
REFLECTION PRINCIPLES AND LARGE CARDINALS

LAURA FONTANELLA

1. Lecture one

A reflection principle: a statement establishing for some kind of structure (e.g. a set
of ordinals, a tree, a topological space ... ) and a given property, that if the structure
satisfies the property, then there is a substructure of smaller cardinality that satisfies the
same property.

A compactness principle: a statement establishing for some kind of structure (e.g. a
set of ordinals, a tree, a topological space ... ) and a given property, that if every sub-
structure of smaller cardinality satisfies the property, then the whole structure satisfies the
property.

Reflection is the dual of compactness: if we have reflection for some property, than we
have compactness for the negation of the property, and vice-versa.

Example:

• König’s Lemma: if T is a tree of height ω whose levels are all finite, then T has an
infinite branch.

(see the Appendix for the definition of “tree” in set theory)

König’s Lemma is a compactness result for the property of having a branch cofinal through
the tree (i.e. of the same order type as the height of the tree); it can be seen as a reflection
principle for the property of not having a branch cofinal through the height of the tree.

1.1. Generalized compactness.

We recall Compactness Theorem.

Theorem 1.1. (Compactness theorem) Let Γ be a first order theory, then Γ is satisfiable if
and only if it is finitely satisfiable (i.e., every finite subset of Γ has a model).

Let κ, λ be two infinite cardinals. Lκ,λ is the logic that allows conjunctions and dis-
junctions of less than κ many formulas, and allows quantifications over less than λ many
variables.

Lω,ω corresponds to the standard first order logic.

Definition 1.2. A regular cardinal κ is a strongly compact cardinal, if for every theory Γ
in Lκ,κ, Γ is satisfiable if and only if it is < κ-satisfiable (i.e., every set of less than κ many
sentences of Γ has a model).
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Definition 1.3. A regular cardinal κ is a weakly compact cardinal, if for every theory Γ in
Lκ,κ with at most κ non logical symbols, Γ is satisfiable if and only if it is < κ-satisfiable
(i.e., every set of less than κ many sentences of Γ has a model).

Stronger versions of compactness: For a given logic L , we say that L is µ-compact if
every theory of L is satisfiable if and only if it is < µ-satisfiable.

• (Magidor) there exists an extendible cardinal if and only if there is a cardinal µ such
that second order logic is µ-compact.
• (Stavi) Vopěnka’s principle holds if and only if for every logic L there is a cardinal
µ such that L is µ-compact.

1.2. The tree property.

Tree property: A cardinal κ has the tree property if every tree of height κ with levels all
of size less than κ, has a cofinal branch (i.e., a branch of size κ).

Fact 1.4. If κ has the tree property, then κ is regular.

Proof. Otherwise, κ = limi<γ κi where each κi < κ and γ < κ. For each i < γ let fi : κi → 2
be such that fi(α) = i for every α. Let T be {fi � α; α < κi, i ∈ I}, then T is a tree of
height κ, every α-level has size at most γ < κ, yet, T does not have a cofinal branch. �

Proposition 1.5. If κ is a weakly compact cardinal, then κ has the tree property.

Proof. Let (T,<) be a tree of height κ with levels all of size less than κ. For each α < κ,
let {tαi ; i < γα} enumerate the α-th level. Fix for each t ∈ T, a propositional symbol Pt.
Then Γ := {

∨
i<γα

Ptαi ; α < κ}∪{¬(Ps∧Pt); s, t ∈ T are <-incomparable} is < κ-satisfiable

(because ht(T ) = κ). Let M be a model of Γ, then {t ∈ T ;M |= Pt} is a cofinal branch. �

Theorem 1.6. (Erdös and Tarski) An inaccessible cardinal is weakly compact if and only
if it satisfies the tree property.

Proposition 1.7. The following hold.

• (Aronszajn) ω1 does not have the tree property.
• (Specker) If CH holds, then ω2 does not have the tree property.
• (Kurepa) if 2<κ = κ, then κ+ does not have the tree property.
• (Mitchell) Cons(∃κ weakly compact )→ Cons(ω2 has the tree property).
• (Mitchell) For every regular τ, Cons(∃κ weakly compact )→ Cons(τ++ has the tree property).

Open questions:

• Is it possible to build a model where every regular cardinal has the tree property?
• Is there a model of the tree property at ℵω+1 where SCH fails at ℵω?

Exercice: prove that if κ is weakly compact, then κ is (strongly) inaccessible.
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2. Lecture two

2.1. Elementary embeddings.

Given two structures M,N in a language L , a function j : M → N is an elementary
embedding if j is injective and for every formula ϕ(x1, . . . , xn) of L and every a1, . . . , an ∈M,

M |= ϕ(a1, . . . , an) ⇐⇒ N |= ϕ(j(a1), . . . j(an))

Suppose M and N contains all the ordinals, then the critical point of an elementary em-
bedding j : M → N, denoted cr(j) is the least ordinal α that is moved by j (if such an
ordinal exists).

We are going to consider elementary embeddings j : V →M where M is an inner model,
i.e. M is a transitive ∈-model of ZF that contains all the ordinals. Transitive means that
for every x ∈M, x ⊆M.

Remark 2.1. If j : V → M is an elementary embedding where M ⊆ V is an inner model
and j has critical point κ, then j(κ) > κ. Because j is injective.

Definition 2.2. κ > ω is a measurable cardinal if and only if there is an elementary
embedding j : V →M where M is an inner model of ZFC and κ is the critical point of j.

Proposition 2.3. κ > ω is a strongly compact cardinal if and only if for every λ there is
an elementary embedding j : V → M where M is an inner model of ZFC, κ is the critical
point of j, j(κ) > λ and every set X ⊆M of size at most λ is covered by a set Y ∈M such
that M |= |Y | < j(κ).

Definition 2.4. κ > ω is a supercompact cardinal, if for every λ there is an elementary
embedding j : V → M where M is an inner model of ZFC, κ is the critical point of j,
j(κ) > λ and every set X ⊆M of size at most λ belongs to M.

Definition 2.5. κ > ω is a huge, if for every λ there is an elementary embedding j : V →M
where M is an inner model of ZFC, κ is the critical point of j, and every set X ⊆M of size
at most j(κ) belongs to M.

Reflection for the chromatic number. Given a graph G, the chromatic number of G,
denoted χ(G) is the least ν such that there is a colouring of the vertices of G in ν many
colours such that any two adjacents vertices have distinct colours.

Proposition 2.6. Let κ be a measurable cardinal and G a graph of size κ, let µ < κ and
let χ(G) > µ, then there is an induced subgraph H of size < κ such that χ(H) > µ.

Proof. W.l.o.g. G has underlying set κ. Let j : V → M be an elementary embedding with
critical point κ, then j(G) is a graph with underlying set j(κ). The subgraph induced on κ
is G and, since M ⊆ V, it is clear that in M we have χ(G) > µ. So M thinks that j(G) has
a subgraph of size κ < j(κ) that has chromatic number > µ. Moreover j(µ) = µ because
cr(j) = κ, so by elementarity, G has a subgraph of size < κ with chromatic number > µ. �

Reflection for transversals. A transversal is a one-to-one choice function.
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Proposition 2.7. Let κ be a measurable cardinal and let F be a family of countable sets with
|F| = κ. If F has no transversals, then there is F ′ ⊆ F of size < κ that has no transversals.

Proof. Let j : V → M be an elementary embedding with critical point κ, then j(F ) is a
family of countable sets with |j(F )| = j(κ). j′′F is a subfamily of j(F ) of size < κ. Since F
has no transversal, j′′F has no transversal. So j(F ) has a subfamily of size < j(κ) with no
transversals. By elementarity F has a subfamily of size < κ with no transversals. �

Exercice: Using elementary embeddings, prove that if κ is measurable, then κ has the tree
property.

2.2. Rado’s conjecture.

Definition 2.8. Given a tree T of height ν+, we say that T is special if there exists a
function f : T → ν such that for every two nodes x < y, one has f(x) 6= f(y).

In particular, a special tree has no cofinal branch.

Rado’s conjecture RC: any tree T of height ω1 is special if and only if all subtrees of
cardinality ℵ1 are specials.

Theorem 2.9. (Todorčević) Cons(∃κ strongly compact)→ Cons(RC).

Proposition 2.10. Suppose that κ is a supercompact cardinal and T is a of height ω1. If
every subtree of T of size < κ is special, then T is special.

Proof. Let λ be the size of T. Fix a λ-supercompact embedding with critical point κ. W.l.o.g.
T has underlying set λ. By elementarity j(T ) is a tree with underlying set j(λ) and every
subtree of j(T ) of size < j(κ) is special. Let T ∗ := (j′′ λ,<j(T )), then T ∗ ∈M by the closure
of M. It is easy to see that T ∗ is isomorphic to T (the isomorphism is the embedding j). It
follows that the height of T ∗ is the same as T, namely ω1. Moreover |T ∗| = λ < j(κ) so T ∗

is special so there is a specializing function f∗ : T ∗ → ω. We define f : T → ω by letting
f(α) := j−1f∗j(α), then f witnesses that T is special. �

To prove the consistency of Rado’s Conjecture one forces with Coll(ω1, < κ) so κ becomes
ℵ2. Then one shows that the conclusion of this proposition holds also in the generic extension,
thus every non special tree of height ω1 has a non-special subtree of size < κ = ω2, namely
of size ℵ1.
Difficult open question Is RC equiconsistent with a strongly compact cardinal?

• RC is independent from CH;
• RC implies 2ℵ0 ≤ ℵ2;
• RC implies θℵ0 = θ for every regular cardinal θ;
• RC implies SCH.

Theorem 2.11. (Solovay) If κ is strongly compact, then SCH holds above κ.

RC has the strength of a strongly compact cardinal and it is a sort of property of strong
compactness for ℵ2, so by analogy it is not surprising that RC implies SCH “above ℵ2” thus
everywhere.

Open question: Does the strong tree property at ℵ2 implies SCH?
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A tree witnessing the failure of the tree property at some cardinal κ is called a κ-Aronszajn
tree.

Theorem 2.12. (Torres-Perez, Todorčević) Assume RC. Then CH is equivalent to the
existence of a special ℵ2-Aronszajn tree.

3. Lecture three

3.1. Stationary sets.

We recall the definition of club and stationary set.

Let κ be a limit ordinal of uncountable cofinality. A club is a subset C ⊆ κ such that

• C is closed (i.e., for every sequence 〈βi〉i<γ of ordinals in C such that γ < κ,
limi<γ βi ∈ C);
• C is unbounded (i.e., for every β < κ there is β′ ∈ C such that β′ > β).

S ⊆ κ is stationary if for every club C ⊆ κ, S ∩ C 6= ∅.

Example: For κ regular,

• for every γ < κ, κ \ γ is a club of κ.
• for λ < κ, we let Eκλ := {α < κ; cof(α) = λ}. Eκλ is a stationary subset of κ.

Fact 3.1. (exercice) The intersection of less than κ club subsets of κ is a club.

Theorem 3.2. (Fodor) If S is a stationary subset of κ and f is a function on κ such that
for every α ∈ S \ {0}, f(α) < α, then f is constant on a stationary subset of S.

3.2. Reflection of stationary sets.

Reflection of stationary sets: the reflection of stationary sets holds at a cardinal κ if for
every stationary set S ⊆ κ, there exists α < κ of uncountable cofinality, such that S ∩ α is
stationary (we say that S “reflects” at α).

Applications: For a cardinal κ the following are equiconsistent:

• every stationary subset of κ reflects;
• every κ-free abelian group is κ+-free.

Fact 3.3. If κ is the successor of a regular cardinal λ, then there is a stationary subset of
κ that does not reflect.

Proof. The set Eκλ := {α < κ; cof(α) = λ} is stationary, but it does not reflect. Indeed, for
every α < λ+ we can always find a club Cα ⊆ α of points of cofinality < λ. �

Proposition 3.4. If κ is a weakly compact cardinal, then every stationary subset of κ
reflects.

We prove the reflection of stationary sets from a measurable cardinal. Let S ⊆ κ be a
stationary subset. Let j : V →M be an elementary embedding witnessing the fact that κ is
measurable. j(S) is a stationary subset of j(κ). S = j(S)∩κ, thus j(S) reflects to κ < j(κ).
So M thinks that j(κ) reflects to some ordinal below < j(κ), thus by elementarity S reflects
to some ordinal α < κ.
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Proposition 3.5. If κ is a supercompact cardinal, then for every λ > κ, every stationary
subset of Eλ<κ reflects to some point α < λ of cofinality < κ.

Proof. Let S ⊆ Eλ<κ be a stationary subset of λ. Let j : V → M be a λ-supercompact
embedding with critical point κ (see the characterisation of strong compactness). By ele-

mentarity j(S) is a stationary subset of E
j(λ)
<κ (the points of j(S) remain of cofinality < κ

because κ is the critical point). Let γ := sup j′′ λ. Then cofM (γ) < j(κ) and γ < j(λ). It is
easy to see that j(S)∩γ = j′′ S and, since S is stationary, so is j(S)∩γ. Thus M thinks that
j(S) reflects to some ordinal of cofinality < j(κ). By elementarity, S reflects to an ordinal
of cofinality < κ. �

Exercice: show that κ strongly compact is enough for this result.

Theorem 3.6. (Magidor ’62)
Cons(∃〈κn〉n<ω supercompact cardinals)→ Cons(every stationary subset of ℵω+1 reflects).

Open questions: Is there a model where ℵω+1 satisfies both the tree property and the
reflection of stationary sets?

3.3. Delta-reflection.

Definition 3.7. (Magidor Shelah) Given two cardinals κ < λ, ∆κ,λ is the statement that

for every cardinal µ < κ, for every stationary set S ⊆ Eλ<κ := {α < λ; cof(α) < κ} and for
every algebra A on λ with µ operations, there exists a subalgebra A′ of order type a regular
cardinal η < κ such that S ∩A′ is stationary in sup(A′).

We say that λ has the Delta-reflection if ∆κ,λ holds for every κ < λ.
The Delta-reflection at some cardinal κ has many applications. Suppose that κ has the

Delta-reflection, then

(a) κ satisfies the reflection of stationary sets;
(b) every κ-free abelian group of size κ is free;
(c) If G is a graph of size κ and every subgraph of G of smaller cardinality has coloring

number1 λ < κ then G has coloring number λ;
(d) If F is a family of κ many countable sets, and if every subfamily F ′ of F of smaller

cardinality has a transversal (i.e. a one-to-one choice function on F ′), then the whole
family has a transversal;

(e) If X is a topological space locally of cardinality < κ and X is κ-collectionwise
Hausdorff (i.e. every closed discrete subset of X of size < κ is separated), then X is
collectionwise Hausdorff.

C is separated if there is a family of mutually disjoint open sets {Uy; y ∈ C} such that
for all y, C ∩ Uy = {y}.

It should be pointed out that all these compactness phenomenons can be demonstrated in
ZFC for κ singular, they all follow from Shelah’s compactness theorem for singular cardinals.
Thus the

1A graph has coloring number λ if there is a well order on the graph such that every element is connected
to less than λ many elements preceding it in this well order
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Theorem 3.8. If κ is a weakly compact cardinal, then κ has the Delta-reflection.

Theorem 3.9. (Magidor , Shelah ’94)
Cons(∃〈κn〉n<ω supercompact cardinals)→ Cons(ℵω2+1 has the Delta-reflection).

Fact 3.10. (Magidor, Shelah, Ekler et al.) No regular cardinal below ℵω2+1 can have the
Delta-reflection.

It is important to point out the fact that, unlike the tree property, the Delta-reflection is
compatible with GCH: in fact, in Magidor and Shelah’s model, GCH holds.

Theorem 3.11. (F. , Magidor ’15)

• the Delta-reflection does not imply the tree property (one can build a model where
ℵω2+1 has the Delta-reflection but not the tree property);
• Delta-reflection and tree property are compatible at ℵω2+1 (both properties hold at
ℵω2+1 in Magidor and Shelah’s model).

In particular ℵω2+1 can have simultaneously the Delta-reflection and the tree property.
Magidor and Shelah also proved that under the same assumptions one can build a model

where, for the first cardinal fixed point κ, the properties (a), ..., (e) above hold with no
limitation on the size of the structure, i.e. for instance, every κ-free abelian group (of any
size) is free.

Open question: Does Delta-reflection implies compactness for the chromatic number?

4. Lecture four

4.1. Clubs of Pκ(λ).
Let κ be a regular cardinal, and let λ ≥ κ, we denote by Pκ(λ) the set {x ⊆ λ; |x| < κ}

and we denote by [λ]κ the set {x ⊆ λ; |x| = κ}.
Definition 4.1. A set C ⊆ Pκ(λ) is a club if the following hold:

(1) C is closed (i.e., for any chain x0 ⊆ x1 ⊆ . . . ⊆ xζ ⊆ . . . , ζ < α of sets in C, with
α < κ, the union

⋃
ζ<α xζ is in X);

(2) C is unbounded (i.e., for every x ∈ Pκ(λ) there is y ⊇ x such that x ∈ C).

Definition 4.2. A set S ⊆ Pκ(λ) is stationary if S ∩ C 6= ∅ for every club C ⊆ Pκ(λ).

Exercice 4.3. The intersection of less than κ club subsets of Pκ(λ) is a club of Pκ(λ).

Theorem 4.4. (Fodor-Jech) If S is a stationary subset of Pκ(λ) and f is a function on
Pκ(λ) such that for every x ∈ S \ {∅}, f(x) ∈ x, then f is constant on a stationary subset
of S.

Fact 4.5. (Menas) For every club C ⊆ Pκ(λ), there is a function f : [λ]<ω → Pκ(λ), such
that if Clf := {x ∈ Pκ(λ); ∀e ⊆ x (f(e) ⊆ x)}, then Clf ⊆ C
Proof. By induction on |e|, we find for each e ∈ [λ]<ω an infinite set f(e) ∈ C such that
e ⊆ f(e) in such a way that f(e′) ⊆ f(e) whenever e′ ⊆ e. So f is defined. To see that
Clf ⊆ C, let x be a closure point of f. Then, x =

⋃
{f(e); e ∈ [x]<ω}. This is the union of

a family of less than κ many elements of C, so x ∈ C. �
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4.2. Reflection principle.
If S is a stationary subset of [λ]ℵ0 , and X ∈ [λ]ℵ1 , then we say that S reflects at X if

S ∩ [X]ℵ0 is stationary in [X]ℵ0 .
The following principle was introduced by Foreman, Magidor and Shelah.

(Weak) Reflection principle: For every regular λ ≥ ℵ2, every stationary set S ⊆ [λ]ℵ0

reflects at some X ∈ [λ]ℵ1 such that X ⊇ ω1.

We denote by RP (λ) the reflection principle at λ, namely for stationary subsets of [λ]ℵ0 .

Attention: the condition X ⊇ ω1 is important (for the following proposition).

Proposition 4.6. (Feng, Jech) Let λ ≥ ℵ2 be a regular cardinal, then the following are
equivalent:

(1) The reflection principle holds at λ;
(2) for every stationary subset S ⊆ [λ]ℵ0 , the set {X ∈ [λ]ℵ1 ; S reflects at X} is sta-

tionary.

Proof.
(⇐) : it is enough to observe that {X ∈ [λ]ℵ1 ; X ⊇ ω1} is a club.

(⇒) : Let S ⊆ [λ]ℵ0 be a stationary set. Suppose by contradiction that there is a club
C ⊆ [λ]ℵ1 such that S does not reflect in any set of C. Let g : [λ]<ω → Pℵ2(λ), such that
Clg ⊆ C. Clg is a club in [λ]ℵ0 , so the set S∩Clg is stationary, thus by the reflection principle,
it reflects to some set X ⊇ ω1 of size ℵ1. In particular S reflects on X, so X does not belong
to C.

Fix a bijection f : ω1 → X. Observe that {y ∈ [X]ℵ0 ; f−1[y] ⊆ y} is a club in [X]ℵ0 (here
we use ω1 ⊆ X, otherwise this set is empty), hence T := {y ∈ S ∩ Clg ∩ [X]ℵ0 ; f−1[y] ⊆ y}
is stationary in [X]ℵ0 . It follows that {f−1[y]; y ∈ T} is stationary in [ω1]

ℵ0 , moreover
f [f−1[y]] = y ⊇ f−1[y], therefore the set

T ∗ := {a ∈ [ω1]
ℵ0 ; a ⊆ f [a] and f [a] ∈ S ∩ Clg}

is stationary in [ω1]
ℵ0 .

Now we prove that X is closed by g, thus X ∈ Clg contradicting X /∈ C. Let e ∈ [X]<ω,
then f−1[e] ∈ [ω1]

<ω so there is a ∈ T ∗ such that a ⊇ f−1[e]. By definition of T ∗, we have
a = f−1[y] for some y ∈ T ⊆ S ∩ Clg. Observe that e = f [f−1[e]] ⊆ f [a] = y, thus g[e] ⊆ y
because y is closed by g. Since y ⊆ f [ω1] = X, we proved g[e] ⊆ X as required. �

For λ = ℵ2 the assumption X ⊇ ω1 can be dropped.

Theorem 4.7. (Shelah, Todorčević) The reflection principle at ℵ2 implies that the contin-
uum is at most ω2.

Proof. For each uncountable α < ω2, let Cα ⊆ [α]ℵ0 be a club of cardinality ℵ1, and let
D =

⋃
ω1≤α<ω2

Cα. D must contain a club: otherwise S := D \ [ω2]
ℵ0 is stationary, so by

RP (ℵ2), using the proposition above, we can find an ordinal ℵ1 ≤ α < ω2 such that S ∩α is
stationary on α (indeed, ω2 is a club of [ω2]

ℵ0), a contradiction. We have |D| = ℵ2 (because
it contains a club). However, a result of Baumgartner and Taylor shows that every club of

[ω2]
ℵ0 has size ℵℵ02 , hence ℵℵ02 = ℵ2, in particular the continuum is at most ℵ2. �
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Theorem 4.8. If the existence of a supercompact cardinal is consistent with ZFC, then the
reflection principle is also consistent.

Proposition 4.9. The reflection principle at ℵ2 is equiconsistent with the existence of a
weakly compact cardinal.

Theorem 4.10. The reflection principle implies the singular cardinal hypothesis.

4.3. The strong reflection principle. Todorčević formulated a stronger version of the
reflection principle, called Strong reflection principle.

Strong reflection principle, SRP: for every κ, every S ⊆ [κ]ω and for every regular θ > κ
there is an increasing continuous ∈-chain {Nα; α < ω1} of countable elementary models of
Hθ (with N0 containing a predefined element of Hθ) such that for all α < ω1, Nα ∩ κ ∈ S
if and only if there exists a countable elementary submodel M of Hθ such that Nα ⊆ M,
M ∩ ω1 = Nα ∩ ω1 and M ∩ κ ∈ S.
Definition 4.11. A set S ⊆ [λ]ω is projective stationary if for every stationary set T ⊆ ω1,
the set {X ∈ S; X ∩ ω1 ∈ T} is stationary.

Equivalently, for every club C ⊆ [λ]ω, the projection (S ∩ C) � ω1 contains a club.

Strong reflection principle is equivalent to: for every λ ≥ ℵ2, if S ⊆ [Hλ]ω is projective
stationary, then there exists an elementary chain 〈Mα; α < ω1〉 of countable models such
that Mα ∈ S for all α.

Theorem 4.12. (Woodin) SRP implies that the continuum is ℵ2.

5. Lecture five

General Chang conjecture:

Definition 5.1. Given a countable first order language L with a distinguished unary pred-
icate R, a structure M in L is said to be a (λ, κ)-structure if the underlying set of M has
size λ and RM is a set of size κ.

The general form of Chang Conjecture, denoted (λ1, κ1) � (λ0, κ0), states that every
(λ1, κ1)-structure has a (λ0, κ0) elementary substructure.

This is a two-cardinal version of Löwenheim-Skolem theorem.

Fact 5.2. Let κ be a huge cardinal and let j : V →M witnessing its hugeness, let λ = j(κ)
then (λ, κ) � (κ,< κ).

Proof. Let N = (N,R) be a (λ, κ)-structure. We can assume that N = λ and R = κ. Let
j : V →M be an elementary embedding witnessing the fact that κ is huge and with j(κ) = λ.
Then j(N ) = (j(N), j(R)) is a (j(λ), j(κ))-structure. Let N∗ := j′′λ and R∗ := j′′ R = κ
then (N∗, R∗) is a (λ, κ)-structure. Moreover λ = j(κ) and κ < j(κ) so it is in fact a
(j(κ), < j(κ))-structure. (N∗, R∗) is an elementary substrucure of j(N ), so M thinks that
j(N ) has an elementary substructure of order type (j(κ,< j(κ))). By elementarity there
exists in V an elementary (κ,< κ)-substructure for N . �
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The usual Chang’s Conjecture, CC is (ω2, ω1) � (ω1, ω)

Fact 5.3. (Todorčević) RC implies CC.

Theorem 5.4. (Silver, Donder) Cons(∃κ ω1-Erdös cardinal)→ Cons(CC).

(The existence of an ω1-Erdös cardinal is a weaker axiom than the existence of a measur-
able cardinal).

Theorem 5.5. (Laver) Cons(∃κ huge)→ Cons((ω3, ω2) � (ω2, ω1)).

Theorem 5.6. for n ≥ 1, Cons(∃κ huge)→ Cons((ωn+2, ωn+1) � (ωn+1, ωn)).

Theorem 5.7. (Levinski, Magidor, Shelah) Cons(∃κ huge)→ Cons((ℵω+1,ℵω) � (ω1, ω0)).

Open question:

• For n ≥ 1, is (ℵωn+1 ,ℵωn) � (ωn, ωn−1)) consistent?
• Is it possible to prove the result of Levinski, Magidor and Shelah from a supercompact

cardinal?

Strong Chang Conjecture, CC∗: there are arbitrarily large uncountable regular cardinals
θ such that for every well ordering < of Hθ and every countable elementary submodel
M ≺ (Hθ,∈, <) and every ordinal η < ω2, there exists an elementary countable submodel
M∗ such that

(1) M ⊆M∗ and M ∩ ω1 = M∗ ∩ ω1

(2) (M∗ ∩ ω2) \ η 6= ∅.
Theorem 5.8. (Todorčević) CC∗ implies 2ℵ0 ≤ ω2.

Theorem 5.9. (Torres-Perez, Wu) CC∗ + ¬CH implies TP (ℵ2)
5.1. Square principles.

Square principle was introduced by Jensen.
Square principle: �κ is the statement that there exists a sequence 〈Cα; α ∈ Lim(κ+)〉
such that

(1) every Cα ⊆ α is a club;
(2) β ∈ Lim(Cα) implies Cβ = Cα ∩ β;
(3) o.t.(Cα) ≤ κ

Fact 5.10. (3) can be replaced by the following: if cof(α) < κ, then o.t.(Cα) < κ.

Proof. Fix a club C ⊆ κ with o.t.(C) = cof(κ), then replace Cα by {β ∈ Cα; o.t.(Cα∩β) ∈ C}
whenever o.t.(Cα) ∈ Lim(C) ∪ {κ}. �

Theorem 5.11. Let κ > ω, then �κ implies that there is a stationary subset of κ+ that
does not reflect.

Proof. Let 〈Cα; α ∈ Lim(κ+)〉 be a square sequence. For every α < κ+ limit ordinal,
let f(α) = o.t.(Cα). The function f is a regressive function on κ+ − (κ + 1), so by Fodor
theorem there exists T ⊆ κ+ stationary such that f � T is constant. We show that T does
not reflect. For every α < κ+ of uncountable cofinality and every β ∈ acc(Cα), we have
f(β) = o.t.(Cβ) = o.t.(Cα∩β) < o.t.(Cα). Then f � acc(Cα) is injective, so |T∩acc(Cα)| ≤ 1.
In particular T ∩ α is not stationary in α (because acc(Cα) is a club in α), thus T does not
reflect. �
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Corollary 5.12. If κ is strongly compact, then �µ fails for every µ ≥ κ.

�κ has a generalisation, which is due to Schimmerling.

�κ,λ: there exists a sequence 〈Cα; α ∈ Lim(κ+)〉 such that

(1) for every C ∈ Cα, C ⊆ α is a club of order type ≤ κ;
(2) 0 < |Cα| ≤ λ
(3) for every C ∈ Cα, if β ∈ Lim(C), then C ∩ β ∈ Cβ;

Remark 5.13. We note that the silly square principle �µ,µ+ is always true, since we may

just fix Dα club in α for every α < µ+ and let Cβ = {Dα ∩ β : β ∈ Lim(Dα) ∪ {α}}.

�κ corresponds to �κ,1.

Weak square: �∗κ is the principle �κ,κ

Theorem 5.14. (Jensen) �∗µ is equivalent to the existence of a special µ+-Aronszajn tree

Even the weak square is incompatible with strongly compact cardinals.

Theorem 5.15. (Shelah) If κ is a strongly compact cardinal then �∗µ fails for every singular
cardinal µ such that cof(µ) < κ < µ

Theorem 5.16.

• (Todorcevic) RC implies the failure of �κ for all uncountable κ.
• (Torres-Perez, Todorcevic) RC implies the failure of �∗κ for all singular κ of countable

cofinality
• (Torres-Perez, Todorcevic) Assume RC, then CH is equivalent to �∗ω1

(we already
metioned this results)

Theorem 5.17. (Todorcevic) CC implies the failure of �ω1 .

Hayut and my self proved that the Delta-reflection at κ+ is compatible with another
square principle denoted �(κ+) that was introduced by Todorcevic and is weaker than �κ

(The Delta-reflection implies the failure of �κ because it implies the reflection of stationary
sets).
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6. Appendix
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