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The problem

Let p be a program. Two possible types of access to p:
(i) Running p.
(ii) Reading the code of p.

Having the code of p enables one to execute p, but not vice-versa.

Main questions

• Does it make a difference?
• Does the code of a program give more information about what it
computes?
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Halting problem

Running p, one can only semi-decide whether p halts.

Theorem (Turing, 1936)

Reading the code of p, a computer cannot do better.
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Rice theorem
A program p computes a partial function f .

n p
f(n)

What can be decided about f?

Answer
Running p, only trivial properties: the decision about λx.⊥ applies to
every f .

Theorem (Rice, 1953)

Reading the code of p, a computer cannot do better.
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Rice-Shapiro theorem
A program p computes a partial function f .

n p
f(n)

What can be semi-decided about f?

Answer
Running p, exactly the properties of the form:

(f(a1) = u1 ∧ . . . ∧ f(ai) = ui)
∨ (f(b1) = v1 ∧ . . . ∧ f(bj) = vj)
∨ (f(c1) = w1 ∧ . . . ∧ f(ck) = wk)
∨ . . .

Theorem (Rice-Shapiro, 1956)

Reading the code of p, a computer cannot do better.
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For properties of total computable functions,
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It makes a difference!
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For properties of total computable functions,

read-semi-decidable 6=⇒ run-semi-decidable.
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Sum up

Two computation models: read1 and run2.

Class of functions Decidability Semi-decidability
Partial read ≡ run

Rice
read ≡ run
Rice-Shapiro

Total
read ≡ run

Kreisel-Lacombe-
Schœnfield/Ceitin

read > run
Friedberg

Let’s now look at Friedberg’s example.

1usually called Markov computability
2usually called Type-2 computability
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Kolmogorov complexity

Introduced by Solomonoff (1960), Kolmogorov (1965), Chaitin (1966).

• Let K(n) = min{|p| : program p computes n}.
• K(n) ≤ log(n) +O(1).
• n is compressible if K(n) < log(n).
• There are infinitely many incompressible numbers.
• Inequality K(n) ≤ k is semi-decidable.
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Friedberg’s property
Given a total function f 6= λx.0, let

nf = min{n : f(n) 6= 0}.

Friedberg’s property is

P = {λx.0} ∪ {f : nf is compressible}.

Semi-deciding f ∈ P

n 0 1 2 3 4 5 6 . . .
f(n)

When is it time to accept f?

• If f is given by running p, we can never know.
• If f is given by the code of p then evaluate f up to 2|p|.
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Let x be an object. All the programs computing x share some common
information about x:

• The information needed to recover x,
• Plus some extra information about x.

Question
What is the extra information?

Answer
They bound the Kolmogorov complexity of x!
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We define
K(f) = min{|p| : p computes f}.

Theorem
Let P be a property of total functions. The following are equivalent:

• f ∈ P is read-semi-decidable,
• f ∈ P is run-semi-decidable given any upper bound on K(f).

In other words, the only useful information provided by a program p for f
is:

• the graph of f (by running p),
• an upper bound on K(f) (namely, |p|).
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More general results

The result is much more general and holds for:
• many classes of objects other than total functions

(real numbers, subsets of N, points of a countably-based topological
space)

• many computability notions other than semi-decidability
(computable functions, n-c.e. properties, Σ0

2 properties).

For instance,

Theorem (Computable functions)

Let X,Y be effective topological spaces and f : X → Y .

f is read-computable ⇐⇒ f is (run,K)-computable.
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Example: n-c.e. properties of partial functions

Theorem (Selivanov, 1984)

There is a property of partial functions that is
• 2-c.e. in the read-model,
• not 2-c.e. (and not even Π0

2) in the run-model.

Again,

Theorem
Let P be a property of partial functions. The following are equivalent:

• P is n-c.e. in the read-model,
• P is n-c.e. in the (run,K)-model.
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Applications
Effective Borel complexity of semi-decidable properties

Theorem
Every property that is read-semi-decidable is Π0

2.

This is tight.

Theorem
There is a read-semi-decidable property of binary sequences that is not
Σ0

2.

x ∈ P iff ∀n,K(x0 . . . xn−1) < log(n).
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Applications
Space of objects : N = N ∪ {∞}. A program p:

• computes ∞ if p outputs 0000000000 . . .,
• computes n if p outputs 00 . . . 0︸ ︷︷ ︸

n

1 . . ..

Examples of run-semi-decidable sets

• Singleton {n}, n ∈ N,
• Semi-line [n,∞], n ∈ N,

Examples of read-semi-decidable sets

• Friedberg’s set F = {n ∈ N : K(n) < log(n)} ∪ {∞},
• More generally Fh = {n ∈ N : K(n) < h(n)} ∪ {∞}.

Theorem
That’s it!
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A Rice-like theorem for primitive recursive functions
Space of objects : primitive recursive functions. Here, only primitive
recursive programs are allowed.

Example of run-decidable property

f(0) = 1 ∧ f(1) = 2 ∧ f(2) = 4

Example of read-decidable property

∀n,Kpr(f�n) < h(n)

Theorem
That’s it!

Idem for FPTIME, provably total functions, etc.
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“The only extra information shared by programs computing an object is
bounding its Kolmogorov complexity.”

True to a large extent
See previous results.

Not always true
See next results.
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Relativization

Does the result holds relative to any oracle?
• On partial functions, NO.
• On total functions, YES.
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Relativization

Properties of partial functions.

Reminder: Rice-Shapiro theorem

read-semi-decidable ⇐⇒ (run,K)-semi-decidable
⇐⇒ run-semi-decidable

However,

Proposition
For some oracle A ⊆ N,

read-semi-decidableA 6=⇒ (run,K)-semi-decidableA(when A computes Halt)

6=⇒ run-semi-decidableA (when A computes Tot)
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Relativization

Properties of total functions.

Theorem
For each oracle A ⊆ N,

read-semi-decidableA ⇐⇒ (run,K)-semi-decidableA

There are two cases, whether A computes Halt or not.

Theorem
There is no uniform argument.



The problem Historical results New results Limitations

Computable functions

Reminder
Let X,Y be countably-based topological spaces and f : X → Y .

f is read-computable ⇐⇒ f is (run,K)-computable.

What about non-countably-based spaces?

Theorem
Equivalence is broken for some Y .

Open question
What about X?
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Future work

• What are the read-semi-decidable properties of total functions?
• Precise limits of the equivalence read≡(run,K)?
• The objects always lived in effective topological spaces. What about
other spaces?
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