REFLECTION PRINCIPLES AND LARGE CARDINALS

LAURA FONTANELLA

1. Lecture one

A reflection principle: a statement establishing for some kind of structure (e.g. a set of ordinals, a tree, a topological space ...) and a given property, that if the structure satisfies the property, then there is a substructure of smaller cardinality that satisfies the same property.

A compactness principle: a statement establishing for some kind of structure (e.g. a set of ordinals, a tree, a topological space ...) and a given property, that if every substructure of smaller cardinality satisfies the property, then the whole structure satisfies the property.

Reflection is the dual of compactness: if we have reflection for some property, than we have compactness for the negation of the property, and vice-versa.

Example:

• König's Lemma: if T is a tree of height ω whose levels are all finite, then T has an infinite branch.

(see the Appendix for the definition of "tree" in set theory)

König's Lemma is a compactness result for the property of having a branch cofinal through the tree (i.e. of the same order type as the height of the tree); it can be seen as a reflection principle for the property of not having a branch cofinal through the height of the tree.

1.1. Generalized compactness.

We recall Compactness Theorem.

Theorem 1.1. (Compactness theorem) Let Γ be a first order theory, then Γ is satisfiable if and only if it is finitely satisfiable (i.e., every finite subset of Γ has a model).

Let κ, λ be two infinite cardinals. $\mathscr{L}_{\kappa,\lambda}$ is the logic that allows conjunctions and disjunctions of less than κ many formulas, and allows quantifications over less than λ many variables.

 $\mathscr{L}_{\omega,\omega}$ corresponds to the standard first order logic.

Definition 1.2. A regular cardinal κ is a strongly compact cardinal, if for every theory Γ in $\mathscr{L}_{\kappa,\kappa}$, Γ is satisfiable if and only if it is < κ -satisfiable (i.e., every set of less than κ many sentences of Γ has a model).

Definition 1.3. A regular cardinal κ is a weakly compact cardinal, if for every theory Γ in $\mathscr{L}_{\kappa,\kappa}$ with at most κ non logical symbols, Γ is satisfiable if and only if it is $< \kappa$ -satisfiable (i.e., every set of less than κ many sentences of Γ has a model).

Stronger versions of compactness: For a given logic \mathscr{L} , we say that \mathscr{L} is μ -compact if every theory of \mathscr{L} is satisfiable if and only if it is $< \mu$ -satisfiable.

- (Magidor) there exists an *extendible* cardinal if and only if there is a cardinal μ such that second order logic is μ -compact.
- (Stavi) Vopěnka's principle holds if and only if for every logic \mathscr{L} there is a cardinal μ such that \mathscr{L} is μ -compact.

1.2. The tree property.

Tree property: A cardinal κ has the tree property if every tree of height κ with levels all of size less than κ , has a *cofinal* branch (i.e., a branch of size κ).

Fact 1.4. If κ has the tree property, then κ is regular.

Proof. Otherwise, $\kappa = \lim_{i < \gamma} \kappa_i$ where each $\kappa_i < \kappa$ and $\gamma < \kappa$. For each $i < \gamma$ let $f_i : \kappa_i \to 2$ be such that $f_i(\alpha) = i$ for every α . Let T be $\{f_i \upharpoonright \alpha; \alpha < \kappa_i, i \in I\}$, then T is a tree of height κ , every α -level has size at most $\gamma < \kappa$, yet, T does not have a cofinal branch. \Box

Proposition 1.5. If κ is a weakly compact cardinal, then κ has the tree property.

Proof. Let (T, <) be a tree of height κ with levels all of size less than κ . For each $\alpha < \kappa$, let $\{t_i^{\alpha}; i < \gamma_{\alpha}\}$ enumerate the α -th level. Fix for each $t \in T$, a propositional symbol P_t . Then $\Gamma := \{\bigvee_{i < \gamma_{\alpha}} P_{t_i^{\alpha}}; \alpha < \kappa\} \cup \{\neg(P_s \wedge P_t); s, t \in T \text{ are } <-\text{incomparable}\}$ is $< \kappa$ -satisfiable (because $ht(T) = \kappa$). Let \mathscr{M} be a model of Γ , then $\{t \in T; M \models P_t\}$ is a cofinal branch. \Box

Theorem 1.6. (Erdös and Tarski) An inaccessible cardinal is weakly compact if and only if it satisfies the tree property.

Proposition 1.7. The following hold.

- (Aronszajn) ω_1 does not have the tree property.
- (Specker) If CH holds, then ω_2 does not have the tree property.
- (Kurepa) if $2^{<\kappa} = \kappa$, then κ^+ does not have the tree property.
- (Mitchell) $\operatorname{Cons}(\exists \kappa \text{ weakly compact }) \rightarrow \operatorname{Cons}(\omega_2 \text{ has the tree property}).$
- (Mitchell) For every regular τ , Cons($\exists \kappa \text{ weakly compact}$) \rightarrow Cons(τ^{++} has the tree property).

Open questions:

- Is it possible to build a model where every regular cardinal has the tree property?
- Is there a model of the tree property at $\aleph_{\omega+1}$ where SCH fails at \aleph_{ω} ?

Exercice: prove that if κ is weakly compact, then κ is (strongly) inaccessible.

 $\mathbf{2}$

2. Lecture two

2.1. Elementary embeddings.

Given two structures M, N in a language \mathscr{L} , a function $j : M \to N$ is an *elementary* embedding if j is injective and for every formula $\varphi(x_1, \ldots, x_n)$ of \mathscr{L} and every $a_1, \ldots, a_n \in M$,

$$M \models \varphi(a_1, \dots, a_n) \iff N \models \varphi(j(a_1), \dots, j(a_n))$$

Suppose M and N contains all the ordinals, then the *critical point* of an elementary embedding $j: M \to N$, denoted cr(j) is the least ordinal α that is moved by j (if such an ordinal exists).

We are going to consider elementary embeddings $j: V \to M$ where M is an inner model, i.e. M is a transitive \in -model of ZF that contains all the ordinals. Transitive means that for every $x \in M$, $x \subseteq M$.

Remark 2.1. If $j : V \to M$ is an elementary embedding where $M \subseteq V$ is an inner model and j has critical point κ , then $j(\kappa) > \kappa$. Because j is injective.

Definition 2.2. $\kappa > \omega$ is a measurable cardinal if and only if there is an elementary embedding $j: V \to M$ where M is an inner model of ZFC and κ is the critical point of j.

Proposition 2.3. $\kappa > \omega$ is a strongly compact cardinal if and only if for every λ there is an elementary embedding $j: V \to M$ where M is an inner model of ZFC, κ is the critical point of $j, j(\kappa) > \lambda$ and every set $X \subseteq M$ of size at most λ is covered by a set $Y \in M$ such that $M \models |Y| < j(\kappa)$.

Definition 2.4. $\kappa > \omega$ is a supercompact cardinal, if for every λ there is an elementary embedding $j : V \to M$ where M is an inner model of ZFC, κ is the critical point of j, $j(\kappa) > \lambda$ and every set $X \subseteq M$ of size at most λ belongs to M.

Definition 2.5. $\kappa > \omega$ is a huge, if for every λ there is an elementary embedding $j : V \to M$ where M is an inner model of ZFC, κ is the critical point of j, and every set $X \subseteq M$ of size at most $j(\kappa)$ belongs to M.

Reflection for the chromatic number. Given a graph G, the *chromatic number* of G, denoted $\chi(G)$ is the least ν such that there is a colouring of the vertices of G in ν many colours such that any two adjacents vertices have distinct colours.

Proposition 2.6. Let κ be a measurable cardinal and G a graph of size κ , let $\mu < \kappa$ and let $\chi(G) > \mu$, then there is an induced subgraph H of size $< \kappa$ such that $\chi(H) > \mu$.

Proof. W.l.o.g. G has underlying set κ . Let $j: V \to M$ be an elementary embedding with critical point κ , then j(G) is a graph with underlying set $j(\kappa)$. The subgraph induced on κ is G and, since $M \subseteq V$, it is clear that in M we have $\chi(G) > \mu$. So M thinks that j(G) has a subgraph of size $\kappa < j(\kappa)$ that has chromatic number $> \mu$. Moreover $j(\mu) = \mu$ because $cr(j) = \kappa$, so by elementarity, G has a subgraph of size $< \kappa$ with chromatic number $> \mu$. \Box

Reflection for transversals. A transversal is a one-to-one choice function.

Proposition 2.7. Let κ be a measurable cardinal and let \mathcal{F} be a family of countable sets with $|\mathcal{F}| = \kappa$. If \mathcal{F} has no transversals, then there is $\mathcal{F}' \subseteq \mathcal{F}$ of size $< \kappa$ that has no transversals.

Proof. Let $j: V \to M$ be an elementary embedding with critical point κ , then j(F) is a family of countable sets with $|j(F)| = j(\kappa)$. j''F is a subfamily of j(F) of size $< \kappa$. Since F has no transversal, j''F has no transversal. So j(F) has a subfamily of size $< j(\kappa)$ with no transversals. By elementarity F has a subfamily of size $< \kappa$ with no transversals. \Box

Exercice: Using elementary embeddings, prove that if κ is measurable, then κ has the tree property.

2.2. Rado's conjecture.

Definition 2.8. Given a tree T of height ν^+ , we say that T is special if there exists a function $f: T \to \nu$ such that for every two nodes x < y, one has $f(x) \neq f(y)$.

In particular, a special tree has no cofinal branch.

Rado's conjecture RC: any tree T of height ω_1 is special if and only if all subtrees of cardinality \aleph_1 are specials.

Theorem 2.9. (Todorčević) $Cons(\exists \kappa \text{ strongly compact}) \rightarrow Cons(RC).$

Proposition 2.10. Suppose that κ is a supercompact cardinal and T is a of height ω_1 . If every subtree of T of size $< \kappa$ is special, then T is special.

Proof. Let λ be the size of T. Fix a λ -supercompact embedding with critical point κ . W.l.o.g. T has underlying set λ . By elementarity j(T) is a tree with underlying set $j(\lambda)$ and every subtree of j(T) of size $\langle j(\kappa) \rangle$ is special. Let $T^* := (j'' \lambda, \langle_{j(T)})$, then $T^* \in M$ by the closure of M. It is easy to see that T^* is isomorphic to T (the isomorphism is the embedding j). It follows that the height of T^* is the same as T, namely ω_1 . Moreover $|T^*| = \lambda \langle j(\kappa) \rangle$ so T^* is special so there is a specializing function $f^* : T^* \to \omega$. We define $f : T \to \omega$ by letting $f(\alpha) := j^{-1}f^*j(\alpha)$, then f witnesses that T is special.

To prove the consistency of Rado's Conjecture one forces with $Coll(\omega_1, < \kappa)$ so κ becomes \aleph_2 . Then one shows that the conclusion of this proposition holds also in the generic extension, thus every non special tree of height ω_1 has a non-special subtree of size $< \kappa = \omega_2$, namely of size \aleph_1 .

Difficult open question Is RC equiconsistent with a strongly compact cardinal?

- RC is independent from CH;
- RC implies $2^{\aleph_0} \leq \aleph_2$;
- RC implies $\theta^{\aleph_0} = \theta$ for every regular cardinal θ ;
- RC implies SCH.

Theorem 2.11. (Solovay) If κ is strongly compact, then SCH holds above κ .

RC has the strength of a strongly compact cardinal and it is a sort of property of strong compactness for \aleph_2 , so by analogy it is not surprising that RC implies SCH "above \aleph_2 " thus everywhere.

Open question: Does the strong tree property at \aleph_2 implies SCH?

4

A tree witnessing the failure of the tree property at some cardinal κ is called a κ -Aronszajn tree.

Theorem 2.12. (Torres-Perez, Todorčević) Assume RC. Then CH is equivalent to the existence of a special \aleph_2 -Aronszajn tree.

3. Lecture three

3.1. Stationary sets.

We recall the definition of club and stationary set.

Let κ be a limit ordinal of uncountable cofinality. A *club* is a subset $C \subseteq \kappa$ such that

- C is closed (i.e., for every sequence $\langle \beta_i \rangle_{i < \gamma}$ of ordinals in C such that $\gamma < \kappa$, $\lim_{i < \gamma} \beta_i \in C$);
- C is unbounded (i.e., for every $\beta < \kappa$ there is $\beta' \in C$ such that $\beta' > \beta$).

 $S \subseteq \kappa$ is stationary if for every club $C \subseteq \kappa$, $S \cap C \neq \emptyset$.

Example: For κ regular,

- for every $\gamma < \kappa, \kappa \setminus \gamma$ is a club of κ .
- for $\lambda < \kappa$, we let $E_{\lambda}^{\kappa} := \{\alpha < \kappa; \operatorname{cof}(\alpha) = \lambda\}$. E_{λ}^{κ} is a stationary subset of κ .

Fact 3.1. (exercice) The intersection of less than κ club subsets of κ is a club.

Theorem 3.2. (Fodor) If S is a stationary subset of κ and f is a function on κ such that for every $\alpha \in S \setminus \{0\}$, $f(\alpha) < \alpha$, then f is constant on a stationary subset of S.

3.2. Reflection of stationary sets.

Reflection of stationary sets: the reflection of stationary sets holds at a cardinal κ if for every stationary set $S \subseteq \kappa$, there exists $\alpha < \kappa$ of uncountable cofinality, such that $S \cap \alpha$ is stationary (we say that S "reflects" at α).

Applications: For a cardinal κ the following are equiconsistent:

- every stationary subset of κ reflects;
- every κ -free abelian group is κ^+ -free.

Fact 3.3. If κ is the successor of a regular cardinal λ , then there is a stationary subset of κ that does not reflect.

Proof. The set $E_{\lambda}^{\kappa} := \{ \alpha < \kappa; \operatorname{cof}(\alpha) = \lambda \}$ is stationary, but it does not reflect. Indeed, for every $\alpha < \lambda^{+}$ we can always find a club $C_{\alpha} \subseteq \alpha$ of points of cofinality $< \lambda$.

Proposition 3.4. If κ is a weakly compact cardinal, then every stationary subset of κ reflects.

We prove the reflection of stationary sets from a measurable cardinal. Let $S \subseteq \kappa$ be a stationary subset. Let $j: V \to M$ be an elementary embedding witnessing the fact that κ is measurable. j(S) is a stationary subset of $j(\kappa)$. $S = j(S) \cap \kappa$, thus j(S) reflects to $\kappa < j(\kappa)$. So M thinks that $j(\kappa)$ reflects to some ordinal below $< j(\kappa)$, thus by elementarity S reflects to some ordinal $\alpha < \kappa$.

Proposition 3.5. If κ is a supercompact cardinal, then for every $\lambda > \kappa$, every stationary subset of $E_{<\kappa}^{\lambda}$ reflects to some point $\alpha < \lambda$ of cofinality $< \kappa$.

Proof. Let $S \subseteq E_{<\kappa}^{\lambda}$ be a stationary subset of λ . Let $j: V \to M$ be a λ -supercompact embedding with critical point κ (see the characterisation of strong compactness). By elementarity j(S) is a stationary subset of $E_{<\kappa}^{j(\lambda)}$ (the points of j(S) remain of cofinality $< \kappa$ because κ is the critical point). Let $\gamma := \sup j'' \lambda$. Then $\operatorname{cof}^{M}(\gamma) < j(\kappa)$ and $\gamma < j(\lambda)$. It is easy to see that $j(S) \cap \gamma = j'' S$ and, since S is stationary, so is $j(S) \cap \gamma$. Thus M thinks that j(S) reflects to some ordinal of cofinality $< j(\kappa)$. By elementarity, S reflects to an ordinal of cofinality $< \kappa$.

Exercice: show that κ strongly compact is enough for this result.

Theorem 3.6. (Magidor '62) $\operatorname{Cons}(\exists \langle \kappa_n \rangle_{n < \omega} \text{ supercompact cardinals}) \to \operatorname{Cons}(every stationary subset of \aleph_{\omega+1} reflects).$

Open questions: Is there a model where $\aleph_{\omega+1}$ satisfies both the tree property and the reflection of stationary sets?

3.3. Delta-reflection.

Definition 3.7. (Magidor Shelah) Given two cardinals $\kappa < \lambda$, $\Delta_{\kappa,\lambda}$ is the statement that for every cardinal $\mu < \kappa$, for every stationary set $S \subseteq E_{<\kappa}^{\lambda} := \{\alpha < \lambda; \operatorname{cof}(\alpha) < \kappa\}$ and for every algebra A on λ with μ operations, there exists a subalgebra A' of order type a regular cardinal $\eta < \kappa$ such that $S \cap A'$ is stationary in $\sup(A')$.

We say that λ has the *Delta-reflection* if $\Delta_{\kappa,\lambda}$ holds for every $\kappa < \lambda$.

The Delta-reflection at some cardinal κ has many applications. Suppose that κ has the Delta-reflection, then

- (a) κ satisfies the reflection of stationary sets;
- (b) every κ -free abelian group of size κ is free;
- (c) If G is a graph of size κ and every subgraph of G of smaller cardinality has coloring number¹ $\lambda < \kappa$ then G has coloring number λ ;
- (d) If F is a family of κ many countable sets, and if every subfamily F' of F of smaller cardinality has a transversal (i.e. a one-to-one choice function on F'), then the whole family has a transversal;
- (e) If X is a topological space locally of cardinality $< \kappa$ and X is κ -collectionwise Hausdorff (i.e. every closed discrete subset of X of size $< \kappa$ is separated), then X is collectionwise Hausdorff.

C is separated if there is a family of mutually disjoint open sets $\{U_y; y \in C\}$ such that for all $y, C \cap U_y = \{y\}$.

It should be pointed out that all these compactness phenomenons can be demonstrated in ZFC for κ singular, they all follow from *Shelah's compactness theorem for singular cardinals*. Thus the

¹A graph has coloring number λ if there is a well order on the graph such that every element is connected to less than λ many elements preceding it in this well order

Theorem 3.8. If κ is a weakly compact cardinal, then κ has the Delta-reflection.

Theorem 3.9. (Magidor, Shelah '94)

 $\operatorname{Cons}(\exists \langle \kappa_n \rangle_{n < \omega} \text{ supercompact cardinals}) \to \operatorname{Cons}(\aleph_{\omega^2 + 1} \text{ has the Delta-reflection}).$

Fact 3.10. (Magidor, Shelah, Ekler et al.) No regular cardinal below \aleph_{ω^2+1} can have the Delta-reflection.

It is important to point out the fact that, unlike the tree property, the Delta-reflection is compatible with GCH: in fact, in Magidor and Shelah's model, GCH holds.

Theorem 3.11. (F., Magidor '15)

- the Delta-reflection does not imply the tree property (one can build a model where \aleph_{ω^2+1} has the Delta-reflection but not the tree property);
- Delta-reflection and tree property are compatible at \aleph_{ω^2+1} (both properties hold at \aleph_{ω^2+1} in Magidor and Shelah's model).

In particular \aleph_{ω^2+1} can have simultaneously the Delta-reflection and the tree property.

Magidor and Shelah also proved that under the same assumptions one can build a model where, for the first cardinal fixed point κ , the properties (a), ..., (e) above hold with no limitation on the size of the structure, i.e. for instance, every κ -free abelian group (of any size) is free.

Open question: Does Delta-reflection implies compactness for the chromatic number?

4. Lecture four

4.1. Clubs of $\mathcal{P}_{\kappa}(\lambda)$.

Let κ be a regular cardinal, and let $\lambda \geq \kappa$, we denote by $\mathcal{P}_{\kappa}(\lambda)$ the set $\{x \subseteq \lambda; |x| < \kappa\}$ and we denote by $[\lambda]^{\kappa}$ the set $\{x \subseteq \lambda; |x| = \kappa\}$.

Definition 4.1. A set $C \subseteq \mathcal{P}_{\kappa}(\lambda)$ is a club if the following hold:

- (1) C is closed (i.e., for any chain $x_0 \subseteq x_1 \subseteq \ldots \subseteq x_{\zeta} \subseteq \ldots, \zeta < \alpha$ of sets in C, with $\alpha < \kappa$, the union $\bigcup_{\zeta < \alpha} x_{\zeta}$ is in X);
- (2) C is unbounded (i.e., for every $x \in \mathcal{P}_{\kappa}(\lambda)$ there is $y \supseteq x$ such that $x \in C$).

Definition 4.2. A set $S \subseteq \mathcal{P}_{\kappa}(\lambda)$ is stationary if $S \cap C \neq \emptyset$ for every club $C \subseteq \mathcal{P}_{\kappa}(\lambda)$.

Exercice 4.3. The intersection of less than κ club subsets of $\mathcal{P}_{\kappa}(\lambda)$ is a club of $\mathcal{P}_{\kappa}(\lambda)$.

Theorem 4.4. (Fodor-Jech) If S is a stationary subset of $\mathcal{P}_{\kappa}(\lambda)$ and f is a function on $\mathcal{P}_{\kappa}(\lambda)$ such that for every $x \in S \setminus \{\emptyset\}, f(x) \in x$, then f is constant on a stationary subset of S.

Fact 4.5. (Menas) For every club $C \subseteq \mathcal{P}_{\kappa}(\lambda)$, there is a function $f : [\lambda]^{<\omega} \to \mathcal{P}_{\kappa}(\lambda)$, such that if $\operatorname{Cl}_{f} := \{x \in \mathcal{P}_{\kappa}(\lambda); \forall e \subseteq x \ (f(e) \subseteq x)\}$, then $\operatorname{Cl}_{f} \subseteq C$

Proof. By induction on |e|, we find for each $e \in [\lambda]^{<\omega}$ an infinite set $f(e) \in C$ such that $e \subseteq f(e)$ in such a way that $f(e') \subseteq f(e)$ whenever $e' \subseteq e$. So f is defined. To see that $\operatorname{Cl}_f \subseteq C$, let x be a closure point of f. Then, $x = \bigcup \{f(e); e \in [x]^{<\omega}\}$. This is the union of a family of less than κ many elements of C, so $x \in C$.

4.2. Reflection principle.

If S is a stationary subset of $[\lambda]^{\aleph_0}$, and $X \in [\lambda]^{\aleph_1}$, then we say that S reflects at X if $S \cap [X]^{\aleph_0}$ is stationary in $[X]^{\aleph_0}$.

The following principle was introduced by Foreman, Magidor and Shelah.

(Weak) Reflection principle: For every regular $\lambda \geq \aleph_2$, every stationary set $S \subseteq [\lambda]^{\aleph_0}$ reflects at some $X \in [\lambda]^{\aleph_1}$ such that $X \supseteq \omega_1$.

We denote by $RP(\lambda)$ the reflection principle at λ , namely for stationary subsets of $[\lambda]^{\aleph_0}$.

Attention: the condition $X \supseteq \omega_1$ is important (for the following proposition).

Proposition 4.6. (Feng, Jech) Let $\lambda \geq \aleph_2$ be a regular cardinal, then the following are equivalent:

- (1) The reflection principle holds at λ ;
- (2) for every stationary subset $S \subseteq [\lambda]^{\aleph_0}$, the set $\{X \in [\lambda]^{\aleph_1}; S \text{ reflects at } X\}$ is stationary.

Proof.

 (\Leftarrow) : it is enough to observe that $\{X \in [\lambda]^{\aleph_1}; X \supseteq \omega_1\}$ is a club.

 (\Rightarrow) : Let $S \subseteq [\lambda]^{\aleph_0}$ be a stationary set. Suppose by contradiction that there is a club $C \subseteq [\lambda]^{\aleph_1}$ such that S does not reflect in any set of C. Let $g: [\lambda]^{<\omega} \to \mathcal{P}_{\aleph_2}(\lambda)$, such that $\operatorname{Cl}_g \subseteq C$. Cl_g is a club in $[\lambda]^{\aleph_0}$, so the set $S \cap \operatorname{Cl}_g$ is stationary, thus by the reflection principle, it reflects to some set $X \supseteq \omega_1$ of size \aleph_1 . In particular S reflects on X, so X does not belong to C.

Fix a bijection $f: \omega_1 \to X$. Observe that $\{y \in [X]^{\aleph_0}; f^{-1}[y] \subseteq y\}$ is a club in $[X]^{\aleph_0}$ (here we use $\omega_1 \subseteq X$, otherwise this set is empty), hence $T := \{y \in S \cap \operatorname{Cl}_g \cap [X]^{\aleph_0}; f^{-1}[y] \subseteq y\}$ is stationary in $[X]^{\aleph_0}$. It follows that $\{f^{-1}[y]; y \in T\}$ is stationary in $[\omega_1]^{\aleph_0}$, moreover $f[f^{-1}[y]] = y \supseteq f^{-1}[y]$, therefore the set

$$T^* := \{ a \in [\omega_1]^{\aleph_0}; a \subseteq f[a] \text{ and } f[a] \in S \cap \operatorname{Cl}_g \}$$

is stationary in $[\omega_1]^{\aleph_0}$.

Now we prove that X is closed by g, thus $X \in \operatorname{Cl}_g$ contradicting $X \notin C$. Let $e \in [X]^{<\omega}$, then $f^{-1}[e] \in [\omega_1]^{<\omega}$ so there is $a \in T^*$ such that $a \supseteq f^{-1}[e]$. By definition of T^* , we have $a = f^{-1}[y]$ for some $y \in T \subseteq S \cap \operatorname{Cl}_g$. Observe that $e = f[f^{-1}[e]] \subseteq f[a] = y$, thus $g[e] \subseteq y$ because y is closed by g. Since $y \subseteq f[\omega_1] = X$, we proved $g[e] \subseteq X$ as required. \Box

For $\lambda = \aleph_2$ the assumption $X \supseteq \omega_1$ can be dropped.

Theorem 4.7. (Shelah, Todorčević) The reflection principle at \aleph_2 implies that the continuum is at most ω_2 .

Proof. For each uncountable $\alpha < \omega_2$, let $C_\alpha \subseteq [\alpha]^{\aleph_0}$ be a club of cardinality \aleph_1 , and let $D = \bigcup_{\omega_1 \leq \alpha < \omega_2} C_\alpha$. D must contain a club: otherwise $S := D \setminus [\omega_2]^{\aleph_0}$ is stationary, so by $RP(\aleph_2)$, using the proposition above, we can find an ordinal $\aleph_1 \leq \alpha < \omega_2$ such that $S \cap \alpha$ is stationary on α (indeed, ω_2 is a club of $[\omega_2]^{\aleph_0}$), a contradiction. We have $|D| = \aleph_2$ (because it contains a club). However, a result of Baumgartner and Taylor shows that every club of $[\omega_2]^{\aleph_0}$ has size $\aleph_2^{\aleph_0}$, hence $\aleph_2^{\aleph_0} = \aleph_2$, in particular the continuum is at most \aleph_2 .

8

Theorem 4.8. If the existence of a supercompact cardinal is consistent with ZFC, then the reflection principle is also consistent.

Proposition 4.9. The reflection principle at \aleph_2 is equiconsistent with the existence of a weakly compact cardinal.

Theorem 4.10. The reflection principle implies the singular cardinal hypothesis.

4.3. The strong reflection principle. Todorčević formulated a stronger version of the reflection principle, called *Strong reflection principle*.

Strong reflection principle, SRP: for every κ , every $S \subseteq [\kappa]^{\omega}$ and for every regular $\theta > \kappa$ there is an increasing continuous \in -chain $\{N_{\alpha}; \alpha < \omega_1\}$ of countable elementary models of H_{θ} (with N_0 containing a predefined element of H_{θ}) such that for all $\alpha < \omega_1, N_{\alpha} \cap \kappa \in S$ if and only if there exists a countable elementary submodel M of H_{θ} such that $N_{\alpha} \subseteq M$, $M \cap \omega_1 = N_{\alpha} \cap \omega_1$ and $M \cap \kappa \in S$.

Definition 4.11. A set $S \subseteq [\lambda]^{\omega}$ is projective stationary if for every stationary set $T \subseteq \omega_1$, the set $\{X \in S; X \cap \omega_1 \in T\}$ is stationary.

Equivalently, for every club $C \subseteq [\lambda]^{\omega}$, the projection $(S \cap C) \upharpoonright \omega_1$ contains a club.

Strong reflection principle is equivalent to: for every $\lambda \geq \aleph_2$, if $S \subseteq [H_{\lambda}]^{\omega}$ is projective stationary, then there exists an elementary chain $\langle M_{\alpha}; \alpha < \omega_1 \rangle$ of countable models such that $M_{\alpha} \in S$ for all α .

Theorem 4.12. (Woodin) SRP implies that the continuum is \aleph_2 .

5. Lecture five

General Chang conjecture:

Definition 5.1. Given a countable first order language \mathscr{L} with a distinguished unary predicate R, a structure \mathscr{M} in \mathscr{L} is said to be a (λ, κ) -structure if the underlying set of \mathscr{M} has size λ and $R^{\mathscr{M}}$ is a set of size κ .

The general form of Chang Conjecture, denoted $(\lambda_1, \kappa_1) \twoheadrightarrow (\lambda_0, \kappa_0)$, states that every (λ_1, κ_1) -structure has a (λ_0, κ_0) elementary substructure.

This is a two-cardinal version of Löwenheim-Skolem theorem.

Fact 5.2. Let κ be a huge cardinal and let $j: V \to M$ witnessing its hugeness, let $\lambda = j(\kappa)$ then $(\lambda, \kappa) \twoheadrightarrow (\kappa, < \kappa)$.

Proof. Let $\mathcal{N} = (N, R)$ be a (λ, κ) -structure. We can assume that $N = \lambda$ and $R = \kappa$. Let $j: V \to M$ be an elementary embedding witnessing the fact that κ is huge and with $j(\kappa) = \lambda$. Then $j(\mathcal{N}) = (j(N), j(R))$ is a $(j(\lambda), j(\kappa))$ -structure. Let $N^* := j''\lambda$ and $R^* := j'' R = \kappa$ then (N^*, R^*) is a (λ, κ) -structure. Moreover $\lambda = j(\kappa)$ and $\kappa < j(\kappa)$ so it is in fact a $(j(\kappa), < j(\kappa))$ -structure. (N^*, R^*) is an elementary substructure of $j(\mathcal{N})$, so M thinks that $j(\mathcal{N})$ has an elementary substructure of order type $(j(\kappa, < j(\kappa)))$. By elementarity there exists in V an elementary $(\kappa, < \kappa)$ -substructure for \mathcal{N} .

The usual Chang's Conjecture, CC is $(\omega_2, \omega_1) \twoheadrightarrow (\omega_1, \omega)$

Fact 5.3. (Todorčević) RC implies CC.

Theorem 5.4. (Silver, Donder) Cons($\exists \kappa \ \omega_1$ -Erdös cardinal) \rightarrow Cons(CC).

(The existence of an ω_1 -Erdös cardinal is a weaker axiom than the existence of a measurable cardinal).

Theorem 5.5. (Laver) $\operatorname{Cons}(\exists \kappa \ huge) \to \operatorname{Cons}((\omega_3, \omega_2) \twoheadrightarrow (\omega_2, \omega_1)).$

Theorem 5.6. for $n \ge 1$, $\operatorname{Cons}(\exists \kappa \ huge) \to \operatorname{Cons}((\omega_{n+2}, \omega_{n+1}) \twoheadrightarrow (\omega_{n+1}, \omega_n))$.

Theorem 5.7. (Levinski, Magidor, Shelah) $\operatorname{Cons}(\exists \kappa \ huge) \to \operatorname{Cons}((\aleph_{\omega+1}, \aleph_{\omega}) \twoheadrightarrow (\omega_1, \omega_0)).$

Open question:

- For $n \ge 1$, is $(\aleph_{\omega_{n+1}}, \aleph_{\omega_n}) \twoheadrightarrow (\omega_n, \omega_{n-1}))$ consistent?
- Is it possible to prove the result of Levinski, Magidor and Shelah from a supercompact cardinal?

Strong Chang Conjecture, CC^* : there are arbitrarily large uncountable regular cardinals θ such that for every well ordering < of H_{θ} and every countable elementary submodel $M \prec (H_{\theta}, \in, <)$ and every ordinal $\eta < \omega_2$, there exists an elementary countable submodel M^* such that

(1)
$$M \subseteq M^*$$
 and $M \cap \omega_1 = M^* \cap \omega_1$

(2)
$$(M^* \cap \omega_2) \setminus \eta \neq \emptyset$$
.

Theorem 5.8. (Todorčević) CC^* implies $2^{\aleph_0} \leq \omega_2$.

Theorem 5.9. (Torres-Perez, Wu) $CC^* + \neg CH$ implies $TP(\aleph_2)$

5.1. Square principles.

Square principle was introduced by Jensen.

Square principle: \Box_{κ} is the statement that there exists a sequence $\langle C_{\alpha}; \alpha \in \operatorname{Lim}(\kappa^+) \rangle$ such that

- (1) every $C_{\alpha} \subseteq \alpha$ is a club;
- (2) $\beta \in \text{Lim}(C_{\alpha})$ implies $C_{\beta} = C_{\alpha} \cap \beta$;

(3)
$$o.t.(C_{\alpha}) \leq \kappa$$

Fact 5.10. (3) can be replaced by the following: if $cof(\alpha) < \kappa$, then $o.t.(C_{\alpha}) < \kappa$.

Proof. Fix a club $C \subseteq \kappa$ with $o.t.(C) = cof(\kappa)$, then replace C_{α} by $\{\beta \in C_{\alpha}; o.t.(C_{\alpha} \cap \beta) \in C\}$ whenever $o.t.(C_{\alpha}) \in Lim(C) \cup \{\kappa\}$.

Theorem 5.11. Let $\kappa > \omega$, then \Box_{κ} implies that there is a stationary subset of κ^+ that does not reflect.

Proof. Let $\langle C_{\alpha}; \alpha \in \operatorname{Lim}(\kappa^{+}) \rangle$ be a square sequence. For every $\alpha < \kappa^{+}$ limit ordinal, let $f(\alpha) = o.t.(C_{\alpha})$. The function f is a regressive function on $\kappa^{+} - (\kappa + 1)$, so by Fodor theorem there exists $T \subseteq \kappa^{+}$ stationary such that $f \upharpoonright T$ is constant. We show that T does not reflect. For every $\alpha < \kappa^{+}$ of uncountable cofinality and every $\beta \in \operatorname{acc}(C_{\alpha})$, we have $f(\beta) = o.t.(C_{\beta}) = o.t.(C_{\alpha} \cap \beta) < o.t.(C_{\alpha})$. Then $f \upharpoonright \operatorname{acc}(C_{\alpha})$ is injective, so $|T \cap \operatorname{acc}(C_{\alpha})| \leq 1$. In particular $T \cap \alpha$ is not stationary in α (because $\operatorname{acc}(C_{\alpha})$ is a club in α), thus T does not reflect.

10

Corollary 5.12. If κ is strongly compact, then \Box_{μ} fails for every $\mu \geq \kappa$.

 \Box_{κ} has a generalisation, which is due to Schimmerling.

 $\Box_{\kappa,\lambda}$: there exists a sequence $\langle \mathcal{C}_{\alpha}; \alpha \in \operatorname{Lim}(\kappa^+) \rangle$ such that

- (1) for every $C \in \mathcal{C}_{\alpha}$, $C \subseteq \alpha$ is a club of order type $\leq \kappa$;
- (2) $0 < |\mathcal{C}_{\alpha}| \leq \lambda$
- (3) for every $C \in \mathcal{C}_{\alpha}$, if $\beta \in \text{Lim}(C)$, then $C \cap \beta \in \mathcal{C}_{\beta}$;

Remark 5.13. We note that the silly square principle \Box_{μ,μ^+} is always true, since we may just fix D_{α} club in α for every $\alpha < \mu^+$ and let $C_{\beta} = \{D_{\alpha} \cap \beta : \beta \in Lim(D_{\alpha}) \cup \{\alpha\}\}$.

 \square_{κ} corresponds to $\square_{\kappa,1}$.

Weak square: \square_{κ}^* is the principle $\square_{\kappa,\kappa}$

Theorem 5.14. (Jensen) \square_{μ}^* is equivalent to the existence of a special μ^+ -Aronszajn tree

Even the weak square is incompatible with strongly compact cardinals.

Theorem 5.15. (Shelah) If κ is a strongly compact cardinal then \Box^*_{μ} fails for every singular cardinal μ such that $cof(\mu) < \kappa < \mu$

Theorem 5.16.

- (Todorcevic) RC implies the failure of \Box_{κ} for all uncountable κ .
- (Torres-Perez, Todorcevic) RC implies the failure of \Box_{κ}^* for all singular κ of countable cofinality
- (Torres-Perez, Todorcevic) Assume RC, then CH is equivalent to $\Box_{\omega_1}^*$ (we already metioned this results)

Theorem 5.17. (Todorcevic) CC implies the failure of \Box_{ω_1} .

Hayut and my self proved that the Delta-reflection at κ^+ is compatible with another square principle denoted $\Box(\kappa^+)$ that was introduced by Todorcevic and is weaker than \Box_{κ} (The Delta-reflection implies the failure of \Box_{κ} because it implies the reflection of stationary sets).

6. Appendix

 $\mathit{URL}: \texttt{http://www.logique.jussieu.fr/~fontanella}$

HEBREW UNIVERSITY OF JERUSALEM, EDMUND SAFRA CAMPUS, GIVAT RAM, ISRAEL.