program p:

• computes ∞ if p outputs 0000000000 . . .,
• computes n if p outputs 00 . . . 0︸ ︷︷ ︸

n

1

Examples of run-semi-decidable sets

• Singleton {n}, n ∈ N,
• Semi-line [n,∞], n ∈ N,

Examples of read-semi-decidable sets

• Friedberg’s set F = {n ∈ N : K(n) < log(n)} ∪ {∞},
• More generally Fh = {n ∈ N : K(n) < h(n)} ∪ {∞}.

Theorem
That’s it!

The problem Historical results New results Limitations

Applications
Space of objects : N = N ∪ {∞}. A program p:

• computes ∞ if p outputs 0000000000 . . .,
• computes n if p outputs 00 . . . 0︸ ︷︷ ︸

n

1

Examples of run-semi-decidable sets

• Singleton {n}, n ∈ N,
• Semi-line [n,∞], n ∈ N,

Examples of read-semi-decidable sets

• Friedberg’s set F = {n ∈ N : K(n) < log(n)} ∪ {∞},
• More generally Fh = {n ∈ N : K(n) < h(n)} ∪ {∞}.

Theorem
That’s it!

The problem Historical results New results Limitations

Applications
Space of objects : N = N ∪ {∞}. A program p:

• computes ∞ if p outputs 0000000000 . . .,
• computes n if p outputs 00 . . . 0︸ ︷︷ ︸

n

1

Examples of run-semi-decidable sets

• Singleton {n}, n ∈ N,
• Semi-line [n,∞], n ∈ N,

Examples of read-semi-decidable sets

• Friedberg’s set F = {n ∈ N : K(n) < log(n)} ∪ {∞},
• More generally Fh = {n ∈ N : K(n) < h(n)} ∪ {∞}.

Theorem
That’s it!

The problem Historical results New results Limitations

A Rice-like theorem for primitive recursive functions
Space of objects : primitive recursive functions. Here, only primitive
recursive programs are allowed.

Example of run-decidable property

f(0) = 1 ∧ f(1) = 2 ∧ f(2) = 4

Example of read-decidable property

∀n,Kpr(f�n) < h(n)

Theorem
That’s it!

Idem for FPTIME, provably total functions, etc.

The problem Historical results New results Limitations

A Rice-like theorem for primitive recursive functions
Space of objects : primitive recursive functions. Here, only primitive
recursive programs are allowed.

Example of run-decidable property

f(0) = 1 ∧ f(1) = 2 ∧ f(2) = 4

Example of read-decidable property

∀n,Kpr(f�n) < h(n)

Theorem
That’s it!

Idem for FPTIME, provably total functions, etc.

The problem Historical results New results Limitations

A Rice-like theorem for primitive recursive functions
Space of objects : primitive recursive functions. Here, only primitive
recursive programs are allowed.

Example of run-decidable property

f(0) = 1 ∧ f(1) = 2 ∧ f(2) = 4

Example of read-decidable property

∀n,Kpr(f�n) < h(n)

Theorem
That’s it!

Idem for FPTIME, provably total functions, etc.

The problem Historical results New results Limitations

The problem

Historical results

New results

Limitations

The problem Historical results New results Limitations

“The only extra information shared by programs computing an object is
bounding its Kolmogorov complexity.”

True to a large extent
See previous results.

Not always true
See next results.

The problem Historical results New results Limitations

Relativization

Does the result holds relative to any oracle?
• On partial functions, NO.
• On total functions, YES.

The problem Historical results New results Limitations

Relativization

Properties of partial functions.

Reminder: Rice-Shapiro theorem

read-semi-decidable ⇐⇒ (run,K)-semi-decidable
⇐⇒ run-semi-decidable

However,

Proposition
For some oracle A ⊆ N,

read-semi-decidableA 6=⇒ (run,K)-semi-decidableA(when A computes Halt)

6=⇒ run-semi-decidableA (when A computes Tot)

The problem Historical results New results Limitations

Relativization

Properties of total functions.

Theorem
For each oracle A ⊆ N,

read-semi-decidableA ⇐⇒ (run,K)-semi-decidableA

There are two cases, whether A computes Halt or not.

Theorem
There is no uniform argument.

The problem Historical results New results Limitations

Computable functions

Reminder
Let X,Y be countably-based topological spaces and f : X → Y .

f is read-computable ⇐⇒ f is (run,K)-computable.

What about non-countably-based spaces?

Theorem
Equivalence is broken for some Y .

Open question
What about X?

The problem Historical results New results Limitations

Computable functions

Reminder
Let X,Y be countably-based topological spaces and f : X → Y .

f is read-computable ⇐⇒ f is (run,K)-computable.

What about non-countably-based spaces?

Theorem
Equivalence is broken for some Y .

Open question
What about X?

The problem Historical results New results Limitations

Future work

• What are the read-semi-decidable properties of total functions?
• Precise limits of the equivalence read≡(run,K)?
• The objects always lived in effective topological spaces. What about
other spaces?

	The problem
	Historical results
	New results
	Limitations

