Computational Complexity of real functions

Amaury Pouly

April 28, 2015

Amaury Pouly [Computational Complexity of real functions](#page-61-0) Δ April 28, 2015 $-\infty$ / 19

Outline

[Complexity of real functions](#page-2-0)

- **•** [Introduction](#page-2-0)
- [Computable Analysis](#page-13-0)
- **O** [GPAC](#page-26-0)
- **[Analog Church Thesis](#page-41-0)**

2 [Toward a Complexity Theory for the GPAC](#page-45-0)

- What is the problem?
- [A complexity class](#page-56-0)

Example (Sine function)

Given $x \in \mathbb{R}$, compute $sin(x)$.

Example (Sine function)

Given $x \in \mathbb{R}$, compute $sin(x)$.

⇒ "clearly sin is computable:"

Example (Sine function)

Given $x \in \mathbb{R}$, compute sin(x).

⇒ "clearly sin is computable:"

But...

• how do you represent a real number ? (infinite object)

Example (Sine function)

Given $x \in \mathbb{R}$, compute $sin(x)$.

 \Rightarrow "clearly sin is computable:"

But...

- how do you represent a real number ? (infinite object)
- • what is a program working on them?

Computable analysis

a real number is a program:

Computable analysis

• a real number is a program: it computes arbitrary approximations

- a real number is a program: it computes arbitrary approximations
- • a function is a program transformation:

- a real number is a program: it computes arbitrary approximations
- • a function is a program transformation: it transformes one approximation into another

- a real number is a program: it computes arbitrary approximations
- a function is a program transformation: it transformes one approximation into another
- Intuition: can draw the graph of a function with arbitrary zoom
- Very analytic, approximation theory
- Can lift Turing complexity to real functions
- • Has a nice theory of open sets

Definition (Computable Real)

A real $r \in \mathbb{R}$ is computable is one can compute an arbitrary close approximation for a given precision:

Definition (Computable Real)

A real $r \in \mathbb{R}$ is computable is one can compute an arbitrary close approximation for a given precision:

Given $p \in \mathbb{N}$, compute r_p s.t. $|r - r_p| \leqslant 2^{-p}$

Definition (Computable Real)

A real $r \in \mathbb{R}$ is computable is one can compute an arbitrary close approximation for a given precision:

Given $p \in \mathbb{N}$, compute r_p s.t. $|r - r_p| \leqslant 2^{-p}$

Example

Rational numbers, π, *e*, . . .

Definition (Computable Real)

A real $r \in \mathbb{R}$ is computable is one can compute an arbitrary close approximation for a given precision:

Given $p \in \mathbb{N}$, compute r_p s.t. $|r - r_p| \leqslant 2^{-p}$

Example

Rational numbers, π, *e*, . . .

Example (Non-computable real)

$$
r=\sum_{n=0}^{\infty}d_n2^{-n}
$$

where

 $d_n = 1 \Leftrightarrow$ the n^{th} Turing Machine halts on input *n*

Definition (Computable function)

f : [*a*, *b*] $\rightarrow \mathbb{R}$ is computable iff $\exists m, \psi$ computable functions s.t $\forall n \in \mathbb{N}$: ∀*x*, *y*, |*x* − *y*| 6 2 [−]*m*(*n*) ⇒ |*f*(*x*) − *f*(*y*)| 6 2 [−]*ⁿ* I effective continuity $\bullet \forall r \in \mathbb{Q}, |\psi(r,n)-f(r)| \leq 2^{-n}$ ► approximability

Definition (Computable function)

f : $[a, b] \rightarrow \mathbb{R}$ is computable iff $\exists m, \psi$ computable functions s.t $\forall n \in \mathbb{N}$:

- ∀*x*, *y*, |*x* − *y*| 6 2 [−]*m*(*n*) ⇒ |*f*(*x*) − *f*(*y*)| 6 2 [−]*ⁿ* I effective continuity
- $\bullet \forall r \in \mathbb{Q}, |\psi(r,n)-f(r)| \leq 2^{-n}$ [−]*ⁿ* I approximability

Definition (Equivalent)

f : [*a*, *b*] $\rightarrow \mathbb{R}$ is computable iff ∃*M* a Turing Machine s.t. $\forall x \in [a, b]$ and oracle $\mathcal O$ computing *x*, $M^{\mathcal O}$ computes $f(x)$.

Definition (Computable function)

f : [*a*, *b*] $\rightarrow \mathbb{R}$ is computable iff $\exists m, \psi$ computable functions s.t $\forall n \in \mathbb{N}$: ∀*x*, *y*, |*x* − *y*| 6 2 [−]*m*(*n*) ⇒ |*f*(*x*) − *f*(*y*)| 6 2 [−]*ⁿ* I effective continuity $\bullet \forall r \in \mathbb{Q}, |\psi(r,n)-f(r)| \leqslant 2^{-n}$ [−]*ⁿ* I approximability

Definition (Equivalent)

f : [*a*, *b*] $\rightarrow \mathbb{R}$ is computable iff ∃*M* a Turing Machine s.t. $\forall x \in [a, b]$ and oracle $\mathcal O$ computing *x*, $M^{\mathcal O}$ computes $f(x)$.

Example

Polynomials, trigonometric functions, e², √ ·, . . .

Definition (Computable function)

f : [*a*, *b*] $\rightarrow \mathbb{R}$ is computable iff $\exists m, \psi$ computable functions s.t $\forall n \in \mathbb{N}$:

∀*x*, *y*, |*x* − *y*| 6 2 [−]*m*(*n*) ⇒ |*f*(*x*) − *f*(*y*)| 6 2 [−]*ⁿ* I effective continuity $\bullet \forall r \in \mathbb{Q}, |\psi(r,n)-f(r)| \leq 2^{-n}$ ► approximability

Definition (Equivalent)

f : $[a, b]$ → $\mathbb R$ is computable iff $\exists M$ a Turing Machine s.t. $\forall x \in [a, b]$ and oracle O computing *x*, M^O computes $f(x)$.

Example

Polynomials, trigonometric functions, e², √ ·, . . .

Example (Counter-Example)

$$
f(x) = \lceil x \rceil \qquad \rightarrow \text{not continuous}
$$

• reuses existing theory on Turing machines

- reuses existing theory on Turing machines
- **e** gives "natural" complexity classes related to the classical ones

- reuses existing theory on Turing machines
- **•** gives "natural" complexity classes related to the classical ones
- • but feels very discrete machine oriented

- reuses existing theory on Turing machines
- **o** gives "natural" complexity classes related to the classical ones
- but feels very discrete machine oriented

Question

Can we give a purely analog model of computation ?

General Purpose Analog Computer

o by Claude Shanon (1941)

General Purpose Analog Computer

- by Claude Shanon (1941)
- idealization of an analog computer: Differential Analyzer

General Purpose Analog Computer

- by Claude Shanon (1941)
- idealization of an analog computer: Differential Analyzer
- circuit built from:

An adder unit

GPAC: beyond the circuit approach

Theorem

y is generated by a GPAC iff it is a component of the solution $y =$ (y_1, \ldots, y_d) of the ordinary differential equation (ODE):

$$
\begin{cases}\ny'(t) = p(y(t)) \\
y(t_0) = y_0\n\end{cases}
$$

where *p* is a vector of polynomials.

Example (One variable, linear system)

$$
t \overline{\qquad \qquad \int f \cdot e^t} = e^t \quad \begin{cases} y' = y \\ y(0) = 1 \end{cases}
$$

Example (One variable, linear system)

$$
t \xrightarrow{\qquad \qquad}
$$
 $f \xrightarrow{\qquad \qquad}$ $e^t \xrightarrow{\qquad \qquad}$ $y' = y$
 $y(0) = 1$

Example (One variable, nonlinear system)

Example (One variable, linear system)

$$
t \xrightarrow{\qquad \qquad}
$$
 $f \xrightarrow{\qquad \qquad}$ f f f' f' f f

Example (Two variable, nonlinear system)

Example (Two variables, linear system)

$$
t \rightarrow 1 \rightarrow x \rightarrow f \rightarrow sin(t) \qquad \begin{cases} y' = z \\ z' = -y \\ y(0) = 0 \\ z(0) = 1 \end{cases}
$$

Example (Two variables, linear system)

Example (Two variables, linear system)

Slight issue is...

• the GPAC generated functions are analytical

Slight issue is...

- the GPAC generated functions are analytical
- the computable functions from Computable Analysis are "only" continuous

Question

Can we bridge the gap ? Why should we ?

The case of discrete computations

Many models:

- Recursive functions
- Turing machines
- \bullet λ -calculus
- **•** circuits
- \bullet . . .

The case of discrete computations

Many models:

- Recursive functions
- Turing machines
- \bullet λ -calculus
- **o** circuits
- \bullet ...

Church Thesis

All reasonable discrete models of computation are equivalent.

The case of discrete computations

Many models:

- Recursive functions
- Turing machines
- $\bullet \lambda$ -calculus
- **o** circuits
- \bullet ...

Church Thesis

All reasonable discrete models of computation are equivalent.

Can be extended to complexity when relevant.

GPAC: back to the basics

Definition

f is **generated** by a GPAC iff it is a component of the solution *y* of:

$$
\left\{\begin{array}{l}\ny' &= p(y) \\
y(t_0) = y_0\n\end{array}\right.
$$

GPAC: back to the basics

Definition

f is **generated** by a GPAC iff it is a component of the solution *y* of:

$$
\left\{\begin{array}{l}\ny' &= p(y) \\
y(t_0) = y_0\n\end{array}\right.
$$

Definition

f is **computable** by a GPAC iff ∃*p*, *q* polynomials s.t. ∀*x* ∈ R, the solution $y = (y_1, ..., y_d)$ of: $\int y' = p(y)$

$$
\begin{cases}\ny - p(y) \\
y(t_0) = q(x)\n\end{cases}
$$

satisfies $f(x) = \lim_{t\to\infty} y_1(t)$.

GPAC: back to the basics

Definition

f is **computable** by a GPAC iff $\exists p, q$ polynomials s.t. $\forall x \in \mathbb{R}$, the solution $y = (y_1, ..., y_d)$ of: \int $y' = p(y)$

$$
\begin{cases}\n y & = p(y) \\
 y(t_0) = q(x)\n\end{cases}
$$

satisfies
$$
f(x) = \lim_{t \to \infty} y_1(t)
$$
.

Example

Computable Analysis = GPAC ? (again)

Theorem (Bournez, Campagnolo, Graça, Hainry)

f is GPAC-computable functions iff it is computable (in the sense of Computable Analysis).

Remark

Same curve, different speed: $u(t) = e^t$ and $z(t) = y(e^t)$

Remark

Same curve, different speed: $u(t) = e^t$ and $z(t) = y(e^t)$

PIVP	$y' = p(y)$	$z(t) = y(e^t) \rightarrow \begin{cases} z' = up(z) \\ u' = u \end{cases}$
Computed Function	Same	
Convergence	Exponentially faster	

Example

Remark

tm is not a good measure of complexity.

Amaury Pouly [Computational Complexity of real functions](#page-0-0) April 28, 2015 14/19

Remark

 \bullet tm(μ) and sp(*t*) depend on the convergence rate

Remark

- \bullet tm(μ) and sp(*t*) depend on the convergence rate
- \circ sp(tm(μ)) seems not

Proper Measures

Proper measures of "complexity":

- \bullet time scaling invariant
- • property of the curve

Proper Measures

Proper measures of "complexity":

- \bullet time scaling invariant
- **•** property of the curve

Possible choices:

 \bullet Bounding Box at precision $\mu \Rightarrow$ Ok but geometric interpretation ?

Proper Measures

Proper measures of "complexity":

- **•** time scaling invariant
- **•** property of the curve

Possible choices:

- Bounding Box at precision $\mu \Rightarrow$ Ok but geometric interpretation ?
- • Length of the curve until precision $\mu \Rightarrow$ Much more intuitive

Complexity based on the length of the curve

Definition

f is **poly-computable** by a GPAC iff ∃*p*, *q* polynomials s.t. ∀*x* ∈ R, the solution $v = (v_1, \ldots, v_d)$ of:

$$
\begin{cases}\ny'(t) = p(y(t)) \\
y(t_0) = q(x)\n\end{cases}
$$

satisfies that $\|f(x) - y_1(t)\| \leqslant e^{-\mu}$ when $\ell(t) \geqslant \text{\rm len}(\|x\| \, , \mu)$ where:

- **o** len is a polynomial
- \bullet $\ell(t)$ is the length of the curve *y* from 0 to *t*

An equivalent classes

Definition

f is **poly-computable** by a GPAC iff ∃*p*, *q* polynomials s.t. ∀*x* ∈ R, the solution $y = (y_1, \ldots, y_d)$ of:

$$
\begin{cases}\ny'(t) = p(y(t)) \\
y(t_0) = q(x)\n\end{cases}
$$

satisfies that:

 $||f(x) - y_1(t)|| \leqslant e^{-\mu}$ when $t \geqslant \mathsf{poly}(\Vert x \Vert, \mu)$

 \bullet $\|y(t)\| \leqslant \text{poly}(\|x\|, t)$

Equivalence theorem

Theorem

f is poly-computable if and only if it is computable in polytime in the sense of Computable Analysis.

Conclusion

- Complexity theory for a continuous model of computation
- Natural, machine-independent definition of real computable functions

Conclusion

- Complexity theory for a continuous model of computation
- Natural, machine-independent definition of real computable functions

Future work:

- Other complexity classes (time or space)
- **•** Better understand how the restrictions constraint the complexity

• Do you have any questions ?