
LaMI
Laboratoire de Méthodes Informatiques

MGS: a Programming Language for the
Transformations of Topological Collections

Jean-Louis Giavitto & Olivier Michel

email(s) : giavitto ou michel @lami.univ-evry.fr

Rapport de Recherche no 61-2001

Mai 2001

CNRS � Université d'Evry Val d'Essonne
523, Place des Terrasses
F�91000 Evry France

MGS: a Programming Language for the
Transformations of Topological Collections

Jean-Louis Giavitto & Olivier Michel
LaMI u.m.r. 8042 du CNRS

Université d'Evry Val d'Essone
91025 Evry Cedex, France.

[giavitto,michel]@lami.univ-evry.fr

LaMI technical report N◦ 61-2001, May 2001

Abstract
We present the �rst results in the development of a new declarative programming

language called MGS. This language is devoted to the simulation of biological processes,
especially those whose state space must be computed jointly with the running state of
the system (for instance, in morphogenesis).

MGS proposes a uni�ed view on several computational mechanisms. Some of them
are initially inspired by biological or chemical processes (Gamma and the CHAM, Lin-
denmayer systems, Paun systems and cellular automata). They share the property of
specifying local transformations in space and time.

The basic computation step in MGS replaces in a collection A of elements, some sub-
collection B, by another collection C. The collection C is function solely of B and its
adjacent elements in A. The pasting of C into A−B depends on the shape of the involved
collections. This step is called a transformation.

The organisation of the elements into the collections is viewed from a topological view-
point. A formal framework to specify this notion of topological collections is proposed.
By changing the topological structure of the collection, the underlying computational
model is changed.

The speci�cation of the collection to be substituted can be done in many ways. We
propose here a pattern language based on the neighborhood relationship induced by the
topology of the collection. Several features to control the transformation applications are
then presented.

Keywords
Topological collection, transformation, declarative programming language, simulation

of biological processes, dynamical systems, dynamical structure, Gamma, CHAM, P sys-
tem, L system, cellular automata, rewriting, rule based programming, combinatorial al-
gebraic topology, chain complex, chain group.

The authors of this research report can be contacted at:

La.M.I., CNRS UMR 8042
Université d'Évry Val d'Essonne
Tour Évry 2 / 4eme etage
523 Place des terrasses de l'agora
91000 Évry Cedex France
Tel: +33 (0)1 60 87 39 04
Fax: +33 (0)1 60 87 37 89

The MGS interpreters are freely available, by sending a demand to giavitto or michel @lami.univ-evry.fr .
The MGS home page is located at url http://www.lami.univ-evry.fr/~mgs .

Versions of this report:
� Revision september 2001: Added example 4.10 and appendix B, some additional references and ac-

knowledgements, corrections of typos.
� Initial Version: may 2001.

Copyrights 2001 Jean-Louis Giavitto, Olivier Michel; LaMI � Université d'Evry Val d'Essonne and CNRS.

Table of Contents

1 Motivations 1
1.1 Dynamical Systems and their State Structures. 1
1.2 DS with a Dynamical Structure . 3
1.3 Chemical Reactions . 3
1.4 Game of Life . 5
1.5 Embryogenesis . 6
1.6 Protein transport and Golgi Formation . 8
1.7 Cell Division . 9
1.8 Summary of the Examples . 10

2 MGS Basic Ideas 11
2.1 The Concept of Transformation in a Collection . 11
2.2 Collections as Spaces . 13
2.3 The MGS Project: Modeling Biosystems with a Dynamical Structure with Topological

Collections and their Transformations . 14
2.4 Organization of the Rest of this Report . 15

3 An MGS Quick Tour 17
3.1 Functions, Sentences and Programs . 17
3.2 Collections . 18

3.2.1 Monoidal Collections . 18
3.2.2 The topologies of Monoidal Collections . 19
3.2.3 User-De�ned Monoidal Subtypes . 20
3.2.4 Structural Recursion on Monoidal Collections 20

3.3 Records . 22
3.4 Pattern, Rule and Transformations . 22

3.4.1 Patterns . 23
3.4.2 Rules . 24

3.5 Managing the Applications of a Transformation . 25

4 Examples of MGS Programs 27
4.1 Maximal Element . 27
4.2 Map and Sum . 27
4.3 Sorting a Sequence . 28
4.4 Convex Hull . 28
4.5 Eratosthene's Sieve on a Set . 29
4.6 Eratosthene's Sieve on a Sequence . 29
4.7 Maximum Segment Sum . 31
4.8 Tokenization . 31

4.9 Token moving on a Ring . 33
4.10 Morphogenesis Triggered by a Turing Di�usion-Reaction Process 35

5 Topological Collections and their Transformations 39
5.1 Organization of this section . 39
5.2 Cellular Spaces and Combinatorial Structure of Complexes 40
5.3 Star, Link and Connections . 42
5.4 Chain Complex . 44
5.5 Chain Group with Coe�cient in an Arbitrary Abelian Group 45
5.6 Example of the C(K,Z/2, ∂) Chain Complex . 47
5.7 The Structure of the Chain Group with Coe�cient . 49
5.8 Duality: Cochain, Coboundary and Cochain Complex 51
5.9 Arbitrary Labeling the Cells of a Complex . 54
5.10 Topological Collections . 56
5.11 Transformations . 58
5.12 The Example of a 2D Grid . 62
5.13 Summary . 62

6 Comparaison with Other Approaches 65
6.1 The topology of Sets and Multisets: the programming language Γ and the CHAM . . 65
6.2 Nesting of Multisets: P systems . 66
6.3 The Topology of Sequences: L systems . 67
6.4 The Topology of Arrays: Cellular Automata . 68
6.5 Production Systems, Rewriting systems and All That 68
6.6 A Comparison with the Multi-Agent Modeling Paradigm 69

7 Conclusion 73

A An MGS Grammar 75

B Full Code of the Turing+Morphogenesis Example 79

C Review of Some Notions Related to the Group Structure 83

List of Figures
1 Evolution of a predator-prey system. 2
2 DS with a simple dynamical structure. 4
3 Some rules for a lattice gas automata. 6
4 During the neurula stage, the neural plate is folded to shape a tube. 6
5 Plant growth in presence of obstruction. 7
6 Protein tra�cking. 8
7 A basic transformation of a collection. 12
8 Transformation and iteration of a transformation. 12
9 The subtyping hierarchy of collection kinds. 19
10 The Eratos program. 30
11 Tokenisation of a sequence of letters . 33
12 The Turing di�usion-reaction process. 34
13 The Turing di�usion-reaction process coupled with a morphogenesis. 37
14 Examples of complexes build from polygons. 41
15 An abstract complex. 41
16 An abstract complex cannot handle orientation. 43
17 Examples of star and link. 43
18 Connection and shape of a set. 43
19 Examples of a non-homological and an homological complex. 45
20 Application of the boundary operator. 48
21 Oriented complexes. 49
22 The dual ∂ and δ operators. 54
23 The labeling of the cell of an abstract complex. 55
24 Depiction of the boundary and coboundary operation on chains. 56
25 Parts of a complex involved in a substitution. 60
26 Substitutions in a line graph. 61
27 Modelling of 2D grids. 62
28 A simpli�cation of the neurulation for simulation purposes. 69

List of De�nitions
1. Bounded Poset (P,<) . 42
2. Abstract Complex . 42
3. Subcomplex, Star and Shape . 42
4. Connections . 44
5. Locally �nite complex . 44
6. Chain Complex . 44
7. Chain Group with Coe�cient in an abelian group G 46
8. Compatible Boundaries . 47
9. The free Chain Group . 50
10. Cochains . 51
11. Dual Homomorphism . 52
12. Coboundary Operator δ . 53
13. Cochain Complex . 53
14. Topological Collection . 57
15. Split, Patch and Subcollection . 58
16. Shape-preserving, Pointwise and Local Operations . 58
17. Renaming Operations . 58
18. Split, Patch and Non-Local Substitutions . 59
19. Simple Transformation . 59

1 Motivations

We want to developp a framework dedicated to the simulation of dynamical systems with
a dynamical structure. The application area we have in mind is the simulation of some
biological processes, especially those whose state space must be computed jointly with the
running state of the system. This technical report is organized as follow:

Section 1 gives our motivations. After a very brief presentation of the notions related to
the dynamical systems, we introduce the notion of dynamical structure through some
examples.

Section 2 sketches an uni�ed framework to describe dynamical system with a dynamic struc-
ture. The notions of collection, subcollection and transformation are described.

Section 3 contains a brief description of the MGS programming language. This language
implements a subset of the previous ideas.

Section 4 illustrates the MGS language through paradigmatic examples.

Section 5 presents the �rst development of a formal description of the MGS constructions,
using mathematical notion developped in the �eld of algebraic topology. Our main goal
in this section is to introduce some of the topological notions upon which a theory of
transformations can be build.

Section 6 makes a comparison with other approaches: the Gamma language and the CHAM,
Lindenmayer systems, Paun systems and cellular automata. A comparaison with the
approach of multi-agent systems, often advocated in the simulation of complex dynam-
ical systems, is also developped.

Section 7 concludes this report by giving some directions opened by this work.

1.1 Dynamical Systems and their State Structures.

A dynamical system (or DS in short) corresponds to a phenomenon that evolves in time.
The phenomenon is located on a system characterized by � observables �. The observables
are called the variables of the system, and are linked by some relations. The value of the
variables evolves with the time. The set of the values of the variables that describes the
system constitutes its state. The state of a system is its observation at a given instant. The
state has often a spatial extent (the speed of a �uid in every point of a pipe for example).
The temporal sequence of state changes is called the trajectory of the system.

Intuitively, a DS is a formal way to describe how a point (the state of the system) moves
in the phase space (the space of all possible states of the system). It gives a rule telling us
where the point should go next from its current location (the evolution function). These
notions are illustrated in Fig.1.

We are interested in the simulation of such systems. This requires the speci�cation of the
system state and the evolution function. This speci�cation can be very di�cult to achieve

1

Trajectories x(t) and y(t)

50 100 150 200 250 300

5

10

15

y(t)

x(t)
20

Constraints in the evolution of x and y

dx

dt
= Ax−Bxy

dy

dt
= −Cy + Dxy

Solving the constraints gives the trajectory
of x(t) and y(t) starting from some initial
state. The evolution of a variable is periodic.

5 10 15 20

2

4

6

8

10

12

Evolution in the phase space (x, y)

The three curves correspond to the cyclic evo-
lution of the system starting from three dif-
ferent initial conditions. A point in this plot
corresponds to a state (x, y). A curve corre-
sponds to the evolution (x, y)(t). The peri-
odicity of the trajectories of x and y gives a
closed curve. There is a fourth curve reduced
to a �xed point. The image by the evolu-
tion function of this point is itself. This point
is characterized by dx/dt = dy/dt = 0 (no
change).

Figure 1: Evolution of a predator-prey system (a DS with a static structure).
The system is characterized by two variables: x corresponds to the number of predators and y to the
number of preys in some ecological system. The number of preys changes because of the growth of the
population and because the preys are eaten by the predators. The number of births is proportional to
the number of preys and the decrease is proportional to the number of prey-predator encounters, which
is itself proportional to the product xy. The number of predators decreases because the competition
between predators and the increase is proportional to the chance of prey-predator encounters. The
resulting di�erential equations specify the evolution function. They can be integrated to plot the
trajectory of x and y (top picture) and the state evolution (bottom picture). The structure of the
system is static in the sense that the state of the system is always described as an element of R2.

2

because of the complexity of the description of the phase space and of the evolution function.
However, more we know about the phase space, more we know about the DS behavior. For
example, if the phase space is �nite, every trajectory is �nally cyclic.

Very often the phase space has some structure and this structure can be used to simplify
the description of the state and its evolution and to gain some knowledge about the system.
For example, one may specify the evolution function hi for each observable oi and recover the
global evolution function h as a product of the � local � hi.

Standard DS exhibit a static structure, that is, the exact phase space of the DS can be
known statically before the simulation. For instance, in the example of a �uid �owing through
a pipe, since the geometry of the pipe is not subject to change, the structure of the state
is not a function of time (and the phase space corresponds to the vector �elds on the static
volume of the pipe).

1.2 DS with a Dynamical Structure

The a priori determination of the phase space cannot always be done. This situation is usual
in biology [Fon92, FB94, FB96] for instance in the modeling of plant growing, in develop-
mental biology, integrative cell models, protein transport and compartment simulation, etc.
This account for the fact that the structure of the phase space must be computed jointly with
the running state of the system. In this case, we say that the DS has a dynamical structure.
Often, the description of DS with a dynamical structure is especially hard.

In this kind of situation, the dynamic of the system is often speci�ed as sev-
eral local competing transformations occurring in an organized set of simpler
entities. The organization of this set is subject to possible drastic changes in
the course of time and is a plain part of the state of the DS.

A simple example is given in �gure 2. This example is simple beacuse the structure of the
state at timet does not depend of the previous trajectory (the states at time t′ < t). However,
the usual cases are much more intricated and di�cult to specify.

This is best shown on some examples. The following examples play a central role in the
motivations of the framework presented in section 2 and were very in�uential on the current
work. They exhibit some key properties we want to emphasize and precise the kind of entities,
organizations and transformations we have in mind. They outline some important features
needed for a language devoted to the simulation of DS with a dynamical structure.

The reader not interested by our motivations, may omit the rest of this section and go
directly to section 2 page 11.

1.3 Chemical Reactions

Suppose that we have a system consisting in two molecules of type a and one molecule of type
b �oating in a test tube at time t. The state of the system can be represented by the multiset

3

1 11 1
1

4
2

1
11
2

1

4
2

8

h

Figure 2: DS with a simple dynamical structure. The state of the system is a vector of integers.
If at time t the state st is an element of Zq, then the state st+1 at time (t + 1) is an element of Zq+1

computed as follows. The ith element of st+1 is equal to the ith element of st and the (q + 1)th
element of st+1 is equal to the sum of all previous elements. It is easy to see that the set St of
the possible states at time t is Zt if S1 = Z. Then, the set S of all possible states (at any time) is
S = Z∗ = Z1 ∪ Z2 ∪ ... ∪ Zn ∪ This DS has a dynamical structure because St 6= S. It is always
possible to consider S instead of the sets St but a lot of informations on the system structure is lost.
In this example, the evolution function h is simple to specify and the function H that gives the set
St+1 from st ∈ St is very simple: H(st) does not depend on the value st but only on St. Then it
is easy to infer the set S as ⋃

Ht(Z). Sections 1.3 to 1.7 give some examples where the function H

really depends of the precise value of the state.

{| a, a, b |}. We suppose that one a and one b can react together to give two c (reaction α) and
that two c react together to give one d (reaction β) only in the presence of a (a is a catalyst).

Starting from {| a, a, b |} a reaction α may occur. So, at time t+1 the state of the system is
represented by {| a, c, c |}. At time t + 1 there is no more subpart {| a, b |} in the system. Then
the evolution rule α cannot be applied anymore. However, the reaction β may be applied to
give a new state {| a, d |}.

At this point no more reaction can occur and we can say that the system has reached a
�xpoint (or an equilibrium). We can resume the trajectory of the system by:

{| a, a, b |}t
α−→ {| a, c, c |}t+1

β−→ {| a, d |}t+2

We have decided to model the state of the system crudely by the multiset of molecules
present in the test tube. Then, the point is that the evolution of the system cannot be
described by evolution rules linked solely to one basic system element a, b, c or d. In this
case, it is natural to link the evolution rule, a chemical reaction a + b → c + c, to a subpart
{| a, b |} of the whole system. Note that reaction β can be modeled as consuming one a and
producing one a: c + c + a → d + a and then this rule can be linked to the subpart{| c, c, a |}.
However, a is left unchanged and it is perhaps more natural to say that the rule c + c → d is
linked with subpart {| c, c |} but holds only if there is some a.

With this particular choice of representation, the subparts of the system are changing
with the application of a rule. At time t + 1 there is no more subpart {| a, b |} in the system
and the evolution rule α cannot be applied anymore. At time t + 2 there is no more subpart
{| a, b |} nor subpart {| a, c, c |} and no rule at all can apply. Although the phase space can be
characterized uniformly as a multiset, the number of elements of this multiset is changing, as
well as the evolution rules that can be used to make the system evolves. This is why we say

4

that this DS exhibits a dynamic structure.
Obviously another choice of state representation avoids this burden. For instance, the

system can be modeled as four numbers quantifying the number of molecules a, b, c and d

present in the test tube. With this representation, the phase space is uniformly N4. How-
ever, we insist here on this particular model where each individual molecule is explicitly
represented. The reader accustomed to the usual chemical models can be disturbed by this
point of view, but one may imagine a situation where a molecule cannot be abstracted by an
integer and requires its explicit appearance in the model. More generally, it does not always
exist a representation of the system state that avoids the change of the phase space, or this
representation is not always desirable.

The points we want to emphase, are:

� The evolution of the system is speci�ed as a set of evolution rules.

� An evolution rule gives the evolution of a subpart of the system.

� We insist that the subparts subject of these rules are in general not reduced to only one
element.

1.4 Game of Life

The game of life is a particular type of cellular automata (cf section 6.4 for a more general
description of cellular automata). It can be described in the following way. Each element of
an array represents a cell in two possible states: dead or alive. A dead cell surrounded by
3 alive neighbors becomes alive. An alive cell surrounded by less than three alive neighbors
becomes dead from isolation. An alive cell surrounded by more than three living neighbors
dies by starvation.

In this example, one sees that the global state of the system is described by the state of
all the cells. The evolution function for one cell depends on both the current state of the
cell and the state of the neighbors. However, in the contrary of the preceding example, the
subpart of the system which evolves is the cell x alone, and not the cell x together with the
other arguments of the evolution function (the neighbors). Indeed, the neighbors evolve for
themselves, even if their current state interact in the evolution of other cells. Put in other
words, the states of the neighbors are not consumed by the evolution of cell x.

This is perhaps better explained by contrast with an alternative of cellular automata:
lattice gas automata. In this formalism, a set of molecules moves in a grid. So, a cell in
a grid has a state indicating if the cell is empty or if it contains one (or several) molecule
moving in a given direction. Molecules interact when they meet in a cell. Figure 3 gives some
examples of rules. In opposition with the game of life approach, a rule speci�es the evolution
of simultaneously several cells. However, the evolution function is local in the sense that the
interacting cells are connected.

The two examples stress the space organization of the elements of the system. Being
present at the same time (in a chemical solution as in the preceding example) is not a
su�cient condition to interact. They must moreover be neighbors. However, this concept of

5

Figure 3: Some rules for a lattice gas automata.

neighborhood is �xed here once and for all, because the evolution of a cell gives again a cell
in the same place (or in lattice gas automata, the evolution of a subpart gives a subpart with
exactly the same shape).

The points which we want to underline are the followings:

� The elements of the system have a strong spatial organization, which de�nes a concept
of neighborhood.

� Two elements can only interact if they share a neighbor relationship.

� The interaction specifying the evolution of an element does not necessarily describe the
evolution of the participating neighbor elements.

1.5 Embryogenesis

The preceding example shows a strong spatial organization of the entities which compose the
dynamical system (at least compared with the chemical solution). This spatial organization
is however static. Here an example, drawn from biology, which needs intrinsically a dynamic
spatial organization.

During the development of an embryo, several domains of cells change their shapes. For
instance, the neural tube is formed dorsally in the embryonic development of Vertebrates by
the joining of the 2 upturned neural folds formed by the edges of the ectodermal neural plate,
giving rise to the brain and spinal nerve cord; see �gure 4.

In general, the morphogenesis of biological systems is a consequence of the local evolution
of cells like growing and proliferation, mobility, di�erentiation and apoptosis (programmated
death of cells). There is no centralized control, only the di�usion of chemical signals from a
cell to its neighbors and the own internal evolution of the cell.

Figure 4: During the neurula stage, the neural plate is folded to shape a tube.

6

The state of the entire system cannot be reduced to the set of the state of the cells because
such representation misses the information related to the neighborhood of each cell. And the
neighborhood of a cell changes in time. For example, some cells on the boundary of the neural
plate are glued together and become internal cells at the end of the neurula stage.

The neighborhood of each cell is of paramount importance to evolution of the system
because of the interplay between the shape of the system and the state of the cells. The
shape of the system has an impact on the di�usion of the chemical signals and hence on the
cells state. Reciprocally, the state of each cell determines the evolution of the shape of the
whole system. This example if further developped in section 6.6.

The changes in the boundary of a cell are due to cell mobility, apoptosis and proliferation.
These causes are � internal � to the DS. The changes in the neigborhood of a cell can also be
caused by a change in the environment (the conditions outside the system), e.g. a change in
the geometry of the embedding space, the encounter with an obstacle or an obstruction, etc.
See for example the change of growth in a plant encountering an obstacle, in �gure 5.

In the neurula stage and in the plant growth, the interactions are still done between
neighboors elements. The cells at the boundary of the neural plate become neighbors when
the plate is folded, and the growth unit of a plant becomes a neighbor of a wall or another
growth unit. The evolution is then still speci�ed through local rule, even if the structure of
the DS is changing. The global change in the DS structure, is the � sum � of the local changes.

The points we want to emphasize are:
� The structure of the DS, that is, the organization of its elements, may depend of external
or internal factors.
� However, the evolution of the system is always speci�ed through local rules. It is the
result of all the local changes that gives the global change of the system.

Figure 5: Plant growth in presence of obstruction. This �gure represents the growth of a plant,
as it can be modeled by a L system (cf. section 6.3), using the replication of a growth unit with a
variation in size and orientation. However, � external � factors disturb the replication process. For
example, walls put constraints or stop the replication. And even the plant itself makes obstructions
to its own development.

7

1.6 Protein transport and Golgi Formation

In the previous examples, the system is decomposed in atomic entities (molecules, growth
units) or homogeneous entities (cells with a more or less complex state). However, the
decomposition of the system is not always restricted to one level and can be further re�ned.

Here we sketch an example which is of great importance for the simulation of the cell
functioning: the processes by which proteins are physically transported through membranous
systems to the plasma membrane or other organelles, or from the cell surface to organelles
within the cell. A proposed mechanism consists of small membranous vesicles. A soluble
protein is carried within the lumen of a vesicle, and an integral membrane protein is carried
within its membrane. The �gure 6 illustrates the nature of the budding and fusion events by
which the vehicles move between adjacent compartments.

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

vesicle buds from membrane

vesicle fuses with target compartment

coat is removed

cytosol

vesicle contacts target membrane

target compartment

vesicle released with the coat proteins

cytosol

donor compartment

Figure 6: Protein tra�cking. Membranes vesicles bud from a donor compartment and are sur-
rounded by coat proteins. The coated vesicle binds to a target compartment, is uncoated, and fuses
with the target membrane, releasing its content. (From [Lew97, ch. 34: Protein Tra�cking].)

To simulate these mechanisms, we must represent the compartment volumes, the mem-
brane surfaces and the proteins (which may be assimilated to points). In addition to the
geometry of these entities, one must represent the density of the proteins on the surfaces
coat (it is hypothesized that the curvature of the membrane depends of the presence of some
proteins in the coat), or of vesicle in a volume (e.g. to compute the chance of a vesicle to
encounter the target membrane and the release level of proteins). In addition, there are some
reactions between proteins and mechanical e�ects on the membrane and vesicle. Furthermore,
membrane may be polarized.

8

This example exhibits a very complex spatial organization. The system can be decom-
posed in compartments and vesicles. Vesicles are dynamically created (it is also hypothesized
that some compartment, like the Golgi, may be created as the dynamic equilibrium of ag-
gregations/separations of the vesicles released by the endoplasmic reticulum). A vesicle or a
compartment can be further re�ned into a membrane, a lumen (the volume inside the com-
partment) and eventually a coat. A compartment may include other compartments, etc. The
topology implied by the representation of these entities is tridimensional (compartments),
bidimensional (membranes) and zero dimensional (molecules). Some models also use tenseg-
rity structures to explain the mechanics of the membranes. Then, one-dimensional structures
must be introduced to represent the cytoskeletal �laments that allow the cell to resist the
distortion of shape when a mechanical stress is applied to it. Obviously, the interaction that
must be described depends of the dimension of the entity: for instance, a �ow of molecules
can be conceived only through a membrane boundary between two compartments, not be-
tween a �lament and another molecule; conservation laws depend on the topological nature
of the entities, etc.

The moral of the story is that the decomposition of a system may exhibit a dynamical
complex organization, requiring the description of arbitrary changing topology. The complete
description of the system must include several heterogeneous interacting viewpoints (geom-
etry of the system, chemical activity, mechanical state, electrical activity, etc.) at several
levels.

1.7 Cell Division

Suppose that we have a system consisting in one cell c �oating in a test tube at time t. The
cell c is described by a state s. This cell is in a state such that it divides. At time t + 1
we have 2 cells c1 and c2 with states s1 and s2 in the test tube. The point is that it would
be very irrelevant to say that c1 (resp. c2) is the cell c in the new state s1 (resp. s2). As
a matter of fact1, the division process is supposed to be symmetric and it will be arbitrary
to identify one of the cell at time t + 1 as � the previous cell � and the others as the � new,
children cell �. In other word, when an amoeba divides, it is irrelevant to ask which one of
the two corresponds to the initial amoeba.

The point we want to focus is a little subtle: confronted to a DS with a static structure,
it is easy to decompose the system in �xed parts, to attach some behavior to these parts and
to conceive that these parts have a well de�ned identity in time. This is no longer true when
the parts of the system are changing, because it will be very arbitrary to identify one part
in the course of the time. This does not mean that only a global description is possible. It
means that the right unit of description are the interacting parts and that the corresponding
decomposition changes in time. We come back to the problem of identifying a de�nite parts
among the time in section 6.6 when we compare the MGS approach with the multi-agent
paradigm).

1We suppose that there is no special information in the state to uniquely identify the cell. The structure
of the cell state consists solely in the information needed to describe the functioning of the cell and cells are
indistinguishable by their functioning.

9

1.8 Summary of the Examples

The previous examples were very in�uential for our motivations. To summarize, we are in
quest of a programming language dedicated to the simulation of dynamical systems with a
dynamical structure. Such a language must take into account the following features:

1. The evolution of the system is speci�ed as a set of evolution rules.

2. An evolution rule gives the evolution of a subpart of the system.

3. We insist that the subparts subject of these rules are in general not reduced to only one
element.

4. The elements of the system have a strong spatial organization, which de�nes a concept
of neighborhood.

5. Two elements interact only if they are neighbors (rules are local).

6. The interaction specifying the evolution of an element does not describe necessarily the
evolution of the participating neighbor elements.

7. The structure of the DS, that is, the organization of its elements, may depend of external
factor, or internal ones.

8. However, the evolution of the system is always speci�ed through local rules. It is the
sum of all local changes that gives the global change of the system.

9. The decomposition of a system may exhibit a dynamical complex organization, requiring
the description of arbitrary changing topology.

10. The complete description of the system must include several heterogeneous interact-
ing viewpoints (geometry of the system, chemical activity, mechanical state, electrical
activity, etc.) at several levels.

11. The parts of the system does not have a remanent identity.

10

2 MGS Basic Ideas

2.1 The Concept of Transformation in a Collection

Returning to the idea expressed in section 1.2 page 3, our goal is to provide a general sup-
port for the notions of � organized set � and � local competing transformations � that arise in
the previous examples. From this point of view, the previous examples share the following
common characteristics.

Discrete space and time. The structure of the DS state consists of a discrete collection of
elements. We call collection a set of elements with some � organization � (to be clari�ed
later). This discrete collection evolves in a sequence of discrete time steps2.
If the state of a system consists in a collection, the elements in this collection do not
have a remanent identity in time because the organization of the collection may change
with the structure of the system. In other words, the collection reduces to a collection
of values.
It is tempting, and we will do so, to separate the � shape � (i.e. the organization) of the
collection and its content (the values).

Complex Organization. Several kinds of organizations (of values) are used in programming
languages and give raise to several data structures: sets, multisets (or bags), sequences,
arrays, trees, terms, etc. However, the description of a DS often exhibits more complex
organizations. For instance, the organization of a DS is often based on the 3-dimensional
topological structure of the physical entities in the system.

Temporally local transformation. The computation of a new value in the new state de-
pends only on values computed for a �xed number of preceding steps, and usually just
one step.

Spatially local transformation. The computation of a new collection is done by a struc-
tural combination of the results of more elementary computations involving only a small
and static subset of the initial collection.
� Small and static subset � makes explicit that only a �xed subset of the initial elements
are used to compute a new element value.
� Structural combination �, means that the elementary results are combined into a new
collection, irrespectively of their precise value. The global organization of the new
collection results of the combination of these local changes.

2Independantly of the discrete or continuous nature of the entities that have to be represented in the
modeled systems, they must be discretized �nally for their computer representation. We have decided to
delegate this problem upstream of the programming. It implies that there is no special feature embedded into
our framework dedicated to the explicit support of continuous entities (like ODE or PDE solvers, continuous
time representation, etc.). For instance, the system of two di�erential equations of �gure 1 must �rst being
discretised (e.g., as a �nite di�erence scheme xt+1 = hx(xt, yt) and yt+1 = hy(xt, yt)) and these discrete
equations are the base of the corresponding simulation program.

11

Considering these characteristics, we propose to idealize the description of a DS evolution by
the following abstract computational mechanism:

1. a subcollection A is selected in a collection C;

2. a new subcollection B is computed from the collection A;

3. the collection B is substituted for A in C.

This processus is pictured in Fig. 7. We call these three basic steps a basic transforma-
tion of the collection. A transformation, without the � basic � quali�er, consists in several
non interacting basic transformations applied in parallel to a collection. A transformation
corresponds to one evolution step of the DS. Then, the iteration of transformations builds the
entire DS trajectory, cf. Fig. 8.

In addition to the speci�cation of the underlying organization, the de�nition of a basic
transformation requires the speci�cation of the subcollection A and the replacement B. This
speci�cation de�nes a rule and must adapt several constraints and variations. We propose
to base the speci�cation of the organization and of these constraints on topological concepts.

For example, in the game of life, the value of a cell c at time t + 1 depends on the value
of the neighboring cells at time t. If we identify the value of the cell c at time t with the

y = f(x’)x
T

BAC T(C)

Figure 7: A basic transformation of a collection. Collection C is of some kind (set, sequence,
array, cyclic grid, tree, term, etc). A rule T speci�es that a subcollection A of C has to be substituted
by a collection B computed from A. The right hand side of the rule is computed from the subcollection
matched by the left hand side x and its possible neighbors x′ in the collection C.

T T(T(C))T(C)C

...

Figure 8: Transformation and iteration of a transformation. A transformation T is a set of
basic transformations applied synchronously to make one evolution step. The basic transformations
do not interact together. A transformation is then iterated to build the successive states of the system.

12

subcollection A, then the collection B must be computed not only from A but also from the
neighbors of A in the collection C.

This abstract description of one evolution step of a collection makes possible the uni�ca-
tion in the same framework of various computational devices. The trick is just to change the
organization of the underlying collection. In section 6 we try to reformulate several paradigms
(like the CHAM, P systems, L systems and cellular automata), as transformations of some
collections.

2.2 Collections as Spaces

As a matter of fact, it is very natural to see these collections as a set of places or positions
labeled by a value. Then, the organization of a collection is seen as a topology de�ning
the neighborhood of each element in the collection and also the possible subcollections. To
stress the importance of the topological organization of the collection's elements, we call them
topological collection .

A subcollection is a set of connected elements. If the element x in a collection is a neighbor
of the element y, we write x, y. Additional conditions can be put to constrain the possible
subcollections. A subcollection has itself a topology inherited from the main collection. The
topology is used to constrain the possible transformations and the dependances between the
collections A, B and C.

For example, one may decide that neighbors of an element in a sequence are its two
adjacent elements (except for the �rst and the last element in the sequence which have only
one neighbor). A subsequence C′ of C is a connected subset of the elements of C. This means
that the possible subsequences of a sequence ` are the intervals of `. Additional conditions
can be put to constrain the possible subcollections. For instance, one may want to consider
only the sequence pre�xes or the sequence su�xes for the subcollections, but no arbitrary
intervals.

This topological approach to formalizing the notion of collection is part of a long term
research e�ort [GMS96] developed for instance in [Gia00] where the focus is on the substruc-
ture, or in [GM01] where a general tool for uniform neighborhood de�nition is developed.
In this research program, a data structure is viewed as a space where some computation
occurs and moves in this space. The notion of neighborhood is then used to control the
computations. In this report, we propose a formal framework in section 5 that focuses on
the transformation of topological collections, where the basic computation mechanisms is the
substitution of subcollections.

The topology needed to describe the neighborhood in a set or a sequence, or more generally
the topology of the usual data structures, are fairly poor. They are sketched in section 6.
So, one may ask if the formal machinery developped in section 5 is worthwhile. Actually,
the previous examples show the need of complex topologies. And more importantly, the
topological framework uni�es various situations. Our ultimate goal is to develop a generic
implementation based on these notions.

13

2.3 The MGS Project: Modeling Biosystems with a Dynamical Structure
with Topological Collections and their Transformations

These ideas lead to the development of an experimental programming language called MGS.
MGS is the vehicle used to investigate general notions of collections and transformations, and
to study their adequacy to the simulation of various biological processes with a dynamical
structure.

We will show in section 6 that the notion of topological collection and their transformation
are able to take into account in a same unifying framework several biologically and biochem-
ically inspired computational models, namely: Γ and the CHAM, P systems, L systems and
cellular automata (CA). We do not claim that topological collection are a useful theoretical
framework encompassing all these formalisms. We advocate that few notions and a single
syntax can be consistently used to allow their merging for programming purposes.

In the current MGS implementations sets, multisets and sequences of elements are sup-
ported3. This is already a step forward in the quest of a good programming language dedicated
to the simulation of biosystems with a dynamical structure. Indeed, even if we restrict to these
datatypes, MGS allows some kind of rewriting on multisets and sequences. This paradigm is
advocated in recent papers for the modeling of biological systems [Man01, FMP00]. To quote4
Fisher et al. [FMP00]:

� a biological systems is represented as a term of the form t1 + t2 + · · · + tn
where each term ti represents either an entity or a message [signal, command,
information, action, etc.] addressed to an entity. Computation, [i.e., simulation
of the physical evolution of the biosystem] is achieved through term rewriting,
where the left hand side of a rule typically matches an entity and a message
addressed to it, and where the right hand side speci�es the entity's updated state,
and possibly other messages addressed to other entities. The operator + that joins
entities and messages is associative and commutative, achieving an � associative
commutative soup �, where entities swim around looking for messages addressed
to them. [...]
This associative commutative soup allows object to interact in a rather unstruc-
tured way, in the sense that an interaction between two objects is enabled simply
by virtue of their both being present in the soup. This still does not fully address
issues of structural interactions between entities or system parts. �

A severe shortcoming of this view is the total lack of spatial organization. The need
to represent more structured organizations (than sequence and multiset) of entities and mes-
sages is stressed and motivates several extensions of rewriting (see for one example amongst
others [BH00]). However, a general drawback with these approaches is that they work with

3At the date of may 2001, it exists two versions of an MGS interpreter. One written in OCAML and one
written in C++. There are some slight di�erences between the two versions. For instance, the OCAML version is
more complete with respect to the functionnal part of the language. These interpreters are freely available,
by sending a demand to [giavitto|michel]@lami.univ-evry.fr.

4with some adaptations in the terminology, brackets are our comments

14

a �xed topology of entities, and it is not obvious at all how to extend this to systems where
the number of entities and their relationships are constantly changing.

This is precisely one of the main motivation of the MGS research project. One of our goal is
to validate the contribution of the topological approach to the (speci�cation and simulation
of the) dynamical organization of biosystems. By superseding the rewriting of terms by
the transformation of topological collections, we hope to go beyond the limitations of the
preceding formalisms. To paraphrase the previous quotation:

A collection is used to represent the state of a DS. The elements in the collection
represent either entities (a subsystem or an atomic part of the DS) or messages
(signal, command, information, action, etc.) addressed to an entity.
A subcollection represents a subset of interacting entities and messages in the
system. The evolution of the system is achieved through transformations, where
the left hand side of a rule typically matches an entity and a message addressed to
it, and where the right hand side speci�es the entity's updated state, and possibly
other messages addressed to other entities.
If one uses a multiset organization for the collection, the entities interact in a
rather unstructured way. More organized topological collections are used for more
sophisticated spatial organizations and interactions.

2.4 Organization of the Rest of this Report

The MGS language is presented informally in section 3 through some examples. Simple ex-
amples of MGS programs are given in the next section. All examples are processed using the
current version of the MGS interpreter.

A possible formalization is presented in section 5 for the theoretically inclined reader.
Several formalization of MGS are possible. We present one which is general enough and gives
some insights for a generic implementation.

Then, in section 6, we sketch how Γ and the CHAM, P systems, L systems and cellular
automata (CA) can be emulated in MGS. Our goal is mainly to sketch the topology of the
usual sets, bag, sequence and arrays data structures.

This report �nishes by the review of some directions opened by this research.

15

16

3 An MGS Quick Tour

MGS is the acronym of � (encore) un Modèle Géneral de Simulation (de système dy-
namique) � (yet another General Model for the Simulation of dynamical systems). MGS em-
beds the idea of topological collections and their transformations into the framework of a
simple dynamically typed functional language. Collections are just new kinds of values and
transformations are functions acting on collections and de�ned by a speci�c syntax using
rules. MGS is an applicative programming language: operators acting on values combine val-
ues to give new values, they do not act by side-e�ect. In our context, dynamically typed
means that there is no static type checking and that type errors are detected at run-time
during evaluation. Although dynamically typed, the set of values has a rich type structure
used in the de�nition of pattern-matching, rule and transformations.

This section contains a brief description of the main features in MGS concerning functions,
collections, transformations and their applications. Elements of the MGS syntax are given
through examples. Some examples of actual code are given in this and the following section
to give a �avor of the language.

3.1 Functions, Sentences and Programs

MGS is a small higher-order functional language. This means that functions are like any other
kinds of primitive values (such as integers, �oats, strings, etc.): they are �rst class values and
can be passed as arguments to other functions or returned as results.

Lambdas and Named Lambdas. The denotation of functional values is based on the
lambda-calculus; for example:

\x.\y.x + y

denotes a curry�ed function expecting one argument value X, that binds to x, and returning
a function acting like \y.X + y. The syntax of a function application is the usual one with
arguments surrounded by brackets: (\x.\y.x+ y)(3). Functions may have several arguments.
For instance,

\(x, y).x + y

is a function returning the sum of its two expected arguments. Another syntax is used to
give a name to the function:

fun Plus(x, y) = x + y

Such expression creates a functional value and assigns this value to a global variable (Plus in
this example), thus the previous de�nition is equivalent to the expression Plus = \(x, y).x+y.
We say that Plus is a named lambda. The name can be used instead of the anonymous
lambda-expression in the function application, e.g. Plus(3, 4). Named lambdas enable the
direct coding of recursive function:

fun fact(x) = if (x == 0) then 1 else x ∗ fact(x− 1) fi

17

Primitive Functions. The operator + that appears in the body of Plus is an example
of a primitive functional constant (or � primitive function � in short). There is a rich set
of such functions to manage the primitive values. Primitive functions can be used exactly
like any other named lambdas, they just are already de�ned when the interpreter is up. The
name of a primitive function always begins with a backquote ' . Somme primitive functions
have an additional special syntax for their application, like + which is the in�x form for
the application of 'addition. That is, expression 3 + 4 is a short hand for the expression
'addition(3, 4) .

Sentences and Programs. An MGS program is composed of a sequence of sentences. A
sentence �nishes by a double semi-colons � ; ; �. There are three kinds of sentences:

1. expressions,

2. type declarations,

3. commands.

The evaluation of an expression triggers the computation of somme value. The previous
de�nition of function Plus is an exemple of an expression with a functional value. The
expression Plus(3, 4) is an example of an expression that computes an integer.

A type declaration does not trigger any computation. It just tell the interpreter that some
new name can be used at some place in further expressions (see below the use of types as
predicates).

Finally, commands are outside the scope of the language and are used to interact with the
interpreter beyond the usual read-eval-print toplevel loop : one can include some �le, divert
the output stream, list the named functions or the de�ned types, save the current session,
etc.

3.2 Collections

In addition to basic values like integers, �oats, strings, lambda-expressions, etc., MGS handles
records and several other kinds of collections. The elements in a collection can be any kind of
values: basic values, records or arbitrary nesting of collections. The values of the record's �elds
are also of any kind, thus achieving complex objects in the sense of [BNTW95]. Collections
are (sub-)typed. The tree in Fig. 9 gives the type hierarchy of collections.

3.2.1 Monoidal Collections

Several kinds of topological collections are supported by MGS. We focus here on sets, multisets
and sequences. These kinds of collection are called monoidal because they can be build as a
monoid with operator join � , �: a sequence corresponds to a join that has no special property
(except associativity), multisets are obtained with commutative joins and sets when the
operator is both commutative and idempotent.

18

recordmonoidal

seqbagset

AnotherSetMySet

array

collection

...pair

Figure 9: The subtyping hierarchy of collection kinds. MySet and AnotherSet are user-de�ned
collection types, cf. section 3.2.3. Types collection and monoidal do not correspond to concrete
data structures, but to predicates, cf. below. Conceptually, a record is a set of pairs (�eld-name,
�eld-value) but it is managed through dedicated operators, cf. section 3.3.

There is a large amount of generic operations available for all collection kinds, based on
the function algebra developed for instance in [BNTW95]. The following table gives the main
constructors for monoidal collections.

empty addition singleton combination
Set set : () insert single_set(x) union
Bag bag : () increment single_bag(x) munion
Seq seq : () :: single_seq(x) @

overloaded add merge
syntax , ,

3.2.2 The topologies of Monoidal Collections

The join operator with its properties directly induces the topology of the collection and the
neighborhood relationship. So, it is not a coincidence that the neighborhood relationship in
section 2.2 and the join operation here are denoted by the same comma.

� Topology of Sets. In a set, an element x is neighbor of any other element y.

� Topology of Multisets. The topology of a multiset is the same as the topology of a set:
two arbitrary elements are always neighbors. The di�erence is, the same element may
appear more than one time in the multiset.

� Topology of Sequences. The topology of a sequence is the expected one: if the sequence
has at least two elements, then all elements except the �rst and the last have two
neighbors (called the left and the right neighbor). The �rst and the last element have
only one neighbor (respectively a right and a left neighbor). If the sequence is reduced
to a singleton, then this singleton as no neighbor.

These neighboring relations are induced by the join operations: if x, y then x is a neighboor
of y. For instance, using associtivity and the commutativity of the join of sets, the set
� 1,set 2,set 3 � can be written � 1,set (2,set 3) � which shows that 2 and 3 are neighbors, but also

19

it can be written � (1,set 2),set 3 � or � 2,set (1,set 3) � which show that 1 and 2 are neighboor as
well as 1 and 3.

3.2.3 User-De�ned Monoidal Subtypes

Often there is a need to distinguish several collections of the same kind (e.g. several multisets
nested in another multiset). Various ways can be used to achieve the distinction. For instance,
in the P system formalism, each multiset is labeled by a unique integer to reference them
unambiguously. We chose to distinguish between collections of the same kind by types. The
type of a collection must be thought of as a tag that does not change the structure of the
collection. Types are organized by a subtyping relationship. The subtyping relation organizes
types into a poset. The kind of a collection constitutes the maximal element of this hierarchy.
Collection type declarations look like:

collection MySet = set;

collection AnotherSet = set;

collection AnotherMySet = MySet ;

MySet AnotherSet

AnotherMySet

set

These three declarations speci�es a hierarchy of three types. Type AnotherMySet is a
subtype of MySet which is a subtype of set. The type set is prede�ned and corresponds to
a collection kind (other prede�ned types are seq for sequences and bag for multisets). The
type AnotherSet is also a subtype of set but is not comparable with MySet.

A type introduced by a type declaration can later be used in pattern-matching (cf. sec-
tion 3.4) or as a predicate to test if a value is of a given type. A monoidal collection type can
also used in the building of a collection by the enumeration of its elements:

1, 1 + 1, 2 + 1, 2 ∗ 2, MySet : ()

is an expression evaluating to the set of four integers: 1, 2, 3 and 4. The collection kind is
a set, and its type is MySet. Actually, expression � Myset : () � denotes the empty MySet
and � , � is the overloaded join operator: x,X creates a new collection with the element x

merged with the elements of collection X; and expression X, Y creates a new collection with
elements of both collections X and Y .

The type of a collection is taken into account for several collection operations. For in-
stance, the join of two collections of type P and Q gives a collection with type R correspond-
ing to the common ancestor of P and Q. With the previous example, set is the common
ancestor of MySet and AnotherSet). Another example, MySet is the common ancestor of
AnotherMySet and itself.

3.2.4 Structural Recursion on Monoidal Collections

The two overloaded operators oneof and rest are such that for any non empty monoidal
collection, we have:

C = oneof(C) , rest(C)

20

Together with the empty primitive predicate, they makes possible to de�ne a form of structural
recursion for monoidal collections:

fun Iter(e, g) = \C.if empty(C)

then e(C)

else g(oneof(C), Iter(e, g)(rest(C)))

fi

The intent of the expression Iter(e, g) is to de�ne a function h such that:

h(X : ()) = e(X : ())

h((a,C)) = g(a, h(C))

where X is the kind of the collection, e a unary function that gives the value of h on the empty
collection and g a combining binary function. Please note that h is a unary function, so in
expression h((a,C)) the function h is applied to the collection built by the join5 of a with C.

This kind of function de�nitions (which de�ne homomorphisms) is so common that Iter
is a primitive function called fold in MGS:

h = fold[g, e]

Note that square brackets are used instead of braces because the arguments g and e are
optional arguments with some default values6 (the default values are such that fold de�nes
the identity function on collection).

The function fold is called an iterator. An iterator can be used to easely de�ne very
useful other functions. We give three examples. The sum of all elements in a collection can
be de�ned by:

fold[\(a, c).a + c, \x.0]

As a second example, the famous map function is de�ned in MGS as:

fun map(f) = fold[\(a, c).(f(a), c), \x.x]

Note that with this de�nition, we have a generic map that can act on any monoidal collection.
On sets for instance, the meaning7 of map is map(f)({a1, .., an}) = {f(a1), .., f(an)}. Finally,
the generalization of the powerset function to the other collection kinds can be de�ned as:

Power = fold[\(a,C).(C, map(\c.(a, c))(C)), \x.add(x, x)]

5When there is an ambiguity between the application of a function to several arguments and the join of
several arguments, the former interpretation is chosen. Braces can be used to force the other interpretation,
as in this case here.

6We do not detail further these features as they are not relevant for our purpose here.
7Be careful that, for the sake of the explanation, we use the notation {a, b, c} to denote the set of the three

elements a, b and c. Previously we have used the notation {| a, b, c |} for a multiset. And below, we use the
notation <a, b, c> to express the sequence of the three elements a, b and c. However, these constructions are
not part of the MGS syntax. The building of a collection through the enumeration of its elements uses the join
operator in MGS.

21

where add(x,C) adds the element x to the collection C. On sets, the Power(S) build the
power set of S. On sequences, Power(L) built a sequence of all the subsequences of the list
L; for instance,

Power(<1, 2, 3>) = <<>, <3>, <2>, <2, 3>, <1>, <1, 3>, <1, 2>, <1, 2, 3>> .

3.3 Records

An MGS record is a special kind of collection. An MGS record is a map that associates a value
to a name called �eld. The value can be of any type, including records or other collections.
Accessing the value of a �eld in a record is achieved with the dot notation: expression
{a = 1, b = "red"}.b evaluates to the string "red".

Records can be merged with the overloaded + operator. Expression r1 + r2 computes
a new record r having the �elds of both r1 and r2. Then r.a has the value of r2.a if the
�eld a belongs to r2, else the value of r1.a (asymmetric merge with priority to the second
argument [Rém92]).

For records, type declarations look like

state R = {a};
state S = {b, c̃}+ R;

state T = S + {a = 1, d : string};

(state is the keyword used to introduce the de�nition of a record type in MGS). The �rst
declaration speci�es a record type R which consists of the records with at least a �eld named a.
Types can be used as predicates:

R({a = 2, x = 3})

evaluates to true because the record {a = 2, x = 3}) has a �eld a. The second declaration
de�nes S which has all the �elds of R plus a �eld b and no �eld c. The + operator between
record types emulates a kind of inheritance. The de�nition T specializes type S by constrain-
ing the �eld a to the value 1 and saying that an additional �eld d must be present and be a
string.

3.4 Pattern, Rule and Transformations

A transformation T is a set of basic transformations or rules :

trans T = { ... rule; ... }

When there is only one rule in the transformation, the enclosing brackets can be dropped.
A transformation is a �rst-class value and some operators exist to combine transformations.
For instance, the transformation (T1 + T2) is the transformation obtained by merging the set
of rules of T1 and the set of rules of T2.

22

A rule is a basic transformation taking the following form:

pattern => expression

where pattern in the left hand side (lhs) of the rule matches a subcollection A of the collection
C on which the transformation is applied. The subcollection A is substituted in C by the
collection B computed by the expression in the right hand side (rhs) of the rule. There are
also several kinds of rules, as detailed below.

3.4.1 Patterns

We present the pattern expressions that have a generic meaning, that is, they can be inter-
preted against any collection kind. The grammar of the pattern expressions is:

Pat ::= x | {...} | p, p′ | p + | p ∗ | p : P | p/exp | p as x | (p)

where p, p′ are patterns, x ranges over the pattern variables, P is a predicate and exp is an
expression evaluationg to a boolean value. The explanations below give an informal semantics
for these patterns.

variable: a pattern variable x matches exactly one element. The variable x can then occur
elsewhere in the rest of the rule both as a pattern or in an expression. Actually, the
pattern x is the abbreviation of � . as x � where the pattern � . � matches exactly one
element.

state pattern: {...} are used to match one element which is a record. The content of the
braces can be used to match records with or without a speci�c �eld (eventually con-
strained to a given �eld type or �eld value). For instance, {a, b : string, c = 3, d̃} is
a pattern that matches a record with �elds a, b of type string and c with value 3, and
no �eld d.

neighbor: p, p′ is a pattern that matches two connected collections p and p′. For example,
x, y matches two connected elements (i.e., x must be a neighbor of y). The connection
relationship depends of the collection kind.

repetition: pattern p+ (resp. p∗) matches a non empty subcollection of elements matched
by p (resp. a possibly empty subcollection).

binding: a binding p as x gives the name x to the collection matched by p. This name can
be used elsewhered in the rest of the rule. The evaluation of a pattern variable x in
an expression returns the subcollection previously matched. When reused as a pattern
variable, the pattern x is interpreted as (y/y == x) where y is a fresh variable. For
example, x, x is equivalent to x, (y/y == x) .

guard: p/exp matches the collections matched by the pattern p verifying exp. Pattern p : P

is a syntactic suggar for ((p as x)/P (x)) where x is a fresh variable. For instance,
x : MySet �lters an element of type MySet. Another example: y / y > 3 matches an
integer bigger than 3.

23

Here is a contrived example. The pattern
(x : int/x < 3) + as S / card(S) < 5 & Fold[+](S) > 10

selects a subcollection S of integers less than 3, such that the cardinality of S is less than 5
and the sum of the elements in S is greater than 10. If this pattern is used against a sequence
(resp. set) (resp. multiset), S denotes a subsequence (resp. a subset) (resp. a sub-multiset).

Some pattern constructs are speci�c to a collection kind. For example, the construct
� ,̂ x � is used to select an element which has no left neighbor in a sequence. Such pattern has
no meaning when the transformation is applied for instance to a set, and an error is raised.
Another example of a speci�c construct are the operators left and right. They can be used
in the guard of a pattern (or in the rhs of a rule) to refer to the element to the right or to the
left of a matched subsequence. These constructions depend on the topology of the collection
and we plan to develop a generic and systematic speci�cation of these operators using the
notion of boundary.

3.4.2 Rules

A transformation is a set of rules. When a transformation is applied to a collection, the
strategy is to apply as many rules as possible in parallel. A rule can be applied if its pattern
matches a subcollection. Several features are used to have a �ner control over the choice of
the rules applied within a transformation.

Exclusive and inclusive rules. Exclusive rules consume their arguments: a subcollection
matched by an exclusive rule cannot intersect a subcollection matched by any other rule.

Inclusive rules don't have this kind of constraint. They are mainly used to transform
independent parts of a complex object8. This is best explained by an example:

{x as v} +=> {x = v + 1}
{y as v} +=> {y = 2 ∗ v}

are two inclusive rules (because the arrow is +=>) matching respectively a record with a
�eld x and a record with a �eld y. So they can both apply to the record {x = 2, y = 3}. An
inclusive rule of form r +=> r′ where r is a record pattern and r′ an expression evaluating to
a record, replaces the matched record R by R+r′. So, the result of applying the two previous
rules to {x = 2, y = 3} is {x = 3, y = 6}. This result is computed as(

{x = 2, y = 3}+ {x = 2 + 1}
)

+ {y = 2 ∗ 3}
or (

{x = 2, y = 3}+ {y = 2 ∗ 3}
)

+ {x = 2 + 1}
and is independent of the order of application of the two rules. Indeed, the rules work on
independent parts of the record, both for accessing or updating the value of a �eld.

8Currently, only a rhs matching a record is allowed in an inclusive rule, but the idea must be extended to
nested collections. The concept of inclusive rule may appear very speci�c. However, it is a very e�ective way
to cut down the combinatorial explosion of the behavior speci�cations.

24

Priority. Exclusive rules are applied before any inclusive rules. A priority can be associated
to each rule, to specify a precedence order within each class (the priority of inclusive rules
may be used to specify the relative order of their applications).

Local variables and conditional rules. MGS is not a purely functional language. Imper-
ative local variables can be attached to a transformation and updated by side e�ects in the
rhs of the rules. These variables can be used in a rule guard allowing the conditional use of
a rule. For instance, the transformation

trans T [a = 0] = {...; R = x ={ on a < 5 }=> (a := a + 1; 2 ∗ x); ...}

speci�es a rule R which is applied at most 5 times (within the evaluations triggered by one
application of T). The body ={ · · · }= of the arrow de�nes an � on clause �. The expression
linked to the on is used to decide if the rule is eligible for a transformation or not. The
decision occurs befor any attempt to match a subcollection. The semi-colon in the rhs of
the rule denotes the sequencing of two evaluations. As a consequence, the local imperative
variable a, initialized to 0 when T is applied, counts the number of applications of rule
R and the rule can apply only if a is less than 5. The initial value of a variable local to
a transformation can be overridden when the transformation is applied; for instance the
evaluation of T [a = 3](...) enables at most 2 uses of rule R.

3.5 Managing the Applications of a Transformation

A transformation T is a function like any other function and a �rst-class value. It makes
possible to sequence and compose transformations very easily.

The expression T (C) denotes the application of one transformation step to the collection
C. As said above, a transformation step consists in the parallel application of the rules
(modulo the rule application's features). A transformation step can be easily iterated:

T ['iter = n] (C) denotes the application of n transformation steps to C

T ['fixpoint] (C) application of the transformation T until a �xpoint is reached
T ['fixrule] (C) idem but the �xpoint is detected when no rule applies

In addition to the standard transformation step strategy, two other application modes
exist. In the stochastic mode, the choice of the exclusive rule to apply is made randomly.
The priorities of the exclusive rules are then considered as the relative probability of their
e�ective application (when they can apply). In asynchronous mode, only one exclusive rule
is applied in one transformation step.

25

26

4 Examples of MGS Programs

The following examples are freely inspired by examples given for Γ, P systems, L systems
and the 81/2 language [Mic96].

4.1 Maximal Element

This example is a fundamental one, because it emphasizes the ability to express in MGS
meaningful transformations able to act on several collection kinds. The transformation

trans Max = {
x, y/ (x > y) => x ;

x, y/ (x < y) => y ;

}
can be used both on a set, a multiset or a sequence. On a set, it computes the maximal
element in the set; on a sequence it computes the maximal element(s) in the multiset; and
on a sequence, it computes a sequence composed only of the maximal element of the initial
argument. For instance,

Max ['fixrule]((1, 2, 2, 1, 0, 2, set : ())) = 2, set : ()

Max ['fixrule]((1, 2, 2, 1, 0, 2, bag : ())) = 2, 2, 2, bag : ()

Max ['fixrule]((1, 2, 2, 1, 0, 2, seq : ())) = 2, 2, 2, seq : ()

Note that the second rule of the transformation is necessary only to handle sequences in the
same manner, because for sets and multisets, if x, y the we have also y, x, see section 6.1.

4.2 Map and Sum

The sum of all elements in a collection of numbers can be computed by transformation

trans sum = a, b => a + b ; ;

It is easy to achieve a function map with the transformation:

trans MAPF = a => f (a) ; ;

This example can be elaborated to be parameterized by the function f :

trans MAP [fun = \a.a] = a => fun(a) ; ;

fun map(f, C) = MAP [fun = f](C) ; ;

Note that the function map is a function wrapper that applies one step of transformation
MAP to its argument C. This transformation is parameterized through an optional argument
fun which takes the function to be applied. The default value for function fun is the identity,
that is: MAP(C) ≡ C. The transformation consists in substituting a by fun(a). Since as
many rule instantiations as possible are done in parallel within one step, the only rule of the
transformation is applied to each element in the collection.

27

4.3 Sorting a Sequence

A kind of bubble-sort is immediate:

trans Sort = (x, y / y < x) => y, x;

(This is not really bubble-sort because swapping of elements can take at arbitrary places;
hence an out-of-order element does not necessarily bubble to the top in the characteristic
way.)

4.4 Convex Hull

The convex hull of a set P of points in the plane is de�ned to be the smallest convex polygon
containing them all. It is easy to show that the vertices of the convex hull of P are elements
of P . The program to compute the convex hull considers a point X and a triple of points
U, V and W and eliminates X if it falls inside the triangle U, V, W .

We �rst de�ne a record Point which has a �eld x and a �eld y. We de�ne also two
variables named true and false for convenience (however each value can be interpreted as a
boolean when needed as in the C programming language).

state Point = {x, y}; ;
false := 0; ; true := f̃alse; ;

A point X falls inside the points U, V and W i� it exists α, β and γ between 0 and 1 such
that: αU + βV + γV = X and α + β + γ = 1. This gives a linear system of three equations
with three unknowns α, β and γ wich can be solved using the determinant method. This
explains the function inside de�ned below. The function det computes a 3× 3 determinant;
the function check tests if a value is between 0 and 1; and inside2 is an auxilliary function
that does the real work.

fun check(d) = (d >= 1)||(d <= 0); ;

fun det(a, b, c, d, e, f, g, h, i) =

a ∗ (e ∗ i− h ∗ f)− d ∗ (b ∗ i− h ∗ c) + g ∗ (b ∗ f − e ∗ c); ;

fun inside(X, U, V, W) =

inside2 (X, U, V, W, det(U.x, V.x,W.x, U.y, V.y, W.y, 1, 1, 1)); ;

fun inside2 (X, U, V, W, d) =

if d == 0 then false

else if check(det(X.x, V.x, W.x,X.y, V.y, W.y, 1, 1, 1)/d) then false

else if check(det(U.x,X.x, W.x, U.y,X.y, W.y, 1, 1, 1)/d) then false

else if check(det(U.x, V.x, X.x, U.y, V.y, X.y, 1, 1, 1)/d) then false

else true

fi fi fi fi ; ;

28

The function inside is used in the guard of the transformation:

trans Convex = X, U, V, W/ inside(X,U, V,W) => U, V, W ; ;

To test our program, we compute the convex hull of various points lying inside the square
delimited by (0, 0) and (1, 1), including the four corners:

Convex ['fixrule]((
{x = 0, y = 0},
{x = 0.2, y = 0.1},
{x = 0.5, y = 0.7},
{x = 1, y = 0},
{x = 0.1, y = 0.2},
{x = 1, y = 1},
{x = 0.2, y = 0.4},
{x = 0.4, y = 0.6},
{x = 0, y = 1},
set : ()

)); ;

computes the expected result:

{x = 0, y = 0}, {x = 0, y = 1}, {x = 1, y = 0}, {x = 1, y = 1}, () : set

4.5 Eratosthene's Sieve on a Set

The idea is to generate a set with integers from 2 to N (with transformation Generate and
Succeed) and to replace an x and an y such that x divides y by x (transformation Eliminate).
The results is the set of prime integers.

trans Generate = {x, true} => x, {x + 1, true};
trans Succedd = {x, true} => x;

trans Eliminate = (x, y / y modx = 0) => x;

With this program, the expression

Eliminate['fixrule](Succeed(Generate[N](({2, true}, set : ()))))

computes the primes up to N (and we can turn this expression into a function by abstracting
on N).

4.6 Eratosthene's Sieve on a Sequence

The idea is to re�ne the previous algorithm using a sequence. Each element i in the sequence
corresponds to the previously computed ith prime Pi and is represented by a record {prime =
Pi}. This element can receive a candidate number n, which is represented by a record

29

{prime = Pi, candidate = n}. If the candidate satis�es the test, then the element transforms
itself to a record r = {prime = Pi, ok = n}. If the right neighbor of r is of form {prime =
Pi+1}, then the candidate n skips from r to the right neighbor. When there is no right
neighbor to r, then n is prime and a new element is added at the end of the sequence. The
�rst element of the sequence is distinguished and generates the candidates.

trans Eratos = {
Genere1 = n : integer / r̃ight n => n, {prime = n};
Genere2 = n : integer, {prime as x, c̃andidate, õk}

=> n + 1, {prime = x, candidate = n};
Test1 = {prime as x, candidate as y, õk} / y modx = 0 => {prime = x};
Test2 = {prime as x, candidate as y, õk} / y modx <> 0

=> {prime = x, ok = y};
Next = {prime as x1, ok as y}, {prime as x2, õk , c̃andidate}

=> {prime = x1}, {prime = x2, candidate = y};
NextCreate = {prime as x, ok as y} as s / r̃ight s

=> {prime = x}, {prime = y};
}

prime = 7
candidate = 14

prime = 7

prime = 7 prime = 11 prime = 7 prime = 11
ok = 23 candidate = 23

prime = 7 prime = 7
ok = 23candidate = 23

prime = 7 prime = 11 prime = 13 prime = 17
ok = 19

prime = 19
ok = 23 candidate = 23

Test1

Test2

Next

Figure 10: The Eratos program. Some rule instantiations and a fragment of the sequence built
by the transformation Eratos.

We have given an explicit name to each rule. See an illustration on Fig. 10. The ex-
pression Eratos[N]((2, seq : ())) executes N steps of the Eratosthene's sieve. For instance
Eratos[100]((2, seq : ())) computes the sequence: 42, {candidate = 42, prime = 2}, {ok =
41, prime = 3}, {prime = 5}, {prime = 7}, {prime = 11}, {prime = 13}, {ok = 37, prime =
17}, {prime = 19}, {prime = 23}, {prime = 29}, {prime = 31}, seq : ().

30

4.7 Maximum Segment Sum

Consider the problem of �nding the segment of maximal sum in a sequence of numbers. For
instance, in sequence <1, 2, -3, 2, 2, -1> the maximum segment sum is the segment <2, 2>.
This optimization problem can be solved by dynamical programming. The corresponding
algorithm is easely stated in MGS.

We �rst transform a sequence of numbers into a sequence of records. A record at position
p has a �eld val which records the number at position p in the initial sequence, a �eld sum

which holds the sum of the current computed maximal segment endings at position p and
a �eld named indices which contains the positions of the elements of the current segment
ending at p. Initially, the current segment that ends at position p also begins at position p.
Thus:

trans init [p = 0] = (x/ record(x))

=> (p := p + 1; {val = x, sum = x, indices = (p, set : ())})

For instance, init(<21,−5, 7>) computes <{val = 21, sum = 21, indices = {1}}, {val = −5, sum =
−5, indices = {2}}, {val = 7, sum = 7, indices = {3}}> .

Then, we can combine a segment ending at position p and a segment at position p + 1 to
gives a segment at position p + 1 if this increase the local score:

trans all_max_sum =

((x, y)/(y.sum < (x.sum + y.val)))

=> x, y + {val = y.val, sum = x.sum + y.val, indices = x.indices@y.indices}; ;
This transformation must be iterated until �xpoint. Then, the maximal segment sum can be
extracted:

trans max_sum = {
x, y/x.sum > y.sum => x;

x, y/x.sum < y.sum => y;

}; ;
The whole process can be sumarized in a function:

fun mss(C) = max_sum['fixrule](all_max_sum['fixrule](init(C))); ;

4.8 Tokenization

The tokenization problem can be stated as follows: it is required to process a sequence of
letters to obtain the multiset of words constituting the sequence. A word is a sequence of
letters without white space.

The solution, a two transformations long MGS program, relies on a nested collections
structure. On the top level, we have a multiset and the elements of this multiset are sequences
which �nally must be without white space.

31

We �rst de�nes two new types:

collection Word = seq; ;

state Split = {before, after}; ;

The type Word is just a distinguished sequence type used to representes the words9. The
record Split will be used to record the two parts of a sequence splitted when a white space
is detected. The rule:

trans CutSeq = (x/ x ! = ” ”) + as X, (y/ y == ” ”), (z + as Z)

=> {before = X, after = Z}; ;

applied on a sequence, gives a new sequence. If there is a white space ” ” in the sequence, the
the pattern � (x/ x ! = ” ”) + as X � �lters, in a subsequence named X, all the non-white
space letters until the �rst occurence of a white space binded to y. Then Z binds to the rest
of the sequence. The result computed by {before = X, after = Z} is a sequence containing
only one element, a record of type Split. If there is no white space on the sequence, the rule
does not apply and the transformation is the identity

Recall that a transformation acts by applying rules on subsequences and the results are
gathered in a sequence. This is why the results of applying CutSeq is always a sequence,
even if the entire sequence is matched by the rule10.

The second transformation apply CutSeq on the elements of a multiset and extract the
result of a split from the englobing sequence:

trans Cut = {
x/Split(hd x) => (hd x).before, (hdx).after , bag : ();

x => CutSeq(x);

}

The �rst rule of this transformation is applied if the �rst element of a sequence is a Split. In
this case, the two �elds of the Split are extracted and constitute the elements that are added
into the multiset in place of the matched sequence. The second rule apply the transformation
CutSeq to an element. It is important to give the two rules in this order. As a matter of
fact, the second rule can always apply (because there is no guard, the pattern x matches any
element in the multiset). But we want to apply this rule only if the element is not a split.

For example, see Fig. 11, the expression (the transformation Cut applied until �xpoint
to a multiset of one element, this element being a sequence Word):

Cut ['fixpoint](((”a”, ”b”, ”c”, ” ”, ”d”, ”e”, ” ”, ”f”, ”g”, ”h”,Word : ()), bag : ())); ;

9Instead of letters, we use here strings (written between double quotes) to represent the elements of the
words, because the current interpreter does not o�er letters as a basic type.

10We are devising mechanisms to ease the � dissolving � of a nested collection, in a manner analog of the
dissolve operator used in P systems. Here we use a rule in the transformation Cut.

32

evaluates to
(
”a”, ”b”, ”c”, () :Word

)
,

(
”d”, ”e”, () :Word

)
,

(
”f”, ”g”, ”h”, () :Word

)
, () :bag

that is, a bag of three elements, each element being a word without white space. See �gure 11.

ba c hgfed

ba c

ed hgf

Figure 11: Tokenisation of a sequence of letters

4.9 Token moving on a Ring

The problem is just to propagate a token on a ring. The idea is to use a rule

(x/x == 1), (y/y == 0) => 0, 1;

to say that the token � 1 � propagates in a medium of 0. However, the topology of a ring is
not directly accessible as a collection kind (not yet). But it can be emulated by a sequence
and by managing explicitly what occurs for the begin and the end of the sequence. Instead
of written one rule, we have to write three rules. The rule for the �rst element looks like:

z/(z == 0) & l̃eft z & . . . => 1;

where the condition l̃eft z speci�es that z is the �rst element in the sequence (it has no
element to its left) and the condition z == 0 ensure that it is not occupied by a token. It
remains to check that the last element of the sequence is occupied by a one.

For, we have to refer to the global collection on which the transformation is acting. This
is possible, using simply an additional parameter of the transformation. When we apply the
transformation, we arrange to pass the collection both as the argument and as the value of the
additional parameter of the transformation (using a wrapper). The corresponding program
is:

trans Tore[self] = {
(x/x == 1), (y/y == 0) => 0, 1;

y/(y == 1) & r̃ight y & (0 == hd(self)) => 0;

z/(z == 0) & l̃eft z & (1 == last(self)) => 1;

}; ;
fun tore(t) = Tore[self = t](t); ;

The operators hd and last give the �rst and the last element in a sequence. The function
tore is the wrapper of the transformation Tore. An n-times iteration of the transformation is

33

then simply obtained by iterating the function tore n-times, which is realized with the same
syntax as the iteration of a transformation : tore[n](. . .). The 6th �rst iterations starting
from a ring with 5 element and just one token, give:

0, 0, 1, 0, 0

0, 0, 0, 1, 0

0, 0, 0, 0, 1

1, 0, 0, 0, 0

0, 1, 0, 0, 0

0, 0, 1, 0, 0

This program gives an example of the smooth interplay between transformations and func-
tions, and the use of additional arguments in a transformation.

Moving a token on a ring is not very interesting. Instead of moving one token, one can
di�use two morphogenes that, in addition, react together. This process is sketched in the
next section. The previous idea is used to di�use on a ring emulated on a sequence. The
results of the MGS program are output in a Mathematica readable form, for the purpose of
visualization. The result is plotted in �gure 12. We do not give the corresponding MGS
code because it simply combines the previous idea with the Turing di�usion-reaction process
described below. For information, the MGS code takes 75 lines, including 35 lines dedicated
to format the output for Mathematica while an hand-coded C program takes 70 lines to only
compute the di�usion-reaction process.

Figure 12: Example of a Turing di�usion-reaction process on a ring. Each cell of the ring
is rendered by a slice of the torus. The diameter of the slice is proportional to the b morphogene
(cf. text of section 4.10). The results computed by the MGS program are written in a �le later read
by Mathematica. This �le contains both the computed data and a Mathematica program used to
compute the coordinate of the torus and to render the 3D objects. This �gure plots a gif capture of
the graphics rendered by Mathematica when reading the MGS produced �le.

34

4.10 Morphogenesis Triggered by a Turing Di�usion-Reaction Process

Alan Turing proposed a model of chemical reaction coupled with a di�usion processus in cells
to explain patterns formation. The system of di�erential equations [BL74] is:

dar/dt = 1/16(16− arbr) + (ar+1 − 2ar + ar−1)

dbr/dt = 1/16(16− br − β) + (br+1 − 2br + br−1)

where a and b are two chemical reactives that di�use on a discrete segment of cells indexed by
r. This model mixes a continuous phenomena (the chemical reaction in time) and a discrete
di�usion process. In MGS we retrive these equations, three times, to handle the cell at the two
ends of the segment (rule evol_left and evol_right) and the cells with two neighboors (rule
evol).

In addition, we complexify this processus by splitting one cell in two if the level of the
morphogen b is greater than a given level (rule Split). This process does not correspond to
any real biosystems, see however [HP96].

The corrresponding program starts by a transformation used to generate the initial se-
quence of cells.

trans init =

x => {
a = 3.5 + random(1.0)− 0.5,

b = 4.0,

beta = 12.0 + random(0.05 ∗ 2.0)− 0.05,

size = 16

};
rsp := 1.0/16.0; ;

diff1 := 0.25; ;

diff2 := 0.0625; ;

NbCell := 18; ;

segment0 := init[1](iota(NbCell, () : seq)); ;

The init transformation is used to generate the initial sequence of cells segment0. Applied
one times to a sequence of n arbitrary elements, it generates a sequence of records. The �eld
a and b of the record corresponds to the morphogens. The �eld beta is an auxilliary variable
of the di�usion-reaction process: it corresponds to a constant with some noise. The �eld size

is used for the 3D output, see �gure 13 and annex B. The expression iota(NbCell, () : seq)
build a sequence made of the integers from 0 to NbCell.

The real computation takes place in the Turing transformation. One rule is used to split
a cell that reach the adequate level of morphogen b and three other rules are used for the
reaction-di�usion process. The functions da and db computes the increases in morphogen a

35

and b respectively.

fun da(a, b, la, ra) = rsp ∗ (16.0− a ∗ b) + diff1 ∗ (la + ra− 2.0 ∗ a); ;

fun db(a, b, beta, lb, rb) = rsp ∗ (a ∗ b− b− beta) + diff2 ∗ (lb + rb− 2.0 ∗ b); ;

trans Turing = {
Split =

(x/x.b > 8) =>

{a = x.a/2, b = x.b/2, beta = x.beta, size = x.size/2},
{a = x.a/2, b = x.b/2, beta = x.beta, size = x.size− x.size/2};

evol =

(x/(left x)&(right x))+=>

{a = x.a + da(x.a, x.b, (left x).a, (right x).a),

b = Max(0.0, x.b + db(x.a, x.b, x.beta, (left x).b, (right x).b))};
evol_right =

(x/̃ left x)+=>

{a = x.a + da(x.a, x.b, 0, (right x).a),

b = Max(0.0, x.b + db(x.a, x.b, x.beta, 0, (right x).b))};
evol_left =

(x/̃ right x)+=>

{a = x.a + da(x.a, x.b, (left x).a, 0),

b = Max(0.0, x.b + db(x.a, x.b, x.beta, (left x).b, 0))};
}; ;

The rest of the code is used to trigger the computation and to output the results. The output
is done in a dedicated language used to visualize 3D scenes. The result is plotted in �gure 13.
The functions showBarre, pre_show and post_show are detailed in annex B. This code
is very short and easy to program, because the language used to produce the scene is very
expressive.

fun showBarre(barre, t, tmax) = . . . ; ;

fun pre_show() = . . . ; ;

fun post_show(n, c) = . . . ; ;

fun evol(barre, t, tmax) =
(

showBarre(barre, t, tmax);

if (t < tmax) then evol(Turing[iter = 1](barre), t + 1, tmax)

else barre fi
);

fun evolve(n) = (pre_show(); evol(segment0, 0, n); post_show(n,NbCell)); ;

36

Figure 13: Example of a Turing di�usion-reaction process coupled with a morphogenesis.
Each cell is rendered by a block whose height is proportional to the b morphogene (cf. text). When
a cell is splitted in two, the width of the two daughter cells is divided by two, such that cells with a
common ancestor are in the same parallel line (the axis directed toward the reader, which represents
the passing of time). This plot corresponds to 180 time step evolution of an initial sequence of 18
cells.

37

38

5 Topological Collections and their Transformations

At this point of our presentation, the interested reader may object that the collection kinds
in MGS are not related and that their presence in the same language is more a matter of
juxtaposition rather than an integration. In the current prototypes (april 2001), it is true
that the implementation of the collection kinds and of the pattern-matching algorithms are
ad-hoc. And there is no way to build new collection kinds at user level (beside subtyping
cf. section 3.2.3).

However, we show in this section that a formal generic framework can be developped.
This formal framework relies on mathematical notions developped in combinatorial algebraic
topology. The algebraic and combinatorial de�nition of the involved concepts makes them
particularly suited for a computer implementation and justify our claims in the unifying and
generic nature of the MGS approach, far beyond monoidal collection. The development of a
new version of the MGS prototypes based on this formalization has starded, see 7.

The reader not interested in the formal development may skip this section.

5.1 Organization of this section

The de�nitions and results given below are standard in combinatorial algebraic topology, and
have been gathered from the references [Ale82, Mun84, HY88, Sha90, Hen94, Axe98, Ber00].
Annex C reviews some of the algebraic structures used below.

The algebraic apparatus used here may appear very heavy with respect to our needs.
However, the de�nitions introduced here are only the �rst elementary notions introduced for
starting homology and cohomology theory.

We have tried to give an explanatory introduction of these de�nitions, following a step
by step presentation, with some insights and intuitions talking to a computer scientist. The
presentation is then not very straightforward and we have avoided a much more brutal but
concise presentation. This explains the length of this chapter and the mix between informal
considerations and the algebraic devices.

The organisation of this chapter can be sketched as follow:

1. The basic objects used to construct the space underlying a topological collection, ab-
stract complexes, are introduced in section 5.2 and their neigborhood relationships are
de�ned in section 5.3.

2. The previous structure is simple and natural but has some drawbacks when it comes to
speak about boundary, or part of a space. The structure of chain group, that overcomes
these limitation, is then presented in section 5.4. This structure is used to associate a
value to each basic object to take into account its neigborhood (section 5.5).

3. We need to relate the notion of abstract complex and chain group together. It implies
that only chain groups with a speci�c form interest us. This is explained in section 5.5.
A fundamental example is presented in the next section (section 5.6). The structure of
these group are more closely investigated in section 5.7.

39

4. There is an algebraic notion of duality that can be used to extend the notion of chain
group. This extension generalizes the notion of chain and also gives a support to
the notion of coboundary : two elements can be neighboor not only because they share
something, but also because they are shared by something. The geometric interpretation
is then sketched (section 5.8).

5. Section 5.9 shows that the previous notions can be used not only to render the neigh-
borhood relationships, but also to associate a value with the � places � of a space.

6. We then take all this de�nitions together and put some additional constraints to de�ne
the type of a topological collection (section 5.10).

7. Various kind of transformations of such objects are speci�ed in the following section
(section 5.11).

8. The previous de�nitions are illustrated in an ad-hoc maner on the speci�c example of
grids (section 5.12).

9. We summarize this presentation in the last section.

5.2 Cellular Spaces and Combinatorial Structure of Complexes

Topology is often presented as the geometry of rubber sheet: the properties of a �gure that
remain true under twisting, pulling, stretching, ..., any deformation of this sort provided
the rubber can withstand it without ripping or tearing. Notions like continuity, limit, open
set, etc., are developped in point set topology and are pertaining analysis and calculus.
On the other hand, combinatorial topology has developed a strong algebraic �avor. The
combinatorial method is used to construct complicated �gures from simple ones and to deduce
properties of the complicated from the simple. Here we want to speak about a space made
of places and the neighborhood of a place in this space. The set of places is discrete and we
are not really interested by the � metric � aspect of this space. It does not matter if a place
is � far � or � near � another place. What does matter is the connection between places and
the decomposition of places into subplaces. So, the combinatorial approach suits particularly
well our needs. This sort of space, with its combinatorial structure, will be the carrier of a
topological collection.

It is convenient to describe this space as build from basic blocs. This basic blocs are
called k-cells. Beware that we use the same word � cell � for the biological object and the
topological notion. In this chapter, we only refer to the topological notion. The fact that a
topological 3-cell can be used to represent a biological cell in a simulation may be confusing.
A k-cell is an homeomorphic image of an open balls in Rk. In other word, a k-cell c is the
image of the set Dk = {x ∈ Rk, ||x|| < 1} by a continuous bijection h, such that h−1 is also
continuous. However, the precise nature of the cell c is not stressed in a purely combinatorial
approach until no link is made with point set topology notion. Here, we need only to grad
the cells by their dimension and to focus on the connection of cells.

A collection of cells that are �tted together in an appropriate way form larger structures
called complexes. Examples of complexes are given in Fig. 14 and 15. If an edge e is a side

40

annulus

book

torus (doughnut)

annulus
double

moebius strip

sphere

Figure 14: Examples of complex build from polygons. The examples of this �gure imply cells
of dimension less than 2. A polygon is a 2-cell where a �nite number of points on the boundary are
chosen as vertices. The section of the boundary in between vertices are the edges. A polygon is called
a n-gon where n is the number of vertices. Thus the annulus there is composed of four 4-gons while
the double annulus is composed of three 4-gons and four 5-gons.

4

3

2

1

B

41
h

g

i
j CA

e

f

gh i fe j

A C

1

B

0

32

Figure 15: An abstract complex. The schema in the right hand side gives the Hasse diagram of
the incidence relation of the complex in the left hand side. Faces are denoted by capital letters A,
B and C. Edges are denoted by small letters and vertices by numbers. For instance, the face B is
bounded by two edges i and j which are themselves bounded by vertices 2 and 3. This example shows
also that an abstract complex is generally not a lattice : there is for instance no least upper bound for
edges e and f: both faces A and C are incomparable successors of e and f.

41

of a face f , we say that e and f are incident and we write e < f . The relation with the point
set notion of a cell as an open ball, is the following. If a cell c is part of the closure of a cell
c′, we say that c is incident to c′ and we write c < c′. However, the incidence relation is an
order, and that's all we are interested in.
Definition 1 (Bounded Poset (P, <)). A poset (P, <) is a set P with an antisymmetric
and transitive relation < (the partial order). A poset is bounded if there are a unique
minimal and maximal element 0 and 1. Let x, y ∈ P such that x < y and there is no z such
that x < z and z < y. Then we write x ≺ y and we say that x is a predecessor of y or that
y is a successor of x.
Definition 2 (Abstract Complex). An abstract complex K is a bounded poset with a
function dim : K → Z de�ned for the elements e ∈ K − {0,1} such that e < e′ implies
dim e < dim e′ and e ≺ e′ implies dim e′ = 1 + dim e. The set Kp = {e | e ∈ K,dim e = p} are
the p-cells of K. A 0-cell is also called a vertex, a 1-cell is an edge and a 2-cell is a face. The
dimension dimS of a subset S ⊂ K is the biggest of the dimensions of the elements of S if
it exists.

The minimal and maximal element in the abstract complex de�nition will not be used
at all here (they are useful to make some constructions more smoth). A graph is simply an
abstract complex of dimension 1: the vertices are the nodes of the graph and 1-simplices are
the edges, with the additional condition that there is exactly two predecessors for each edge.

Note that using an abstract complex, one cannot make a di�erence between a cylinder and
a moebius strip because they give the same poset, see �gure 16. These de�nitions are purely
combinatorial and more specialized versions toward a geometric representation are usually
used; we can cite simplicial complex, singular complex, semi-simplicial set, polytope,
cellular complex, CW-complex, etc. They make more constraints in the �tting of cells into
a complex.

5.3 Star, Link and Connections

Given a poset and its partial order <, we de�ne the derived ≤ and ¹ relationships. We
de�nes now some operations on subsets of complexes. For a subset S ⊆ P , the smallest poset
S is its closure.
Definition 3 (Subcomplex, Star and Shape). Let (K, <), an abstract complex and S ⊆ K
a subset of K. Then the set S = {y | y ∈ K, y ≤ x ∈ S} with the relation < is the
subcomplex generated by S. It is called the closure of S. The star Stx of a cell x ∈ K is
Stx = {y | x ≤ y ∈ K}. We de�ne the star of a subset S ⊆ K to be StS =

⋃
x∈S Stx and the

closed star is StS = StS . An element x is above a set S ⊂ K i� x ∈ S or if the elements of
the set {y | y ≺ x} are all above S. The shape Shape(S) of a subset S ⊂ K is the set of the
elements above S. These notions are illustrated in �gure 17 and 18.

There is two ways for a cell x to be connected with a cell y: because they share a common
boundary or because they are both boundaries of a � bigger � cell. Then, it appears that the
� neighbors � of a cell x are the cells in Stx.

42

BA

a

b

4

3
2

1

6

5C

c

Bb

4

A
2

3

6

C1

c

5
21 3 4 5 6

a cb

A B C

a

Figure 16: An abstract complex cannot handle orientation. For example, the moebius strip on
the left gives the same poset as the cylinder on the right (they are both composed of 3 faces, 3 edges
and 6 vertices).

Figure 17: Examples of star and link. The subset S is composed of 4 edges and 3 vertices. On
the top we have S pictured on the complex K, then StS and St S. On the bottom line we have S,
StS and the link of s: LkS = St S \ St S which consists of two components of 4 edges and 5 vertices
each (the operator r � denotes the asymmetric set di�erence, i.e. ArB = {x | x ∈ A, x 6∈ B}).

b

c

a

d

e

S

St S

Shape(S)

Figure 18: Connection and shape of a set. Left �gure. We �gure symbolically a poset K by a
triangle. The coloured triangle below element a is the subcomplex a generated by a. It is also called
the cone below a. An element x is in the cone below y i� x ≤ y. The set {a, b, c, d, e} is connected
because elements are connected two by two. Fo example, a and b are connected because a ≤ b, idem
for c and b. The elements c and e are connected because d ≤ c and d ≤ e. Let A = a, C = c and
E = e be the closure of {a}, {c} and {e} respectively. Then the set A ∪C ∪E ∪ {b} is also connected
because a closure of a connected set is connected. Right �gure. The set S consists of three internal
vertices of a line graph. We have �gured St(S) and Shape(S).

43

Definition 4 (Connections). Two cells x and y of an abstract complex K are connected,
and we write x , y, if x ∩ y 6= ∅ or if Stx ∩ St y 6= ∅. Given a set S ⊆ K, we de�ne (,\S) as
the restriction of , on S: (,\S) = ,∩(S × S). Let (,\S)∗ be the transitive closure of this
relation. A subset S of K is connected if (,\S)∗ has only one equivalence class.

Considering an in�nite complex may be useful, for instance to represent an unbounded
grid. However, each element (vertex or edge) in this grid is connected to only a �nite set of
other elements. Then, we say that the grid is locally �nite.

Definition 5 (Locally �nite complex). A complex K is closure-�nite if for all cell x ∈ K,
x is a �nite set. It is star-�nite if Stx is a �nite set for all x in K. A complex which is both
closure-�nite and star-�nite, is said to be locally �nite.

5.4 Chain Complex

Figure 16 shows that the poset structure alone is not enough to represent the connection of
cells. The problem can be splitted into two subproblems:

1. how a cell decomposes into subcells;
2. how a cell lies in the complex.

Obviously these problems are related. We will tackle the �rst question in this section. We
shall examine the second in section 5.8.

A cell is not completely described by the simple set of its predecessors. One must represent
also some organisation of these predecessors: for example an orientation, or a count if some
subcells are identi�ed (see the picture at the right on �gure 22). This organisation of the set
of the predecessors is represented by the notion of chain : a chain is a � structured set � of cells.
This structure is speci�ed through an abelian group structure and a boundary operator. The
abelian group structure (the annex C gives a quick review of this notion) is used to describe
the gluing of two cells using the group operation (written additively). The boundary operator
gives the chain that describes the boundary of a cell, and by extension, the boundary of any
chain.

Using an abelian group operation to represent the � gluing � c of two cells x and y means
that we can write c = x+y or c = y+x: the order of the gluing does not matter. The neutral
element 0 corresponds to the empty set. And if we add a cell x to a part c, one must be able
to � detach � the cell x from c latter. This justify the use of a group structure for the set of
chains. Furthermore, one of the main objective of the theory is to compute the boundary
of an arbitrary part of a space, from the boudary de�ned for an � isolated � cell. Thus, it is
natural to recquire the boundary operator ∂ to be an homomorphism: ∂(x+y) = ∂(x)+∂(y).
These considerations motivate the following de�nition.

Definition 6 (Chain Complex). A chain complex is a sequence C = (Cp, ∂p)p∈Z of abelian
groups Cp and connecting homomorphism ∂p : Cp → Cp−1, called boundary maps.

The group Cp is called the p-chain group and an element c of Cp is called a p-chain. Cp

represents all the way to glue p-cells together. Sometimes we use a subscript p to indicate that

44

a chain c is a p-chain: cp. In the opposite, for convenience in notation, we shall sometimes
delete the dimensional subscript p on the boundary operator ∂p, and rely on the context to
make clear which of these operators is intended.

An abelian group Cp is trivial when its only p-chain is 0 (the element zero of the group).
It this case we write Cp = 0. A �nite dimensional chain complex C is such that the Cp are
trivial except for at most a �nite number of p. Most often, Cp is the trivial group for p < 0
and in this case we say that C is a non-negative chain complex. If Cp is a free abelian group
for each p, then C is called a free chain complex. The chain complex is said homological or
called a graded di�erential group with operator ∂, i� for all p and for all c ∈ Cp+1,

(∂p ◦ ∂p+1)(c) = 0

This condition re�ects the intuitive property that � the border of something has no border
itself �. Figure 19 gives an example of a non-homological chain complex. Intuitively, the loss
of homology comes from identifying parts of the boundary of a cell.

5.5 Chain Group with Coe�cient in an Arbitrary Abelian Group

In the two examples of the �gure 19, the groups Cp are built from the p-cells in Kp by saying
that Cp is the abelian group generated by the element of Kp subject to the equations c+c = 0.
In other word, every element in Cp is a formal sum of elements in Kp and any element c in
Cp is its own inverse. Example of chains are e, e + f, f + e + g, etc. So, the relation between
a chain and a cell is clear in this case: the chain reduced to only one element x, corresponds
to a p-cell x.

e1 2

s

e

1 2

s

e
e

s

4
g

3

f

21

h

h

s

3

g f

2

s’

1 4

Figure 19: Examples of a non-homological and an homological chain complex. The two
�gures represent two possible constructions of a sphere. The associated complex K is de�ned on the
right. The vertices are nammed by an italic number (1 , 2 , ...), edges are identi�ed by a letter in the
begining of the alphabet (e, f , ...) and the faces are called s and s′. A p-chain is simply a � sum �
of p-cells, like e + f for instance. In addition, we suppose that the chain groups Cp are idemgroups,
that is c + c = 0 for any p-chain. Furthermore, we de�ne ∂(x) =

∑
y≺x y for all p-cell x ∈ K and we

extend the operator ∂ by linearity, that is ∂(x + y) = ∂x + ∂y. The complex pictured to the left is
a non-homological complex. Face s is folded and its boundary consists only of one edge e (imagine
the border of a disk pathologically stitched on itself to obtain a sphere). The vertices 1 and 2 are
the boundary of this edge. This complex is non-homological because ∂∂(s) = ∂(e) = (1 + 2) 6= 0.
This has to be compared with the complex pictured at the right hand-side which is homological. For
instance ∂∂(s) = ∂(f + g + e + h) = (1 + 3) + (2 + 4) + (1 + 2) + (4 + 3) = 0 (recall that x + x = 0
in an idemgroup). And the result is the same for s′ or any other k-cell.

45

However, the description of the structure of a space by a chain complex is rather abstract
and we have in general no explicit notion of the cells in the description of a chain complex.
How can we relate an abstract complex K and a chain complex C?

The idea is that some elements in Cp, called elementary chains, must represent a unique
p-cell x together with a coe�cient g which represents some information about the � gluing �
(orientation, count, etc.) of x. Let G be the set of all possible g. Then an elementary chain
can be viewed as a pair (g, x). A typical element in Cp is a sum of such elementary chains
and Cp must have the structure of a group. Consider the sum of two elementary chains on
the same cell x: c = (g, x) + (g′, x). The result must be an elementary chain on the same
p-cell x, so c = (g′′, x). The coe�cient g′′ must represent the contribution of x coming from
a contribution g and a contribution g′. We write g′′ = g + g′ and is this easy to see that if
Cp has an abelian group structure, then G must have an abelian group structure too. And
conversely. If we write an elementary chain (g, x) as the formal product gx of an element of
the coe�cient group G by an elementary p-cell, then a typical chain cp can be written

cp =
∑

x∈Kp

gxx

where gx is the coe�cient that describe the contribution of the p-cell x. But one man think
cp has a function that describes the contribution of x, that is, cp : Kp → G with cp(x) = gx.
Historically, people have �rst considered chains with a �nite number of contributing p-cells,
so in the previous sum we consider that only a �nite number of gx are nonzero. Hence the
de�nition.

Definition 7 (Chain Group with Coe�cient in an abelian group G).
Let K an abstract complex (�nite or not), and let G denotes an arbitrary abelian group

written additively. The neutral element of G is written 0. The set Cp(K, G) of p-chain on
the complex K with coe�cient in G is the set of total functions cp from the set Kp to G

that are zero almost everywhere, that is, cp(x) = 0 for all but a �nite number of p-cells of K.

The operation used to turn the set of k-chains into a group is the addition of functions if
one thinks of them as function, or the componentwise addition if one thinks of them as sums.
Integral chains are just chains with integer coe�cients Cp(K,Z). The integral chain group,
of special importance, is abbreviated Cp(K). The justi�cation of the sum notation, with the
product of a p-cell and a coe�cient in G wille be delayed until section 5.7.

Carrier of a Chain. Let cp = α1x1 + · · · + αnxn be a chain of C(K, G). Then αi ∈ G

and we suppose also that αi 6= 0 for all i. Then the carrier of cp is the set of p-cells with a
nonzero coe�cient in the cochain: |cp| = {x1, . . . , xn, . . . }.

Compatible Boundary Homomorphisms. We have de�ned the boundary maps of a
chain complex C = (Cp, ∂p) as a sequence of homomorphisms satisfying the signature:

C0
∂1←−−− C1

∂2←−−− C2
∂3←−−− · · ·

46

Saying that ∂p is an homomorphism means that we can de�ne ∂p on elementary chains and
extend the boundary operator on any chains by linearity : ∂(c+ c′) = ∂c+∂c′ In other word,
� the boundary of a sum of elements is the sum of the boundaries of the elements �.

The boundary operators embeed more information than the poset structure alone. For
example, suppose we work with integral chain groups and we have to describe the moebius
band in �gure 16. Then the predecessor of C are a and c and we have ∂C = c − a. The
edge a is counted negatively to account for an oposite orientation. For the cylinder, we have
∂C = c + a: the boundary operators makes a di�erence between two objects that are not
distinguished with the poset structure alone.

However, when we use the chain groups Cp(K, G) in relation with an abstract complex
K, we need to relate the connection structure described by the abstract complex K and the
connection described by ∂.
Definition 8 (Compatible Boundaries). Let (Cp(K, G), ∂p) be a chain complex associated
with an abstract complex (K, <). Then, the boundary maps ∂p are said compatible with K
i� for all x ∈ Kp, and for all g ∈ G, g 6= 0, |∂gx| = {y | y ≺K x}.

The elements with nonzero coe�cient in ∂gx are exactly the predecessors of x. This
condition ensure the coherence between the poset structure of the abstract complex K and
the boundary operations. In the previous example, the compatibility condition is respected
because |∂C| = {a, c} both for the moebius band and the cylinder.

Basic Assumption. We are only interested in the case where the abelian groups Cp are
related to an abstract complex K. Every chain complex (Cp, ∂p)p we consider henceforth is
such that Cp = Cp(K, G) and the boundary maps ∂p are compatible with (K, <). We write
C(K, G, ∂) for such chain complex.

5.6 Example of the C(K,Z/2, ∂) Chain Complex

Returning back to the examples in �gure 19, now we may specify rigorously the group Cp as
the functions from Kp to Z/2 the group of integers modulo 2 (cf. annex C). A chain c = e+f

corresponds to the function c de�ned by c(e) = c(f) = 1 and c(x) = 0 for x 6= e and x 6= f .
This chain can also be written c = 1.e + 1.f + 0.g + 0.h + It is customary not to write
the p-cells with a zero coe�cient (in accordance with the additive notation). Thus we have
c = 1.e + 1.f (or more ambiguously c = e + f).

Representation of the Subsets of K by Cp(K,Z/2). Using Z/2 as the chain coe�cients
enables the representation of the presence, cp(x) = 1, or the absence, cp(x) = 0, of a p-cell x

in a chain cp. A chain of C(K,Z/2) is then simply the characteristic function of a subset of
K. But the group structure gives some additional capabilities.

The elements of this group are {0, 1} and 0 + 0 = 1 + 1 = 0 and 0 + 1 = 1. The groups
where x + x = 0 for all x are quali�ed as idemgroups. So Z/2 is an idemgroup as well as
C(K,Z/2). Suppose c1 and c2 are given k-chains with coe�cient in Z/2. Then, c1 + c2 is
de�ned to be the k-chain made up of the k-cells of c1 or c2 but not in both. In other words,

47

the + operation between chains corresponds to the � symmetric set di�erence �. Similarly,
c1 + c2 + c3 consists of thoses k-cells contained in just one or all three of the chains c1, c2

and c3. More generally, the sums of n k-chains turn out to consist of those cells contained in
an odd number of the chain c1, .., cn. The zero k-chain (the unique element in Ck such that
c + 0 = 0 + c = c for all k-chain c) is the empty chain denoted 0 and containing no k-cell.

Computation of a Boundary in C(K,Z/2). We have shown that the use of coe�cients
in Z/2 enables the representation of an arbitrary subset. To turn these chain groups into a
chain complex, we have to de�ne the boundary operators ∂p. We just de�ne the boundary of
a single p-cell x as the chain that represents the predecessors of x:

∂p(x) =
∑

y∈Kp−1, y≺x

y

and we extends this de�nition by linearity on a p-chain c =
∑

x c(x) x:

∂(c) =
∑

c(x)∂(x) =
∑

x

∑
y≺x

c(x) y

By de�nition, these boundary operators are homomorphisms and compatible with the poset
structure of the abstract complex K (there is no other possible de�nition for ∂). Let us see
the e�ect of this boundary operator on such chains.

Suppose that the chain c ∈ Cp(K,Z/2) is composed of two k-cells s′ and s′; this is denoted
by c = s + s′. Suppose than s and s′ share only one cell d ∈ Kp−1, see Fig. 20. Then d is not
in the border of s because s and s′ are glued along d: d is an interior cell. But d is in the
boundary of s and in the boundary of s′. Let ∂ps = d +

∑
x′j and ∂ps

′ = d +
∑

x′′k. Then
we must have: d +

∑
x′j + d +

∑
x′′k =

∑
x′j +

∑
x′′k which is automatically achieved because

d + d = 0.

s s’

a

b

c
e

f
a

b

c
e

f
+

a

b

c
e

f
=d d d

∂

Figure 20: Example of the application of the boundary operator on a C(K,Z/2) chain.
∂(s + s′) = ∂s + ∂s′ = (a + b + c + d) + (d + e + f) = a + b + c + e + f because d + d = 0.

All interior cells, i.e. cells that have two successors, will cancel out and only the geometric
boundary cells of s will remain. This explain the sense in which the geometric boundary of a
set of points is a special case of the more general topological boundary operator de�ned here.

An Algebra for Counting the Cells in a Boundary. Note that working with Z/2
coe�cients avoids the problem of the orientation of each cell and encounters the problem
pointed in Fig. 16: orientation is not taken into account, as for abstract complex. This

48

problem can be handled using integer coe�cients Z that enables the precise counting of each
cell, together with its orientation.

The group Z/2 provides an algebra for handling certain simple counting operations where
only the evenness or the oddness of the results is important. The integral chain group
C(K) = C(K,Z) provides an algebra for handling these counting operations without the
peculiar restriction to evenness and oddness, see fure 21. The chain 2x + 1y − 3z counts the
cell x twice, the cell y once and the cell z minus three times. And another abelian coe�cient
group G provides another kind of counting algebra.

a

c
e

f

b

g

h

6

4

5

3
7

2
1

i

vu

w
j

8
s

2

s’

c 3

e

d
4a

1 d
b

Figure 21: Examples of two oriented complexes. The two �gures represents two 2-chains with
integral coe�cient. The cells used in the left complex are simplicial cells, that is, a p-cell is the convex
hull of p + 1 points in Rn. The sign of the coe�cient is used to take into account the orientation of
edges and faces. For example, ∂d = 4− 2 and ∂s = a + b− c. Orientation can be used to cancel out a
coe�cient: ∂(s+s′) = (a+b−c)+(d−e−b) = a+d−e−c. The cells in the right complex are polygonal
cells. They are oriented by giving an order between vertices. Faces are oriented positively from the
low vertex to the high vertex. This example shows that the absolute value of the coe�cient is used to
count the number of time a cell is used: ∂(v+w) = (j−f−e+d)+(g−h−i+d) = j−f−e+g−h−i+2d.

5.7 The Structure of the Chain Group with Coe�cient

We want to characterize further the chain groups with coe�cient. We �rst de�ne the notion
of free abelian group and review some useful results. Then we show that the integral chain
group is free. We show that any chain group with coe�cient in G has the structure of a sum
of copies of G Finally, we give a representation of Cp(K, G) in terms of Cp(K).

Constructing a Free Abelian Group From a Basis. An abelian group G is free if it
has a basis, that is, if there is a family {gα}α∈J such that each g ∈ G can be written uniquely
as a sum g =

∑
nαgα where nα ∈ Z. If G is free and has a �nite basis consisting in n

elements, then it is easy to see that every basis for G consists of precisely n elements (this
number is called the rank). If the basis is not �nite, then any basis has the same cardinality.
A subgroup of a free group is free.

We give now a speci�c way of constructing a free abelian group Abel(S) from a basis S.
This construction will be used elsewhere. If the set S is �nite, we say that Abel(S) is �nitely

49

generated. Given a set S, not necessarily �nite, we de�ne the free abelian group Abel(S)
generated by S to be the set of all total functions ϕ : S → Z. We add two such functions
by adding their values. Given x ∈ S, there is a characteristic function ϕx for x, de�ned by
setting ϕx(x) = 1 and ϕx(y) = 0 for y 6= x. The set of functions {ϕx |x ∈ S} form a basis for
Abel(S), that is, each function ϕ ∈ Abel(S) can be written uniquely as a sum ϕ =

∑
x∈S axϕx

where ax = ϕ(x).
We often abuse notation and identify the element x ∈ S with its characteristic function

ϕx. With this notation, the general element of Abel(S) can be written uniquely as a formal
linear combination ϕ =

∑
axx where ax ∈ Z and x are elements of the set S. The set of

elements that can be written as a �nite sum is a subgroup Abelfinite(S) of Abel(S). If Abel(S)
is �nitely generated, then Abelfinite(S) = Abel(S) but this is not in general the case.

We can relate the group Abel(S) and the constructions of direct product and external
direct sum of groups introduced in annex C. It is easy to show that Abel(S) =

∏
x∈S Gx

where Gx = Abel({x}). And Abelfinite(S) is the so-called external direct sum of the groups Gx:
Abelfinite(S) =

⊕
x∈S Gx. Conversely, if G is a direct sum or a direct product of in�nite cyclic

subgroups, then G is a free abelian group. The quali�er � direct � in the product or in the
sum, is for the uniqueness of the sum denoting an element. If G =

∏
Gx, then this product

is direct if and only if the equation 0 =
∑

gx implies that gx = 0 for each x. This in turn
occurs if and only if for each �xed x, one has Gx ∩

(∑
y 6=x Gy

)
= {0}.

The Free Structure of C(K). The resemblance of Cp(K) = Cp(K,Z) to free abelian groups
is strong. And indeed Cp(K) is a direct sum of in�nite cyclic groups

Cp(K) =
⊕

x∈Kp

Abel({x̂}) '
⊕

x∈Kp

Abel({x}) '
⊕

Kp

Z

where the function x̂ : Kp → Z is speci�ed by x̂(x) = 1 and x̂(y) = 0 for y 6= x. Usually, we
identify Abel({x̂} and Abel({x}) as well as x̂ and x. In addition, Abel({x}) ' Z (just use
the isomorphism nx 7→ n). Then, if Kp is �nite with cardinality n, we have Cp(K) ' Zn.

Definition 9 (The free Chain Group). The direct sum of a sequence of free abelian groups
is again a free abelian group. Using this fact we may form the integral chain group :

Chains(K) = C0(K)⊕ C1(K)⊕ ...⊕ Cn(K)⊕ ...

Note that if there is no cells in Kq, then we set Cq(K) = 0 (the trivial group).

By de�nition (see annex C), each element of C(K) is a sequence (c0, c1, ..., cn, ...) where
cp is an integral p-chain of Kp and where there is only a �nite number of ck that are nonzero.
Such a weak direct sum is often called a graded group.

The Sum Structure of the Cp(K, G). It is easy to show that Cp(K, G) has also the
structure of a direct sum. Consider the set of the total functions x̂ : Kp → G such that
x̂(y) = 0G for all y 6= x. This set is a group Gx for the addition of functions and Cp(K, G) =⊕

Gx. However, Cp(K, G) is not free because the Gx are not necessarily free. Consider for

50

example the group G = Z/2; then 1.x̂ + 1.x̂ = 0(Kp→Z/2) for all cell x, which show that Gx is
not free.

Now, each Gx is obviously isomorphic to G (by the mapping c 7→ c(x)). Then, we
have in general Cp(K, G) ' ⊕

Kp
G and this justify the sum notation for an element. An

elementary chain c which associates g ∈ G to the p-cell x is written gx. If Kp is �nite with
cardinality n, then Cp(K, G) ' Gn. The chain group with coe�cient in G is de�ned by:
Chains(K, G) = C0(K, G)⊕ C1(K, G)⊕ . . .

5.8 Duality: Cochain, Coboundary and Cochain Complex

We want now give a very slight generalization of the notion of chain by de�ning cochains.
This generalization has several motivations: it allows the handling of � in�nite � chains; it
makes able to relate the chain group with arbitrary coe�cient with the integral chain group;
and �nally it introduces naturally a dual of the ∂ operator.

Chains with Coe�cient in G as Homomorphisms from Cp(K) to G. We de�ned a
chain to be a function from the p-cells to an abelian group G, but using linear extension we
can and will consider a chain to be a function on integral chains.

For let cp =
∑

αixi where each αi is in G and each xi is in Kp. Let dp =
∑

njxj be an
integral chain (i.e. nj belongs to Z). We may then de�ne the value of cp on dp by

cp(dp) = cp

(∑

j

njxj

)
=

∑

j

nj . cp(xj) =
∑

j

njαj

Clearly ∑
j njαj is an element of G since njαj is the nj-fold sum αj + · · ·+ αj .

For a �xed chain cp, this operation yields a homomorphism of Cp(K) into G. However,
if Kp is not �nite, then the set Cp(K, G) of chains with coe�cient in G does not contain
all the homomorphisms between C(Kp) and G. For example, suppose g ∈ G, g 6= 0, then h

de�ned by h(x) = g for all x is an homomorphism which cannot be represented by a �nite
sum: h =

∑
x∈Kp

g x contains as many terms as Kp has elements. This motivate to consider
in�nite sums to retrieve all the homomorphisms.

Definition 10 (Cochains). A p-cochain on the complex K with coe�cient in G is a total
function cp from the set Kp to the abelian group G. The set of p-cochains on the complex K
with coe�cient in G is a free abelian group (for the pointwise addition of functions) written
Cp(K, G), and we have: Cp(K, G) = Hom(Cp(K), G).

The notation Hom(A,B) denotes the set of homomorphisms between a group A and a
group B. This set is a group for the pointwise addition of functions. The di�erence between
a cochain cp and a chain dp is that cp is not necessarily zero almost everywhere. Then:

� Every chain is a cochain but not conversely.

� The set of chains Cp(K) is a subgroup of Cp(K).

51

� However, the two groups Cp(K, G) and Cp(K, G) are identical in the case of a �nite
complex K or if Kp is �nite.

To distinguish between the chains and cochains (if needed), we are following the current
practice in using subscripts to indicate the dimension of chains and superscripts to give the
dimensions of cochains.

The cochain cp can also be written as a sum cp =
∑

x∈Kp
αxx but this sum is not necessarily

�nite. Saying that cp =
∑

x∈Kp
αxx is equivalent of saying that cp(x) = αx for all x in Kp.

The Characterization Cp(K, G) = Hom(Cp(K), G) and the Sum Notation. From the
presentation of cochains as (possibly in�nite) sum, we deduces that Cp(K, G) is the group
Hom(Cp(K), G). We can chose this latter result as the de�nition of cochains and recover the
representation of a cochain as a (possibly in�nite) sum. The group Cp(K) is the free abelian
group generated by the element of Kp and therefor, Cp(K) =

⊕
x∈Kp

Gx where Gx is the free
group generated by x. Then11: Hom(Cp(K), G) = Hom(

⊕
x∈Kp

Gx, G) ' ∏
x∈Kp

Hom(Gx, G).
An element of Hom(Gx, G) is an homomorphism h that associates to an element n.x of
Gx an element n.gx where gx = h(1.x). We denote this element by gxx. An element of∏

x∈Kp
Hom(Gx, G) can be written as a sum of elements belonging to the factors, because these

groups are distincts. Thus, an element cp of Cp(K, G) can be written as a sum ∑
x∈Kp

gxx

where gx = cp(x) and this gives the previous sum notation for a cochain.

The Kronecker Index. In place of the functional notation, it is often convenient to use a
product notation. That is, we use cp.dp to denote the value of cp on dp rather than the more
familiar notation cp(dp). The result of this � product � is called the Kronecker index of cp

and dp.
Consider two p-cells x and y. They can be viewed as the two elementary integral chains

xp = 1.x and yp = 1.y and also as the two elementary integral cochains xp and yp (a chain is
a cochain). Then we have: xp.yp = yp.xp = 0 if x 6= y and xp.xp = 1 elsewhere.

We have mentionned the dimension in subscript or in superscript to make clear what
object is at hand, but we shall delete them when there is no confusion.

Dual Homomorphisms, Coboundary Operators and Cochain Complex. The abelian
group Cp(K) is a Z-module and the group Hom(Cp(K),Z), wich is also the set of integral
cochains Cp(K), is a Z-module called the dual of Cp(K) (see annex C). This notion of du-
ality is the direct generalization for modules of the dual of a vector space. Intuitively, if one
consider a chain as � vectors �, then the cochains are the � linear forms �. We can go further
in the analogy with the notion of dual homomorphism.
Definition 11 (Dual Homomorphism). A homomorphism σ : A → B gives rise to a dual
homomorphism

Hom(A, G) eσ←−− Hom(B, G)

11We use the following result: the homomorphisms from the weak direct sum of the Pi to a group G is
isomorphic to the direct product of the homomorphisms from Pi to G.

52

going in the reverse direction and de�ned by: σ̃(ϕ) = ϕ ◦ σ.
Definition 12 (Coboundary Operator δ). We de�ne the coboundary operator δ as the
dual of ∂: δ = ∂̃. The operator ∂p+1 on integral chains is an homomorphism from Cp+1(K)
to Cp(K), thus

δp = ∂̃p+1 : Cp(K, G) −→ Cp+1(K, G)

so that δp raises dimension by one. The e�ect of operator δp is de�ned by:

(δpcp) . dp+1 = cp . (∂p+1dp+1)

Definition 13 (Cochain Complex). We de�ne the (homological) abstract cochain complex
similarly to the chain complex. We write C(K, G, δ) for the sequence (Cp(K, G), δp)p≥0 where
the coboundary operators are homomorphisms with signature as follows:

C1(K, G) δ1−−→ C2(K, G) δ2−−→ C3(K, G) δ3−−→ · · ·
The abelian group Cochains(K, G) = C0(K, G)⊕C1(K, G)⊕ . . . is called the cochain group.
An abstract cochain complex C(K, G, δ) is said homological or called a graded di�erential
group with operator δ, i� for all p, δp+1 ◦ δp = 0.

De�ning ∂, then there is a unique δ dual operator, and vice-versa. If ∂p ◦ ∂p+1 = 0,
then by duality we have also δp+1 ◦ δp = 0. Thus, if C(K, G, ∂) is an homological abstract
chain complex, then C(K, G, δ), where δ is the dual of ∂, is an homological abstract cochain
complex.

A fundamental di�erence between ∂ and δ is that ∂x depends only on (the closure of) x

while δx depends on how x lies in the complex K. Furthermore, it is possible that x is a cell
belonging to the boundary of in�nitely many cells, even if the complex K is closure-�nite.
Thus δx is not necessarily a �nite sum. However, in the following we want to consider only
locally-�nite complex K. Then if we take the boundary or the coboundary of a chain, we
obtain a chain again.

Geometric Interpretation of δ. The de�nition of δ is highly algebraic in nature. But it is
possible to �gure the geometric meaning of δ. The dual of a poset (E, <) is the poset (E,>)
with the reverse order between elements. Then we can de�ne the analog of ∂ : Kp → C(K)
for the dual poset. Let δ′ be this operator. Following the de�nition of ∂, we must have
|δ′(x)| = {y | x ≺ y}.

When considering both ∂ and δ′ together, we need to ensure some consistency between
the coe�cients associated to each boundary or coboundary element. Let x be an element of
Kp−1 and y an element of Kp. Then the coe�cient of x in the chain ∂y is (∂y)(x) = (∂y).x
using the Kronecker notation. If x is in the boundary of y, then x ∈ |∂y| and (∂y).x 6= 0.
However, if x ∈ |∂y| then x ≺ y and then y ∈ |δ′x|. This means also that (δ′x).y 6= 0. The
problem is to relate (∂y).x and (δ′x).y.

Remark that both (∂y).x and (δ′x).y are zero or nonzero together. A natural and simple
constraint is to set (∂y).x = (δ′x).y. If this constraint is satis�ed, we say that ∂ and δ′ are
dual operators. Figure 22 shows some example of this constraint.

53

We rewrite the property by remarking that (∂y).x = x.(∂y) which makes the statment of
the equality more symmetric and we recover the de�nition 12 of δ by linearity. We can sum-
marize: the coboundary operator coincides with the boundary operator in the dual abstract
complex. This gives also the interpretation of δ as a transport operation, see next section
and illustration in �gure 24.

One comes to recognize the relation cp.(∂dp+1) = (δcp).dp+1 as a combinatorial form
of Stokes'theorem [Sha90]. The Stoke's formula links the di�erential of a form ω and the
boundary operator of a domain V :

∫
∂V ω =

∫
V dω. Take for example p = 2, then dp+1 is a

volume. Interpret cp as the integral (the sum) of a form (the coe�cients of the cells in cp) on
some domain (the integral chain dp). The equality says that the value taken by the function
cp on the surface boundary equals the value taken by the new form δcp on the volume. This
remark can be greatly re�ned, see for instance [Ton74, Ton76, CS00].

x

y

z
a

c

b
x

y

y
x

z

e

d

Figure 22: Example of dual ∂ and δ operators. We work in the integral chain group. For the
complex to the left, we have δx = z and ∂y = a + b + c. Then, (δx).y = x.(∂y) = 0. For the complex
in the middle, we have |δx| = {y, z} and |∂y| = {x, d, e}. If we de�ne ∂y = x + d + e, then x.(∂y) = 1
which implies that (δx).y is nonzero. Duality further �xes the coe�cient (δx).y = 1. For the complex
to the right, we may specify ∂y = 2x to state that the vertex x is encounter two times, at the two
ends of the edge y. But then, we must �x (δx).y = 2, that is δx = 2y to ensure the duality of ∂ and
δ. The condition δx = 2y can be interpreted as: the edge y is connected two times to the vertex x.

5.9 Arbitrary Labeling the Cells of a Complex

Suppose we want to label some of the cells of a complex with values taken in an arbitrary
setVal . Such labeling can be represented by a partial function ` from K toVal . This partial
function can be extended into a total function given the value ⊥, ⊥ 6∈Val , to the cells that
have no image by `. Then, the function ` can be seen as a chain if we give an abelian group
structure toVal ∪ {⊥}. We review two possibilities amongst others.

Labeling with Idem(Val). We can use the abelian idemgroup generated byVal . This group
is denoted by Idem(Val). It contains all the subsets ofVal written as sums, and the element
0 is the the empty set. We identify ⊥ with 0 and a value v ∈ Val with the corresponding
singleton in Idem(Val). Then we can write ` =

∑
x∈K `x x where `x = `(x) if `(x) is de�ned

and 0 otherwise. An example is given in �gure 23.
Note that using the group Idem(Val) instead of the setVal associates actually a subset of

Val to each cell. By indentifying the singletons with the elements ofVal , we represent the
desired labeling in a natural way. Partiality is handled using 0 to represent ⊥ 6∈Val .

54

a

s

c

b s’

f

e
5

3

4

1

2

d

`(1) = δ, `(2) = α
`(3) = β, `(4) = γ
`(a) = ρ, `(b) = κ
`(c) = σ, `(d) = τ
`(s) = ω
and `(x) unde�ned for the others x.

β

γδ

α

ω
K0 = {1, 2, 3, 4, 5}

K2 = {s, s′}
K1 = {a, b, c, d, e, f} κ τ

ρ

σ

Figure 23: The labeling of the cell of an abstract complex. The �gure in the left gives the
abstract complex K and its p-cells Kp (for p = 0, 1, 2). The labeling ` is de�ned on the right. In this
diagram, we indicate the images of the function ` by writing next to each cell the value of the function
on that cell. This function has for codomain the setVal = {α, β, γ, δ, ρ, τ, σ, κ, ω} which do not have
an a priori abelian group structure. The function ` can be written as a chain of C(K, Idem(Val)):
` = δ.1 + α.2 + β.3 + γ.4 + ρ.a + κ.b + σ.c + τ.d + ω.s. Note however that in C(K, Idem(Val)) there are
also chains like (α +Idem(Val) β).1 which would represents a function f such that f(1) = {α, β} and
unde�ned elsewhere.

Labeling with Abel(Val). One can also use Abel(Val) instead of Idem(Val). We rely on
the injection x 7→ x to represent an element ofVal by an element of Abel(Val). This group
has a richer structure and enables the association of a cell to a � generalized multiset � ofVal
elements. In a generalized multiset, an element can have a negative multiplicity.

Remark that ifVal has already a group structure +, the operation in Abel(Val) does not
coincide with the operation +Abel in Abel(Val). Take for exampleVal = Z, then x+Abel(−x) 6=
0Abel. Indeed, both x and (−x) are generators of Abel(Z) and they are distinct.

Boundary and Coboundary as Transport Operation. In an arbitrary labeling of a
complex, we can interpret the ∂ and δ operations as transport operations, see �gure 24 and
the references [Ton74, Ton76, PS93].

Suppose that we want to valuate the cells of the chains by an element ofVal . We use the
previous encoding based on Abel(Val) for the chain coe�cients. We de�ne the boundary of a
cell x by:

∂x =
∑
y≺x

y and extend ∂ linearly: ∂(
∑

αxx) =
∑

αx∂x

Consider a cell x that have several successors in the chain. Then the e�ect of ∂ as a transport
operation is to send to x the coe�cients of theses successors. The result is conveniently
gathered as a formal sum in Abel(Val) and no coe�cients are lost (using Idem(Val) instead
of Abel(Val) then we can record only the coe�cients that appear an odd number of times).
We can then further interpret � the collision at cell x of the transported values � using an
homomorphism to resolve the � collisions � and to compute the �nal value of x.

To be more concrete, suppose that the cells in �gure 24 (left) are valuated by reals, that
is, we consider chains in C(K, Abel(R)). For instance, take ω = 1.6 and ω′ = 3.1 in chain `2.
Then

∂(1.6s + 3.1s′) = 1.6a + 1.6b + 1.6c + (1.6 +Abel 3.1)d + 3.1f + 3.1e

55

We say that the value 1.6 coming from s and the value 3.1 coming from s′, collide at cell d.
We want to combine colliding values into a real to get again a real valued chain. Suppose

that the combination function is the sum of reals. Then we would use the homomorphism
h from Abel(R) to (R, +) that interpret the +Abel as the usual +R. The homomorphism h

between the groups of values, is easely extended into an homomorphism on chains, by de�ning
h(αx) = h(α)x for all cell x and then using linearity.

Instead of using a function h to combine the colliding values, we can work directly with
chains in C(K, (R, +)). In this way, the combining function is directly the group operation
of the chain coe�cients. However, using Abel(R) and then an a posteriori homomorphism h

is more general. For instance, suppose that we work with coe�cients in (R, +) but we want
to combine the colliding values by multiplication. This is not easely expressed. But using
Abel(R) at the �rst place, we have just to change the function h.

Intuitively, one can see the interest of using an abelian group for the coe�cients. The
combination function must not depend on the order of the combinations and then the chain
(α + β)x must be equal to the chain (β + α)x.

ρ

σ

τκ τσ + κ + τ + ρω

ω

ω

ω

ω + ω′ ω′

ω′

ω′

Figure 24: Depiction of the boundary and coboundary operation on chains. We consider
the abstract complex already used in �gure 23. The e�ect of taking the boundary operator ∂ on
`2 = ω.s+ω′.s′ is pictured by the diagram in the left. The �gure in the right gives the e�ect of taking
the coboundary δ of the 1-chain `1 = ρ.a + κ.b + σ.c + τ.d. In these two �gures, the curved arrow
indicate values (in bold) being transferred from a p-cell to the preceding (p− 1)-cells (for ∂) and from
a p− 1-cell to the succeeding p-cells (for δ).

5.10 Topological Collections

A topological collection associates a value to some cells of a complex. In addition, we must
be able to speak of the carrier of the collection (the cell that have a value), of the neighbor
of an element, of subcollection and of the boundary of a subcollection. All these notions
can be developped on top of the notion of chain complex presented above. The previous
paragraph showed how arbitrary values can be associated to the cells using the notion of
chain (or cochain). But then, it misses the representation of the coe�cients used to compute
the boundary structure.

The idea is naturally to represent both the coe�cients in B and the label in Abel(Val).
However, using the group G = B × Abel(Val) seems at �rst sight not adequate: all the
cells (0B, α) are distinguished although they represent the same absence of a cell in a chain
(because the coe�cient 0B) and then the value α does not matter. However, the de�nition

56

of an alternative to the cartesian product is not easy at all. For example, the construction(
B × Abel(Val)

)
/

({0B} × Abel(Val)
)
collapses all the values (0B, α) to 0B×Abel(Val). But,

all values (g, α) are collapsed on (g, 0) which is certainly not what we want. So, does exists
a product with projection π1 and π2 such that π2x = 0 whenever π1x = 0? Suppose that
the group of coe�cients used to compute the boundary is Z/2; and suppose we have three
2-cells a, b and c such that ∂a = 1+2, ∂b = 1+3 and ∂c = 1+4 (imagine a graph with three
edges and four vertices, the edges are linked by one end to the vertex 1 and to the other end
to a unique vertex). We have ∂(a + b + c) = 1 + 2 + 3 + 4 so it seems that it is natural to
have ∂(α.a + β.b + γ.c) = (α + β + γ).1 + α.2 + β.3 + γ.4. But the term (α + β + γ).1 is
obtained as α.1 + β.1 + γ.1. If the values (0, ε) are identi�ed with (0, 0), then by computing
�rst (α.1 + β.1) + γ.1 we obtain the result γ.1 while computing α.1 + (β.1 + γ.1) we obtain
α.1. So, there is no product having the wanted property and we use simple the cartesian
product.
Definition 14 (Topological Collection).

A topological collection shape is a triple S = (K, B, ∂) such that K is a locally �nite
abstract complex of �nite dimension and C(K, B, ∂) is an homological chain complex. A
topological collection type is a pair of T = (S,Val) where S is a shape and Val is an
arbitrary set. A topological collection is a pair (T , c) where T is a topological collection
type ((K, B, ∂),Val) and c is a cochain: c ∈ Cochains(K, B ¯Val). The product B ¯Val
denotes the cartesian product B × Abel(Val). The set of collections with a given type T is
denoted by TC(T); the set of collections with a given shape shape S is written TC(S); the
set of collection on a given complex K is written TC(K), etc.

Often we omit to mention the shape or the type T of the topological collection when it
is clear from the context; we says directly that a chain c is a topological collection and we
write c ∈ T or c ∈ S if S is the shape and T the type of c.

The cochain group Cochains(K, B ¯Val) is called the full cochain group associated to
the type T . The cochain group Cochains(K, B) is called the shape cochain group associated
to T . And Cochains(K, Abel(Val)) is called the value cochain group.

If c is a collection, and x ∈ Kp, then c(x) = (g, u) with g ∈ B and u ∈ Abel(Val) and
we say that the value of c at x is u. The functions cb and cv are the �rst and second
projection of c. That is, cb(x) = g and cv(x) = u for c(x) = (g, u). The functions cb and
cv associate an element of a group to a cell and then are cochains: cb ∈ Cochains(K, B) and
cv ∈ Cochains(K, Abel(Val)).

For all collection c we have |cv| ⊂ |c| and |cb| ⊂ |c|. The set Residu(c) = {x ∈ K | cb(x) =
0B and cv(x) 6= 0Abel(Val)} is called the residu of the collection. We usually omit the sub-
scripts of 0 and rely on the context to make clear on which group 0 belongs. A collection c

is residu-free if Residu(c) = ∅.
A topological collection c is �at if cv(x) = 0 or cv(x) ∈Val for all x ∈ K. It is monolayer

if cb is a p-cochain for some p, i.e. it exists an integer p such that |cb| ⊂ Kp.

Integral and Modulo 2 Shapes. An important case is when B = Z or B = Z/2. In this
case, we say that a chain c has an integral shape or a modulo 2 shape respectively. We use

57

a special notation for integral and modulo 2 chain:

c =
∑

αx.nxx

where nx ∈ Z or Z/2, and αx ∈ Abel(Val). But the terms α.(−1)x are written simply −α.x

and α.x is for α.1x. For instance, c = "abc".2x − "def".y + "rosae".z stands for a chain c

such that: c(x) = (2, "abc"), c(y) = (−1, "def") and c(z) = (1, "rosae").

Subcollections. We need now to introduce the notion of subcollection of a collection.
The restriction c\S of a topological collection c by a set S is the chain c\S de�ned by
(c\S)(x) = c(x) if x ∈ S and else (c\S)(x) = 0. A restriction is too general to represent a
subcollection: a subcollection is a connected part of a collection. It must be represented by
a chain too.

Definition 15 (Split, Patch and Subcollection). Let c be a cochain and c′ and c′′ be two
cochains such that |c′| ∩ |c′′| = ∅ and c = c′ + c′′. Then we say that c′ and c′′ are a split of
the cochain c and we write c D c′, c D c′′ and c′′ = {cc

′ or c′ = {cc
′′. A cochain c′ is a patch

of the cochain c ∈ Cochains(K, G), if c D c′ and if Shape |c′| is a connected set of K. Let c be
a collection; a collection c′ is a subcollection of c if c′ = c\|c′| and if c′b is a patch of cb.

5.11 Transformations

We want now de�ne several kinds of transformations of a topological collection.

Definition 16 (Shape-preserving, Pointwise and Local Operations).
A function f from TC(S,Val) to TC(S,Val ′) is shape preserving i� for all c, (fc)b = cb.

It is pointwise if it is shape preserving and if it exists a function g : Abel(Val) → Abel(Val ′)
such that (fc)v = g ◦ cv. It is local if it is shape preserving and if it exists a function
g′ : TC(S,Val) → Abel(Val ′) such that

(
fc

)
v
(x) = g′

(
c\(Stx)

)
.

Variations on the notion of locality are obtained by changing Stx for Stx or Lkx or |x|,
etc.

Definition 17 (Renaming Operations). Let h be a bijection from K to K′. Then, the
renamed complex K′ = h(K) is such that dimK′ x′ = dimK h−1(x′) and x′ ≺K′ y′ i�
h−1(x′) ≺K h−1(y′). If S is a collection shape (K, B, ∂), then the renamed shape S ′ = h(S)
is de�ned by S ′ = (K′, B, ∂′) where the boundary operator ∂′ is de�ned by: ∂′x′ =

∑
gyh(y)

if ∂h−1(x′) =
∑

gyy. The renaming of the collection c into h(c) is a function from TC(S)
to TC(h(S)) such that h(c)(x) = c(x).h(x).

We can now de�ne the basic transformation described in section 2.1 page 12. The basic
intuition hidden behind this de�nition is sketched in �gure 25. Note that we do not describe
a device to select a subcollection into a collection, neither we give condition on the gluing of
the substituted subcollection. We just specify that untouched parts of the collection must
remain untouched, both from the value point of view (condition 1) and the shape point of
view (condition 2).

58

Definition 18 (Split, Patch and Non-Local Substitutions). Let c and d be collections with
respective subcollections c′ and d′. Then d is a patch substitution of c′ by d′ if the two fol-
lowing conditions hold:

1. {cc
′ = {dd

′

2. Shape |{cc
′| = Shape |{dd

′|

If we relax the connectivity condition on d′, then we say that we have a split substitution. If
the condition is also relaxed for c′, then we have a distributed (split or patch) substitution.
If it exists a function f such that d′ = f(c\|St c′|) then the substitution is said computed
by f . In addition, the substitution is coboundary preserving if δc′b = δd′b and boundary
preserving if ∂c′b = ∂d′b.

The �gure 26 gives several examples of various kinds of substitution.
Note that the operator ∂ and its dual δ de�ned for a collection do not appear explicitly

in the straight de�nition of a substitution. However, they comes into play when one has to
specify precisely the process of gluing d′ and c′′ into the new collection d.

There is several variations on the notion of � computed by f � to accomodate the possible
variation on the neighborhood notion.

Definition 19 (Simple Transformation). We say that d is a simple transformation of
type n of c i�:

� type I: it exists a pointwise or a local function f such that d = f(c);

� type II: d is a renaming of c;

� type III: it exists subcollections c′ and d′ of c and d such that d is a patch substitution;

� type IV: idem but with a split substitution;

� type V: idem but with a non-local substitution.

A pointwise function is a patch-, boundary and coboundary preserving- substitution com-
puted by a function. The current version of the MGS interpreters allow only this kind of
substitutions, see section 6.

59

(c)

(b)
Shape({cc

′)

dim n

(a)

Shape(c′)

Figure 25: Parts of a complex involved in a substitution.
We have pictured symbolically the abstract complex K as a Hasse diagram (cf. Fig. 18). The carrier
of the monolayer chain c consists in all the n-cells pictured as circle (diagram (a)). The three black
circles in the middle specify the carrier of the subcollection c′. Consequently, the four empty circles
are the carrier of c′′ = {cc

′.
The shape Shape(c′) of c′ is sketched as the gray region in diagram (a): the subcomplex |c′| spanned
by c′ is in dark gray while the p-cells above this subcomplex are in light gray. The shape Shape(c′′)
is sketched in gray in diagram (b). This part of the complex must remain unchanged across the
substitution.
The diagram (c) has two gray regions, one near the top and one near the bottom (each is composed
of several parts). The region near the bottom, corresponds to the intersection Shape(c′) ∩ Shape(c′′).
Cells in this region have a dimension less than n. The de�nition of a substitution says that this region
must remain unchanged in the �nal result (because the belongs to the shape of c′′ and then must not
be touched by the transformation).
The region near the top corresponds to the p-cells x, p > n, such that x has an intersection both in
|c′| and |c′′|. The de�nition of a substitution does not say anything about such cells. However, if the
n + 1-cells remain identical accross the transformation, then the transformation is said coboundary
preserving.

60

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 26: Substitutions in a line graph.
The shape of the collection c is a line graph with 7 vertices. The collection is monolayer and we assume
that all vertices have a value. The �rst diagram indicates the subcollection c′ with shape Shape(c′)
indicated in bold (bold edges and/or bold vertices, however note that only the vertices appear in the
chain c′). The split c′′ = {cc

′ are the vertices draw as empty circles. The dotted edges are the 1-cells
that are not in Shape(c′) nor in Shape({cc

′). The other diagrams give several possible substitutions of
the subcollection c′. The shape of the substituted collection d′ is pictured in gray. The dotted edges
do not belongs to Shape(c′′) or to Shape(d′): they are dependant of the substitution process. One can
imagine that they come from the handling of the p-cells, p > n that are neither in Shape(c′) nor in
Shape({cc

′) (in the current version of MGS, this handling is �xed and depends of the collection kind,
i.e. the type of the underlying topology). Because a collection is a 0-chain, there is no intersection
between Shape(c′) and Shape(c′′), so there is no constraint in the collection d′. All examples are
non-distributed substitutions. Examples (e) and (f) are split substitution. Example (d) and (i) are
examples where the chain d′ is reduced to 0 but the underlying topology is nevertheless changed.
Because chains are 0-chains, all transformations are necessarily boundary preserving (because the
boundary of a 0-cell is 0). Examples (a � c, g) are coboundary preserving: this implies that the dotted
edges are identi�ed with the dotted edge in the initial collection.

61

5.12 The Example of a 2D Grid

To illustrate the previous notions, we gives here a possible model for 2D arrays. Topological
structure for set, multiset and sequence are sketched in the next section.

Two dimensional grids will be rendered by �at, monolayer topological collections. From
this point of view, an array is a labeled graph: values are carried by vertices and the connec-
tions rely on edges.

For, we de�ne the abstract complex (G, <) by
G0 = Z× Z,

G1 =
{{x, y} | x, y ∈ G0, x− y = (0, 1) or x− y = (1, 0)

}

x ≺ {x, y} and y ≺ {x, y} for x, y ∈ G0

The abstract complex G is not �nite but locally-�nite. The shape of a 2D grid is the triple
(G,Z/2, ∂) with ∂ de�ned by:

∂x = 0, for x ∈ G0 and ∂{x, y} = x + y, for x, y ∈ G0

The shape of a 2D grid is homological, because, for u ∈ G1, ∂2u = ∂(
∑

x∈G0
x) =

∑
0 = 0

because ∂x = 0 for x ∈ G0.
A data �eld with element inVal is an element of the full 0-cochain group C0(G,Z/2¯Val).

A data �eld generalizes the notion of array considering non rectangular shapes for functional
arrays, see [GMS96, Lis93]. A data-�eld is a monolayer collection.

Let x = (a, b) be in G0, then

St(x) =
{

(a, b), (a− 1, b), (a + 1, b), (a, b− 1), (a, b + 1),

{(a, b), (a− 1, b)}, {(a, b), (a + 1, b)}, {(a, b), (a, b− 1)}, {(a, b), (a, b + 1)} }

Then, it must be obvious that a type I transformation replaces the value of a vertex x by a
value computed from the 4-neighbors (the so-called Von-Neuman neighborhood) of x. See
�gure 27.

(2,3) (3,3)

{(1,2), (1,3)}

(1,4)

{(3,3), (3,4)}{(0,3), (1,3)}

Stx

St x

x

Figure 27: Modelling of 2D grids.

5.13 Summary

We have de�ned a topological collection c to be a chain on a given chain complex that
describes the topology of the collection and a labeling of the cells. A substitution replaces a

62

subchain c′ by another subchain, preserving the topological structure of the complement of
c′ in c: {cc

′. What remains to be done is:

� to devise various devices to specify the subcollection to be substituted;

� to design several constructions, available at user-level, to specify how the new collec-
tion d′ must be injected into the old one at the place of c′.

Actually, the strategy implemented in the current version of the MGS interpreters embeeds the
new collection into the old one using a �xed strategy depending on the collection type. These
strategies are described in the next section. Thus, it is not possible to change the topolog-
ical structure by the application of a transformation. The motivating example presented in
section 1.5 is still out of reach.

63

64

6 Comparaison with Other Approaches

We want to show that some widely used computational models can be seen as speci�c instances
of transformations of some topological collections. The level of the discussion is informal.

Four Biologically Inspired Computational Models. One of our additional motivations
is the ability to describe generically the basic features of four models of computation: Γ and
the CHAM, P systems, L systems and cellular automata (CA). They have been developed with
various goals in mind, e.g. parallel programming for Γ, semantic modeling of nondeterministic
processes for the CHAM, calculability and complexity issues for P systems, formal language
theory and biological modeling for L systems, parallel distributed model of computation for
CA (this list is not exhaustive). We assume that the reader is familiar with the main features
of these formalisms but a short description of these computational models is given below for
the readers convenience.

All these computational models rely on a biological or biochemical metaphor. It is then
natural to require their integration in a uniform framework. Because they �t harmoniously, we
gain con�dence that the underlying concepts of topological collection may reveal as unifying
and covering a broad class of biological DS with a dynamical structure.

The Multi-Agent Paradigm. This section ends by comparing the appraoch of topological
collections with the multi-agent modeling paradigm. We show that the main di�erence relies
on the entity on which the evolution function (i.e. transformation in the case of topological
collections and the behavior in the case of multi-agent) is linked.

6.1 The topology of Sets and Multisets: the programming language Γ and
the CHAM

The computational model underlying Γ [BM86, BCM87] is based on the chemical reaction
metaphor; the data are considered as a multiset M of molecules and the computation is a
succession of chemical reactions according to particular rules. A rule (R, A) indicates which
kind of molecules can react together (a subset m of M that satis�es predicates R) and the
product of the reaction (the result of applying function A to m). Several reactions may be
possible at the same time. No assumption is made on the order on which the reactions occurs.
The only constraint is that if the reaction condition R holds for at last one subset of elements,
at least one reaction occurs (the computation does not stop until the reaction condition does
not hold for any subset of the multiset).

The CHemical Abstract Machine (CHAM) extends these ideas with a focus on the ex-
pression of semantic of non deterministic processes [BB89]. The CHAM is an elaboration on
the original Γ formalism introducing the notion of subsolution enclosed in a membrane. It
is shown that models of algebraic process calculi can be de�ned in a very natural way using
a CHAM: the fact that concurrency (between rule application) is a primitive built-in notion
makes proof far easier than in the usual process semantics.

65

The Topology of Sets. Informally, an element in a set (or in a multiset) is a neighboor of
any other element. Hence, the MGS pattern x, y in a rule selects an arbitrary pair in the set,
and the pattern x+ selects an arbitrary non-empty subset.

Using the technical notions introduced in section 5, we can describe this situation more
formally. A set V is represented by a topological 0-collection on a one dimensional shape
with vertices V and only one edge >. The function ∂1 is de�ned by ∂1> =

∑
V . With this

de�nition, an element of V is connected with any other element. The chain group describing
a set is then particularly simple: Cp = 0 for p 6= 0, K0 = V and C0 = C0(K,Z/2¯ V). A set
V corresponds to the chain ∑

x∈V x.x using the notation described in page 57.
Let c′ be the subcollection to be replaced by d′ into the collection c to give a new collection

d. The �xed strategy used to build d from d′ and c′′ = {cc
′, is simply to set >d = |c′′| ∪ |d′|.

This description is only combinatorial and does not admit a geometric realization. Indeed,
a geometric 1-cell is homeomorphic to the interval [0, 1] and then admits only two 0-cells in its
boundary. If one insists to have a geometric realization of topological sets, then it is enough
to shift the dimension of the cells by one: the elements of V are the many edges of one unique
face.

The Topology of Multisets. A multiset M of element e ∈ E can be represented by a set
M̂ ⊆ N × E. If e ∈ M with multiplicity n, then the n elements (1, e), (2, e), ..., (n, e) belong
to M̂ . The multiset M is represented as the 1-collection associated to the set M̂ . With this
encoding, two arbitrary multiset elements are connected, in accordance with the fact that
any submultiset can be matched and replaced in a Γ rule. Furthermore, the application of
one Γ rule on a multiset M is a local, boundary preserving, patch substitution.

6.2 Nesting of Multisets: P systems

P systems [Pau98, Pau00] are a new distributed parallel computing model based on the notion
of a membrane structure. A membrane structure is a nesting of cells represented, e.g, by a
Venn diagram without intersection and with a unique superset: the skin. Objects are placed
in the regions de�ned by the membranes and evolve following various transformations: an
object can evolve into another object, can pas through a membrane or dissolve its containing
membrane. As for Γ, the computation is �nished when no object can further evolve.

The P Systems Topology. The case of P systems is more interesting, because the topology
can be used to take into account the locality of a computation step. In this approach,
the region associated to a membrane would be a 2-cell and the membranes would be 1-
chain; then a P system is viewed as a 2-collection with a 2-complex organization. Note that
membrane systems are sometimes described by a sequence of well balanced parenthesis, which
specify only the relative inclusion of membrane and not their connection in one level. The
corresponding topology is then weaker. In the opposite, the organisation enabled by the two
dimensional mapping of the membrane in a plane is weaker than the combinaisons enabled
by 3D membranes, etc.

66

A cruder approach just associates a multiset M to the region associated with the skin of
a P system. The di�erence with Γ is that the elements of M can be multiset themselves,
associated to the inner membranes. In this approach, P systems are viewed as a theory of
nested multiset rewriting.

6.3 The Topology of Sequences: L systems

L systems are a formalism introduced by A. Lindenmayer in 1968 for simulating the devel-
opment of multicellular organism. Related to abstract automata and formal language, this
formalism has been widely used for the modeling of plants. A L systems can be roughly de-
scribed as a grammar. The productions are applied in parallel in a non deterministic manner.
0L system are context-free grammar. D0L system are deterministic context-free grammar:
given a letter A there is at most one production that can be applied. Parametric L systems
deal with module instead of letters: a module is a letter associated with a list of parameters.
The production rules are extended with conditions on the parameters. For example,

A(x, y) : y ≤ 3 −→ A(2x, x + y)

is a rule that can be applied to the module A(2, 5) to gives the module A(4, 7). This rule
cannot be applied on A(7, 1) because the �rst parameter x, does not match the condition.

The Topology of Sequences. Section 5.12 gives a formalization of the topology of a grid.
The model can be weakened to gives the topology of a sequence.

A sequence ` = <`1, `2, . . . , `n> is a 0-collection whose shape is a chain complex of di-
mension 1. Let ik be n reals in increasing order; the underlying complex K is de�ned by

K0 = {i1, . . . , in} such that ij < ij+1

K1 =
{
(i1, i2), (i2, i3), . . . , (in−1, in)

}

∂(k, k′) = k +C k′

(this last sum is a formal sum). The shape is C(K,Z/2, δ). Hence, ` is represented by the
chain ∑

1≤j≤n `j .ij (using the notation described in page 57).
An MGS rule c′ => d′ applied to a topological sequence c corresponds to a substitution

with result d. The strategy used to glue the new subcollection d′ and c′′ = {cc
′ into the result

d is the following:

� if d′ = 0 (that is, the MGS rule cancel c′) then Shape(d) = Shape(c′′);

� if d′ 6= 0, then δc′ = δd′ (the δ in the left hand side must be taken in the shape of c while
the δ in the right hand side must be taken in d). This condition, together with d = d′+
c′′, is enough to specify completely Shape(d): Shape(d) = Shape(d′)∪ Shape(c′′)∪ |δc′|.

In a MGS rule, the sequence d′ is computed solely as a function from the subsequence c′.
Thus, if d 6= 0, the MGS rule is a patch-, boundary and coboundary preserving- substitution
computed by a function.

67

Topology of Context-Free Sequence. However, we can propose an alternative. Indeed,
for D0L-system, the right hand side of a production rule is limited to only one element: there
is no interaction with the neighborhood and the corresponding grammar is context-free. In
MGS terms, it means that all rule have the form:

(x/ . . .) => . . .

This property can be enforced using a more precise model, that forbids a dependance between
an element and its neighboor in the substitution process.

A sequence v1, ..., vn of n values is then represented by a 1-collection with shape C(K,Z/2, ∂)
de�ned by: K0 = {0, 1, .., n} and K1 = {(0, 1), (1, 2), ..., (n − 1, n)}. We have ∂0x = ∅ and
∂1(i, j) = i + j (where the sum in the right is the group operation of C1). And a collection c

is a monolayer 0-chain c = v1.(0, 1) + ... + vn.(n− 1, n).
In this formalization, the application of only one production x → f(x) of a D0L system is

a local, boundary and coboundary preserving, patch substitution computed by f . Rigorously,
the argument of f is the the chain c\Stx, but with our topology, c\Stx = c\x which show
that the new value replacing x depends only on x.

6.4 The Topology of Arrays: Cellular Automata

Cellular automata (CA) have been invented many times under di�erent names: tessalation
automata, cell spaces, iterative arrays, etc. However, a fair fraction of the computer research
on two-dimensional cellular automata has its ultimate origins in the work of J. Von Neumann
to provide a more realistic model for the behavior of complex system in biology [VN66].

In a simple case, a 2D cellular automaton consists in a grid of cells or sites, each with a
value taken in a �nite set V. The values are updated in a sequence of discrete time steps,
according to a de�nite, �xed, rule. Denoting the value of a site at position (i, j) by ai,j ,
a simple rule gives its new value as a′i,j = ϕ(ai,j ; ak1 , ..., akp), where ϕ is a function from
Vp+1 to V which speci�es the rule, and where the akj are the values of the p neighbors
of site (i, j). For example, the Von Neumann neighbors of a cell (i, j) are the four cells
(i− 1, j), (i + 1, j), (i, j − 1) and (i, j + 1).

Many variations are possible: organization of the cells in a regular lattice of any dimensions
or even in a general graph, variable neighborhood, various �nite set V. However the main
characteristics of CA are largely una�ected by such additional complications.

The Topology of Arrays. The topology of arrays has been introduced in section 5.12. A
rule of a cellular automata is a local, shape preserving, patch substitution computed by a
function (the evolution function of an elementary cell).

6.5 Production Systems, Rewriting systems and All That

Production systems is a term used in arti�cial intelligence to describe systems speci�ed
as a set of production rules acting on a global database under the supervision of a control

68

system [Nil80]. Rules are associated with applicability conditions and the control system
chooses the next rule to apply. The termination of the computations is determined by a
global termination condition.

More speci�cally, in the �eld of grammar systems, rewriting systems or formal language
theory, the idea of many possibly di�erent local derivations relations integrated according
to speci�c strategies, has been extensively studied and applied with di�erent patterns in
the search for new modeling approaches of biosystems [Man01, Pau00, Pau98, FMP00]. In
these approaches, simple component are speci�ed together with their integration: monolithic
complex systems are reduced, by means of cooperation and distribution, in terms of simpler
parts.

MGS participates of these approaches. For instance, an MGS program can be seen as a
production system, the termination condition holding when the �xpoint has been reached.
The originality of the MGS approach lies in the emphasis put on the topological view of the
rules and on the database, while production system are often based on logical inferences or
grammatical formalisms. The mechanisms used to describe the integration of the di�erent
parts rely heavily on the topological structure of the system, which is a natural tools for
describing such complex systems.

6.6 A Comparison with the Multi-Agent Modeling Paradigm

The multi-agent paradigm is often advocated for the modelization of complex dynamical
systems. Thus, we want to compare the approach of topological collections and the multi-
agent approach. To make the comparison more concrete, we turn our attention again on the
neurulation example introduced in section 1.5.

Let us simplify drastically the description of the neurulation for the sake of its simulation.
We consider the neural plate in isolation and we assume that the system evolves by discrete
steps. Furthermore, we suppose that there is no cell creation nor destruction; the neural plate
is modeled as a linear sequence of n cells in the plane and the left and right extremities of
this sequence are glued together at the end of the neurula stage; see Fig. 28

Figure 28: A simpli�cation of the neurulation for simulation purposes.

The chemical state sc
i (t + 1) of a cell i of the neural plate at time t + 1 depends only of

the own cell activity and of the signals received from the neighboring cells at time t. This
can be written:

sc
i (t + 1) = hi(sc

i (t) ; sc
i1(t), ..., s

c
ik

(t))

69

where the cells i1, ..., ik are the cells in the neighborhood of i and hi the evolution function of
the cell i. Let V(t; i) denotes the set of neighbors of cell i at time t. The function V depends
of t because there is a change in the neighborhood of the cells at the extremities.

Now, we have to face the problem of building the representation the state S of the entire
system from the chemical state of the cells. As a matter of fact, the chemical state of the cells
does not describe completely the system. One has to describe also its structure, that is, the
organization of the cells. We can make three choices for the representation of the structure:

� avoid the description of the structure,

� implicitly distribute the description of the structure over the state of the cells,

� explicitly specify the structure beside the chemical state.

We will see that the �rst choice is not an option when dynamical structures come into the
play. The second approach is the approach taken to the multi-agent paradigm. The last one
corresponds to the MGS way of thinking.

Avoiding the description of the structure. The complete state S of the entire system
is just a set of n chemical state sc, where n is the number of cells in the systems.

This approach is not satisfactory at all because it misses the information related to the
neighboring of each cell. The function V is simply ignored. But without this information we
cannot �ll h with the right arguments and hence, we cannot compute the trajectory of the
DS.

Note however that this approach is the standard one when the structure of the DS is static:
instead of a set, one use any organisation relevant to describe the �xed organisation of the
cells (e.g. a vector). In this case, we write sc

i (t+1) = hi(sc
1(t), ..., s

c
n(t)) and the function V is

� hard-coded� in the functional dependencies between the arguments of hi. It is because the
time-dependance of V that this approach fails.

The multi-agent approach: Implicit Distributed Representation of the Organiza-
tion. The complete state s of a cell corresponds to its chemical state sc together with the
information sn relevant to describe its neighborhood: s = (sc, sn). The complete state S of
the entire system is then the set of the complete state of the cells.

This approach �ts with the � multi-agent paradigm � for system modeling: each cell is an
autonomous agent interacting with the others. The sn part of each agent state corresponds
to a distributed representation of the function V. There is several possible drawbacks with
such an approach:

1. Although complete, the description of the organisation of the cells is implicit and
spreaded on the sn

i . This does not ease any reasoning on the evolution of the sys-
tem nor its implementation.
For instance, suppose that sn

i represents the position (x, y) of the cell i in the plane. The
connection between the cells must be recovered by examining all the cells position, in

70

contradiction with the local nature of the evolution process. The global scan of all the
cell states can be avoided if we store the adjacency relationship instead of the absolute
position of each cell in the plane. But the problems listed below continue to hold.

2. The information scattered in the sn
i is redundant. For example, assuming that the

space of cells is isotropic, if sn
i indicates that cell j is a neighbor, then sn

j must indicate
that i is a neighbor. However, there is no special way to ensure the coherency of the
redundant informations.

3. The distributed representation of the function V is to loose. If we want to avoid the
multiplication of cell types, a cell with two neighbors must be represented in the same
manner as a cell with only one neighbor. Then, there is no mechanism that prevent a
misuse of such cell.

4. The behavior hi of the agent i embeeds the bookkeeping needed to compute the infor-
mation sn which inhibits its reuse in another context where the chemical behavior of
the cell is the same but with another spatial organisation.

5. Most of the time, there is no change in the organisation of the cells, only the chemical
state is changing. However, the changes in the organisation are handled at the same
level as the changes in the own cell state.

6. Interaction, that is the in�uence of an entity to the evolution of another, is implicit.
Even if strategies �xing the interaction between agents exist, the set of participants of
an interaction is not a �rst citizen object of the language.
For instance, there is no natural object in the basic multi-agent paradigm that represent
a pair of (interacting) agents. This kind of entity can be modeled by a new kind of
compound agent, but the managment of the aggregation will be tedious and � by hand �
(for instance, suppose that the aggregation of two agents in a pair is valid only when
the two agents are not far one from the other). In other word, there is no support for
spatial or logical aggregation.

MGS: Explicit Speci�cation of the Organisation. The complete state S of the systems
at time t consists in the set of the sc· (t) together with the function V(t, ·). That is, at time
t the sc· (t) are organized in a collection with topology given by V(t, ·). We recover the MGS
model. The advantages are the following:

1. The description of the organization is explicit through the topology of the collection.
And the relationships between the evolution function and the topology of the collec-
tion are explicitly given in the MGS rules, through the appearance of the neighborhood
operators.
It is then more easier to reason on the evolution process. Static analysis (through
typing, abstract interpretation, structural results on homomorphisms, etc.) is possible.

2. The speci�cation of the evolution function is still local (w.r.t. the topology, using
transformation rules).

71

Locality is of paramount importance. As a matter of fact, it enables the application of
transformation rules on an unknown global structure and the construction/computation
of a global dynamical structure with only a static set of �xed local rules of changes.

3. It is more easy to specify generic h functions that can be used with several topology.
A rule in MGS speci�es an interaction between several entities. For example a pattern
� x, y � in the left hand side of a rule speci�es an interaction between two entities.
The global structure do not appear in the rule, neither the exact representation of the
topological link between x and y. Only the logical neighboring relationship between x

and y is mentioned. This makes possible the use of the same rule with several topology,
cf. section 4.1.

4. More generally, the separate speci�cation of the structure and the evolution rules is an
e�ective way to reuse evolution rules and thus to cut down the combinatorial explosion
of the behavior × structure speci�cations.

72

7 Conclusion

In the current implementation, records, sets, multisets and sequences of elements are sup-
ported. Elements are of any types, allowing arbitrary nesting. Implementation of arrays is in
progress and group-based data �elds (GBF which generalizes functional arrays, cf. [GMS96,
GM01]) are planed in a short term. We also plan to study a generic implementation of
topological collections based on G-maps [Lie91].

The perspectives opened by this preliminary work are numerous. Here are some of them.

� The topological formalization of the MGS computation mechanism must be developped.
For instance, the formal notions developped here are purely descriptive, in the sense
that there is no prescription of the device used to select a subcollection. The situation
is analogous as the description of the lambda-calculi at the point where one has de�ned
the beta-reduction as a relation: it remains, to e�ectively compute a normal form, to
de�ne a strategy of reductions and to study the interaction between this strategy and
the reduction, etc.

� Furthermore, the current characterization of the transformations are rather poor and we
are very con�dent that they can be greatly improved. Our main goal in section 5 was to
introduce for a reader with a background in computer science, some of the topological
notions on which a theory of transformations of topological collections can be build.

� Based on the topological background, it must be possible to design some constructions
to let the programmer specify the gluing of the new replacement subcollection into the
old one. This is necessary if one want to compute a new topology from a old one (the
� drastic changes � evocated in page 3).

� We claim that � by changing the underlying topology, one changes the computational
model �. This claim must be supported by developping the topologies needed to describe
the λ-calculus, �rst-order data�ow, petrinets, etc.

� Given some topology, it must be possible to de�nes new ones by standard constructions:
several products are possible for instance. Products are very interesting because they
enable the (more or less) orthogonnal description of several (more or less) independant
view points of a system.
The quotient constructions are of particular interest. As a matter of fact, these con-
structions can be a basis to describe a system at several scale.
Nesting is another possible approach of this problem and must be studied to enable
the uniform description of the depth of an organization.

� The composition of transformations and the building of composed transformations for
composed topologies must be investigated. Currently, the transformations in MGS are
applied on monoids where a rich algebra of functions exists. We musts study if this
algebra can be de�ned in topological terms and then extended to others topologies.

73

� Several kinds of restrictions can be put and the transformations, leading to various
kinds of pattern languages and rules. The complexity of matching such patterns has to
be investigated.

� We also want to develop a type system that can handle nested collections, along the
lines developed in [Ble93]. At last but not least, we want to known if the topology spaces
build by transformations, can be characterized through a non standard type system.

� One very important question is the e�cient implementation of MGS. One approach is to
developp a (non standard) type system that can be further used to make the evaluation
process more e�cient or to guide the compilation. Here are some questions: can be
the pattern expressions used to select a subcollection typed � by complexity of the
matching �? Can we type a transformation with respect to the topology of the input
argument and the output argument? etc.

� We must validate the adequation of the MGS concepts to some real application. Two
of them are particularly motivating: the simulation of the topological changes at the
early development of the embryo (see section 1.5 and 6.6) and the case of the Golgi
formation (see section 1.6). These two applications are very challenging and require
complex topologies going far beyond monolayer �at collection. These applications are
also very attractive because their potential importance for biologists.

� One of the motivation behind the MGS project is to develop a domain-speci�c language
(DSL) dedicated to the simulation of biological systems with a dynamical structure.
DSLs are programming languages for solving problems in a particular domain. To this
end, a DSL provides abstractions and notations for the domain at hand. DSLs are usu-
ally small, and more declarative than imperative. Moreover, DSLs are more attractive
for programming in the dedicated domain than general-purpose languages because of
easier programming, systematic reuse, better productivity, reliability, maintainability,
and �exibility. MGS must be validated on these software engineering goals. Problems
like: module systems for reusing simulation parts and capitalizing MGS code, dedicated
semantic framework to validate MGS programs, observation and test theory of MGS pro-
grams, etc., are long term research goals.

Acknowledgments
The authors would like to thanks the members of the � Simulation and Epigenesis � workgroup
at Genopole for stimulating discussions and biological motivations. We are indebt to Francois
Letierce for the development of the 3D graphic viewer imoview. We are also very grateful to
Franck Delaplace and Julien Cohen for their numerous questions, warm encouragements and
the constant providing of sweet cookies.

This research takes place in the Specif team of the LaMI umr 8042 CNRS, in University
of Evry Val d'Essone, and is supported in part by the CNRS, the GDR ALP, the GDR IMPG
and the Genopole/Evry.

74

A An MGS Grammar
We give in this section the grammar used in some MGS interpreter (the C++ version at the date of april
2001). We give the grammar in a yacc-like form because it would give some ideas of the constructions
that can be formulated in MGS (see for instance the pattern sub-language). Note however that this
is only a �rst prototype and the user can expect drastic changes in the near futur. Already now,
the functional constructs available in the ocaml version of the MGS interpreter are richer thant those
available in the C++ version.

// Operator precedence: from the weakest to the strongest binding. See the YACC documentation

%right B_SEMI_COLON // virtual token to indicate a priority less than semi-column
%right SEMI_COLON // ;
%right A_SEMI_COLON // idem but greater
%right EQUAL // =
%right LET // :=
%right DOT_LAMBDA_MARK // virtual token for priority
%right ASSERTION_MARK // !!
%left AS // as
%right MAP FOLD // map, fold
%left EQ NEQ // ==, != or ~=
%right B_COMMA // virtual token for priority
%right COMMA3 // various sort of comma operators
%right COMMA2 //
%right COMMA // the comma ‘‘,’’
%right A_COMMA // virtual token for priority
%left INF2 // <<
%left OR AND // | or ||, & or &&
%left LT LE GT GE // < <= > >=
%left MIN MAX // min max
%left COLUMN // :
%right COLUMN2 // ::
%right APPEND // @
%left PLUS MINUS // +, -
%left TIME DIV MOD // *, /, %
%nonassoc NOT // ~
%right TL // tl
%nonassoc HD EMPTY // hd, empty
%left SIGN_OP // virtual token for the sign of a number
%left LEFT RIGHT // left, right
%nonassoc LBRACKET RBRACKET // {, }
%nonassoc LPAREN RPAREN // (,)
%nonassoc LCROCHET RCROCHET // [,]
%left DOT // .

// --- SENTENCES ---

top_level: /* nothing */ | input ;

input: def
| TERMINATOR
| input TERMINATOR
| input def ;

def: type_declaration TERMINATOR
| command TERMINATOR
| exp TERMINATOR ;

type_declaration: collection | arrow_spec | state ;

command: ... ;

75

// --- COLLECTION ---

collection: COLLECTION user_id EQUAL id ;

// --- STATE ---

state: STATE optional_id EQUAL state_body ;
state_body: id | state_body PLUS state_body | state_enumeration ;
state_enumeration: LBRACKET sid_list RBRACKET ;
sid_list: /* nothing */ | field_def | sid_list COMMA field_def ;
field_def: id | NOT id | id EQUAL exp %prec A_COMMA ;

// --- ARROW ---

arrow_spec: ARROW_SPEC ident_arrow EQUAL arrow_body ; // definition of arrow names
arrow_body: arrow_sep_begin blist arrow_sep_end ; // and arrow kinds
arrow_sep_begin: ARROW_BEGIN | LBRACKET ; // not presented here
arrow_sep_end: ARROW_END | RBRACKET ;

// --- EXPRESSION --

exp: LPAREN exp RPAREN
| ASSERTION_MARK exp
| exp SEMI_COLON exp // expression sequencing
| exp COMMA exp // Join of collections:
| exp COMMA2 exp // different kind of neighborhood
| exp COMMA3 exp // in the building of a collection
| HD exp // head
| TL exp // tail of a collection
| EMPTY exp // empty predicate
| exp INF2 exp // Scalar (integers, string, bool,) and collection Arithmetics
| exp PLUS exp
| exp TIME exp
| exp DIV exp
| exp MOD exp
| exp MINUS exp
| exp LE exp
| exp LT exp
| exp GE exp
| exp GT exp
| exp EQ exp
| exp NEQ exp
| exp AND exp
| exp OR exp
| NOT exp
| exp CONS exp
| exp APPEND exp
| MIN LPAREN exp COMMA exp RPAREN
| MAX LPAREN exp COMMA exp RPAREN
| IF exp THEN exp ELSE exp ENDIF
| exp LPAREN exp_list RPAREN // Function application
| exp LCROCHET integer RCROCHET LPAREN exp_list RPAREN // apply with optional arguments
| exp LCROCHET TIME RCROCHET LPAREN exp_list RPAREN
| exp LCROCHET blist RCROCHET LPAREN exp_list RPAREN
| MAP LCROCHET exp RCROCHET exp // abbreviations for map and fold
| FOLD LCROCHET fold_bin COMMA exp RCROCHET exp
| id LET exp // assigning an imperative local variable
| id EQUAL exp // binding (constantly) a value to a variable
| exp DOT id // accessing the neighborhood
| LEFT id
| RIGHT id
| id
| fun_exp // constants of various type...

76

| transformation
| record
| integer
| real
| STRING
| UNDEF
| LPAREN RPAREN COLUMN id // empty collections
| id COLUMN LPAREN RPAREN ;

exp_list: /* nothing */ | exp %prec A_COMMA | exp_list COMMA exp %prec A_COMMA ;

record: LBRACKET blist RBRACKET ;
blist: /* nothing */

| id EQUAL exp %prec A_COMMA
| id %prec A_COMMA
| blist COMMA id EQUAL exp %prec A_COMMA
| blist COMMA id %prec A_COMMA ;

fold_bin: fun_exp | MAX | MIN | PLUS | TIME | AND | OR ;

integer: INT | MINUS INT %prec SIGN_OP | PLUS INT %prec SIGN_OP ;
real: REAL | MINUS REAL %prec SIGN_OP | PLUS REAL %prec SIGN_OP ;

// --- FUNCTION ---

fun_exp: FUN optional_id optional_arg LPAREN arg_list RPAREN EQUAL exp
| LAMBDA LPAREN arg_list RPAREN DOT exp %prec DOT_LAMBDA_MARK
| LAMBDA optional_arg arg_list DOT exp %prec DOT_LAMBDA_MARK
| FUN error TSEP
| LAMBDA error TSEP ;

arg_list: /* nothing */ | id | arg_list COMMA id ;
optional_arg: /* nothing */ | LCROCHET blist RCROCHET ;
TSEP: SEMI_COLON | TERMINATOR ;

// --- TRANSFORMATION ---

transformation: TRANSFORM transbody
| TRANSFORM user_id optional_arg EQUAL transbody ;

transbody: LBRACKET rule_list OPT_SC RBRACKET ;

rule_list: rule
| transformation // nesting of transformations: not presented here
| rule_list SEMI_COLON rule
| rule_list SEMI_COLON transformation ;

OPT_SC: /* nothing */ | SEMI_COLON ;

// --- IDENTIFIER ---

id: ID | QID /* quoted id */ ;
user_id: ID ;
optional_id: /* nothing */ | user_id ;
ident_arrow: IDENT_ARROW ;

77

// --- RULES --

rule: pattern arrow a_exp
| user_id EQUAL pattern arrow a_exp ;

a_exp: exp %prec A_SEMI_COLON
| id COLUMN exp %prec A_SEMI_COLON ; // abstraction rule not presented here

arrow: ARROW // arrows can be abstract or qualified, not presented here
| PLUS_ARROW
| ABSTRACT_ARROW
| PLUS_ABSTRACT_ARROW
| ident_arrow
| arrow_body ;

pattern: user_id // naming
| user_id COLUMN id // guard
| LPAREN pattern RPAREN // precedence
| pattern DIV exp // guard
| pattern TIME // iteration
| pattern PLUS
| pattern AS user_id // naming
| pattern COMMA pattern // neigbhborhood
| filter_state ; // record pattern

filter_state: LBRACKET fid_list RBRACKET ;
fid_list: /* nothing */

| id
| id AS id
| NOT id
| id EQUAL id
| fid_list COMMA id
| fid_list COMMA id AS id
| fid_list COMMA NOT id
| fid_list COMMA id EQUAL id ;

78

B Full Code of the Turing+Morphogenesis Example
We give here verbatim the code used to produce the �gure 13. This complete code uses the output
facilities of MGS to write a �le, called tmp.turing.m which contain theomview orders. The language
theomview is used to describe graphical 3D scene composed of objects with automatic placement
facilities. We give here an extract of the produced �le:

Scaled{ Scale <0.1, 0.1, 0.1>
Geometry Grid1{ Axis<1,0,0> GridList[

Grid1{ Axis <0,0,1> GridList [
Box { Size <1, 4, 16> },
Box { Size <1, 4, 16> },
Box { Size <1, 4, 16> },
...
Box { Size <1, 4, 16> },
Box { Size <1, 4, 16> },
Box { Size <1, 4, 16> }]

},
Grid1{ Axis <0,0,1> GridList [

Box { Size <1, 3.71071, 16> },
Box { Size <1, 3.94391, 16> },
Box { Size <1, 3.9798, 16> },
...
Box { Size <1, 3.87611, 16> },
Box { Size <1, 3.90443, 16> },
Box { Size <1, 3.65924, 16> }] },

...
]}

}

The order Box is used to draw a cube. The order Grid1 is used to automatically align the element of
the list GridList, following an axis. In �gure 13, the scene is rendered using a framewire mode, but
one may chose interactively another rendering mode under graphical viewer.

To understand the composition of the �le tmp.turing.m within the MGS program, one must known
that:

� "file" << exp write in the �le �le the value of expression exp.
� the primitive function print_coll takes 6 arguments: print_coll(file, col, f, s1, s2,

s3):

� file is an expression that evaluates to the name of the �le where to save the collection;
� col is the collection to be saved;
� f is a function that is applied to each element of the collection col: it is the value returned

by f that is written in the �le file;
� the value of expression s1 is written at the very beginning;
� the value of s2 is written between two elements of the collection;
� the value of s3 is written at the very end;

79

� The primitive function close is used to free any resources used to write in a �le.

� The function system is used to start a shell command from the MGS interpreter. imoview is the
name of the theomview viewer.

Here is the complete MGS code. It begins with a transformation used to produce the initial sequence
of cells, cf. section 4.10.

trans init =
{

x => { a = 3.5 + random(1.0) -0.5, // 4.0,
b = 4.0,
beta = 12.0 + random(0.05 * 2.0) - 0.05,
size = 16 };

};;
rsp := 1.0/16.0;;
diff1 := 0.25;;
diff2 := 0.0625;;
NbCell := 18;;
tore0 := init[1](iota(NbCell, ():seq));;

The transformation Turing is the core of the computation. It makes use of the auxilliary evolution
function da and db.

fun da(a, b, la, ra) = rsp * (16.0 - a * b) + diff1*(la + ra - 2.0*a);;
fun db(a, b, beta, lb, rb) = rsp*(a*b - b - beta) + diff2*(lb + rb - 2.0*b);;

trans Turing =
{

(x / x.b > 8)
=> { a = x.a/2, b = x.b/2, beta = x.beta, size = x.size/2},

{ a = x.a/2, b = x.b/2, beta = x.beta, size = x.size - x.size/2};

(x / (left x) & (right x))
+=> { a = x.a + da(x.a, x.b, (left x).a, (right x).a),

b = Max(0.0, x.b + db(x.a, x.b, x.beta, (left x).b, (right x).b))
};

(x / ~(left x))
+=> { a = x.a + da(x.a, x.b, 0, (right x).a),

b = Max(0.0, x.b + db(x.a, x.b, x.beta, 0, (right x).b))
};

(x / ~(right x))
+=> { a = x.a + da(x.a, x.b, (left x).a, 0),

b = Max(0.0, x.b + db(x.a, x.b, x.beta, (left x).b, 0))
};

};;

The transformation Turing is wrapped in several functions used to output the results:

80

fun minimal(x) = if (x <= 0) then 0.1 else x fi;;

fun showX(x) = "Box { Size <1, "
+ minimal(x.b) + ", "
+ minimal(x.size) + "> }";

fun showBarre(barre, t, tmax) =
(

print_coll("tmp.turing.m",
barre, showX,
("Grid1{ Axis <0,0,1> GridList [\n"),
",\n\t ",
"] }");

if (t ~= tmax)
then ("tmp.turing.m" << ",\n\n")
else ("tmp.turing.m" << "\n\n") fi

);

fun pre_show() =
(

"tmp.turing.m" << "Scaled{ Scale <0.1, 0.1, 0.1>\n"
<< " Geometry Grid1{ Axis<1,0,0> GridList[\n\n"

);;

fun post_show(n, c) =
(

"tmp.turing.m" << "] }}\n";
close("tmp.turing.m");
system("imoview tmp.turing.m")

);;

fun evol(barre, t, tmax) =
(

showBarre(barre, t, tmax);
if (t < tmax)
then evol(Turing[iter=1](barre), t+1, tmax)
else barre fi

);

fun evolve(n) = (pre_show(); evol(tore0, 0, n); post_show(n, NbCell));;

evolve(180);; // run the evolution of the sequence of cells for 180 time steps

!quit;;

81

82

C Review of Some Notions Related to the Group Structure
The Group Structure. A group (G, +) is a set G with a binary operation + taking two elements
of G into a third denoted by a + b. The operation is required to satisfy the following conditions:

� Associativity : a + (b + c) = (a + b) + c;

� Existence of zero: there exists an element 0 ∈ G such that a + 0 = 0 + a = a for every a;

� Existence of negative : for any a there exists an element (−a) such that a + (−a) = 0.

If g is an element of a group G and n is an integer, then ng denotes the n-fold sum g + ... + g (the
element g added n times) and (−n)g denotes n(−g).

If each g ∈ G can be written as a �nite sum g =
∑

nαgα where the gα belong to a set S, we say
that the set S generates G. If the set S is �nite, then we say that G is �nitely generated by S.

Group Homomorphisms. Let (G, +G) and (H, +H) be two groups. Then a function f : G → H

is a homomorphism i� f(a+Gb) = f(a)+H f(b) for every a and b. The set of homomorphisms between
G and H is denoted by Hom(G,H).

If f is a bijection then we say that f is an isomorphism and that the group G and H are isomorphic.

Let f and g two elements of Hom(G,H). Then we may de�ne the function (f+Hom(G,H)g) : G → H

by (f +Hom(G,H) g)(x) = f(x) +H g(x). It is easy to check that (f +Hom(G,H) g) is an homomorphism.
It is also easy to check that Hom(G,H) together with +Hom(G,H) is a group.

Direct Product of Groups. Of all the methods of constructing groups, we mention here the
simplest. Let (Gx)x∈X be a family of groups indexed by indices in a set X. The set X can be �nite
or not. The direct product ∏

x∈X Gx is the group H whose underlying set is the cartesian product of
the sets Gx and whose group operation is the component-wise addition.

External Direct Sum of Groups. If X = {1, 2}, then we write simply G1 × G2 instead of∏
i∈{1,2}Gi. If e1 and e2 are the neutral elements of G1 and G2, then the maps g1 7→ (g1, e2) and

g2 7→ (e1, g2) are isomorphisms of G1 and G2 with subgroups of G1 × G2. We suppose now that the
groups G1 and G2 are distinguished. Usually the elements of G1 and G2 are then identi�ed with their
images under these isomorphisms, that is g1 is written for (g1, e2) and g2 is written for (e1, g2). Then
G1 and G2 can be considered as subgroups of H = G1 ×G2.

In H we have g1 + g2 = g2 + g1 if gi ∈ Gi, i = 1, 2. Any element h ∈ H can be written h = g1 + g2

with gi ∈ Gi: we say that the subgroups G1 and G2 generates H or that H is the (internal) sum of
subgroups G1 and G2 of H. The subgroup's intersection G1 ∩ G2 is equal to {0} (the subgroups Gi

are distinguished), and then, the sum h = g1 + g2 uniquely de�ne the gi in Gi: we say that the sum
is direct.

This explain why the direct product G1×G2 of the distinguished groups G1 and G2 is also written
G1 ⊕G2 and called the external direct sum of G1 and G2.

The notion of external direct sum can be extended to an arbitrary product, but with a slight
constraint. Let H =

∏
x∈X Gx the direct product of the groups Gx. The external direct sum of

the groups Gx is the subgroup G of the direct product H consisting of all tuples (gx)x∈X such that
gx = 0Gx for all but �nitely many values of x (here 0Gx is the zero element of Gx). The subgroup G

is also called the weak direct product or the weak direct sum and is written: ⊕
x∈X Gx.

83

Abelian Groups. If a + b = b + a for every elements a and b, then the group is said abelian or
commutative. The abelian group G is free if it exists a set of generators S such that each g ∈ G can
be written as a unique �nite sum. Then we say that the set of generators S is a basis. For example,
the integers with the usual addition is a free abelian group denoted by Z and the basis is the singleton
{1}.

If G and H are abelians, then Hom(G,H) is an abelian group too. The direct product ∏
x∈X Gx

of abelian groups Gx is abelian. And if all the Gx are free, then their direct product is also free.
Furthermore, the direct product corresponds to the direct sum of modules, see below.

Let a function h de�ned on the basis S = {gα} of a group G and with value in a group H,
i.e. h : S → H. Then, h can be extended to an homomorphism h : G → H uniquely de�ned by
h(

∑
nαgα) =

∑
nαh(gα). The functions h and h coincide on S. Usually we make no notational

di�erence between h and its linear extension h and use h in both case, relying on the context to make
clear which of these function is intended.

Ring and Modules. A ring R is an abelian group, written additively, with a multiplication
operation satisfying two axioms:

� Associativity : r.(s.t) = (r.s).t

� Distributivity : r(s + t) = r.s + r.t and (r + s).t = r.t + s.t.

If there is an element 1 in R such that r.1 = 1.r = r for all r, then 1 is called a unity element in R.
A ring is commutative if r.s = s.r for all r and s. The only ring we consider is the ring of integers
(Z, +, .).

An abelian group A has the structure of module over a commutative ring R with unity ele-
ment 1, or more simply is a R-module, if there is a binary operation R × A → A, called the scalar
multiplication, such that for r, s ∈ R and a, b ∈ A, we have:

� r(a + b) = ra + rb

� (a + b)r = ra + rb

� r(sa) = (r.s)a

� 1a = a

Homomorphism of Module, Dual of a Module. If A and B are R-modules, a module
homomorphism is a group homomorphism ϕ : A → B such that ϕ(ra) = rϕ(a) for r ∈ R and a ∈ A.
The set of module homomorphisms is denoted by HomR(A,B).

If A is a module over a ring R then the set Ã of all homomorphism HomR(A,R) of A to R is a
R-module, if we de�ne operations by

(f + g)(a) = f(a) + g(a) for f, g ∈ Ã and a ∈ A

(rf)(a) = r f(a) for f ∈ Ã, a ∈ A and r ∈ R

This module is called the dual module of A.

Direct Sum of Modules. Let M and N two modules over a ring R. Consider the module
consisting of pairs (m,n) for m ∈ M,n ∈ N , with addition and multiplication by elements of R given
by

(m,n) + (m′, n′) = (m + m′, n + n′) and r(m,n) = (rm, rn)

84

This module is called the direct sum of M and N and is denoted by M ⊕ N . The direct sum of
any number of modules can be de�ned in the same way. The sum of n copies of the module M is
denoted by Mn and is called the free module of rank n. This is the most direct generalization of a
n-dimensional vector space.

Z-modules. Any abelian groups can be considered as Z-modules, by de�ning ng as the n-fold sum
g + · · · + g. The direct sum of these Z-modules coincides with the direct product of the groups and
HomZ(A,B) = Hom(A, B).

A one dimensional Z-module is an abelian group denoted by (Z/n, +) where n ∈ N. Formally,
this group is the quotient of Z by the subgroup nZ of the multiples of n. Intuitively, this quotient
group has n elements and each element is a subset of Z. These sets form a partition of Z. These sets are
named by one of their members: the element k ∈ Z/n denotes the set {. . . , k−n, k, k +n, k +2n, . . . }.
The addition law is compatible with the addition on Z: p + q = p + q.

The module Z/0 is isomorphic to Z and said to be a free module. The other modules Z/n, n 6= 0,
are called torsion modules.

The previous Z-modules are of dimension 1 (they are generated by only one generator). Z-modules
of dimension greater than one are direct products of 1-dimensional Z-modules.

The Fundamental Theorem of Finitely Generated Abelian Groups. The fundamental
theorem of abelian groups says that every �nitely generated abelian group G is isomorphic to:

G ' Zn × Z/t1 × Z/t2 × . . . × Z/tq

where ti divides ti+1 (see any standard text on groups; for a computer oriented handling cf. [Coh93]).
This theorem shows that the study of abelian groups splits naturally into, on one hand the study of
free Z-modules of �nite rank (i.e. Zn), and on the other hand the study of �nite Z-modules.

This isomorphism gives in some sense a � canonical representation � for G. The coe�cient ti of
an abelian group de�ned by its generators and the relations between them (the �nite presentation
of the group) can be computed using the Smith Normal Form of the group presentation [Smi66].
The references [KB79, CC82, Ili89, HHR93] give a lot of considerations about the implementation, the
complexity of the normalization algorithm and its optimizations.

There is another such canonical form, derived as follows. If m and n are relatively prime positive
integers, then Z/m×Z/n is isomorphic to Z/mn. It follows that any �nite cyclic group can be written
as the product of cyclic groups whose orders are powers of primes. Then

G ' Zn × Z/a1 × Z/a2 × . . . × Z/ar

where each ai is a power of a prime.

The Case of the Free Abelian Groups. In the case of a free abelian group, the torsion
modules collapse to the trivial group and then a �nitely generated abelian group with n generators is
simply isomorphic to Zn. In other words, an element of a free abelian group with a basis of size n,
can be represented by a n-uple of integers.

85

86

References
[Ale82] P. Alexandro�. Elementary concepts of topology. Dover publications, New-York, 1982.

[Axe98] Ulrike Axen. Topological Analysis using Morse theory and auditory display. PhD
thesis, University of Illinois at Urbana Champaign, 1998.

[BB89] Gerard Berry and G. Boudol. The chemical abstract machine. Technical Report RR-1133,
Inria, Institut National de Recherche en Informatique et en Automatique, 1989.

[BCM87] J. P. Banatre, A. Coutant, and Daniel Le Metayer. Parallel machines for multiset trans-
formation and their programming style. Technical Report RR-0759, Inria, 1987.

[Ber00] Guntram Berti. Generic Software Components for Scienti�c Computing. PhD thesis,
Fakultät für Mathematik, Naturwissenschaften und Informatik der Brandenburgischen
Technischen Universität Gottbus, 2000.

[BH00] Ronald Brown and Anne Heyworth. Using rewriting systems to compute left kan exten-
sions and induced actions of categories. Journal of Symbolic Computation, 29(1):5�31,
January 2000.

[BL74] J. Bard and I. Lauder. How well does turing's theory of morphogenesis work ? Journal
of Theoretical Biology, 45:501�531, 1974.

[Ble93] Guy Blelloch. NESL: A nested data-parallel language (version 2.6). Technical Report
CMU-CS-93-129, School of Computer Science, Carnegie Mellon University, April 1993.

[BM86] J. P. Banatre and Daniel Le Metayer. A new computational model and its discipline of
programming. Technical Report RR-0566, Inria, 1986.

[BNTW95] Peter Buneman, Shamim Naqvi, Val Tannen, and Limsoon Wong. Principles of pro-
gramming with complex objects and collection types. Theoretical Computer Science,
149(1):3�48, 18 September 1995.

[CC82] Tsu-Wu J. Chou and George E. Collins. Algorithms for the solution of systems of linear
Diophantine equations. SIAM Journal on Computing, 11(4):687�708, November 1982.

[Coh93] H. Cohen. A course in computational algebraic number theory, volume 138 ofGraduate
Text in Mathematics. Springer, 1993.

[CS00] Je�rey Chard and Vadim Shapiro. A multivector datastructure for di�erential forms and
equation. Mathematics and Computers in Simulation, (54):33�64, 2000.

[FB94] W. Fontana and L. Buss. "the arrival of the �ttest": Toward a theory of biological
organization. Bulletin of Mathematical Biology, 1994.

[FB96] W. Fontana and L. Buss. Boundaries and Barriers, Casti, J. and Karlqvist, A. edts,,
chapter The barrier of objects: from dynamical systems to bounded organizations, pages
56�116. Addison-Wesley, 1996.

[FMP00] Michael Fisher, Grant Malcolm, and Raymond Paton. Spatio-logical processes in intra-
cellular signalling. BioSystems, 55:83�92, 2000.

[Fon92] Walter Fontana. Algorithmic chemistry. In Christopher G. Langton, Charles Taylor,
J. Doyne Farmer, and Steen Rasmussen, editors, Proceedings of the Workshop on Ar-
ti�cial Life (ALIFE '90), volume 5 of Santa Fe Institute Studies in the Sciences of
Complexity, pages 159�210, Redwood City, CA, USA, February 1992. Addison-Wesley.

87

[Gia00] Jean-Louis Giavitto. A framework for the recursive de�nition of data structures. In
Proceedings of the 2nd International ACM SIGPLAN Conference on Principles and
Practice of Declarative Programming (PPDP-00), pages 45�55. ACM Press, September
20�23 2000.

[GM01] J.-L. Giavitto and O. Michel. Declarative de�nition of group indexed data structures and
approximation of their domains. In Proceedings of the 3nd International ACM SIG-
PLAN Conference on Principles and Practice of Declarative Programming (PPDP-
01). ACM Press, September 2001.

[GMS96] J.-L. Giavitto, O. Michel, and J. Sansonnet. Group-based �elds. In Parallel Symbolic
Languages and Systems (International Workshop PSLS'95), volume 1068, pages 209�
215, 1996.

[Hen94] M. Henle. A combinatorial introduction to topology. Dover publications, New-York,
1994.

[HHR93] George Havas, Derek F. Holt, and Sarah Rees. Recognizing badly presented Z-modules.
Linear Algebra Appl., 192:137�163, 1993.

[HP96] Mark Hammel and Przemyslaw Prusinkiewicz. Visualization of developmental processes
by extrusion in space-time. In Wayne A. Davis and Richard Bartels, editors, Graph-
ics Interface '96, pages 246�258. Canadian Information Processing Society, Canadian
Human-Computer Communications Society, May 1996. ISBN 0-9695338-5-3.

[HY88] J. G. Hocking and G.S. Young. Topology. Dover publications, New-York, 1988.
[Ili89] C. S. Iliopoulos. Worst-case complexity bounds on algorithms for computing the canonical

structure of �nite abelian groups and the hermite and smith normal forms of an integer
matrix. SIAM Journal on Computing, 18(4):658�669, August 1989.

[KB79] Ravindran Kannan and Achim Bachem. Polynomial algorithms for computing the Smith
and Hermite normal forms of an integer matrix. SIAM Journal on Computing, 8(4):499�
507, November 1979.

[Lew97] Benjamin Lewin. Genes (VI). Oxford University Press, 1997. 6th. edition.
[Lie91] P. Lienhardt. Topological models for boundary representation : a comparison with n-

dimensional generalized maps. Computer-Aided Design, 23(1):59�82, 1991.
[Lis93] B. Lisper. On the relation between functional and data-parallel programming languages.

In Proc. of the 6th. Int. Conf. on Functional Languages and Computer Architectures.
ACM Press, June 1993.

[Man01] Vincenzo Manca. Logical string rewriting. Theoretical Computer Science, 264:25�51,
2001.

[Mic96] O. Michel. Design and implementation of 81/2, a declarative data-parallel language. Com-
puter Languages, 22(2/3):165�179, 1996. special issue on Parallel Logic Programming.

[Mun84] James Munkres. Elements of Algebraic Topology. Addison-Wesley, 1984.
[Nil80] N. J. Nilsson. Principles of Arti�cial Intelligence. Tioga publishing company, 1980.
[Pau98] Gheorghe Paun. Computing with membranes. Technical Report TUCS-TR-208, TUCS -

Turku Centre for Computer Science, November 11 1998.
[Pau00] G. Paun. From cells to computers: Computing with membranes (p systems). InWorkshop

on Grammar Systems, Bad Ischl, austria, July 2000.

88

[PS93] Richard S. Palmer and Vadim Shapiro. Chain models of physical behavior for engineer-
ing analysis and design. Research in Engineering Design, 5:161�184, 1993. Springer
International.

[Rém92] Didier Rémy. Syntactic theories and the algebra of record terms. Technical Report 1869,
INRIA-Rocquencourt, BP 105, F-78 153 Le Chesnay Cedex, 1992.

[Sha90] Igor' Shafarevich. Basic Notions of Algebra. Springer, 1990.

[Smi66] D. Smith. A basis algorithm for �nitely generated abelian groups. Math. Algorithms,
1(1):13�26, January 1966.

[Ton74] Enzo Tonti. The algebraic-topological structure of physical theories. In P. G. Glockner and
M. C. Sing, editors, Symmetry, similarity and group theoretic methods in mechanics,
pages 441�467, Calgary, Canada, August 1974.

[Ton76] Enzo Tonti. The reason for analogies between physical theories. Appl. Math. Modelling,
1:37�50, June 1976.

[VN66] J. Von Neumann. Theory of Self-Reproducing Automata. Univ. of Illinois Press, 1966.

89

