
Chapter 1
Interaction-Based Simulations
for Integrative Spatial Systems Biology
Application to the Simulations of a
Synthetic Multicellular Organism in MGS

Antoine Spicher, Olivier Michel, and Jean-Louis Giavitto

Abstract Systems biology aims at integrating processes at various time and spatial
scales into a single and coherent formal description to allow analysis and computer
simulation. In this context, we focus on rule-based modeling and its integration in
the domain-specific language MGS. Through the notions of topological collections
and transformations, MGS allows the modeling of biological processes at various
levels of description. We validate our approach through the description of various
models of a synthetic bacteria designed in the context of the iGEM competition,
from a very simple biochemical description of the process to an individual-based
model on a Delaunay graph topology. This approach is a first step into providing
the requirements for the emerging field of spatial systems biology which integrates
spatial properties into systems biology.
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1.1 Introduction

It is Fermi et al. (1955) who proposed that computers, instead of simply performing
standard calculus, could be used to study and test a physical idea. This was the
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introduction, in 1955, of the idea of numerical experiments, also called in silico
experiments by biologists.

This epistemological and sociological change had far reaching consequences,
providing to systems biology a unique tool in the investigation of biological phe-
nomena. Computer modeling and simulation give to the biologist an access to “ex-
perimental results” that cannot be provided by direct experiments because of prac-
tical, economical or ethical reasons. However, as biologists realize the limitations
of informal, intuitive analysis of complex systems (McAdams and Shapiro, 1995;
von Dassow et al., 2000), the computer is no longer used only to perform a com-
putation that cannot be done analytically or by hand: its is also used to check and
compare theoretical models, to systematically investigate the consequences of an
hypothesis, to explore the possible range of the parameters and to record, analyze,
control and summarize some elements of the (possibly non-deterministic) behavior
of a complex biological system.

Within biology, systems biology is a particularly demanding application domain
since it requires to integrate several models coming from unrelated area of science
like mechanics, chemistry, etc. The computer modeling and simulation of such sys-
tems require the coupling of several model fragments specifying deterministic or
stochastic interactions between the system’s entities to represent continuous or dis-
crete evolution. For instance, the modeling of the growth of the meristem at a cellu-
lar level (Barbier de Reuille et al., 2006b) requires the coupling of molecular mech-
anisms (e.g. chemical reaction, diffusion, active transport), mechanical stresses, de-
velopmental changes and genetic regulation.

Computer science has developed (or appropriated) many languages and tools to
help build models of real-world processes and to relate different models that operate
on different levels of abstraction and various spatial and time scales. In this chap-
ter, we advocate the use of a rule-based framework based on spatial interactions
as a unifying framework for the concise and expressive simulation of a broad class
of biological systems. We will address related issues such as: Can the same frame-
work be used to model deterministic and stochastic systems? Do we need different
frameworks for the expression of continuous and discrete systems? Could the same
approach allow the natural and concise expression of various theoretical approaches
(for the purpose of simulation)? An answer to such questions cannot be derived the-
oretically but convincing elements can be provided through paradigmatic examples.
This chapter is then organized as follows.

Section 1.2 discusses some of the requirements of systems biology models, the
growing role of agent-based models and the current focus put on the notion of in-
teraction. We emphasize also the need to handle explicit spatial relationships.

Section 1.3 presents MGS, a rule-based, spatial interaction-oriented, experimen-
tal programming language dedicated to the simulation of a broad class of biological
systems.

Section 1.4 introduces the running example we use to illustrate the versatility of
the rule-based approach: a synthetic multicellular bacteria or SMB. This example
comes from a project presented at the iGEM contest in synthetic biology. SMB
combines diffusion, genetic regulation and signalisation in a population.
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Section 1.5 illustrates the use of the MGS rule-based approach with the devel-
opment of several models of the SMB. Each model focuses on a specific time scale
using a dedicated theoretical framework. We show how the MGS approach, empha-
sizing the notion of spatial interactions, is able to express concisely in the same
unified and uniform simulation framework, stochastic and deterministic models and
discrete and continuous ones.

A short presentation of the perspectives and challenges opened by this work con-
cludes this chapter.

1.2 Computer Modeling and Simulation in Integrative and
Spatial Systems Biology

In this section we sketch several approaches in the modeling of biological systems.
We propose to base a unifying simulation framework on the spatial organization of
the interaction between the entities that compose the system. An experimental pro-
gramming language based on this idea is proposed in the next section and illustrated
by several examples in the second part of this chapter.

1.2.1 Dynamical Systems in Systems Biology

Biological processes are often modeled as dynamical systems (Smith, 1999). At
any point in time, a dynamical system is characterized by a set of state variables.
The evolution of the state over time is specified through a transition function which
determines the next state of the system (over some time increment) as a function of
its previous state and, possibly, the values of external variables (input to the system).
The evolution function can be generalized to an evolution relation to handle non-
deterministic (e.g. stochastic) evolution.

Various mathematical framework with diverse properties can be considered to
formalize a dynamical system. For instance, state variables may take values from a
continuous or discrete domain. Likewise, time may advance continuously or in dis-
crete steps. Some examples of dynamical systems characterized by different combi-
nations of these features are listed in Table 1.1. Other combinations exist and are not
listed: the disintegration of a radio-active atom is a continuous-time Markov process
with discrete state for instance.

These various formalisms can be applied to the same system to capture differ-
ent aspects of the system’s evolution. For example, the same reaction-diffusion
process (Turing, 1952) in a tissue can be modeled in continuous space by partial
differential equations (PDE) or in a discrete space by a system of coupled ordi-
nary differential equations (ODE) where the state variables are the concentration of
morphogens in each cell (Turing did both in his seminal paper). Reaction-diffusion
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processes can be also modeled by iterated mapping, sometimes called “continu-
ous automata”, a variant of von Neumann’s cellular automata (CA) (Von Neumann,
1966) where a cell is described by real-valued local concentrations (Turk, 1991).
And totally discrete (space, time and state) models of reaction-diffusion have also
been proposed, for instance in Greenberg and Hastings (1978).

Table 1.1 Some formalisms used to specify dynamical systems according to the discrete or con-
tinuous nature of time, space and state variables. The “space” row is explained in section 1.2.2.2.

C: continuous
D: discrete PDE ODE Iterated

Mappings Finite Automata

State C C C D
Time C C D D
Space C D D D

1.2.1.1 The Need of a Unifying Simulation Language

The previous example shows that a simulation workbench for integrative biology
cannot support a unique theoretical framework. In addition, even confronted to the
development of one specific simulation, the programmer must cope with the wide
variety of biological entities (genes, proteines, membranes, cells, tissue, etc.). They
cannot be described in a unique formalism and yet they must be placed in a single
simulation framework. This is also the case in multiscale modeling where models of
the same system at different scales can have fundamentally different characteristics
(e.g. deterministic vs. stochastic).

These observations do not imply that only a general programming language can
be used for the implementation of simulations in systems biology. As a matter of
fact, the notion of dynamical system is a very general one but nevertheless, it may
receive some specific support that motivates the development of domain specific
languages (DSL). DSL offer, through appropriate notations and abstractions, ex-
pressive power focused on, and usually restricted to, a particular problem domain.

We believe that it is possible to provide abstractions and notations generic enough
to encompass and unify the variety of formalisms needed in systems biology. Such
DSL will support the expressive representation of various kind of states, time and
evolution functions as well as the building of coupled heterogeneous models such as
discrete/continuous or stochastic/deterministic dynamical models. The programmer
will be able to express the various models in a concise and expressive way, making
easier to debug, tune and evolve the simulations. Such DSL makes also possible to
relate models through their implementation.
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1.2.1.2 State and Evolution function in Systems Biology

From the previous presentation, it is obvious that a DSL dedicated to simulation
in systems biology must support in one way or another the notions of state and
evolution function. However, these two simple notions must be looked in a fresh way
in the context of systems biology. Indeed, most of the systems considered in biology
consist of populations of interacting entities. A good example is a biological cell
modeled by a system of molecules that react and interact to form (other) molecules
and molecular machines.

It is customary to abstract over these entities and use state variables to denote
macroscopic observables or population level properties like a global concentration
or a temperature1. It is assumed that as the population size increases, the behavior
of the biological system is asymptotic to that of this state-variable model.

The terms aggregate or mean-field are sometimes used to qualify this approach.
It allows a concise expression of the model and despite severe limitations, mean-
field approximations have been standard methodology for modeling populations of
interacting entities, especially for large and homogeneous populations. One reason
is that no viable alternative existed before the widespread availability of inexpensive
computing power.

However, aggregate models rely on two assumptions that must be seriously scru-
tinized in systems biology:

1. the state space can be described a priori and remains fixed;
2. the global evolution function can be defined explicitly.

We examine these two assumptions in the rest of this paragraph.

1.2.1.3 Dynamical Systems with a Dynamical Structure

Very often the state space of the considered biological process cannot be described
a priori. The reason is that the structure of the biological system and therefore its
description (by a set of state variables) may itself vary over time, as pointed out
by Giavitto, Godin, Michel and Prusinkiewicz (2002). An example is given by the
development of an embryo. Initially, the state of the system is described solely by
the chemical state of the egg. After several divisions, the state of the embryo is given
not only by the chemical state of each cell, but also by their spatial arrangement. The
number of cells, their spatial organization and their interactions evolve constantly in
the course of the development and is not handled by one static structure. It means
that the phase space used to characterize the structure of the state of the system at
each time step must be computed jointly with the running state of the system.

The dynamicity of the structure of a biological system has been repeatedly em-
phasized and several formalisms have been proposed to specify both the evolu-
tion of states and the evolution of the structure. Examples include: the concept of

1 relying on a mean-field approach where the idea is to replace all interactions to any entity with an
average interaction, reducing any multiple entities problem into an effective one-entity problem.
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(hyper)-cycle introduced by Eigen and Schuster in the study of auto-catalytic net-
works (Eigen and Schuster, 1979), the notion of autopoietic systems formulated by
Maturana and Varela (Varela et al., 1974; Luisi, 2003), the variable structure system
theory developed in control (Itkis, 1976), or the concept of organization introduced
by Fontana and Buss to formalize and study the emergence of self-maintained func-
tional structures in a range of chemical reactions (Fontana and Buss, 1994).

We call such systems dynamical systems with a dynamical structure2 or (DS)2

in short (Giavitto and Michel, 2002c, 2003; Giavitto, 2003). Biological examples
include the production of molecules and their dynamic association into multimolec-
ular complexes (Fontana, 1992) or the birth and death of cells with their mechanical
constraints and signaling relations within a developing organism (morphogenesis).

1.2.1.4 Local Interactions

A consequence of a dynamical structure is that a global evolution function cannot
be specified. As a matter of fact, if the set of variables that describe the system
cannot be known in advance, it is impossible to specify a global evolution function
(a dynamical structure is not mandatory to prevent the explicit definition of a global
evolution function).

This does not mean that the (global) evolution function does not exist: it simply
cannot be defined explicitly. This is the case when the individual (local) interactions
between the system’s entities are well characterized but the corresponding global
evolution function cannot be deduced. The macroscopic (global) evolution of the
system must be computed as the “integration” of all the various local and dynamic
interactions between entities.

1.2.2 Individual-Based Models and their Simulations

Individual-based models (Lynch, 2008), also called agent-based models, propose
an alternative approach to mean-field approximation. Such models describe a sys-
tem from the perspective of its constituent units and focus on the representation
of the evolution of each individuals that appears in the system. As a consequence,
they tackle more easily the enormous modeling difficulties raised by the dynamical
structure of biological systems.

Individual-based approaches attract a renewed interest and become viable al-
ternatives because of the increasing availability of inexpensive computing power.
However, they have their own drawbacks. Their mathematical analysis appears to
be at least as difficult as analysing aggregate variables models and the simulation
remains the main tool to study the system’s evolution and for reaching conclusions.

2 Bailly and Longo (2006, pp 125-127) recognize the importance of this class of dynamical systems
and call it “dynamicité auto-constituante” (which could be translated to “self-producing dynamic-
ity”), a distinctive feature of living organisms
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Thus, beyond aggregate models, a simulation language dedicated to systems bi-
ology must be able to implement individual-based models.

1.2.2.1 Multi-Agent Implementation

Multi-agent systems (MAS) (Woolridge and Wooldridge, 2001) are often advocated
as the tool of choice for the implementation of individual-based models (Spicher
et al., 2009). A multi-agent system is a collection of autonomous decision-making
entities called agents. Each agent individually assesses its situation and makes deci-
sions on the basis of a set of rules.

It is easy to use an agent in a multi-agent system to represent the state of an entity
part of the modeled system. The global state of the system is then the set of the state
of each agent that composes the system.

However, multi-agent systems provide no support for the notion of interaction.
Several entities are engaged simultaneously in an interaction while agents are sup-
posed to evolve autonomously. Admittedly, in determining its evolution, an agent
takes into account its neighbors. But it cannot take into account for example the
evolution of its neighbors, which can be problematic.

A good illustration is given by a simple model of growth sometimes called the
Eden model (Eden, 1961). It has been used since the 1960’s as a model for tumor
growth. In this model, a space is partitioned in empty or occupied cells. At each step,
occupied cells with an empty neighbor are selected, and the corresponding empty
cell is made occupied. An exclusion principle prevents two occupied cells to invade
the same empty cell.

This specification of the local evolution of the system defines the interaction
between an occupied and an empty cell. It is difficult to turn this specification into a
simple rule for one cell evolution because an empty cell can query its neighborhood
to find if they are occupied cells but they cannot known which or even if an occupied
cell will invade it. Conversely, when an occupied cell decides to invade an empty
one, it cannot determine if another occupied cell makes the same decision at the
same time.

1.2.2.2 The Spatial Structure of Interactions

Usually, only physically close entities interact because information exchange ulti-
mately has a local character (e.g. transport of signaling molecules between neigh-
boring cells). Thus the possible interactions of the entities in the system reflect the
underlying physical space. The other way round, we can say that the spatial organi-
zation of the entities composing the system organizes also their interactions.

In Table 1.1, we have introduced an additional criterion, space, to categorize
dynamical systems formalisms following the discrete or continuous setting used
for the spatial organization of their entities. For instance, in a cellular automaton,
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entities called “cells”, are organized in a regular lattice. In PDE, fields are localized
in a continuous space and can extend over an entire subspace.

It is interesting to examine the case of aggregate models. For example, the aggre-
gate model of a chemical reaction supposes that the chemical solution is well stirred
and abstracts a population of molecules by a set of concentration variables. In this
case, there is no need to record the position and the velocity of each molecules in
the continuous underlying physical space: it is as if each molecule could interact
with any other. The possibility of chemical reactions is then only constrained by
the “compatibility” of the reactants and is better described by a discrete structure,
the molecular interaction network. Even if this network represents functional con-
straints rather than constraints from the physical underlying space, it is obtained by
“erasing” the localization of the molecules keeping only the possibility of interac-
tions between different species.

Taking the previous discussions seriously pushes to make a switch from state and
evolution function to individuals and interactions. In the next section we will see
how topological notions used to describe neighborhood relationships can be used to
support the description of interactions in a programming language.

1.3 The MGS Domain-Specific Programming Language

The previous section points out several difficulties raised by the computer mod-
eling and the simulation of biological processes in the context of integrative and
spatial systems biology: the necessity to accomodate a wide range of mathemati-
cal formalisms (from continuous to discrete and from deterministic to stochastic),
the dynamical structure of the system and the specification of the dynamics through
local, spatially organized interactions.

To face these difficulties and to ease the building of a simulation program, we
advocate a language-based approach through a Domain Specific Language (DSL)
dedicated to the simulation in systems biology. DSLs are programming languages
for solving problems in a particular domain. To this end, they provide abstractions
and notations for the domain at hand. They are more attractive for programming in
the dedicated domain than general-purpose languages because of easier program-
ming, systematic reuse, better productivity, reliability, maintainability, and flexibil-
ity. Moreover, DSLs are usually small, and more often declarative than imperative.
Declarative programming focuses on what should be computed instead of how it
must be done. Objects and constructions are close to the mathematical standards
which enable an easier mathematical reasoning on programs. Thus, a declarative
program is an executable specification not burdened by the implementation details
and is close to the mathematical model.

In the rest of this section we present such a DSL : the MGS modeling language3.
MGS allows a clear and concise specification of processes through spatial inter-

3 The Web site of the project is http://mgs.spatial-computing.org



1 MGS: Interaction-Based Simulations for Integrative Spatial Systems Biology 9

actions. In MGS, the state of a dynamical system is specified using an original
and generic data structure: the topological collection (Giavitto and Michel, 2002a).
Topological collections are based on the topological relations between the inter-
acting subparts of the system. Furthermore, the specification of the evolution law,
trough local interactions, is simplified by the definition of transformations. Tranfor-
mations are functions defined by a set of rules. Topological collections and transfor-
mation are handled in a declarative style.

The notions of topological collection and transformation subsume several models
of computation inspired by biological systems or used in their modeling and in their
simulation like cellular automata, Lindenmayer systems (used in growth plant mod-
eling) or P systems (advocated for the modeling of compartmentalized molecular
interaction networks). The MGS approach is illustrated in section 1.5. The bene-
fits of the MGS approach have been demonstrated through a number of complex
applications in system biology, Cf. section 1.6.

1.3.1 Topological Collection

One of the key features of the MGS language is its ability to describe and manipu-
late a collection of entities structured by a neighborhood relationship. Such device,
called a topological collection, is used to represent the state and the organization
of a biological systems: the elements of the collection are the components of the
system, and the topology of the collection sets the potential interactions (i.e., two
elements in the collection may interact only if they are neighbor).

Intuitively a topological collection generalizes the notion of field widely used in
physics: each collection is build on an underlying space by associating some value
to each position in this space. Positions can be points, but also more generally lines,
surfaces, volumes, etc. The value associated with a surface may represent a flux, the
value associated with a volume may represent a concentration, etc.

Topological collections can also be thought as a generalization of the notion of
array where the index of an element is replaced by a position in the underlying
space (Giavitto and Michel, 2002a). This view subsumes a large family of important
data-structures used in simulations. For instance, a labeled graph is a special case
of a topological collection where the positions are the nodes of the graph and the
neighborhood relationships are given by the edges of the graph.

Technically, the formalization of topological collections relies on the notion of
chain complex (Munkres, 1984) defined in algebraic topology and has been thor-
oughly studied in previous work of the authors (Giavitto and Michel, 2002c; Gi-
avitto and Spicher, 2008b).

Several neighborhood relationships are expressible in MGS. In the rest of this
chapter we will mainly use records, multiset, Group-based Fields (GBF), and De-
launay collections. These collections represent several important families of interac-
tions and we will show that they are homogeneously handled in MGS. In addition,
MGS allows heterogeneous collections (the elements of a collection can have differ-
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ent types) and the arbitrary nesting of collections (i.e., an element of a collection can
itself be a collection). These features greatly facilitate the development of models
and their simulations.

1.3.2 Transformation

Topological collections represent an adequate medium to specify the interactions
between the elements of a biological system. In MGS, the specification of a trans-
formation T :

trans T = { ... σ => f (σ , . . .); ... }

corresponds to the definition of a set of rules, where the left-hand side σ is a pattern,
matching for a subcollection, and the right-hand side f (σ , . . .) is an expression that
evaluates a new subcollection that will be inserted in place of the matched one. The
notion of subcollection depends on the neighborhood relationships of the collection:
a subcollection is a connected subset of a collection and two elements are connected
if they are neighbors.

Intuitively, a rule represents a possible (local) evolution of a (sub)system. The
pattern in the left-hand side of the rule represents a potential configuration and the
expression in the right-hand side computes the local evolution of this configuration.

A very simple transformation is given by:

trans simpleT = { 0 => 1; }

This transformation is composed of a single rule which replaces the value 0 in the
collection by the value 1. There are two important points to note.

First, this transformation may be applied to any kind of collections. Such a trans-
formation is called polytypic (Jansson and Jeuring, 1997). Polytypic transformations
encapsulate an abstract process that can be reused in a variety of situations. For ex-
ample, MGS is expressive enough to allow the definition of a generic diffusion
process that can be used on any kind of collections (Giavitto and Spicher, 2008b).

Secondly, if the transformation simpleT defines the replacement of 0 by 1, it
does not specify which 0’s must be replaced. If there are several occurrences of 0 in
the collection, do we have to replace all of them, some of them or just one of them?
In the two latter cases, how are the occurrences chosen? These choices are under the
control of a rule application strategy. The application of the transformation T on a
topological collection e using a strategy St is written

T[strategy = St](e)

In the current implementation of MGS, all available strategies are built-in (but the
functional composition of the transformations allows a certain flexibility for spe-
cific requirements). In the following, we will use two of them: the Gillespie strat-
egy based on the stochastic simulation algorithm proposed by Gillespie to simulate
chemical reactions (Gillespie, 1977) (see section 1.5.3) and the maximal-parallel
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strategy widely used in the context of L-systems (Lindenmayer, 1968a) and P sys-
tems (Păun, 2001). In the maximal-parallel strategy, which is the default strategy,
a maximal set of non-intersecting occurrences of the pattern are simultaneously re-
placed by the right-hand side of the rule. When several such sets exist, one of them
is non-deterministically chosen.

1.3.3 Two Models of Diffusion

We illustrate the notion of transformation with the simulation of a paradigmatic
diffusion process. Diffusion is defined in a continuous setting in one dimension by
the following equation

∂u
∂ t

= D
∂ 2u
∂x2

where D is the diffusion coefficient, u is the concentration of the diffusing substance
and x is the position. Below, we describe two different approaches to simulate the
diffusion of a chemical on a one dimensional rod.

1.3.3.1 The Numerical Resolution of the Continuous Model

This example shows MGS’ ability to handle a continuous model. By their nature,
computer simulations operate in discrete time. Models initially formulated in terms
of continuous time and space must therefore be discretized. Using a simple finite
difference method, the previous equation is discretized as

u(i, t +dt) = u(i, t)+h∑
j
(u( j, t)−u(i, t))

where u(i, t) represents the concentration at time t of the ith element of the dis-
cretized rod, and j ranges over the neighbor of i. Parameter h depends on the dis-
cretization and on the diffusion constant D. This computation can be programmed
in MGS by the following transformation:

trans diffuse[h] = {
u => u + h * (neighborsfold(+,0,u)

- u * neighborsize(u))
}

where u is a pattern variable that matches any element in a collection, the expres-
sion neighborsfold(op,e,u) uses operation op to combine the values of the
neighbors of u starting from the initial value e and neighborsize(u) returns
the number of neighbors of u. An additional parameter is provided between brack-
ets after the name of the transformation and corresponds to the parameter h.



12 A. Spicher, O. Michel and J.-L. Giavitto

It is straightforward to extend this process to a surface or a volume instead of a
1D rod. More elaborate discretization schemes are also handled similarly: for ex-
ample, we give in the annex of this chapter the MGS program corresponding to the
implementation of the Range-Kutta methods.

1.3.3.2 The Discrete Stochastic Evolution of a Diffusing Particle

Now, we want to take the same system but we focus on the level of the molecules.
The rod is discretized as a sequence of small boxes, indexed by a natural integer,
each containing zero or many molecules. At each time step, a molecule can choose
to stay in the same box, or to jump to a neighboring box, with the same probabil-
ity p (whose value depends on the time and space discretization). The state of a
molecule is the index of the box where it resides. The entire state of the system is
then represented as a multiset of indices.

A multiset is a generalization of a set (Banâtre et al., 2006): the same element
can appear multiple times in a multiset. In a multiset, each element is neighbor
of any others. Thus, a multiset is a good idealization of a well stirred “chemical
soup” (Giavitto et al., 2004). In our example, if there are m molecules in the box
numbered n, then there is m occurrences of the integer n in the multiset.

The evolution of the system can then be specified as a transformation with three
rules:

trans diffuse[p] = {
q ={ P = (1 - 2*p) }=> q
q ={ P = p }=> q + 1
q ={ P = p }=> q - 1

}

The arrow construction ={...}=> is used to specify the specific parameters of a
rule. Here we give a value to the parameter P used in the probabilistic application
of the rule. In this strategy, a matched pattern is replaced by the right-hand side of
the rule only with a probability P. Additional rules (not shown here) are provided to
deal with boundary conditions.

Fig. 1.1 illustrates the iteration of the continuous and stochastic transformations.
In the initial state, all particles are randomly distributed in the middle third of the
rod.

1.4 A Synthetic Multicellular Bacterium

In the forthcoming sections, we propose to illustrate the expressiveness brought by
the MGS language for the modeling, at various spatial and time scales, of the same
biological process: a synthetic multicellular bacterium (SMB) built during the 2007
iGEM competition (Brown, 2007) by the french team in Paris (Bikard et al., 2007).
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Fig. 1.1 Evolution of a chemical diffusing in a 1D rod, modeled as a continuous process (a) or
as a discrete stochastic one (b). Intuitively, the left figure is the limit of the right figure when the
number of boxes in the rod and the number of particles grow to infinity.

We start by a short presentation of synthetic biology, the iGEM competition and
then we describe the SMB project of the Paris team.

1.4.1 Synthetic Biology

Synthetic biology is an emergent field which proposes an engineering point of view
on biology. It aims at building new biological systems by assembling standard low-
level components called BioBricks (Knight, 2006). These components, designed in
the projects presented for the iGEM contest, are described and stored in an ontology
hosted by the MIT4. They are pieces of DNA used to build biological functions (as
for example a logical gate), and integrable within existing genomes. For example,
a brick activating the production of a chemical species in the presence of a suffi-
cient concentration of molecules of types A and B can be interpreted as a function
calculating the conjunction of the chemical signals associated with the species A
and B.

The basic principles of construction of the biological components, establishing
the biosynthetic methodology, was elaborated at the MIT at the turn of the 21st
century. They rely on classical engineering strategies: standardization, decoupling
and abstraction (Endy, 2005). The purpose of standardization is twofold: to en-
sure compatibility between the bricks and to allow the development of generic and
normalized building protocols (i.e. functioning for all bricks), economically acces-
sible and easily implementable. Decoupling is a strategy that separates complicated
problems into simpler ones. For instance, the separation of the various functions of
a synthetic system allows the modularization of the system, the reuse of its parts, the

4 The BioBricks are available in the Registry of Standard Biological Parts at the following
url http://partsregistry.org/Main_Page.
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independent evolution of each of them, etc. The separation of the phases of design
and implementation reduce and eliminates the dependence between the design of a
gene regulatory network and the effective building of a strand of DNA. Etc. Finally,
an abstraction hierarchy supports the engineering of integrated genetic systems by
hiding information and managing complexity through relevant levels of expression:
from DNA nucleotides to parts, devices and (complete biological) systems. Abstrac-
tion levels limit the exchange of information across levels and allow individuals to
work at any level without regard for the details that define other levels.

1.4.2 The international Genetically Engineered Machine (iGEM)
Competition

iGEM is a competition launched by the MIT in 2003. More than 110 teams com-
ing from all around the world participated in the 2009 issue. The competition is
aimed at undergraduate students that are given the opportunity to manipulate com-
plex molecular biology processes made simple by the synthetic biology principles.
During a three months time period, students mentored by post-graduate students
and researchers, design, model and assemble BioBricks to produce new biological
functions integrated into living systems. At the end of the competition, all teams
gather at the MIT in the first week-end of November during the Jamboree where
their projects are being evaluated.

In 2007 a french team supervised by A. Lindner and S. Bottani participated in the
competition and was ranked first in the “foundational research” category for their
Synthetic Multicellular Bacterium project. MGS was used to produce most of the
simulations needed to validate the design (one simulation was done in MATLAB).
In section 1.5 we present several simulations that are inspired or extend the initial
SMB simulations.

1.4.3 Objectives of the SMB Project

The objective of the SMB project is the design of a synthetic multicellular bac-
terium. This organism was thought as a tool that would allow the expression of a
lethal or dangerous transgenic gene in the Escherichia coli bacterium without dis-
turbing the development of its biomass. The main difficulty was to install a mech-
anism of irreversible bacterial differentiation which makes possible to express the
transgene only in a part of the population unable to reproduce. The two lines, germi-
nal (not differentiated) and somatic (differentiated and unable to reproduce) are in-
terdependent and then constitute a multicellular organization (hence the name “mul-
ticellular bacterium”). In order to ensure that the ratio between the two populations
makes it possible for the system to grow, the sterile somatic cells are designed to
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reproduces

the organism the organism

cannot reproduce

differentiates into

is required for

Germline Soma

Fig. 1.2 The SMB is composed of two cell types: germ cells (G) and somatic (S) cells. G cells are
able to live by producing two different types of cells: G cells and S cells. S cells are derived from
G cells by an irreversible differentiation step, exhibiting a new function required for the survival of
the G cells. S cells cannot reproduce. This dependency between G and S cells defines the organism.

provide to the germinal cells a molecule essential to their reproduction: DAP (di-
aminopimelate). Fig. 1.2 sketches the general principle of the project5.

The design of this organization asked for the development of two distinct biolog-
ical functionalities, one for the cellular differentiation and the other for the feeding
of DAP to the germinal cells. The study of this system was at the same time the-
oretical and practical. Although the biological implementation of the system could
not be entirely carried out by lack of time, the students at iGEM Paris provided
experimental evidences and theoretical proofs that the SMB organism was viable.

1.4.4 The Paris Team Proposal

To implement this functionality into the E.coli bacterium, the Paris team has pro-
posed an original construction. The gene regulatory networks of the proposal is
described in Fig. 1.3. Two functions are described: a feeding device based on the
production of DAP molecules (light gray) and a differentiation device based on a
classical Cre/LOX recombination scheme (dotted box).

In the germline G, there is a natural expression of ftsK. This gene is essential for
replication. The protein product of gene dapA is DAP. This protein diffuses in the
environment and is rapidly degraded. However, in the germline, the dapA gene is
not active since it lacks a promoter to initiate its transcription and G is auxotrophic
in DAP.

The promoter dapAp is sensitive to DAP concentration. Located before the gene
Cre, it allows to adjust the production of Cre to the presence of DAP in the environ-
ment. The production of Cre initiates the recombination/differentiation process.

After recombination, the genomic reassembly leads, by the excision of the parts
between the two LOX recombination sites, to the cell of type S and a plasmid that
is rapidly degraded. In the feeding device S, dapA is under the control of its con-
stitutive promoter and can be expressed. The synthesized DAP diffuses in the en-

5 Additional informations are available at (Bikard et al., 2007).
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DNA
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Fig. 1.3 Gene regulatory networks of the germinal and somatic cells describing the feeding de-
vice (light gray) and differentiation device (dotted box). Cre, dapA and ftsK are genes, LOX is a
recombination site and T are terminators.

vironment allowing to reach G cells. Lacking the ftsK gene, S cells are sterile and
eventually die.

1.5 Modeling in MGS

In this section we illustrate the expressive power of MGS through four examples
derived from the SMB. These four examples have been chosen in order to illustrate
the MGS concepts on individual-based models as well as aggregated models, and
on spatialized as well as non-spatialized models, Cf. Table 1.2.

Table 1.2 Aggregated models vs. individual-based models and spatialized vs. non-spatialized
models in the SMB simulation examples.

aggregated individual-based

non-spatialized ODE (sect. 1.5.1) stochastic simulation à la
Gillespie (sect. 1.5.3)

spatialized discrete diffusion of DAP
(sect. 1.5.2)

cell-cell dynamical interaction
(sect. 1.5.4)
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1.5.1 Solving Differential Equations

This first modeling of SMB is a kind of proof of concept based on the study of a
differential equations system. We propose here a rule-based expression of this model
with two simple resolution schemes: the Euler and Runge-Kutta methods.

1.5.1.1 The SMB Proof of Concept

The very design of SMB is based on the composition of a feeding device together
with a differentiation device. We wonder here whether this architecture could reach
homeostasis, no matter how these devices are implemented. So a minimal model is
required to give such a proof of concept of the design.

To answer this fundamental question, the Paris team proposed a theoretical study
of the population dynamics based on a classical differential equations model. Let
[G], [S] and [D] denote the concentration of germinal cells, somatic cells and DAP
molecules in a well-mixed solution. Their dynamics are captured by the three fol-
lowing equations:

d[G]
dt

= α1
[D]n

[D]n + kn [G]−α2[G]−α3[G] (1.1)

d[S]
dt

= α2[G]−α4[S] (1.2)
d[D]
dt

= α5[S]−α6[D] (1.3)

They give the time variation of each concentration as functions of [G], [S] and [D].
Parameter α1 denotes the growth rate of germ cells, parameter α2 denotes the dif-
ferentiation rate, parameter α3 denotes the death rate of germ cells, parameter α4
denotes the death rate of somatic cells, parameter α5 denotes the production rate of
DAP by the somatic population, and parameter α6 denotes the degradation rate of
DAP. In this model, the differentiation device is parametrized by α2 and the feed-
ing device is captured by parameters α5 for the DAP production and α1 that is
weighted by a Michaelis-Menten function representing the dependence of germinal
cells growth to the DAP concentration.

1.5.1.2 Analysis of the ODE model

In general such models based on differential equations are not easily investigated.
The parameters are often numerous and qualitative analyses are difficult. In our case,
parameters α5 and α6 can be dropped assuming that the DAP concentration is stabi-
lized (i.e. when [D] remains constant and equation 1.3 vanishes). This simplification
of the model allows to stress out two main populations behaviors. Indeed it reveals
a non trivial fixed point ([G]0, [S]0) that is unstable:
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• for greater values of cell concentrations, an exponential growth is observed,
• for lower values of cell concentrations, both populations collapse to reach the

second and trivial fixed point (0,0).

But is this result relevant? In other words, is the DAP stabilization assumption
realistic? Should the production of DAP fluctuate, the previous sketch does not give
any information on the viability of the SMB. In the following sections, we propose
to focus on this question relying on different characterizations of the dynamics using
numerical simulations.

1.5.1.3 A Numerical Solution of Differential Equations

By their nature, simulations operate in discrete time. Models initially formulated in
terms of continuous time must therefore be discretized. Strategies for discretizing
time in a manner leading to efficient simulations have extensively been studied. Here
we use as an example a straighforward and very simple approach, the Euler method.
This method particularly fits well the simulation of problems of the form:

dX(t)
dt

= f (X(t)) X(0) = X0

where X(t) is a vector of values representing the state of the system at a given
time t, and X0 is the initial state. The function f computes the variation of each
coordinate of X at a given time t. As far as our problem is concerned, one has the
state X = ([G], [S], [D]) and function f corresponds to the three equations (1.1), (1.2)
and (1.3).

The Euler method computes a sequence of vectors Xn where X0 = X0 at the initial
time and the generic term is given by the first two terms of the Taylor expansion:

Xn+1 = Xn +∆t f (Xn)

where ∆t denotes the simulation time step.
We start the MGS expression of this computation by representing the state of

the system in terms of topological collection. We use here a record. A record is one
of the simplest collection consisting of two or more values so that each component
(called a field or member of the record) can be accessed through a symbolic name.
Each value in the record is “isolated” and has no neighbor. Hence, there is no direct
interaction between the elements of a record. Elements of a record are given between
braces.

The record used here has three members describing the concentrations [G], [S]
and [D] with a value of type float (a real number):

record State = { G:float, S:float, D:float }

The variation of each concentration can be computed from such a state. The fol-
lowing function implements this procedure according to equations (1.1), (1.2) and
(1.3):
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fun Variation[a1,a2,a3,a4,a5,a6,k,n](X) = {

G = (
X.Dn

X.Dn+kn*
a1 - a2 - a3)*X.G,

S = a2*X.G - a4*X.S,
D = a5*X.S - a6*X.D

}

Parameters ai, k and n are given between bracket. Parameters between brackets are
optional arguments. Note that the function Variation returns a State. It allows
collections X and Variation(X) to be of the same type, and then to share the
same set of positions (here fields G, S and D). This property eases the computation.
For example, while the concentration [G] is obtained at position G of collection X

(by the expression X.G), its variation
d[G]
dt

is at the same position G of collection
Variation(X) (corresponding to the expression Variation(X).G).

Finally, one step of the Euler method can be expressed by a transformation to be
applied on a collection of type State:

trans Euler[dt=∆ t,f] = {
x => let dx = f(self).(ˆx) in x + dt * dx

}

In this transformation, the unique rule specifies how each element x of the collection
has to be updated by computing its variation dx. This variation is taken at ˆx (i.e.
the position of x) of the collection and is computed by the function f (a parameter
of the transformation) applied on self. The identifier self always refers to the
collection which the transformation is applied to. In our example, the actual value
of f will be the previous function Variation. The whole trajectory is obtained
by iterating the application of transformation Euler on an initial condition.

The reader is invited to note that transformation Euler is fully independent
from the specification of State and Variation, and can be used as a generic
implementation of the Euler method in many different contexts. Moreover, whereas
the Euler method is sufficient for the simulations described below, we would like
to underline that other integration methods can also be straightforwardly imple-
mented in MGS. The implementation of the Runge-Kutta method is elaborated in
appendix 1.6.2 of this chapter.

1.5.1.4 Interpretation of the Simulations’ Results

Numerical approaches suffer from the lack of knowledge regarding the values of
parameters. Hence, we cannot rely on any quantitative information on the system.
Nevertheless, experience and classical examples give us sufficient informations to
determine a range of possible parameters. For the sake of the simplicity, we arbi-
trarily set them to the intervals given in Table (1.3).
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Table 1.3 Intervals of the parameters for the ODE-based model.

Parameter Range
α1 [0,2]
α2 [0,1]
α3 [0,1]
α4 α4 = α3

Parameter Range
α5 [0,1000]
α6 [0,1]
n 2
h 100

Our objective was to observe all the possible behaviors of the system for different
settings of parameters (chosen in the parameters space defined by Table 1.3) and
starting from a common initial state.

The protocol of our study has consisted in running 10000 simulations of the
model. Each simulation has consisted in computing the Euler trajectory of the sys-
tem over 11000 iterations with a time step equal to 0.01 (that is, 110 arbitrary
units of simulation time) starting from an initial state where only germinal cells
are present with a very high concentration of DAP. In each run, parameters were
randomly chosen according to the intervals given in Table (1.3).

Euler[dt=0.001,f=Variation]
({ G = 100, S = 0, DAP = 10000 })

Results are given in Fig. 1.4. Only three clearly distinguished behaviors are ob-
served and coincide with the dynamics provided by the qualitative analysis:

1. population collapse (see Fig. 1.4.(a)),
2. exponential growth of the population (see Fig. 1.4.(b)), and
3. the unstable fixed point (see Fig. 1.4.(c)).

In all behaviors, the system starts by consuming DAP molecules to replicate. Once
DAP concentration falls below a certain level, differentiated cells start to appear and
initiate the production of DAP.

In order to understand what characteristics prevent an exponential growth, the
simulations have been classified according to the three behaviors, and their dis-
tributions have been analyzed (see Fig. 1.4.(d)-1.4.(h)). Each histogram shows the
behavior of the system following one parameter and irrespectively of the other ones.
Population collapse occurs when germinal replication rate is low (either because of
a small growth rate α1 or because of a high death rate α3, see Fig. 1.4.(d) and 1.4.(f))
or when the differentiation rate is too low (see Fig. 1.4.(e)). The last two Fig. 1.4.(g)-
1.4.(h) show that the system is not perturbed by the behavior of DAP production or
degradation. This explains why no additional behaviors are observed compared to
the qualitative analysis. In fact, the dotted lightgray curves of Fig. 1.4.(a)-1.4.(c)
(that correspond to the ratio [D]

[G]+[S] ) show that the normalized DAP concentration

remains constant after a transient phase; the assumption d
dt

(
[D]

[G]+[S]

)
= 0 seems ap-

propriate for a qualitative analysis.
The conclusion of this study is twofold:



1 MGS: Interaction-Based Simulations for Integrative Spatial Systems Biology 21

 10000

 0  100
 1e−06

C
o

n
c
e
n

tr
a
ti

o
n

s

Time

[D]/([G]+[S])
[D]
[S]
[G]

(a)

[D]/([G]+[S])
[D]
[S]
[G]

 0.1

 1e+06

 0  100Time

C
o

n
c
e
n

tr
a
ti

o
n

s

(b)

 0.1

 100000

 0  100

C
o
n
c
e
n
tr

a
ti

o
n
s

Time

[D]/([G]+[S])
[D]
[S]
[G]

(c) (d)

(e) (f)

(g) (h)

Fig. 1.4 Results of simulations of the ODE-based model. Fig. 1.4.(a)-1.4.(c) illustrate the three
observed behaviors (resp. population collapse, exponential growth and unclassified behavior).
Fig. 1.4.(d)-1.4.(h) give on stacked histograms the distribution of the 10000 simulation runs for
each parameter (resp. α1, α2, α3, α5, α6) with populations collapse in medium gray, exponential
growth in dark grey, and unclassified behavior in light gray.
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1. the choice of DAP as the main molecule to design the feeding device is good if
the auxotroph germ line is robust and grows well in presence of DAP;

2. the differentiation device is required to be efficient (a reversible differentiation
should be prohibited).

We aimed here at illustrating how MGS can be used as a prototyping tool for provid-
ing quick results and orienting further investigations. This preliminary work could
be improved by taking into account more realistic parameters ranges provided by the
litterature. The use of data analysis techniques could also give a better knowledge
(e.g. parameters correlations) on the results of the simulations.

1.5.2 Cellular Automata

In this second modeling, we focus on the effects on the SMB due to the spatial orga-
nization of the SMB. We propose to design a cellular automaton and to implement
it in MGS.

1.5.2.1 The Spatial Organization of the SMB

The ODE-based model proposed in section 1.5.1 considers the SMB as a molecu-
lar solution of three different species uniformly distributed in space. In reality, the
system consists of two populations of cells that will be organized in space. Such an
organization may induce heterogeneity in the cells distribution leading to some spa-
tial artefacts not taken into account by the ODE model (Durrett and Levin, 1994).
Some interesting spatial self-organizations could even be observed: for instance,
one can easily imagine that the SMB collapses at some locations while it grows ex-
ponentially at others making some patterns appear at the population scale (Shnerb
et al., 2000). As a consequence, one has to investigate whether space matters or not
in the SMB development.

1.5.2.2 A Discrete Spatial Framework

Different formalisms allow to take space into account. A first direction consists
in extending the ODE of section 1.5.1 by considering the spatial distribution of
concentrations (i.e. [G], [S] and [D] would depend on time but also on space). This
extension would introduce in the formula the use of two additional terms to deal
with the spatial diffusion of concentration of bacteria and DAP molecules. These
modifications make the original ODE system become a PDE system, and increase
the paramater space. The associated phase space becomes more difficult to study.

Cellular automata (CA) and multi-agents systems (MAS) are another class of
formalisms that explicitly consider spatial organization. Both rely on a individual-
based point of view. We focus here on a CA approach.
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A cellular automaton is a regular lattice of places called “cells”, where each cell
is characterized by a state taken from a finite set. The global evolution of the CA
consists in applying synchronously, on each cell, a local evolution function that
computes the new state of the cell as a function of its current state and of the states
of the cells in its neighborhood.

The Paris team proposed a CA to study the relation between DAP diffusion and
differentiation. Their model is based on states encoded as real numbers to represent
the concentration of DAP in each CA cell, and the use of non-deterministic rules
using random number generators. On the contrary, we propose a totally determin-
istic CA with discrete states and very simple rules. More precisely, we consider a
superposition of two CA: the one deals with the DAP diffusions process while the
other takes into account the differentiation of the cells.

DAP Diffusion CA

Contrarily to the simulations of diffusion given in section 1.3.3, we aim at specify-
ing a phenomenological diffusion in a CA, that is the propagation of an information
(e.g. “contains some DAP”) from a source CA cell to its neighborhood. This be-
havior corresponds to a classical propagation rule (Wolfram, 1986) where a cell
becomes activated if one of its neighbors is activated. In order to limit the radius of
the propagation, the following rule may be used:

xt+1 = max(0,y1
t −1, . . . ,yn

t −1) (1.4)

where x denotes a cell of the CA, xt its state at time t and y1, . . . , yn the neighbors
of x. Here states are encoded by integers that are gradually decremented from the
source: 0 means no activation and n > 0 means that the activation propagates with
a radius n around the cell. Some evaporation may be introduced to deal with the
removal of the source. A source maintains its state to a specific integer value denoted
by NR . Fig. 1.5.(a)-1.5.(c) show the discrete diffusion around an isolated source for
NR = 5 on an hexagonal grid.

Differentiation CA

This CA focuses on the bacterial layer. Each cell of the CA represents a part of the
whole population. Under some conditions on the DAP level, a CA cell progressively
goes from a majority of germinal bacteria to a majority of somatic bacteria. We
abstract the ratio between the two populations in a CA cell by an integer between
0 and NP : 0 means that only somatic bacteria are present and NP only germinal
bacteria are present.

The dynamics of a CA cell is as follows: if there is enough DAP, the number
of germinal bacteria becomes maximal. Otherwise, this number decreases at each
time step. Finally, if no germinal bacterium remains, the ratio is locked to 0. Equa-
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tion (1.5) summarizes this behavior:

ut+1 =

NP if there is enough DAP
0 if ut = 0
ut −1 otherwise

(1.5)

where u denotes a CA cell and ut its state at time t.

Coupling Both CA

Equations (1.4) and (1.5) are combined to define the final CA. Let ct = (ut ,xt) de-
notes the state of a CA cell c a time t. The local evolution function is given by:

ct+1 =
{

(0, NR) if xt = 0
(ut+1, max(0,xt+1−NC )) otherwise (1.6)

where xt+1 and ut+1 are given by equations (1.4) and (1.5), and NC represents the
DAP consumption of germinal bacteria. Finally, we consider that there is not enough
DAP when xt+1−NC is negative and no DAP source is available in its neighbor-
hood.

1.5.2.3 MGS Expression of a Cellular Automaton

MGS allows an easy specification of CA. We use the Group-based field topological
collections (GBF) to represent regular and uniform lattice, as used in cellular au-
tomata or for the numerical solutions of PDEs. The neighborhood relationships of a
GBF are described in terms of a mathematical group, the group of elementary dis-
placements in the lattice (Giavitto and Michel, 2001; Giavitto, Michel and Cohen,
2002). The corresponding space can be visualized as a graph, the Cayley graphs of
the presentation of the group (Giavitto and Michel, 2002b). This abstract approach
enables the easy specification and a uniform handling of a large family of circular
and screwed, bounded or unbounded grids in any dimension.

For the purpose of this example, each GBF position is labelled by an MGS
record of type {x:int, u:int} representing the state ct . Each GBF position
has 6 neighbors achieving an hexagonal grid.

The dynamics of equation (1.6) is implemented as follows:

trans SMB CA = {
c / c.u == 0 => { x = NR, u = 0 }
c / NoPrs(c) => { x = Diff(c)-NC, u = NP }
c / c.u == 1 => { x = NR, u = 0 }
c => { x = 0, u = c.u-1 }

}
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where NoPrs(c) computes whether there is not enough DAP on cell c and
Diff(c) computes the diffusion on cell c with respect to equation (1.4). Note
that the order of the rules matters: for instance, the matching of a cell by the third
rule implies that it cannot be matched by the first two ones. This transformation is
applied using the standard maximal parallel strategy of MGS.

1.5.2.4 Interpretation of the Simulations’ Results

Fig. 1.5.(d)-1.5.(f) show how differentiation appears in a population of germinal
cells. As the CA transition function is deterministic, symmetry is broken in the
initial state (otherwise all cells would exhibit the same behavior): we have chosen to
start the simulation with cells of the form { x = 0, u = 1+random(NR)},
that is to say germinal cells with a ratio uniformly chosen in [1,NR ], and no DAP.

No symmetrical pattern appears during the simulation, whatever the parameters
NR , NP and NC are. The distribution of the differentiation cells follows the ratio
distribution chosen at the initial state. An equivalent behavior is observed when
the symmetry is broken by randomly initializing the field x. The uniformity of the

(a) (b) (c)

(d) (e) (f)

Fig. 1.5 Results of simulations of the CA model. Top line shows the propagation of DAP around
an isolated source with radius 5: from left to right, initial state, state after 1 iteration, steady state.
A light gray cell means no DAP, the gray scale represents the concentration of DAP and the black
cell is the source. Bottom line shows the evolution of the CA defined by equation 1.6, on a 40x40
hexagonal grid only filled by germinal cells with a randomly chosen ratio: from left to right, initial
state, state after 13 iterations, state at fixed point. Germinal cells figure in dark gray and somatic
cells in light gray.
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dynamics supports the assumption of a well-mixed solution used in section 1.5.1
and confirms the previous result.

We have shown with this model how a rule-based programming style fits well
the specification of CA. No more than 10 lines are required to describe it in MGS.
Moreover, thanks to the polytypic feature of MGS, the specification of the topology
is totally decoupled from the definition of the dynamics; transformation SMB AC
could be applied on any kind of topological collection, and more especially on any
kind of grids and neighborhoods (like square grids with von Neuman or Moore
neighborhoods, toric grids, etc.). More specialized CA tools are often ad hoc and do
not exhibit so much flexibility and genericity in the expression of models.

1.5.3 Stochastic Simulations

The two previous approaches provide results at the level of the synthetic device.
In this section, we study the construction of these devices in terms of biological
parts and synthetic construction as described in section 1.4.1. More specifically, we
propose a stochastic model of the SMB at the level of one bacterium together with
its simulations using the exact stochastic simulation algorithm defined by Gillespie
(1977).

1.5.3.1 Robustness Analysis of the SMB Design

The characterization of a synthetic device depends on its implementation. We aim
at checking if the behavior of the Paris team construction respects the main objec-
tive of the SMB. More precisely, we focus on the noise sensitivity and the relation
between parts parameters (like the rate of DNA Cre/LOX recombining) and the de-
vices parameters (such as the differentiation rate).

A common way of modeling gene regulation is to consider the regulatory net-
work as a set of biochemical reactions. The set of chemical interactions induced by
the Paris team construction (see Fig. 1.3) are abstracted by the following reactions:

Cre
C0

GGGGGGGA . (1.7)

DAP
C1

GGGGGGGA . (1.8)

DCre +DAP
C2

GGGGGBFGGGGG

C−2

D∗Cre (1.9)

DCre
C3

GGGGGGGA DCre +Cre (1.10)

D∗Cre

C4
GGGGGGGA D∗Cre +Cre (1.11)

DG +Cre
2C5

GGGGGGGA D∗G (1.12)

D∗G +Cre
C5

GGGGGGGA DS (1.13)

DS
C6

GGGGGGGA DS +DAP (1.14)

DAP
Cex

GGGGGGBFGGGGGG

Cim

DAPex (1.15)

These reactions involve two kinds of chemical species: the DAP and Cre molecules,
and the DNA constructions of Fig. 1.3 abstracted by:
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• DCre, D∗Cre: differentiation-free part of the construction composed of promoter
dapAp and the coding region for Cre. The two symbols represent, respectively,
the activated (no DAP repression on dapAp) and inhibited (DAP binds dapAp)
state of the promoter.

• DG, D∗G, DS: part of the DNA modified by the Cre/LOX recombination mecha-
nism, DG before and DS after recombination. D∗G corresponds to an intermediate
state where only one LOX site is bound by Cre.

Reactions (1.7) and (1.8) describe the natural degradation of molecules Cre and
DAP. Reactions (1.9-1.11) express the behavior of the promoter dapAp: inhibi-
tion/activation by DAP and production of Cre (reactions (1.10) and (1.11) differ
in their reaction constants: C4 � C3). Reactions (1.12) and (1.13) specify the 2
steps of a Cre/LOX recombination: DG → D∗G → DS. The regulation induced by
DG (expression of the gene ftsK) is not considered in this model. On the contrary,
the behavior of DS is specified by equation (1.14), corresponding to a constitutive
production of DAP. The last reaction (1.15) expresses importation and exportation
of DAP from the extracellular environment, where DAPex denotes the external oc-
currences of DAP molecules.

1.5.3.2 Stochastic Modeling for Sensitivity to Noise Analysis

The Paris iGEM team has chosen to investigate this kind of molecular model us-
ing a differential equation approach based on the mass action law. Thanks to this
study, they provided a set of optimized parameters for an exponential growth of the
SMB. Nevertheless, such results may be biased since the differential approach (1)
relies on a global homogeneous assumption and (2) does not take noise into account.
Since the number of molecules involved in gene regulation is in general very low, a
stochastic approach may provide complementary result on noise sensitivity.

A usual abstraction in the simulation of biochemical systems consists in consid-
ering the system (here the bacterium) as an homogeneous chemical solution where
the reactions of the model are taking place. Gillespie has proposed in (Gillespie,
1977) an algorithm for producing the trajectories of such a chemical system by
computing the next reaction and the elapsed time since last reaction occurred. Let
µ be a chemical reaction, the probability that µ takes place during an infinitesimal
time step is proportional to:

• cµ , the stochastic reaction constant6 of reaction µ;
• hµ , the number of distinct molecular combinations that can activate reaction µ;
• dτ , the length of the time interval.

Gillespie proved that the probability P(τ,µ)dτ that the next reaction will be of type
µ and will occur in the time interval (t + τ, t + τ +dτ) is:

6 Evaluating the stochastic constants is one of the key issues in stochastic simulations of biochem-
ical reactions. The interested reader should refer to (De Cock et al., 2003; Zhang et al., 2003) for
the description of two experiences in that field.
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P(τ,µ)dτ = aµ e−a0τ dτ

where aµ = hµ cµ is called the propensity of reaction µ , and a0 = ∑ν aν is the com-
bined propensity of all reactions.

This probability leads to the first straightforward Gillespie’s algorithm called the
first reaction method. It consists in choosing an elapsed time τ for each reaction
µ according to the probability P(τ,µ). The reaction with the lowest elapsed time
is selected and applied on the system making its state evolve. A new probability
distribution is then computed for this new state and the process is iterated.

1.5.3.3 Gillespie-based Simulations in MGS

Here, we consider the bacterium as a well mixed chemical solution. It can be repre-
sented by a multiset, that is a topological collection, where any element may interact
with all the others (Fisher et al., 2000). The simulation of “real” chemical reactions
requires a strategy for multiset rules application in accordance with the reactions ki-
netics. The MGS language provides such a strategy based on Gillespie’s algorithm.
We propose to use this strategy for simulating the previous set of chemical reactions.

As said above, the state of the bacterium is represented by a multiset of values.
The considered molecules are abstractly represented using MGS symbols denoted
by back-quoted identifiers. For example, the MGS symbol ‘Cre corresponds to
one molecule of Cre. Thus, each chemical reaction is translated into a transforma-
tion rule (or two if the reaction is reversible) characterized by an arrow parameter
C representing the stochastic constant of the reaction. For example, the reversible
reaction (1.9) can be straightforwardly translated to the two following MGS rules:

‘dCrA, ‘DAP ={ C = C2 }=> ‘dCrI and
‘dCrI ={ C = C−2 }=> ‘dCrA, ‘DAP

Consequently, the whole dynamics is captured by the following set of rules in trans-
formation SMB STO:

trans SMB STO[DAPEx] = {
‘Cre ={ C = C0 }=> .
‘DAP ={ C = C1 }=> .

‘dCrA, ‘DAP ={ C = C2 }=> ‘dCrI
‘dCrI ={ C = C−2 }=> ‘dCrA, ‘DAP
‘dCrA ={ C = C3 }=> ‘dCrA, ‘Cre
‘dCrI ={ C = C4 }=> ‘dCrI, ‘Cre

‘dG1, ‘Cre ={ C = 2*C5 }=> ‘dG2
‘dG2, ‘Cre ={ C = C5 }=> ‘dS

‘dS ={ C = C6 }=> ‘dS, ‘DAP

‘DAP ={ C = Cex }=> (DAPEx++; .)
. ={ A = DAPEx*Cim }=> (DAPEx--; ‘DAP)

}
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In the last two rules, the external DAPex molecules are specified by the counter
DAPEx given as an optional parameter. This counter is incremented (resp. decre-
mented) when a DAP molecule is imported (resp. exported).

The last rule of transformation SMB STO explicitly computes the propensity A
instead of using the usual parameter C. This feature allows a fine control of the
Gillespie application strategy when required.

1.5.3.4 Interpretation of the Simulations’ Results

A simulation is run by calling the transformation SMB STO using Gillespie’s strat-
egy:

SMB STO[strategy=‘Gillespie, DAPEx=1000]
(‘dCrA::‘dG1::():bag)

The initial state is specified by two molecules, namely DCre and DG, added (with the
insertion operator ::) to an empty multiset (denoted by ():bag in the MGS syn-
tax). This state represents a germinal cell. External DAP is specified by initializing
the counter DAPEx to 1000 molecules.

Top line of Fig. 1.6 gives two different runs of the simulation corresponding
to the evolution of Cre, DAP and DAPex populations over 100 arbitrary units of
time (AUT).

Fig. 1.6.(a) shows the classical behavior of a germinal cell: the DAPex is im-
ported from the outside until no DAP remains in the system (this process takes 50
arbitrary units of time). During this first part of the simulation, the expression of
Cre is repressed by the over representation of DAP. After that, the repression de-
creases during 20 AUT until some Cre molecules are produced. At time 80 AUT ,
DAP molecules appear which means that the differentiation occurred. On the con-
trary, Fig. 1.6.(b) shows the evolution of a germinal cell when DAPex remains con-
stant (i.e. expressions DAPEx++ and DAPEx-- are removed from the specification
of SMB STO). DAP molecules are exchanged between the cell and its environment
until an equilibrium is reached. Whereas any differentiation occurs during this sim-
ulation, the germinal cell will differentiate since parameter C4 is not null.

We propose to use the stochastic model to evaluate the differentiation rate of
the SMB. More specifically, we focus on the mean simulation time required for
a germinal cell to differentiate while DAPex is constant. Results are given on the
bottom line of Fig. 1.6. The protocol of this experiment consists in running 1 000
simulations for each value of DAPex ∈ [0,30] and starting with the same initial state.
Each simulation stops when the differentiation occurs (i.e. when ‘dS appears in the
collection). Mean times and associated standard deviation are plotted on Fig. 1.6.(c).
Surprisingly both quantities seem to behave linearly with DAPex.

One has to pay attention to the fact that such simulations are costly in comput-
ing time. Fig. 1.6.(d) gives the mean computation time of the simulation, showing
that it increases more than linearly with the value of DAPex. Actually, Gillespie’s
algorithm, in its original definition, only allows a small numbers of molecules.
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Fig. 1.6 Results of simulations of the stochastic-based model. On top, two examples of stochastic
simulations when external DAP (in solid black) remains constant (Fig. 1.6.(b)) or not (Fig. 1.6.(a)).
Internal DAP is drawn in light gray and Cre in dotted line. Fig. 1.6.(c) shows the mean simu-
lation time to differentiation with a constant external DAP concentration for different values of
that concentration. Vertical bars correspond to the standard deviation. Fig. 1.6.(d) shows the mean
computation time to differentiation.

As a conclusion, one can establish that the differentiation rate is easily related
to the quantity of DAP released in the environment by somatic cells. Such a result
is meaningful as it relates quantities of different scales: the population and cellular
scale of the differentiation and the genetic and molecular scale of DAP concentra-
tion.

Our stochastic simulations exhibit low concentrations of chemicals within a cell
(e.g. there are less than 10 molecules of Cre after the differentiation occurs). This
result questions the pertinence of ODE models such as the one proposed by the Paris
team (Bikard et al., 2007).

1.5.4 Integrative Modeling

So far, we have considered classical ways of modeling and simulating a biological
process at a given level of description. In this last model, we aim at simulating the
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entire population of bacteria with an explicit representation of cells in a 2D space7.
In addition, we want to integrate in the model physical and biological behaviors.
Our proposition is based on the specification of cell-cell dynamical interactions and
the computation of the neighborhood of the cells using an implicit Delaunay trian-
gulation.

1.5.4.1 Description of the Model

In our proposition, bacteria are represented by circles localized in the 2D Euclidean
space, with a radius depending on their size. Bacteria push away each other and
consequently change their position in space and their immediate neighbohood. Thus,
this neighborhood is required to be dynamically computed according to the spatial
coordinates of their associated circles. This approach has already been successfully
used in systems biology for the modeling of cell population (Gibson et al., 2006;
Barbier de Reuille et al., 2006a).

The modeling of SMB is organized into two coupled models: a mechanical model
and a biological model. A cell is encoded by a record which includes the position,
the radius, the local DAP concentration, the differentiation state (germinal or so-
matic), etc. Cells are elements of a Delaunay topological collection. This kind of
collection computes implicitly and transparently the Delaunay triangulation of a set
of entities embedded in Rn (Aurenhammer, 1991).

Mechanical Model

The mechanical model consists of a mass/spring system. Bacteria are considered as
ponctual masses localized at the center of their associated circle; the presence of a
spring between two masses depends on the neighborhood computed by the Delau-
nay triangulation. The mechanical effects of the growth of the bacteria is captured
by the elongation of the springs rest lengths. Thus, each cell computes its acceler-
ation by summing all mechnical forces induced by its incident springs, and conse-
quently moves in space. This is done by the transformation Meca8. Meca sums the
forces applied on each cell using a neighorsfold expression. Then, the Euler
transformation (see section 1.5.1) is used twice to integrate during a time step ∆1t
acceleration into velocity and velocity into new positions.

7 The third dimension is not considered as the SMB is supposed to grow in the plane of a Petri
dish for example.
8 The whole MGS program of the simulation is available at http://mgs.
spatial-computing.org/integrative_biology.tgz.
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Biological Model

The cellular model is an extension of the CA given in section 1.5.2. The discrete
DAP diffusion is replaced by the classical continuous model given in section 1.3.3,
and a stochastic differentiation is used instead of the notion of populations ratio.
New rules are added to deal with cellular growth, division and death: in presence
of DAP, G cells grow by increasing their radius. When the G cell radius reaches a
threshold, the cell divides. S cells keep on growing then die when another threshold
is reached. The corresponding transformation is called Cell8 and computes the
cellular evolution during a period ∆2t.

1.5.4.2 Integration of the Two Models

As classical functions, transformations can be arbitrarily composed. This is the key
to the coupling of the two models. The iteration of a function can be specified by
the MGS option iter. It allows to deal with different time scales: assuming that
the mechanical process is faster than the cellular process (i.e. ∆2t > ∆1t), the whole
model is captured by the following evolution function:

fun SMB DEL(state) =

Cell[dt=∆2t](Meca[dt=∆1t, iter=
∆2t
∆1t

](state))

where option dt corresponds to the time step used in transformations Meca and

Cell. Here transformation Meca is applied
∆2t
∆1t

times for only one application of

Cell.

1.5.4.3 Interpretation of the Simulations’ Results

The protocol of the proposed simulation consists in iterating 10000 times the func-
tion SMB DEL starting from a small initial population of 25 germinal cells with a
deficit in DAP. Screenshots of the simulation are shown on Fig. 1.7. The vizualiza-
tion of the evolution exhibits two interesting phenomena.

On small population size (i.e. at the beginning of the simulation), the ratio of the
two cell lines fluctuates. Fig. 1.7.(b) presents a state of the population where most
of the cells are germinal. On Fig. 1.7.(c), S cells predominate. The oscillations are
due to delays between configurations where G cells are well fed (many S cells are
present) and configurations of DAP starvation (not enough S cells are present). The
fluctuations decrease as the population size increases and the ratio globally stabilizes
as predicted by the ODE-based model (see Fig. 1.4). Indeed, the spatial distribution
blurs the synchronization between cells.

The population tends to spatially organize in the following way: uniformly dis-
tributed small clusters of G cells surrounded by somatic ones. Clusters remain small-
sized because when their size increase (by G cell divisions), the interior cells lack
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(a) (b) (c)

(d) (e) (f)

Fig. 1.7 Results of the integrative model. Germinal cells are in dark gray and somatic cells in light
gray. Fig. 1.7.(a)-1.7.(c) correspond to an initial population and its evolutions at time 43AUT and
62AUT . Fig. 1.7.(d)-1.7.(f) focus on a cluster of germinal cells surounded by somatic cells. See
text for explanation.

DAP and differentiate. This dynamics is reminiscent of the behavior exhibited by
the CA model of section 1.5.2.

1.6 Related Work, Conclusions and Perspectives

In this short conclusion section, we present related work, close to our approach,
used for the modeling and simulation of biological systems. Then, we conclude by
assessing the importance of using a single and coherent domain-specific language
for the modeling, at various spatial scales, of biosystems.

1.6.1 Related work

In this chapter, we have illustrated the use of MGS, an experimental program-
ming language that investigates the use of topological collections and transforma-
tions in the simulation of complex biological systems. Based on the notion of spa-
tial interaction, MGS provides a unified simulation framework encompassing dis-
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crete/continuous and deterministic/stochastic formalisms. Even though MGS is a
prototype in constant evolution, MGS’ concepts have been validated on numerous
applications : the crawling of the sperm cell of Ascaris suum (Spicher and Michel,
2005), a simplified version of neurulation (Spicher and Michel, 2007), the growth
of the meristem at a cellular level (Barbier de Reuille et al., 2006b), molecular self-
assembly (Giavitto and Spicher, 2008a), the modeling of the paradigmatic phage
lambda genetic switch (Michel et al., 2008), etc.

As a side-effect, changing the topology of a collection makes it possible for MGS
to emulate some well-known computational models. Transformation on multiset is
reminiscent of multiset-rewriting (Banatre and LeMetayer, 1993). Nesting multiset
lead to P systems (Păun, 2001) a new distributed parallel computing model based
on the notion of a membrane structure. P systems are advocated for the modeling of
compartmentalized molecular interaction networks. Lindenmayer systems (Linden-
mayer, 1968b), which loosely correspond to transformations on sequences or string
rewriting, have long and successfully been used in the modeling of (DS)2 in the do-
main of plant growth. And, as shown in section 1.5.2, it is straightforward to express
cellular automata in MGS.

1.6.2 Conclusions and Perspectives

Work in systems biology generally puts a considerable emphasis on the end re-
sult, the model of a complex biological system, and neglects so far the problem of
building this model. The construction of a model and its use, e.g. for simulation, is a
difficult task, and it often requires the combination of many formalisms and comple-
mentary approaches. We want also to stress the importance of dynamical structures
in biological systems. This kind of dynamical systems is very challenging to model
and simulate. New programming concepts must be developed to ease their modeling
and simulation.

Using MGS’ topological collections and transformations allowed us to model
our problem in the same formal framework: a mean-field approach using ordinary
differential equations for a quick proof of concept of the synthetic construction (sec-
tion 1.5.1), a discrete spatial model using CAs on various topologies allowing a
finer analysis of the relations between diffusion and differentiation (section 1.5.2),
a robustness analysis on noise sensitivity on the SMB parts (Cre/LOX recombi-
nation) and devices (recombination rate) parameters using a stochastic modeling
(section 1.5.3). The last model integrates physical and biological constraints in a 2D
model, making it possible to analyze the effects of the spatial distribution on the
various possible configurations (section 1.5.4).

The perspectives opened by this work are numerous. At the language level, the
study of the topological collections concepts must continue with a finer study of
transformation kinds. A lesson learned from the use of MGS by biologists is the
needs of user-friendly interfaces and of graphical tools for the analysis of the sim-
ulation’s results. Another direction of developments is the coupling of MGS with
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various databases and repositories to retrieve parameters or to store and reuse frag-
ments of models.

The development of MGS is part of a “grand challenge” aimed at the develop-
ment of a methodological and technological framework that, once established, will
enable the sharing of models, the analysis and the derivation of predictive hypothesis
from them.
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An MGS Implementation of the Runge-Kutta Methods

The Runge-Kutta methods is a famous and widely used family of integration scheme
for solving problems of the form:

dX(t)
dt

= f (X(t), t) X(0) = X0

They are based on the techniques developed by C. Runge and M.W. Kutta at the
beginning of the XXth century.

In the following, we propose an MGS implementation of the classical explicit
fourth order Runge-Kutta method (RK4). This example can be extended to most of
other Runge-Kutta methods. As the Euler method, the RK4 allows the computation
of a sequence of vectors Xn with a more complex scheme reducing errors of ap-
proximations. Starting from an initial state X0 at time t0, a step a the RK4 is given
by

Xn+1 = Xn +
∆t
6

(k1 +2k2 +2k3 +k4) tn+1 = tn +∆t

with

k1 = f (Xn, tn) k2 = f (Xn +
∆tk1

2
, tn +

∆t
2

)

k3 = f (Xn +
∆tk2

2
, tn +

∆t
2

) k4 = f (Xn +∆tk3, tn +∆t)

The MGS implementation can be divided into 3 steps:

1. the computation of expressions Xn +ck where c is a coefficient (either
∆t
2

or ∆t)
and k takes the value ki,

2. the computation of Xn+1 knowing the ki, and
3. the composition of the two first steps.

Steps (1) and (2) are straightforward and can be implemented as follows:

trans RK4a[c,k] = { x => x + c*k.(ˆx) }
trans RK4b[dt,k1,k2,k3,k4] = {
x => x +

dt

6
( k1.(ˆx) + 2*k2.(ˆx) + 2*k3.(ˆx) + k4.(ˆx) )

}

These transformations apply the required computations on each coordinate of X.
The final step consists in implementing the function RK4:

fun RK4[dt,f](X,t) = (

let k1 = f(X,t) in

let k2 = f(RK4a[c=
dt

2
,k=k1](X),t+

dt

2
) in
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let k3 = f(RK4a[c=
dt

2
,k=k2](X),t+

dt

2
) in

let k4 = f(RK4a[c=dt,k=k3](X),t+dt) in

(RK4b[dt=dt,k1=k1,k2=k2,k3=k3,k4=k4](X),t+dt)
)


