Computational Complexity of real functions

Amaury Pouly

April 28, 2015

Amaury Pouly

Computational Complexity of real functions

April 28, 2015 - ∞ / 19

Outline

Complexity of real functions

- Introduction
- Computable Analysis
- GPAC
- Analog Church Thesis

Toward a Complexity Theory for the GPAC

- What is the problem ?
- A complexity class

3 Conclusion

Example (Sine function)

Given $x \in \mathbb{R}$, compute sin(x).

Example (Sine function)

Given $x \in \mathbb{R}$, compute sin(x).

 \Rightarrow "clearly sin is computable:"

Example (Sine function)

Given $x \in \mathbb{R}$, compute sin(x).

 \Rightarrow "clearly sin is computable:"

But...

• how do you represent a real number ? (infinite object)

Example (Sine function)

Given $x \in \mathbb{R}$, compute sin(x).

 \Rightarrow "clearly sin is computable:"

But...

- how do you represent a real number ? (infinite object)
- what is a program working on them ?

Computable analysis

• a real number is a program:

Computable analysis

• a real number is a program: it computes arbitrary approximations

- a real number is a program: it computes arbitrary approximations
- a function is a program transformation:

- a real number is a program: it computes arbitrary approximations
- a function is a program transformation: it transformes one approximation into another

- a real number is a program: it computes arbitrary approximations
- a function is a program transformation: it transformes one approximation into another
- Intuition: can draw the graph of a function with arbitrary zoom
- Very analytic, approximation theory
- Can lift Turing complexity to real functions
- Has a nice theory of open sets

Definition (Computable Real)

A real $r \in \mathbb{R}$ is computable is one can compute an arbitrary close approximation for a given precision:

Definition (Computable Real)

A real $r \in \mathbb{R}$ is computable is one can compute an arbitrary close approximation for a given precision:

Given $p \in \mathbb{N}$, compute r_p s.t. $|r - r_p| \leq 2^{-p}$

Definition (Computable Real)

A real $r \in \mathbb{R}$ is computable is one can compute an arbitrary close approximation for a given precision:

Given $p \in \mathbb{N}$, compute r_p s.t. $|r - r_p| \leq 2^{-p}$

Example

Rational numbers, π , e, ...

Definition (Computable Real)

A real $r \in \mathbb{R}$ is computable is one can compute an arbitrary close approximation for a given precision:

Given $p \in \mathbb{N}$, compute r_p s.t. $|r - r_p| \leq 2^{-p}$

Example

Rational numbers, π , e, ...

Example (Non-computable real)

$$r=\sum_{n=0}^{\infty}d_n2^{-n}$$

where

 $d_n = 1 \Leftrightarrow$ the n^{th} Turing Machine halts on input n

Definition (Computable function)

f : [*a*, *b*] → ℝ is computable iff $\exists m, \psi$ computable functions s.t $\forall n \in \mathbb{N}$: • $\forall x, y, |x - y| \leq 2^{-m(n)} \Rightarrow |f(x) - f(y)| \leq 2^{-n} \models$ effective continuity • $\forall r \in \mathbb{Q}, |\psi(r, n) - f(r)| \leq 2^{-n} \models$ approximability

Definition (Computable function)

 $f : [a, b] \rightarrow \mathbb{R}$ is computable iff $\exists m, \psi$ computable functions s.t $\forall n \in \mathbb{N}$:

• $\forall x, y, |x - y| \leq 2^{-m(n)} \Rightarrow |f(x) - f(y)| \leq 2^{-n} \blacktriangleright$ effective continuity

•
$$\forall r \in \mathbb{Q}, |\psi(r, n) - f(r)| \leq 2^{-n}$$

• approximability

Definition (Equivalent)

 $f : [a, b] \to \mathbb{R}$ is computable iff $\exists M$ a Turing Machine s.t. $\forall x \in [a, b]$ and oracle \mathcal{O} computing x, $M^{\mathcal{O}}$ computes f(x).

Definition (Computable function)

 $f : [a, b] \rightarrow \mathbb{R}$ is computable iff $\exists m, \psi$ computable functions s.t $\forall n \in \mathbb{N}$:

• $\forall x, y, |x - y| \leq 2^{-m(n)} \Rightarrow |f(x) - f(y)| \leq 2^{-n} \blacktriangleright$ effective continuity • $\forall r \in \mathbb{Q}, |\psi(r, n) - f(r)| \leq 2^{-n} \blacktriangleright$ approximability

Definition (Equivalent)

 $f : [a, b] \to \mathbb{R}$ is computable iff $\exists M$ a Turing Machine s.t. $\forall x \in [a, b]$ and oracle \mathcal{O} computing x, $M^{\mathcal{O}}$ computes f(x).

Example

Polynomials, trigonometric functions, e^{\cdot} , $\sqrt{\cdot}$, ...

Definition (Computable function)

 $f : [a, b] \rightarrow \mathbb{R}$ is computable iff $\exists m, \psi$ computable functions s.t $\forall n \in \mathbb{N}$:

• $\forall x, y, |x - y| \leq 2^{-m(n)} \Rightarrow |f(x) - f(y)| \leq 2^{-n} \blacktriangleright$ effective continuity • $\forall r \in \mathbb{Q}, |\psi(r, n) - f(r)| \leq 2^{-n} \blacktriangleright$ approximability

Definition (Equivalent)

 $f : [a, b] \to \mathbb{R}$ is computable iff $\exists M$ a Turing Machine s.t. $\forall x \in [a, b]$ and oracle \mathcal{O} computing x, $M^{\mathcal{O}}$ computes f(x).

Example

Polynomials, trigonometric functions, e^{\cdot} , $\sqrt{\cdot}$, ...

Example (Counter-Example)

$$f(x) = \lceil x \rceil$$
 • not continuous

reuses existing theory on Turing machines

- reuses existing theory on Turing machines
- gives "natural" complexity classes related to the classical ones

- reuses existing theory on Turing machines
- gives "natural" complexity classes related to the classical ones
- but feels very discrete machine oriented

- reuses existing theory on Turing machines
- gives "natural" complexity classes related to the classical ones
- but feels very discrete machine oriented

Question

Can we give a purely analog model of computation ?

General Purpose Analog Computer

• by Claude Shanon (1941)

General Purpose Analog Computer

- by Claude Shanon (1941)
- idealization of an analog computer: Differential Analyzer

General Purpose Analog Computer

- by Claude Shanon (1941)
- idealization of an analog computer: Differential Analyzer
- o circuit built from:

An multiplier unit

An adder unit

GPAC

GPAC: beyond the circuit approach

Theorem

y is generated by a GPAC iff it is a component of the solution y = (y_1, \ldots, y_d) of the ordinary differential equation (ODE):

$$\begin{cases} y'(t) = p(y(t)) \\ y(t_0) = y_0 \end{cases}$$

where p is a vector of polynomials.

Example (One variable, linear system)

$$t = \int e^t \quad \begin{cases} y' = y \\ y(0) = 1 \end{cases}$$

Example (One variable, linear system)

$$t \xrightarrow{f} e^t \quad \begin{cases} y' = y \\ y(0) = 1 \end{cases}$$

Example (One variable, nonlinear system)

Example (One variable, linear system)

$$t \xrightarrow{f} e^t \quad \begin{cases} y' = y \\ y(0) = 1 \end{cases}$$

Example (Two variable, nonlinear system)

Example (Two variables, linear system)

$$t - 1 + \frac{1}{2} + \frac{1}{2$$

Example (Two variables, linear system)

Example (Two variables, linear system)

Slight issue is...

• the GPAC generated functions are analytical

Slight issue is...

- the GPAC generated functions are analytical
- the computable functions from Computable Analysis are "only" continuous

Question

Can we bridge the gap ? Why should we ?

The case of discrete computations

Many models:

- Recursive functions
- Turing machines
- λ-calculus
- circuits
- . . .

The case of discrete computations

Many models:

- Becursive functions
- Turing machines
- λ-calculus
- circuits
- ...

Church Thesis

All reasonable discrete models of computation are equivalent.

The case of discrete computations

Many models:

- Becursive functions
- Turing machines
- λ-calculus
- circuits
- . . .

Church Thesis

All reasonable discrete models of computation are equivalent.

Can be extended to complexity when relevant.

GPAC: back to the basics

Definition

f is generated by a GPAC iff it is a component of the solution y of:

$$\begin{cases} y' = p(y) \\ y(t_0) = y_0 \end{cases}$$

GPAC: back to the basics

Definition

f is generated by a GPAC iff it is a component of the solution y of:

$$\begin{cases} y' = p(y) \\ y(t_0) = y_0 \end{cases}$$

Definition

f is **computable** by a GPAC iff $\exists p, q$ polynomials s.t. $\forall x \in \mathbb{R}$, the solution $y = (y_1, \dots, y_d)$ of: $\begin{cases} y' = p(y) \end{cases}$

$$y(t_0) = q(x)$$

satisfies $f(x) = \lim_{t\to\infty} y_1(t)$.

GPAC: back to the basics

Definition

f is **computable** by a GPAC iff $\exists p, q$ polynomials s.t. $\forall x \in \mathbb{R}$, the solution $y = (y_1, \dots, y_d)$ of:

$$\int y = p(y)$$

$$\int y(t_0) = q(x)$$

satisfies $f(x) = \lim_{t\to\infty} y_1(t)$.

Example

Computable Analysis = GPAC ? (again)

Theorem (Bournez, Campagnolo, Graça, Hainry)

f is GPAC-computable functions iff it is computable (in the sense of Computable Analysis).

What is the problem ?

Time Scaling

_

System	#1	#2
PIVP	$\begin{cases} y'(t) = p(y(t)) \\ y(1) = q(x) \end{cases}$	$\begin{cases} z'(t) = u(t)p(z(t)) \\ u'(t) = u(t) \\ z(t_0) = q(x) \\ u(1) = 1 \end{cases}$

System	#1	#2
PIVP	$\begin{cases} y'(t) = p(y(t)) \\ y(1) = q(x) \end{cases}$	$\begin{cases} z'(t) = u(t)p(z(t)) \\ u'(t) = u(t) \\ z(t_0) = q(x) \\ u(1) = 1 \end{cases}$

Remark

Same curve, different speed: $u(t) = e^t$ and $z(t) = y(e^t)$

System	#1	#2
PIVP	$\begin{cases} y'(t) = p(y(t)) \\ y(1) = q(x) \end{cases}$	$\begin{cases} z'(t) = u(t)p(z(t)) \\ u'(t) = u(t) \\ z(t_0) = q(x) \\ u(1) = 1 \end{cases}$
Computed Function	Same	

Remark

Same curve, different speed: $u(t) = e^t$ and $z(t) = y(e^t)$

PIVP
$$y' = p(y)$$
 $z(t) = y(e^t) \rightarrow \begin{cases} z' = up(z) \\ u' = u \end{cases}$ Computed FunctionSameConvergenceExponentially faster

PIVP	y'=p(y)	$egin{aligned} z(t) = y(e^t) & ightarrow egin{cases} z' = up(z) \ u' = u \end{aligned}$
Computed Function	Same	
Time for precision μ	$ tm(\mu)$	$\texttt{tm}'(\mu) = log(\texttt{tm}(\mu))$

Example

Remark

tm is not a good measure of complexity.

Amaury Pouly

Computational Complexity of real functions

PIVP	y' = p(y)	$egin{aligned} egin{aligned} z(t) = y(m{e}^t) & ightarrow egin{cases} z' = up(z) \ u' = u \end{aligned} \end{aligned}$
Computed Function	Same	
Time for precision μ	$ tm(\mu)$	$\texttt{tm}'(\mu) = \textsf{log}(\texttt{tm}(\mu))$
Bounding box for PIVP at time <i>t</i>	sp(t)	$sp'(t) = max(sp(e^t), e^t)$

Example $sp'(t) \qquad \qquad sp(t) = \sup_{\xi \in [1,t]} ||y(\xi)||$ $sp(t) = \sup_{\xi \in [1,t]} ||z(\xi), u(\xi)||$ $sp'(t) = \sup_{\xi \in [1,t]} ||z(\xi), u(\xi)||$

PIVP	y'=p(y)	$ig z(t) = y(e^t) ightarrow igg\{ egin{array}{c} z' = up(z) \ u' = u \end{array}$
Computed Function	Same	
Time for precision μ	$ tm(\mu)$	$\texttt{tm}'(\mu) = \textsf{log}(\texttt{tm}(\mu))$
Bounding box for PIVP at time t	sp(t)	$\operatorname{sp}'(t) = \max(\operatorname{sp}(e^t), e^t)$

Remark

• $tm(\mu)$ and sp(t) depend on the convergence rate

PIVP	y'=p(y)	$egin{aligned} z(t) = y(e^t) & ightarrow egin{cases} z' = up(z) \ u' = u \end{aligned}$
Computed Function		Same
Time for precision μ	$ tm(\mu)$	$\texttt{tm}'(\mu) = \textsf{log}(\texttt{tm}(\mu))$
Bounding box for PIVP at time t	sp(t)	$\operatorname{sp}'(t) = \max(\operatorname{sp}(e^t), e^t)$
Bounding box for PIVP at precision μ	$\operatorname{sp}(\operatorname{tm}(\mu))$	$\max(sp(tm(\mu)),tm(\mu))$

Remark

- $tm(\mu)$ and sp(t) depend on the convergence rate
- sp(tm(µ)) seems not

Proper Measures

Proper measures of "complexity":

- time scaling invariant
- property of the curve

Proper Measures

Proper measures of "complexity":

- time scaling invariant
- property of the curve

Possible choices:

• Bounding Box at precision $\mu \Rightarrow Ok$ but geometric interpretation ?

Proper Measures

Proper measures of "complexity":

- time scaling invariant
- property of the curve

Possible choices:

- Bounding Box at precision $\mu \Rightarrow Ok$ but geometric interpretation ?
- Length of the curve until precision $\mu \Rightarrow$ Much more intuitive

Complexity based on the length of the curve

Definition

f is **poly-computable** by a GPAC iff $\exists p, q$ polynomials s.t. $\forall x \in \mathbb{R}$, the solution $y = (y_1, \ldots, y_d)$ of:

$$\begin{cases} y'(t) = p(y(t)) \\ y(t_0) = q(x) \end{cases}$$

satisfies that $||f(x) - y_1(t)|| \leq e^{-\mu}$ when $\ell(t) \ge len(||x||, \mu)$ where:

- Ien is a polynomial
- *l*(t) is the length of the curve y from 0 to t

An equivalent classes

Definition

f is **poly-computable** by a GPAC iff $\exists p, q$ polynomials s.t. $\forall x \in \mathbb{R}$, the solution $y = (y_1, \ldots, y_d)$ of:

$$\begin{cases} y'(t) = p(y(t)) \\ y(t_0) = q(x) \end{cases}$$

satisfies that:

• $||f(x) - y_1(t)|| \leq e^{-\mu}$ when $t \geq \text{poly}(||x||, \mu)$

• $\|y(t)\| \leq \operatorname{poly}(\|x\|, t)$

A complexity class

Equivalence theorem

Theorem

f is poly-computable if and only if it is computable in polytime in the sense of Computable Analysis.

Conclusion

- Complexity theory for a continuous model of computation
- Natural, machine-independent definition of real computable functions

Conclusion

- Complexity theory for a continuous model of computation
- Natural, machine-independent definition of real computable functions

Future work:

- Other complexity classes (time or space)
- Better understand how the restrictions constraint the complexity

• Do you have any questions ?