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The engineered control of cellular function through the design of synthetic genetic networks is
becoming plausible. Here we show how a naturally occurring network can be used as a parts list for
artificial network design, and how model formulation leads to computational and analytical
approaches relevant to nonlinear dynamics and statistical physics. We first review the relevant work
on synthetic gene networks, highlighting the important experimental findings with regard to genetic
switches and oscillators. We then present the derivation of a deterministic model describing the
temporal evolution of the concentration of protein in a single-gene network. Bistability in the
steady-state protein concentration arises naturally as a consequence of autoregulatory feedback, and
we focus on the hysteretic properties of the protein concentration as a function of the degradation
rate. We then formulate the effect of an external noise source which interacts with the protein
degradation rate. We demonstrate the utility of such a formulation by constructing a protein switch,
whereby external noise pulses are used to switch the protein concentration between two values.
Following the lead of earlier work, we show how the addition of a second network component can
be used to construct a relaxation oscillator, whereby the system is driven around the hysteresis loop.
We highlight the frequency dependence on the tunable parameter values, and discuss design
plausibility. We emphasize how the model equations can be used to develop design criteria for
robust oscillations, and illustrate this point with parameter plots illuminating the oscillatory regions
for given parameter values. We then turn to the utilization of an intrinsic cellular process as a means
of controlling the oscillations. We consider a network design which exhibits self-sustained
oscillations, and discuss the driving of the oscillator in the context of synchronization. Then, as a
second design, we consider a synthetic network with parameter values near, but outside, the
oscillatory boundary. In this case, we show how resonance can lead to the induction of oscillations
and amplification of a cellular signal. Finally, we construct a toggle switch from positive regulatory
elements, and compare the switching properties for this network with those of a network constructed
using negative regulation. Our results demonstrate the utility of model analysis in the construction
of synthetic gene regulatory networks. @01 American Institute of Physics.
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Many fundamental cellular processes are governed by ge-
netic programs which employ protein-DNA interactions
in regulating function. Owing to recent technological ad-
vances, it is now possible to design synthetic gene regula-
tory networks. While the idea of utilizing synthetic net-
works in a therapeutic setting is still in its infancy, the
stage is set for the notion of engineered cellular control at
the DNA level. Theoretically, the biochemistry of the
feedback loops associated with proteiaDNA interactions
often leads to nonlinear equations, and the tools of non-
linear analysis become invaluable. Here we utilize a natu-

Specifically, we show how the genetic circuitry of the bac-
teriophage N can be used to design switching and oscil-
lating networks, and how these networks can be coupled
to cellular processes. In this work we suggest that a ge-
netic toolbox can be developed using modular design con-
cepts. Such advancements could be utilized in engineered
approaches to the modification or evaluation of cellular
processes.

I. INTRODUCTION

Remarkable progress in genomic research is leading to a
complete map of the building blocks of biology. Knowledge
of this map is, in turn, fueling the study of gene regulation,
where proteins often regulate their own production or that of
other proteins in a complex web of interactions. Post-

rally occurring genetic network to elucidate the construc-
tion and design possibilities for synthetic gene regulation.
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genomic research will likely center on the dissection andhen show how an external noise source affecting protein
analysis of these complex dynamical interactions. While thelegradation can be introduced to our model, and how the
notions of protein—DNA feedback loops and network com-subsequent Langevin equation is analyzed by way of trans-
plexity are not new; 1% experimental advances are inducing forming to an equation describing the evolution of a prob-
a resurgence of interest in the quantitative description ofbility function. We then obtain the steady-state mean re-
gene regulation® 2> These advances are beginning to set thepressor concentration by solving this equation in the long-
stage for amodular description of the regulatory processestime limit, and discuss its relationship to the magnitude of
underlying basic cellular functiol??=%°In light of nearly ~ the external perturbation. This leads to a potentially useful
three decades of parallel progress in the study of complegpplication, whereby one utilizes the noise to construct a
nonlinear and stochastic processes, the project of quantitgenetic switch. We next show how the addition of a second
tively describing gene regulatory networks is timely. network component can lead to a genetic relaxation oscilla-
The concept of engineering genetic networks has roottor. We study the oscillator model in detail, highlighting the
that date back nearly half a centty*? It is relatively re-  essential design criteria. We introduce a mechanism for cou-
cent, however, that experimental progress has made the deling the oscillator to a time-varying genetic process. In the
sign and implementation of genetic networks amenable ténodel equations, such coupling leads to a driven oscillator,
quantitative analysis. There are two dominant reasons foRnd we study the resulting system in the framework of syn-
constructing synthetic networks. First, simple networks repchronization. We illustrate the utility of such driving through
resent a first step towards logical cellular control, wherebythe construction of an amplifier for small periodic signals.
biological processes can be manipulated or monitored at thieinally, we turn to the construction of a genetic toggle
DNA level 23 Such control could have a significant impact on Switch, and compare switching times for our network with
post-genomic biotechnology. From the construction ofthose of a network constructed using negative regulation.
simple switches or oscillators, one can imagine the design of
genetic code, or software, capable of performing increasing|
elaborate function¥"3°A second complementary motivation
for network construction is the scientific notion of reduced Many processes involving cellular regulation take place
complexity; the inherently reductionist approach of decou-at the level of gene transcriptioh®’ The very nature of
pling a simple network from its native and often complex cellular differentiation and role-specific interaction across
biological setting can lead to valuable information regardingcell types implicates a not yet understood order to cellular
evolutionary design principle$. processes. Various modeling approaches have successfully
Ultimately, we envision the implementation of synthetic described certain aspects of gene regulation in specific bio-
networks in therapeutic applications. However, such a utili{ogical system&:12-1418:24.2538.3% i5 only recently, however,
zation depends on concurrent progress in efforts to uncovehat designed network experiments have arisen in direct sup-
basic genomic and interspecies information. For exampleport of regulatory model&:~2%In this section, we highlight
broad applicability will only arise with detailed information the results of these experimental studies, and set the stage for
regarding tissue-specific promoters, proteins, and genethe discussion of the network designs described in this work.
Likewise, quantitative network design is contingent on a firm  For completeness, we first discuss the basic concepts of
understanding of cellular differentiation and fundamentalpromoters and regulatory feedback lodp4! A promoter
processes such as transcription, translation, and protein meegion (or, simply, a promoterdenotes a segment of DNA
tabolism. More crucially, delivery is a major hurdle; without where a RNA polymerase molecule will bind and subse-
identifiable cell-specific recognition molecules, there is noguently transcribe a gene into a mRNA molecule. Thus, one
method for introducing a network to a specific type of cell. speaks of a promoter as driving the transcription of a specific
Since, in many regards, therapeutic applications are someene. Transcription begins downstream from the promoter at
what premature, we focus on the implementation of syntheti@a particular sequence of DNA that is recognized by the poly-
networks in less complicated organisms. The design of synmerase as the start site of transcription. A chemical sequence
thetic circuits and optimization of their function in bacteria, of DNA known as thestart codoncodes for the region of the
yeast, or other plant organisms should reveal nonlinear profgene that is converted into amino acids, the protein building
erties that can be employed as possible mechanisms of cdlocks. Feedback arises when the translated protein is ca-
lular control. pable of interacting with the promoter that drives its own
In this paper, we develop several models describing th@roduction or promoters of other genes. Stremscriptional
dynamics of the protein concentration in small self-containedegulationis the typical method utilized by cells in control-
synthetic networks, and demonstrate techniques for exteting expressiof>*3and it can occur in a positive or negative
nally controlling the dynamics. Although our results are gen-sense. Positive regulation, or activation, occurs when a pro-
eral, as they originate from networks designed with commoriein increases transcription through biochemical reactions
gene regulatory elements, we ground the discussion by corthat enhance polymerase binding at the promoter region.
sidering the genetic circuitry of bacteriophagye Since the  Negative regulation, or repression, involves the blocking of
range of potentially interesting behavior is wide, we focuspolymerase binding at the promoter region. Proteins com-
primarily on the concentration of therepressor protein. We monly exist as multi-subunits or multimers which perform
first show how bistability in the steady-state value of theregulatory functions throughout the cell or serve as DNA-
repressor protein can arise from a single-gene network. Whbinding proteins. Typically, protein homodimefsr het-

Y. BACKGROUND
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erodimerg regulate transcription, and this fact is responsiblelonger than the bacterial septation period, suggesting that
for much of the nonlinearity that arises in genetic netwdrks. cellular conditions important to the oscillator network were
Recently, there have been three important experimentakliably transmitted to the progeny cells. However, signifi-
studies involving the design of synthetic genetic networkscant variations in oscillatory phases and amplitudes were ob-
All three employ the use of repressive promoters. In order okerved between daughter cells, and internal noise was pro-
increasing complexity, they consist @f a single autorepres- posed as a plausible decorrelation mechanism. These
sive promoter utilized to demonstrate the interplay betweewariations suggest that, in order to circumvent the effects of
negative feedback and internal nofSe(ii) two repressive noise, naturally-occurring oscillators might need some addi-
promoters used to construct a genetic toggle switclnd  tional form of control. Indeed, an important aspect of this
(iii ) three repressive promoters employed to exhibit sustainestudy was its focus on the utilization of synthetic networks as
oscillations?* We now briefly review the key findings in tools for biological inference. In this regard, the repressilator
these three studies. work provides potentially valuable information pertaining to
In the single gene study, both a negatively controlled andhe design principles of other oscillatory systems, such as
an unregulated promoter were utilized to study the effect otircadian clocks.
regulation on variations in cellular protein concentration. These studies represent important advances in the
The central result is that negative feedback decreases tlengineering-based methodology of synthetic network design.
cell-to-cell fluctuations in protein concentration measure4n all three, the experimental behavior is consistent with pre-
ments. Although the theoretical notion of network-induceddictions which arise from continuum dynamical modeling.
decreased variability is not neff,this study empirically  Further, theoretical models were utilized to determine design
demonstrates the phenomenon through the measurement @fteria, lending support to the notion of an engineering-
protein fluorescence distributions over a population of cellsbased approach to genetic network design. These criteria in-
The findings show that, for a repressive network, the fluoreseluded the use of strong constitutive promoters, effective
cence distribution is significantly tightened, and that suchranscriptional repression, cooperative protein interactions,
tightening is proportional to the degree to which the pro-and similar protein degradation rates. In the immediate fu-
moter is negatively controlled. These results suggest thatre, the construction and analysis of a circuit containing an
negative feedback is utilized in cellular design as a means faactivating control elemen(.e., a positive feedback systgm
mitigating variations in cellular protein concentrations. Sinceappears to be a next logical step.
the number of proteins per cell is typically small, internal In this work, we present several models describing the
noise is thought to be an important issue, and this studgesign of synthetic networks in prokaryotic organisms. Spe-
speaks to issues regarding the reliability of cellular processedsfically, we will utilize genetic components from the virus
in the presence of internal noise. bacteriophage.. While other quantitative studies have con-
The toggle switch involves a network where each of twocentrated on the switching properties of the phage
proteins negatively regulates the synthesis of the other; prasircuitry,>'>®38we focus on its value as a parts list for
tein *“A” turns off the promoter for gene B,” and proteinB  designing synthetic networks. Importantly, the biochemical
turns off the promoter for gen&.?? In this work, it is shown  reactions that constitute the control)ofphage are very well
how certain biochemical parameters lead to two stable steadsharacterized; the fundamental biochemical reactions are un-
states, with either a high concentration Af(low B), or a  derstood, and the equilibrium association constants are
high concentration oB (low A). Reliable switching between known®4¢-*0In its naturally-occurring staté, phage infects
states is induced through the transient introduction of either ¢he bacteriaEscherichia coli(E. coli). Upon infection, the
chemical or thermal stimulus, and shown to be significantlyevolution of \ phage proceeds down one of two pathways.
sharper than for that of a network designed without co-The lysis pathway entails the viral destruction of the host,
repression. Additionally, the change in fluorescence distribuereating hundreds of phage progeny in the process. These
tions during the switching process suggests interesting statiprogeny can then infect other bacteria. Ty®ogenoupath-
tical properties regarding internal noise. These resultsvay involves the incorporation of the phage DNA into the
demonstrate that synthetic toggle switches can be designédmbst genome. In this state, the virus is able to dormantly pass
and utilized in a cellular environment. Co-repressiveon its DNA through the bacterial progeny. The extensive
switches have long been proposed as a common regulatoigterest in\ phage lies in its ability to perform a remarkable
theme?® and the synthetic toggle serves as a model system itrick; if an E. coli cell infected with a lysogen is endangered
which to study such networks. (i.e., exposure to UV radiationthe lysogen will quickly
In the oscillator study, three repressible promoters wereawitch to the lytic pathway and abandon the challenged host
used to construct a network capable of producing temporatell.
oscillations in the concentrations of cellular protethg.he The biochemistry of the viral “abandon-ship” response
regulatory network was designed with cyclic repressibility;is a textbook exampfé of cellular regulation via a naturally-
protein A turns off the promoter for genB, proteinB turns  occurring genetic switch. The lytic and lysogenic states are
off the promoter for geneC, and proteinC turns off the  controlled by thecro andcl genes, respectively. These genes
promoter for gené\. For certain biochemical parameters, theare regulated by what are known as gy (cl gene and
“repressilator” was shown to exhibit self-sustained oscilla- Pk (cro gene promoters. They overlap in an operator region
tions over the entire growth phase of the histcoli cells.  consisting of the three binding sites OR1, OR2, and OR3,
Interestingly, the period of the oscillations was shown to beand the Cro and\ repressor(*“repressor,” thecl produc)
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protein actively compete for these binding sites. When themplification of transcription. Degradation is essentially due
Cro protein(the product of thero geneg binds to these sites, to cell growth. We write the reactions governing these pro-
it induces lysis. When repressor binds, lysogeny is maincesses as

tained and lysis suppressed. When potentially fatal DNA K,

damage is sensed by & coli host, part of the cellular D+P—D+P+nX,

response is to attempt DNA repair through the activation of a

protein called RecA\ phage has evolved to utilize RecA as t

a signal; RecA degrades the viral repressor protein and Cro D1+P—Dy+P+nX
subsequently assumes control of the promoter region. Once aky 2
Cro is in control, lysis ensues and the switch is thrown. D,D;+P—D,D;+P+nX,
kX
X—,

I1l. BISTABILITY IN A SINGLE-GENE NETWORK

hi . devel I del d _bwhereP denotes the concentration of RNA polymerasés

. Inthis section, we develop a quantitative model describy,e 1 ,mper of repressor proteins per mRNA transcript, and

ing the regulation of thePgy operator region ok phage.  ~ 1 jg the degree to which transcription is enhanced by

We envision that our system is a DNA plasmid consisting of 4 .\, occupation of OR2

the promoter region and gene. _ , Defining concentrations as our dynamical variabbes,
As noted above, the promoter region contains the three:[x] X,=[X,], do=[D], d;=[D,], dy=[D,D,], and

operator sites known as ORI, OR2, and OR3. The basig _p p.p.] we can write a rate equation describing the

dynamical properties of this network, along with a categori-o . o1tion of the concentration of repressor

zation of the biochemical reactions, are as follows. The gene ’

cl expresses repress@€l), which in turn dimerizes and x=—2K X%+ 2K_ 1o+ nkipo(dg+d; + ady) —kex, (3)

binds to the DNA as a transcription factor. This binding can here we assume that the concentration of RNA polvmerase
take place at one of the three binding sites OR1, OR2, ot W u . . ! poly
remains constant during time.

OR3. The binding affinities are such that, typically, binding Po We next eliminatex, and thed, from Eq. (3) as follows
i . .

proceeds sequentially; the dimer first binds to the OR1 site, e : )

then OR2, and last OR® Positive feedback arises due to the e utilize the faqt that the react|ops in Ha) are fast com-

fact that downstream transcription is enhanced by binding a?ared_ to expression and degradation, and write algebraic ex-

OR2, while binding at OR3 represses transcription, effecPressIons,

tively turning off production and thereby constituting a nega-  x,=K;x?,

tive feedback loop. )
The chemical reactions describing the network are natu- dy=Kaoxp=(K1K2)dox",

rally divided into two categories—fast and slow. The fast g, —K.d;x,= o;(K;K,)2dox®, 4

reactions have rate constants of order seconds, and are there-

fore assumed to be in equilibrium with respect to the slow  d3=K,doX= 0102(K 1K) 3dox®.

reactions, which are described by rates of order minutes. If

we let X, X,, andD denote the repressor, repressor dimer,dT

and DNA promoter site, respectively, then we may write the

Further, the total concentration of DNA promoter sites
is constant, so that

equilibrium reactions mdr=do(1+K K x>+ oy (K;Kz)%*
K1 +o105(K 1K) %), 6)
X+X=X,, . Sy
wherem s the copy number for the plasmid, i.e., the number
K2 of plasmids per cell.
D+X;=Dy, We next eliminate two of the parameters by rescaling the
Ks (1) repressor concentrationand time. To this end, we define
D;+X,=D,D4, the dimensionless variablesx=xyK;K, and t
Ky =t(k{podnyK1K5). Upon substitution into Eq.3), we ob-
D,D;+X,=D3D,D;, tain
where D; denotes dimer binding to the ORsite, and the . m(1+x?+ aox*)

K;=k;/k_; are equilibrium constants. We I&;= o,K, and K ©®

K,=0,K,, so thato; and o, represent binding strengths

relative to the dimer—OR1 strength. where y,=k,/(drnkipovK1K>), the time derivative is with
The slow irreversible reactions are transcription and degrespect tot, and we have suppressed the overbaxofhe

radation. If no repressor is bound to the operator region, or iequilibrium constants ar&;=5.0<10'M~! and K,=3.3

a single repressor dimer is bound to OR1, transcription prox 10° M1 946484954 that the transformation from the di-

ceeds at a normal unenhanced rate. If, however, a repressoensionless variabbeto the total concentration of repressor

dimer is bound to OR2, the binding affinity of RNA poly- (monomeric and dimeric formsis given by [Cl]=(7.7x

merase to the promoter region is enhanced, leading to at3.0x?) nM. The scaling of time involves the parameker

X=
1+ X2+ o x4+ o0,x8
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and since transcription and translation are actually a complex 0.A B
sequence of reactions, it is difficult to give this lump param- __ 7.5
eter a numerical value. However, in Ref. 51, it is shown that, £ % 65
by utilizing a model for the lysogenous state of th@hage, ok ¢5,5
a consistency argument yields a value for the product of 10 45
parameters d;nk,py) =87.6 nM min 1. This leads to a T B R '25 R a—
transformation from the dimensionless tirheo time mea- Y ) z
sured in minutes of(min)=0.08%. 075.C D

Since equations similar to E¢B) often arise in the mod- =4
eling of genetic circuitgsee Refs. 52 of this Focus Isgu# ’g,'1'°° i,
is worth noting the specifics of its functional form. The first v 12 & 2
term on the right hand side of E) represents production -1.50 S
of repressor due to transcription. The even polynomials in  -1.75 0

o

occur due to dimerization and subsequent binding to the pro- o1 O'ZD s 04

moter region. As noted above, tlwe prefactors denote the
relative affinities for dimer binding to OR1 versus that of FIG. 1. Results for additive noise with parameter vatoe 1. (a) Bifurca-

AT tion plot for the steady-state concentration of repressor vs the model param-
. > N
bmdmg to OR2 (Il) and OR3 ()-2) The prefactora 1on er vy, . (b) The energy landscape. Stable equilibrium values of Q)

the x* term is present because transcription is enhancea\f/ith D=0) correspond to the valleys at= — 1.6 and 0.5, with an unstable
when the two operator sites OR1 and OR2 are occupiegalue atz=-0.52. (b) Steady-state probability distributions for noise
(x?x?). The x® term represents the occupation of all threestrengths o> =0.04 (solid line) and D =0.4 (dotted ling. (c) The steady-
operator sites, and arises in the denominator because dim#gte equilibrium value of plotted vs noise strength. The corresponding

. S - oncentration will increase as the noise causes the upper stdty tf
occupation of OR3 inhibits polymerase binding and shuts of{ ..o increasingly populated) The simulation of Eqs(8) and (9) dem-

transcription. onstrating the utilization of external noise for protein switching. Initially, the
For the operator region of phage, we have;~2, o, concentration begins at a level fBFP|~0.4 uM corresponding to a low
~0.08. anda~ 11946484954 that the parametens, andm noise value oD =0.01. After 40 minutes, a large 2-minute noise pulse of

. - ) . strengthD=1.0 is used to drive the concentration+®.2 uM. Following
in Eq. (6) determine the steady-state concentration of repre%his pulse, the noise is returned to its original value. At 80 minutes, a smaller

sor. The .parameteyx is qireCtly proportiqnal to the. protein 10-minute noise pulse of strendih= 0.1 is used to return the concentration
degradation rate, and in the construction of artificial net-to near its original value. The simulation technique is that of Ref. 53.

works, it can be utilized as a tunable parameter. The integer
parameterm represents the number of plasmids per cell.
While this parameter is not accessible during an experimen ~
b 9 P By the same factor as repressg=(gyK;K5). In analogy

l/tviltsh stzg:ev;?u(iisilgr;hz efsgr;ldo;/vitblaoglven copy number’vvith the equation foi, kg is the degradation rate for GFP,

The nonlinearity of Eq(6) leads to a bistable regime in and we have assumed that the number of proteins per tran-

the steady-state concentration of repressor, and in Fay. 1 script n is the same for both processes. This ability to co-

we plot the steady-state concentration of the repressor asj[%anscrlbe two genes from the same promoter and transcribe

function of the parametey, . The bistability arises as a con- in tandem has two important consequences. First, since pro-

sequence of the competition between the production of teins are typically very stable, it is often desirable to substan-

along with dimerization and its degradation. For certain pa-tla"y. increase thellrzzdegradathn rate in order to access some
onlinear regimé>?2 Such a high degradation rate typically

rameter values, the initial concentration is irrelevant, but fom_ . _ .
ill lead to a low protein concentration, and this, in turn, can

those that more closely balance production and loss, the fin:XY . L
concentration is deterr):]ined by tf]e initial value induce detection problems. The utilization of a GFP-type re-

Before turning to the next section, we make one addi_porter protein can help to mitigate this problem, since its

tional observation regarding the synonymous issues of thgegradatlon rate can be left at a relatively low value. Second,

general applicability of a synthetic network and experimentaf'“lnd perhaps more importantly, are the significant implica-

measurement. In experimental situations, a Green Fluoreé"—OnS for the generality of designer networks; in prokaryotic

cent ProteinfGFP) is often employed as a measurement tagorganlsmsany protein can be substituted for GFP and co-

known as a reporter gene. This is done by inserting the gentéan_scnbed,_ S0 _that one network design can be utilized in a
encoding GFP adjacent to the gene of interest, so that th@y“ad of situations.
reporter protein is produced in tandem with the protein of
interest. In the context of the formulation given above, we
can generalize Ed6) to include the dynamics of the reporter We now focus on parameter values leading to bistability,
protein, and consider how an external noise source can be utilized to
alter the production of protein. Physically, we take the dy-
namical variablesc and g described above to represent the
- (7 protein concentrations within a colony of cells, and consider
9=1(x)= %0, the noise to act on man ies of thi
y copies of this colony. In the absence
where f(x) is the nonlinear term in Eq.(6), v of noise, each colony will evolve identically to one of the

=kg/(drnkipoVK1K57), and the GFP concentration is scaled two fixed points, as discussed above. The presence of a noise

100 200 300 400
Time (Minutes)

IV. A NOISE-BASED PROTEIN SWITCH

x=f(X) = X,
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source will at times modify this simple behavior, whereby _ 1+ @224 29p%7

colony-to-colony fluctuations can induce novel behavior. 7= —— 5 -~ ¥x+ E(D)=g(2) + & (1).
Noise in the form of random fluctuations arises in bio- e'+er+2e>+.16e

chemical networks in one of two ways. As discussed else- (10

where in this Focus Isst internal noise is inherent in bio- Equation(10) can be rewritten as

chemical reactions, often arising due to the relatively small

numbers of reactant molecules. On the other hantkrnal 7= — I¢(2) +&,(1) (11)

X
noise originates in the random variation of one or more of gz

the externally-set control parameters, such as the rate covhere the potentiad(z) is introduced:

stants associated with a given set of reactions. If the noise

source is small, its effect can often be incorporgtedt hoc H(2)= _f 9(2)dz (12)
into the rate equations. In the case of internal noise, this is

done in an attempt to recapture the lost information embodz(z) can be viewed as an “energy landscape,” wherelsy
ied in the rate-equation approximation. But in the case otonsidered the position of a particle moving in the landscape.
external noise, one often wishes to introduce some new ph@ne such landscape is plotted in Figb)l Note that the
nomenon where the details of the effect are not preciselgtable fixed points correspond to the minima of the potential
known. In either case, the governing rate equations are augs in Fig. 1(b), and the effect of the additive noise term is to
mented with additive or multiplicative stochastic terms.cause random kicks to the partidgystem state poihtying
These terms, viewed as a random perturbation to the detejiy one of these minima. On occasion, a sequence of kicks
ministic picture, can induce various effects, most notably,may enable the particle to escape a local minimum and re-
switching between potential attractgr®., fixed points, limit  side in a new valley.
cycles, chaotic attractors® In order to analyze Eq11), one typically introduces the

In previous work, the effects of coupling between anprobability distributionP(z,t), which is effectively the prob-
external noise source and both the basal production rate argbility of finding the system in a stamat timet. Then, given
the transcriptional enhancement process were examiedgq. (11), a Fokker—Planck equation foP(zt) can be
Here, we analyze the effect of a noise source which altergonstructed’ The steady-state solution for this equation is
protein degradation. Since the mathematical formulation igjiven by
similar to that of Ref. 56, our goal here is to reproduce the A (2ID) 6(2)
phenomenology of that work under different assumptions. Py(z)=Ae ' (13
As in Ref. 56, we posit that the external noise effect will bewhereA is a normalization constant determined by requiring
small and can be treated as a random perturbation to ouhe integral ofP¢(z) over all z be unity.
existing treatment; we envision that events induced will be  Using the steady-state distribution, the steady-state mean
interactions between the external noise source and the pressny, (z), is given by
tein degradation rate, and that this will translate to a rapidly .
varying protein degradation embodied in the external param- <Z>ss:f 7Ag (2D) b2 (14)
etersy, andyy. In order to introduce this effect, we gener- 0
alize the model of the previous section such that random

_ IS n Fig. 1(c), we plot the ssm value of as a function oD,
fluctuations enter Eq.7) multiplicatively,

obtained by numerically integrating E@lL4). It can be seen
that the ssm ofz increases withD, corresponding to the
sz(x)—(yx—gx(t))x, ) iln(g;easing likelihood of populating the upper state in Fig.
Figure Xc) indicates that the external noise can be used
_ (e to control the ssm concentration. As a candidate application,
9=100~(rg~ &(1)g, © consider the following protein switch. Given parameter val-
ues leading to the landscape of Figh)l we begin the switch
where theé;(t) are rapidly fluctuating random terms with in the “off” position by tuning the noise strength to a very
zero mean(&;(t))=0). In order to encapsulate the indepen-low value. This will cause a high population in the lower
dent random fluctuations, we make the standard requiremestate, and a correspondingly low value of the concentration.
that the autocorrelation bed-correlated,” i.e., the statistics Then at some time later, consider pulsing the system by in-
of the £;(t) are such thaté;(t)€;(t'))=D 4 ;(t—t'), withD  creasing the noise to some large value for a short period of
proportional to the strength of the perturbation, and we havéime, followed by a decrease back to the original low value.
assumed that the size of the induced fluctuations is the saniéhe pulse will cause the upper state to become populated,
for both proteins. corresponding to a concentration increase and a flipping of
Since, in Eqs(8) and (9), the reporter protein concen- the switch to the “on” position. As the pulse quickly sub-
tration g does not couple to the equation for the repressosides, the upper state remains populated as the noise is not of
concentration, the qualitative behavior of the set of equationsufficient strength to drive the system across either barrier
may be obtained by analyzing We first define a change of (on relevant time scal@sTo return the switch to the off
variables which transforms the multiplicative Langevin position, the upper-state population needs to be decreased to
equation to an additive one. Letting=¢€?, Eq.(8) becomes a low value. This can be achieved by applying a second
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A ; of Sec. lll; the repressor protein Cl, which is under the con-
trol of the promoterPgry,, stimulates its own production at
low concentrations and shuts off the promoter at high con-

X‘_/\ Y centrations. On a second plasmid, we again utilizeRhg
+ ’ +§ A promoter region, but here we insert the gene encoding the

protein RcsA. The crucial interaction is between RcsA and
Cl; RcsA is a protease for repressor, effectively inactivating
its ability to control thePgy, promoter region®

The equations governing this network can be deduced

B from Eq. (6) by noting the following. First, both RcsA and
30, repressor are under the control of the same promoter, so that
— the functional form of the production terf(x) in Eq. (6)
% 20 will be the same for both proteins. Second, we envision our
— ' network as being constructed from two plasmids—one for
Q, 10; the repressor and one for RcsA, and that we have control
over the number of plasmids per cé&lbpy number of each
0 type. Last, the interaction of the RcsA and repressor proteins

0 Ti 20 Mi ;10 60 leads to the degradation of the repressor. Putting these facts
ime (Minutes) together, and letting denote the concentration of RcsA, we

FIG. 2. The relaxation oscillatofa) Schematic of the circuit. Th@gy have
promoter is used on two plasmids to control the production of repréxsor

and RcsA(Y). After dimerization, the repressor acts to turn on both plas- X= My f(X) = yX— YxyXY
mids through its interaction &gy, . As its promoter is activated, RcsA
concentrations rise, leading to an induced reduction of the reprébsdhe =m,f(X)— y(y)X, (15)

simulation of Eqs(15). Oscillations arise as the RcsA-induced degradation
of repressor causes a transversal of the hysteresis diagram in(&igTtie .
parameter values are,=10, m,=1, 3,=0.1, 7,=0.01, andy,,=0.1. y= myf (x)— s

where y(y)= yx+ vxyy, andm, andm, denote the plasmid

noise pulse of intermediate strength. This intermediate valu§oPy numbers for the two species.

is chosen large enough so as to enhance transitions to the In Fig. 2b), we present simulation results for the con-

lower state, but small enough as to remain prohibitive tocentration of repressor as a function of time. The nature of

upper-state transitions. the oscillations can be understood using Fi@).1Suppose
Figure Xd) depicts the time evolution of the switching We begin with a parameter value o{y)=4 on the upper

process for noise pulses of strengihs=1.0 andD=0.1. branch of the figure. The large value of the repressor will

Initially, the concentration begins at a level 6f0.4 uM, then serve to activate the promoter for the RcsA, and thus

corresponding to a low noise value Bf=0.01. At 40 min- lead to its increased production. An increase in the RcsA acts

utes, a noise burst of strengB=1.0 is used to drive the @S an additive degradation term for the repregsee Eq.
concentration to a value of 2.2 uM. Following this burst, (19, and thus effectively induces slow motion to the right
the noise is returned to its original value. At 80 minutes, a©" the upper branch of Fig.(d. This motion will continue

second noise burst of strengbh=0.1 is used to return the Until the repressor concentration falls off the upper branch at
concentration to its original value. v(y)~5.8. At this point, with the repressor concentration at

a very low value, the promoters are essentially turned off.
Then, as RcsA begins to degrade, the repressor concentration
slowly moves to left along the lower branch of Figaj
The repressillator represents an impressive step towardsitil it encounters the bifurcation point &{y)~3.6. It then
the generation of controllablan vivo genetic oscillations. jumps to its original high value, with the entire process re-
However, there were significant cell-to-cell variations, apparpeating and producing the oscillations in FigbR2
ently arising from small molecule number fluctuatichs® The oscillations in Fig. @) are for specific parameter
In order to circumvent such variability, the utilization of values; of course, not all choices of parameters will lead to
hysteresis-based oscillations has recently been propdsed. oscillations. The clarification of the specific parameter values
this work, it was shown how a model circadian network canleading to oscillations is therefore important in the design of
oscillate reliably in the presence of internal noise. In thissynthetic networké! For proteins in their native state, the
section, we describe an implementation of such an oscillatodegradation rateg, andy, are very small, corresponding to
based on the repressor network of Sec. Ill. the high degree of stability for most proteins. For example, a
The hysteretic effect in Fig.(4) can be employed to consistency argument applied to a similar modelXgrhage
induce oscillations, provided we can couple the network to @witching® leads to 7y,~0.004. However, using a
slow subsystem that effectively drives the paramegtgr  temperature-sensitive variety of the repressor protgircan
This can be done by inserting a repressor protease under the made tunable over many orders of magnitude. Other tech-
control of a separat®r,, promoter region. The network is niques, such as SSRA tagging or titration, can be employed
depicted in Fig. £a). On one plasmid, we have the network to increase the degradation rate for RcsA. The copy numbers

V. A GENETIC RELAXATION OSCILLATOR
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40, FIG. 4. Parameter dependence of the oscillatory pe(@dAn increase in
m 7y decreases the period of oscillatiolis) The period depends very weakly
y 30 on the copy number. Ifa) m,=10 and in(b) y,=0.01, and for both plots,
other parameter values agg=0.1, y,y=0.1, andm,=1.
204
104 7 -
04 : . ; .
0 50 100 150 200 regime is increased for smaller values gf, and, in both

my cases, small values of, are preferable. Moreover, both

FIG. 3. Oscillatory regimes for the relaxation oscillat@). The bifurcation Flg.S. 3‘?) and 3b) indicate that the system will OS‘_:'”ate for
wedge is larger for smaller values of the parametgr. This larger regime  arbitrarily small values of the repressor degradation param-
corresponds to larger values of the RcsA degradation paramgteNote eter y,. In Fig. 3c) we depict the oscillatory regime as a
that the nativei.e., without tuning degradation rates ofx~y,~0.005 are  f,nction of the copy numbers, and my, and for fixed

very near the oscillatory regiméb) Bifurcation diagrams as a function of . . .
7. and 7y, and for two fixed values ofy, . The oscillatory regime is degradation rates. Importantly, one can adjust the periodic

increased for smaller values gf , and, in both cases, small valuesigfare ~ regime to account for the unknown parametgy,. Figure
preferable for oscillationgc) The bifurcation diagram as a function of the 3(c) indicates that, for oscillations, one should choose as
copy numbersn, andm, , and for fixed degradation rates. Importantly, one large a copy number as possible for the plasmid containing
can adjust the periodic regime to account for the unknown paramegjer tei c dinal hould de-
The figure also indicates that, for oscillations, one should choose as Iargetg_]e repressor pro elm(§<)' .OrreSp(_)n .”j]g Yy, one shou e
copy number as possible for the plasmid containing the repressor proteifign the RcsA plasmid with a significantly smaller copy

(my). In (@ and(b), constant parameter values ang=10 andm,=1, and numbermy .
in (¢) 7,=1.0 andy,=0.01. We now turn briefly to the period of the oscillations. If
designed genetic oscillations are to be utilized, an important
issue is the dependence of the oscillation period on the pa-
m, and m, can be chosen for a particular design, and theameter values. In Fig.(d) we plot the oscillation period for
parametery,,, which measures the rate of repressor degraour Cl-RcsA network as a function of the degradation pa-
dation by RcsA, is unknown. rametery, , and for other parameter values corresponding to
In Fig. 3(a), we present oscillatory regimes for E45  the lower wedge of Fig.(®). We observe that an increase in
as a function ofy, andy,, and for two fixed values of the vy will decrease the period of oscillations. Further, since the
parametery,,. We see that the oscillatory regime is larger cell-division period forE. coliis ~35-40 minutes, we note
for smaller values of the parametgy, . However, the larger that the lower limit roughly corresponds to this period, and
regime corresponds to larger values of the degradation rathat, at the upper limit, we can expect four oscillations per
for RcsA. Interestingly, if we take the nativ@e., without  cell division. The utilization of tuning the period of the os-
tuning degradation rates to bg,~ y,~0.005, we note that cillations to the cell-division time will be discussed in the
the system is naturally poised very near the oscillatory renext section. In Fig. é), we plot the period as a function of
gime. In Fig. 3b), we present the oscillatory regime as athe copy numbem,. We observe that the period depends
function of y, andy,,, and for two fixed values of,,. The  very weakly on the copy number.
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VI. DRIVING THE OSCILLATOR A
. . . . . 141 3:2I " 3:1} ]
We next turn to the utilization of an intrinsic cellular
process as a means of controlling the oscillations describet 12h 1:2 21 5:2
in the previous section. We will first consider a network @ {
design which exhibits self-sustained oscillatioe., with 2 1} "
parameters that are in one of the oscillatory regions of Fig.g.
3), and discuss the driving of the oscillator in the context of g 0-8r
synchronization. As a second design, we will consider a syn-2 :
: ; . £ 06}
thetic network with parameter values near, but outside, the_é
oscillatory boundary. In that case, we will show how reso-Q g4}
nance can lead to the induction of oscillations and amplifi-
cation of a cellular signal. 02
We suppose that an intrinsic cellular process involves . . . . .
oscillations in the production of proteld, and that the con- 0 0 9.0 18.0 27.0 36.0 45.0
centration ofU is given byu=ugsinwt. In order to couple Period (Minutes)
the oscillations ofJ to our network, we imagine inserting the
gene encoding repressor adjacent to the gene encadling
i i i i iodi i B C D
Then, sinceU is being transcribed periodically, the co % 30, 30
transcription of repressor will lead to an oscillating source Sz 20, 20
term in Eqg.(15), %-10 10 10
. o i o
XIme(X)— YyX— yxyxy+ Fsin(wt), 0 20 40 60 8 O 20 40 60 020 40 60 &0 100
(16) Time (Minutes) Time (Minutes) Time (Minutes)
y= myf(x) —WY- FIG. 5. Dynamics of a periodically driven relaxation oscillator—Etf);

We first consider parameter values as in Fig. 2, 50 thaliesinlpocSile o peae e o0 1 & perod.ampiuce
the concentrations andy oscillate in the absence of driving. dashedperiod doublinglines define boundaries of stable periodic solutions
Here, we are interested in how the drive affects the “inter-for a given phase locking regidv:N, whereM is the number of relaxation
nal” oscillations. Although there are many interesting prop-2sciiation andN is the number of driving sinusoidal oscillationt—d

. . . . . . Oscillations in a periodically driven repressoop curve concentration to-
erties associated with driven nonlinear equations such as Egether with the oscillations of the sinusoidal drivitsttom curve. (b) 1:1
(16), we focus on the conditions whereby the periodic drivesynchronization; the 14.6 minute period of cl oscillations is equal to the
can cause the dynamics to shift the internal frequency angriving period. (c) 1:2 phase locking; the 29.2 minute period of the cl
entrain (0 the exteral drive frequenay. We utiize the  Sxhaiors = e s ong ot ding perith 21 phaseccrg e
numerical bifurcation and continuation package COND period.
determine the boundaries of the major resonance regions.
These boundaries are depicted in the parameter-space plot of
Fig. 5(@), where the period of the drive is plotted versus thenance regions characterized by rational numidrs,N, and
drive amplitude. The resonance regions form the so-calle,:N,, there is a region with ratioM ;+M>,):(N;+N,).
Arnold tongues, which display an increasing range of the  The preceding notions correspond to the driving of ge-
locking period as the amplitude of drive is increased. With-netic networks which are intrinsically oscillating. We now
out the periodic drive, the period of the autonomous oscillaturn to a network designed with parameter values just outside
tions is equal to 14.6 minutes. As one might expect, thehe oscillatory region, and consider the use of resonance in
dominant Arnold tongue is found around this autonomoushe following application. Suppose there is a cellular process
period. Within this resonance region, the period of the oscilthat depends critically on oscillations of a given amplitude.
lations is entrained, and is equal to the external periodidVe seek a strategy for modifying the amplitude of this pro-
force. The second largest region of frequency locking occursess if, for some reason, it is too small. For concreteness,
for periods of forcing which are close to half of the period of consider a cellular process linked to the cell-division period
the autonomous oscillations. As a result of the periodic driv-of the host for our synthetic network. F&: coli cells at a
ing, we observe 1:2 locking, whereby the system respondgemperature of~37 °C, this period is of order 35—40 min-
with one oscillatory cycle, while the drive has undergoneutes. Using Figs. &) and 4a), we can deduce parameter
two cycles. Other depicted resonant regidB2, 2:1, 5:2, values that will cause a CI-RscA network to oscillate, when
3:1) display significantly narrower ranges for locking peri- driven, with this period. The lower wedge of Fig@Bim-
ods. This suggests that higher order frequency locking wilplies that, fory,,=0.1, we should design the network with
be less common and probably unstable in the presence ohlues ofy, and y, just below the lower boundary of the
noise. Outside the resonance regions shown in F&@.dhe  wedge. Figure @) implies that, forvy,=0.1, a choice of
can find a rich structure of very narraw:N locking regions  y,=0.004 will yield oscillations with a period close to the
with M andN quite large, together with quasiperiodic oscil- cell-division period. In order to stay outside the oscillatory
lations. The order of resonances along the drive period axigegion, we therefore choosg, just below this value. Taken
is given by the Farey sequent®i.e., in between two reso- together, these choices will yield a network whereby oscilla-
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10 A The genetic network of phage switches its host bacte-
" . : sossecsssssasnasnas rium from the dormant lysogenous state to the lytic growth
0.8- 52 - state in roughly twenty minut&§® As discussed in Sec. II,
Fx 0.6. 1 13 the regulatory network implementing this exceptionally fast
' : | switch has two main features: two proteif@l and Crg
0.4 Il compete directly for access to promoter sites; and one of the
0.2. : l proteins(Cl) positively regulates its own level of transcrip-
i 1 tion. Here, we compare a synthetic switch based onithe
0-% 5 6?;‘ o —0_'_6 08 10 phage’s switching mechanism to another two-protein switch
) ) ) T ) ) ' (the toggle switch described in Ref. 22and numerically
show that the\-like system offers a faster switching time
B under comparable conditions.
304 To implement the synthetix switch, we use the plasmid
described in Sec. Ill, on which thBg, promoter controls
g 20. the expression of the repressor protein, CI. To this, we add
a second plasmid on which th#; promoter is used to con-
10. trol the expression of Cro. The operator regions OR1, OR2,
and OR3 exist on each plasmid, and both proteins are ca-
0 pable of binding to these regions on either of the plasmids.
00 02 04 06 08 1.0 On the PRM—promoter.pIasmid, t.rans.cription of Cl takes
- place whenever there is no protduf either type bound to

OR3; when Cl is bound to OR2, the rate of CI transcription
FIG. 6. (a) As a function of the driving amplitud€, the amplitudel’, of is enhanced. On theg-promoter plasmid, Cro is transcribed
the induced network oscillations shows a sharp increase for a critical valugmy when operator site OR3 is either clear, or has a Cro

of the drive. The critical value corresponds to a drive large enough to inducey. L . - -
the hysteretic oscillations, and it increases as one decrggsasd moves %“mer bound to it; either protein belng bound to either OR1

away from the oscillatory region in parameter space. The three curves d&f ORZ_haS the effect of halting the t_ranscription of Cro.
noted 1, 2, and 3 are fop, values of 0.0038, 0.0036, and 0.0034) The Letting y represent the concentration of Cro, the compe-

gain as a function of the drive amplitude fgf,=0.0038. Close to the tition for operator sites leads to equations of the foi(m
oscillatory region, a significant gain in the drive amplitude can be induced.

Parameter values for both plots agg=0.1, 7,,=0.1, m=10, andm, =f(X,y) = wX, y=09(X,y)—yy. We derive the form of
=1. Note that, corresponding to these values, the network does not oscillathese equations by following the process described in Sec.
(without driving for ,<0.004[see the bottom wedge of Fig(a3]. ll. As with the CI plasmid of that section, we have Ha)

describing the equilibrium reactions for the binding of CI to
_ . the various operator sites. To these, we add the reactions
tions can be induced by cellular processes related to cefintailing the binding of Cro, and the reactions in which both

division. In Fig. Ga), we plot the drive versus response am- proteins are bound simultaneously to different operator sites:
plitudes C vs I'y) obtained from the numerical integration

of Eq. (16). We see that, depending on the proximity to the “s
. . - , . Y+Y=Y,,
oscillatory region, oscillations are triggered when the drive
reaches some critical amplitude. In Figb we plot the Kq
gaing=(I'+T,)/T" as a function of the drive amplitude, D+Y2:D§,
and observe that, for certain values of the amplitude of the K
1™a

drive, the network can induce a significant gain. D§+Y2 _ D}D}(,
BoKy

VIl. HARNESSING THE LAMBDA SWITCH Dg+Y2 — DgDI, (17)
The ability to switch between multiple stable states is a BaKa

critical first stgp tpyvard; ' sop.hlstlcated cellular control D}Dg +Y, = D;(D\Z(DI'

schemes. Nonlinearities giving rise to two stable states sug-

gest the possibility of using these states as digital signals to BaKa

be processed in cellular-level computatiofsee, for ex- D3D}+Y, = DJD3DJ,

ample, Refs. 30 and 340ne may eventually be able to BsKa

produce systems in which sequences of such switching X1y, — DYpX

events are combined to control gene expression in complex 1hieT meEy

ways. In any such application, the speed with which systemwhereY represents the Cro monomer, abfl represents the

make transitions between their stable states will act as a limbinding of proteinp to the OR site. For the operator region

iting factor on the time scales at which cellular events mayf A phage, we have B,=8,=B3~0.08, and

be controlled. In this section, we describe a bistable switchB,= Bg~ 1.46:4849
based on the mechanism used yphage, and show that The transcriptional processes are as follows. Transcrip-
such a system offers rapid switching times. tion of repressor takes place when there is no protefn
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either type bound to OR3. When repressor is bound to OR2,

the rate of repressor transcription is enhanced, and Cro is
transcribed only when OR3 is either vacant, or has a Cro
dimer bound to it. If either repressor or Cro is bound to either

OR1 or OR2, the production of Cro is halted. These pro-

cesses, along with degradation, yield the following irrevers-

ible reactions:

klx
D+P—D+P+nyX,

ktx
DY+ P—DJ+P+n.X,

akiy

DSDY+P — D5D+P+n.X,

Key
D+P—D+P+n)Y, (18

Kty
Dy+P—D}+P+n,Y

3 3 yh FIG. 7. Null-clines for the two-protein bistable switch systems. Stable fixed
points are marked with circles, and unstable fixed points are marked with

Kax squares(a) Null-clines for the synthetia. switch, Eqs.(19). Solid line: x
X=, =0 cline. Dashed liney=0 cline. Parameter valuesy,=0.004; vy,
=0.008; py=62.92; a=11; my=my=1; 0,=2; 0,=0.08; B;=,=03

kay =0.08; andB,=Bs=1. (b) Null-clines for the toggle switch, Eqg20).
Y—, Solid line:u=0 cline. Dashed linex =0 cline. Parameter valué¢gom Ref.

22): a;=156.25; a,=15.6; 6=2.5; u=1; 5=2.0015;[IPTG]=0; k=1.
Following the rate equation formulation of Sec. IIl, we

obtain
2 4 . aq
my(1+ X+ ao1X") U= —u,
X= — X 1+0v?
Q(X,y) 20
2 v: J— s
':M_W, 1+[u/(1+ [IPTG]/K) "
Qx.y) whereu andv are dimensionless concentrations of the Lac

where and CI proteins, respectively, and the time derivatives are

with respect to a dimensionless time=Kkgt, with ky
=2.52 h'! (Refs. 12 and 18being the protein decay rate.
The dimensionless parameterg, «,, 8, andu define the

+ B1B83Y°+ a1 Bax*y?+ Bsx?y2. basic model. The CI protein used in the experiments is

temperature-sensitive, changing its rate of degradation with
The derivatives are with respect to dimensionless time, withemperaturé?®® we modify the original model slightly to
scaling as in Sec. Ilf =t(kypodtn/K1K»), whereky, is  include the factok, which represents a varying decay rate
the transcription rate constant for Cl, amgis the number of  for the CI protein. Switching is induced by changikgor by
Cl monomers per mRNA transcript. The integergandm,  adjusting the concentration of isoprop§tb-thiogalacto-
represent the plasmid copy numbers for the two spegigs; pyranosidgIPTG); the parameter =2.9618x 10 ° M and
is a constant related to the scaling yfrelative tox. The  =2.0015(from Ref. 23 define the effect of the inducer
parametersy, and y, are directly proportional to the decay molecule IPTG on the Lac protein. Over a wide range of
rates of Cl and Cro, respectively; we will tune these values tgparameter values, the system has two stable fixed points; the
cause transitions between stable states. The system exhibitall-clines are shown in Fig.(B).
bistability over a wide range of parameter values, and we The time courses of switching between stable states in
plot the null-clines in Fig. @). the two models are shown in Fig. 8; transitions are induced
For comparison, we now consider the co-repressivédy eliminating the bistability, then restoring it. The precise

toggle switch briefly reviewed in Sec. 4%.This switch uses time course of switching from one stable state to another is
the Cl and Lac proteins, where each protein shuts off trandetermined by the way in which the model parameters are
scription from the other protein’s promoter region. The ex-adjusted to eliminate the bistability. In each case, some pa-
perimental design was guided by the model equations, rameter is increased until the system passes through a saddle

Q(X,Y)=1+X2+ a1 x*+ 010X+ Y2+ (B1+ B2)y*
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FIG. 8. Transitions between stable states for the two-protein bistable switch systems. The protein concentrations have been (ibentedizedor each
protein is normalized relative to its own maximum valu&he system parameters are varied over time, altering the stability of the system and causing
transitions, as described in the text. Upper plots: The switching of(¢ali) and Cl(dashed in the synthetic toggle modéRef. 22. The parameter values

are as given in the caption to Fig. 7, except as follos:4 hour$: [IPTG]=2 mM, k=1.0. (7—10 hourg [IPTG]=0.0,k=53.5. Lower plots: The switching

of CRO (dashed lingand Cl(solid) in the syntheticA model. The parameter values are as given in the caption to Fig. 7, except as f¢llewshours:
¥x=0.004, y,=21.6. (7-10 hourk y,=18.0, y,=0.008.

node bifurcation: two stable fixed points and one unstablenake more precise statements regarding the source of this
fixed point collapse into a single stable point. In an effort toadvantage.
examine the behavior of the two systems under analogous
conditions, we eliminate the bistability in every case by set-
ting the system to a parameter value which is 50% past th\e/m' CONCLUSION
bifurcation point; this factor was selected to correspond to  From an engineering perspective, the control of cellular
the experimental IPTG-induced switching carried out in Reffunction through the design and manipulation of gene regu-
22. latory networks is an intriguing possibility. Current examples
The transitions shown in Fig. 8 are generated as followsof potential applicability range from the use of genetically
The system begin§0—1 houy in its default bistable state, engineered microorganisms for environmental cleanup
sitting at one of the two stable fixed points. TH&R-4 hours  purpose$? to the flipping of genetic switches in mammalian
the bistability is eliminatedas described aboyewith the  neuronal cell$® While the experimental techniques em-
only remaining fixed point being such that the other proteinployed in studies of this nature are certainly impressive, it is
has a high concentration. Once the concentrations haveear that reliable theoretical tools would be of enormous
switched, the default parameters are restored and the systaralue. On a strictly practical level, such techniques could
moves to the nearby stable fixed poidt-7 hourg. Finally,  potentially reduce the degree of “trial-and-error” experi-
the system is rendered monostable ad@inl0 hourg caus- mentation. More importantly, computational and theoretical
ing another transition, followed by a perigd0—11 hours  approaches will lead to testable predictions regarding the
during which the bistable parameters are restored. current understanding of complex biological networks.
Under the conditions shown, the switch model dis- While other studies have centered on certain
plays significantly more rapid transitions between its stableaspects of naturally-occurring  genetic  regulatory
states than those seen in the model of the toggle switch. Theetworks®12-1418.24.25.38.33 ajternative approach is to focus
numerical results indicate that the properties of Xhewitch  on the design of synthetic networks. Such an engineering-
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indicating that it may be fruitful to study synthetic models and will lead, in a complementary fashion, to an enhanced
based on this natural system. Future analytical work on moddnderstanding of biological design principles. In this work,
els such as the one presented in this section may allow us tee have shown how several synthetic networks can be de-
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