REFLECTION PRINCIPLES AND LARGE CARDINALS

LAURA FONTANELLA

1. LECTURE ONE

A reflection principle: a statement establishing for some kind of structure (e.g. a set
of ordinals, a tree, a topological space ... ) and a given property, that if the structure
satisfies the property, then there is a substructure of smaller cardinality that satisfies the
same property.

A compactness principle: a statement establishing for some kind of structure (e.g. a
set of ordinals, a tree, a topological space ... ) and a given property, that if every sub-
structure of smaller cardinality satisfies the property, then the whole structure satisfies the

property.

Reflection is the dual of compactness: if we have reflection for some property, than we
have compactness for the negation of the property, and vice-versa.

Example:

e Konig’s Lemma: if T is a tree of height w whose levels are all finite, then T has an
infinite branch.

(see the Appendix for the definition of “tree” in set theory)

Konig’s Lemma is a compactness result for the property of having a branch cofinal through
the tree (i.e. of the same order type as the height of the tree); it can be seen as a reflection
principle for the property of not having a branch cofinal through the height of the tree.

1.1. Generalized compactness.

We recall Compactness Theorem.

Theorem 1.1. (Compactness theorem) Let T' be a first order theory, then T is satisfiable if
and only if it is finitely satisfiable (i.e., every finite subset of ' has a model).

Let x, A be two infinite cardinals. .Z ) is the logic that allows conjunctions and dis-
junctions of less than x many formulas, and allows quantifications over less than A many
variables.

Z. . corresponds to the standard first order logic.

Definition 1.2. A regular cardinal k is a strongly compact cardinal, if for every theory I
in Lk, I is satisfiable if and only if it is < k-satisfiable (i.e., every set of less than k many
sentences of I' has a model).
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Definition 1.3. A regular cardinal k is a weakly compact cardinal, if for every theory I' in
L. with at most k non logical symbols, I' is satisfiable if and only if it is < k-satisfiable
(i.e., every set of less than k many sentences of I' has a model).

Stronger versions of compactness: For a given logic ., we say that . is u-compact if
every theory of % is satisfiable if and only if it is < u-satisfiable.

e (Magidor) there exists an extendible cardinal if and only if there is a cardinal p such

that second order logic is u-compact.

e (Stavi) Vopénka’s principle holds if and only if for every logic .Z there is a cardinal

u such that £ is u-compact.

1.2. The tree property.

Tree property: A cardinal x has the tree property if every tree of height x with levels all
of size less than k, has a cofinal branch (i.e., a branch of size k).

Fact 1.4. If k has the tree property, then k is reqular.

Proof. Otherwise, k = lim;<,, K; where each x; < k and v < k. For each ¢ <y let f; : k; — 2
be such that f;j(a) = i for every a. Let T be {f; | o o < K4, i € I}, then T is a tree of
height k, every a-level has size at most v < &, yet, T" does not have a cofinal branch. g

Proposition 1.5. If k is a weakly compact cardinal, then x has the tree property.

Proof. Let (T, <) be a tree of height x with levels all of size less than x. For each a < &,
let {t$;4 < o} enumerate the a-th level. Fix for each ¢ € T, a propositional symbol P;.
Then I':= {V,_, Pe; a <&}U{~(PsAP); s,t €T are <-incomparable} is < r-satisfiable
(because ht(T') = k). Let .4 be amodel of ', then {¢t € T; M |= P} is a cofinal branch. [

Theorem 1.6. (Erdis and Tarski) An inaccessible cardinal is weakly compact if and only
if it satisfies the tree property.

Proposition 1.7. The following hold.

(Aronszajn) wy does not have the tree property.

(Specker) If CH holds, then wa does not have the tree property.

(Kurepa) if 2<% = k, then k* does not have the tree property.

(Mitchell) Cons(3x weakly compact ) — Cons(wa has the tree property).

(Mitchell) For every reqular T, Cons(3k weakly compact ) — Cons(77" has the tree property).

Open questions:

e Is it possible to build a model where every regular cardinal has the tree property?
e Is there a model of the tree property at N1 where SCH fails at N7

Exercice: prove that if k is weakly compact, then & is (strongly) inaccessible.



REFLECTION PRINCIPLES AND LARGE CARDINALS 3

2. LECTURE TWO

2.1. Elementary embeddings.

Given two structures M, N in a language .Z, a function j : M — N is an elementary
embedding if j is injective and for every formula ¢(z1, ..., z,) of £ and every ay, ..., a, € M,

M': (P(ah"'van) — N):(PU(al)?](an))

Suppose M and N contains all the ordinals, then the critical point of an elementary em-
bedding j : M — N, denoted cr(j) is the least ordinal « that is moved by j (if such an
ordinal exists).

We are going to consider elementary embeddings j : V' — M where M is an inner model,
i.e. M is a transitive €-model of ZF' that contains all the ordinals. Transitive means that
for every x € M, x C M.

Remark 2.1. If j : V — M is an elementary embedding where M C V is an inner model
and j has critical point k, then j(k) > k. Because j is injective.

Definition 2.2. x > w is a measurable cardinal if and only if there is an elementary
embedding 5 :' V — M where M is an inner model of ZFC and k is the critical point of j.

Proposition 2.3. k > w is a strongly compact cardinal if and only if for every X there is
an elementary embedding j : V. — M where M is an inner model of ZFC, k is the critical
point of j, j(k) > X and every set X C M of size at most \ is covered by a set Y € M such
that M = |Y| < j(k).

Definition 2.4. k¥ > w is a supercompact cardinal, if for every A there is an elementary
embedding 7 : V. — M where M is an inner model of ZFC, k is the critical point of j,
Jj(k) > X and every set X C M of size at most A belongs to M.

Definition 2.5. k > w s a huge, if for every A there is an elementary embedding j : V. — M
where M s an inner model of ZFC, k is the critical point of j, and every set X C M of size
at most j(k) belongs to M.

Reflection for the chromatic number. Given a graph G, the chromatic number of G,
denoted x(G) is the least v such that there is a colouring of the vertices of G in v many
colours such that any two adjacents vertices have distinct colours.

Proposition 2.6. Let k be a measurable cardinal and G a graph of size k, let p < k and
let x(G) > u, then there is an induced subgraph H of size < k such that x(H) > p.

Proof. W.l.o.g. G has underlying set s. Let j : V. — M be an elementary embedding with
critical point s, then j(G) is a graph with underlying set j(x). The subgraph induced on &
is G and, since M C V, it is clear that in M we have x(G) > p. So M thinks that j(G) has
a subgraph of size k < j(k) that has chromatic number > p. Moreover j(u) = u because
cr(j) = k, so by elementarity, G has a subgraph of size < k with chromatic number > p. O

Reflection for transversals. A transversal is a one-to-one choice function.
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Proposition 2.7. Let k be a measurable cardinal and let F be a family of countable sets with
|F| = k. If F has no transversals, then there is F' C F of size < k that has no transversals.

Proof. Let j : V.— M be an elementary embedding with critical point x, then j(F) is a
family of countable sets with |j(F)| = j(k). j”F is a subfamily of j(F') of size < k. Since F’
has no transversal, j”F has no transversal. So j(F') has a subfamily of size < j(x) with no
transversals. By elementarity F' has a subfamily of size < k with no transversals. ]

Exercice: Using elementary embeddings, prove that if x is measurable, then « has the tree
property.

2.2. Rado’s conjecture.

Definition 2.8. Given a tree T of height v', we say that T is special if there exists a
function f : T — v such that for every two nodes x <y, one has f(x) # f(y).

In particular, a special tree has no cofinal branch.

Rado’s conjecture RC: any tree T' of height w; is special if and only if all subtrees of
cardinality N; are specials.

Theorem 2.9. (Todorcevié) Cons(Ik strongly compact) — Cons(RC).

Proposition 2.10. Suppose that k is a supercompact cardinal and T is a of height wy. If
every subtree of T of size < k is special, then T is special.

Proof. Let X be the size of T. Fix a A-supercompact embedding with critical point . W.l.o.g.
T has underlying set A. By elementarity j(7) is a tree with underlying set j(\) and every
subtree of j(T') of size < j() is special. Let T := (j" X, <j(r)), then T* € M by the closure
of M. It is easy to see that 7™ is isomorphic to T" (the isomorphism is the embedding j). It
follows that the height of T is the same as T, namely w;. Moreover |T%| = X\ < j(k) so T*
is special so there is a specializing function f* : T* — w. We define f : T — w by letting
f(a) :=j71f*j(a), then f witnesses that T is special. O

To prove the consistency of Rado’s Conjecture one forces with Coll(wy, < k) so k becomes
Ns. Then one shows that the conclusion of this proposition holds also in the generic extension,
thus every non special tree of height w; has a non-special subtree of size < k = wy, namely
of size Nj.

Difficult open question Is RC equiconsistent with a strongly compact cardinal?
RC is independent from CH;
RC implies 280 < Ny:

RC implies §%0 = @ for every regular cardinal 6;
RC implies SCH.

Theorem 2.11. (Solovay) If k is strongly compact, then SCH holds above k.

RC has the strength of a strongly compact cardinal and it is a sort of property of strong
compactness for Ny, so by analogy it is not surprising that RC implies SCH “above Ny” thus
everywhere.

Open question: Does the strong tree property at Ny implies SCH?
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A tree witnessing the failure of the tree property at some cardinal  is called a x-Aronszajn
tree.

Theorem 2.12. (Torres-Perez, Todorcevié) Assume RC. Then CH is equivalent to the
existence of a special No-Aronszajn tree.

3. LECTURE THREE

3.1. Stationary sets.
We recall the definition of club and stationary set.

Let x be a limit ordinal of uncountable cofinality. A club is a subset C' C x such that

e (' is closed (i.e., for every sequence (f3;);<y of ordinals in C such that v < &,
e C is unbounded (i.e., for every 8 < k there is 8’ € C such that 8 > ).
S C k is stationary if for every club C C k, SNC # (.

Example: For k regular,

e for every v < Kk, £\ 7y is a club of &.
o for A < k, we let EY := {a < k; cof(a) = A\}. EY is a stationary subset of .

Fact 3.1. (exercice) The intersection of less than k club subsets of k is a club.

Theorem 3.2. (Fodor) If S is a stationary subset of k and f is a function on k such that
for every a € S\ {0}, f(a) < v, then f is constant on a stationary subset of S.

3.2. Reflection of stationary sets.

Reflection of stationary sets: the reflection of stationary sets holds at a cardinal s if for
every stationary set S C k, there exists a < s of uncountable cofinality, such that S N« is
stationary (we say that S “reflects” at «).

Applications: For a cardinal s the following are equiconsistent:

e every stationary subset of k reflects;
e cvery k-free abelian group is x-free.

Fact 3.3. If k is the successor of a reqular cardinal X\, then there is a stationary subset of
K that does not reflect.

Proof. The set Ef := {a < k; cof(a) = A} is stationary, but it does not reflect. Indeed, for
every a < AT we can always find a club C, C « of points of cofinality < . O

Proposition 3.4. If k is a weakly compact cardinal, then every stationary subset of k
reflects.

We prove the reflection of stationary sets from a measurable cardinal. Let S C x be a
stationary subset. Let j : V' — M be an elementary embedding witnessing the fact that & is
measurable. j(S) is a stationary subset of j(k). S = j(S) Nk, thus j(S) reflects to k < j(k).
So M thinks that j(x) reflects to some ordinal below < j(k), thus by elementarity S reflects
to some ordinal a < k.
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Proposition 3.5. If k is a supercompact cardinal, then for every A > k, every stationary
subset of Eén reflects to some point o < A of cofinality < k.

Proof. Let S C EQ,{ be a stationary subset of A\. Let j : V. — M be a A-supercompact
embedding with critical point k (see the characterisation of strong compactness). By ele-
mentarity j(S) is a stationary subset of Ei(,j) (the points of j(S) remain of cofinality < &
because & is the critical point). Let v := sup 5" A. Then cof™ (y) < j(k) and v < j(A). It is
easy to see that j(S)N~y = j” S and, since S is stationary, so is j(S)N~. Thus M thinks that
j(S) reflects to some ordinal of cofinality < j(k). By elementarity, S reflects to an ordinal
of cofinality < k. O

Exercice: show that x strongly compact is enough for this result.

Theorem 3.6. (Magidor '62)
Cons(I(kn)n<w supercompact cardinals) — Cons(every stationary subset of Ry,y1 reflects).

Open questions: Is there a model where N, i satisfies both the tree property and the
reflection of stationary sets?

3.3. Delta-reflection.

Definition 3.7. (Magidor Shelah) Given two cardinals £ < X, Ay y is the statement that
for every cardinal p < Kk, for every stationary set S C Eé,{ ={a < A; cof(a) < k} and for
every algebra A on X\ with u operations, there exists a subalgebra A’ of order type a regular
cardinal ) < K such that SN A’ is stationary in sup(A’).

We say that A has the Delta-reflection if A, ) holds for every x < \.
The Delta-reflection at some cardinal x has many applications. Suppose that s has the
Delta-reflection, then

(a)  satisfies the reflection of stationary sets;

(b) every k-free abelian group of size & is free;

(c) If G is a graph of size k and every subgraph of G of smaller cardinality has coloring
number! A < k then G has coloring number \;

(d) If F is a family of x many countable sets, and if every subfamily F’ of F of smaller
cardinality has a transversal (i.e. a one-to-one choice function on F”), then the whole
family has a transversal;

(e) If X is a topological space locally of cardinality < k and X is k-collectionwise
Hausdorff (i.e. every closed discrete subset of X of size < k is separated), then X is
collectionwise Hausdorff.

C is separated if there is a family of mutually disjoint open sets {U,; y € C'} such that
for all y, C N U, = {y}.

It should be pointed out that all these compactness phenomenons can be demonstrated in
ZFC for k singular, they all follow from Shelah’s compactness theorem for singular cardinals.
Thus the

1A graph has coloring number A if there is a well order on the graph such that every element is connected
to less than A many elements preceding it in this well order
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Theorem 3.8. If k is a weakly compact cardinal, then k has the Delta-reflection.

Theorem 3.9. (Magidor , Shelah ’94)
Cons(I(kn)n<w supercompact cardinals) — Cons(R,2 1 has the Delta-reflection).

Fact 3.10. (Magidor, Shelah, Ekler et al.) No regular cardinal below R, 2,1 can have the
Delta-reflection.

It is important to point out the fact that, unlike the tree property, the Delta-reflection is
compatible with GCH: in fact, in Magidor and Shelah’s model, GCH holds.

Theorem 3.11. (F. , Magidor '15)
e the Delta-reflection does not imply the tree property (one can build a model where
N, 21 has the Delta-reflection but not the tree property);

e Delta-reflection and tree property are compatible at R 2,1 (both properties hold at
N, 21 in Magidor and Shelah’s model).

In particular N2, can have simultaneously the Delta-reflection and the tree property.

Magidor and Shelah also proved that under the same assumptions one can build a model
where, for the first cardinal fixed point k, the properties (a), ..., (e) above hold with no
limitation on the size of the structure, i.e. for instance, every k-free abelian group (of any
size) is free.

Open question: Does Delta-reflection implies compactness for the chromatic number?

4. LECTURE FOUR

4.1. Clubs of P, ().
Let k be a regular cardinal, and let A > k, we denote by P, (\) the set {x C A; |z| < k}
and we denote by [A]® the set {x C \; || = k}.

Definition 4.1. A set C C P, (A) is a club if the following hold:
(1) C is closed (i.e., for any chain xo C 21 C ... Cx¢ C ..., ¢ <« of sets in C, with
a < K, the union J., ¢ is in X);
(2) C is unbounded (i.e., for every x € Pr(X) there is y O x such that x € C).
Definition 4.2. A set S C Py()\) is stationary if SN C # 0 for every club C C Py ().
Exercice 4.3. The intersection of less than k club subsets of Px(\) is a club of Pg(N).

Theorem 4.4. (Fodor-Jech) If S is a stationary subset of Px(A\) and f is a function on
Pr(N) such that for every x € S\ {0}, f(x) € x, then f is constant on a stationary subset
of S.

Fact 4.5. (Menas) For every club C C Pi()\), there is a function f : [A<Y — Px(N), such
that if Cly := {x € Py(N\); Ve Cx (f(e) C )}, then Cly C C

Proof. By induction on |e|, we find for each e € [A\]<“ an infinite set f(e) € C such that
e C f(e) in such a way that f(e’) C f(e) whenever ¢’ C e. So f is defined. To see that

Cly C C, let x be a closure point of f. Then, z = [J{f(e); e € [#]<“}. This is the union of
a family of less than x many elements of C, so x € C. O
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4.2. Reflection principle.

If S is a stationary subset of [A\]"°, and X € [A]™, then we say that S reflects at X if
S N [X]M is stationary in [X]Ro.

The following principle was introduced by Foreman, Magidor and Shelah.
(Weak) Reflection principle: For every regular A > R, every stationary set S C [A]N0
reflects at some X € [A]™ such that X D w.

We denote by RP()) the reflection principle at A, namely for stationary subsets of [A]N0

Attention: the condition X D w; is important (for the following proposition).

Proposition 4.6. (Feng, Jech) Let A > RNo be a regular cardinal, then the following are
equivalent:
(1) The reflection principle holds at \;
(2) for every stationary subset S C [N, the set {X € [A\]™; S reflects at X} is sta-
tionary.

Proof.
(<=) : it is enough to observe that {X € [A]*'; X D w} is a club.

(=) : Let S C [AJ™ be a stationary set. Suppose by contradiction that there is a club
C C [N such that S does not reflect in any set of C. Let g : [\|<“ — Py, ()\), such that
Cly € C.Clyis aclubin [A]R) so the set S NCl, is stationary, thus by the reflection principle,
it reflects to some set X O wy of size Ny. In particular S reflects on X, so X does not belong
to C.

Fix a bijection f : w; — X. Observe that {y € [X]*0; f~[y] C y} is a club in [X]*0 (here
we use w; C X, otherwise this set is empty), hence T := {y € SN Cl, N [X]; f~1[y] C y}
is stationary in [X]|¥. It follows that {f~![y]; y € T} is stationary in [w]N°, moreover
fIf 'yl =y 2 f![y], therefore the set

T* :={a € [w1]™; a C fla] and fla] € SN Cl,}
is stationary in [w]™°.
Now we prove that X is closed by g, thus X € Cl, contradicting X ¢ C. Let e € [X]<¥
then f~1[e] € [w1]<¥ so there is a € T* such that a O f~![e]. By definition of 7%, we have

a = f~1[y] for some y € T C SN Cl,. Observe that e = f[f~![e]] C fla] =y, thus gle] Cy
because y is closed by g. Since y C flwi] = X, we proved g[e] C X as required. O

For A = Ny the assumption X D wq can be dropped.

Theorem 4.7. (Shelah, Todorcevié) The reflection principle at Ry implies that the contin-
uum s at most ws.

Proof. For each uncountable o < wo, let Cy C [a]NO be a club of cardinality Ny, and let
D = U,,<a<w, Ca- D must contain a club: otherwise S := D\ [wa]R is stationary, so by
RP(R3), using the proposition above, we can find an ordinal X; < a < w9 such that SNa is
stationary on a (indeed, wy is a club of [ws]N0), a contradiction. We have |D| = Ry (because
it contains a club). However, a result of Baumgartner and Taylor shows that every club of
[wo]X0 has size Ngo, hence N§° = Ng, in particular the continuum is at most Ns. O
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Theorem 4.8. If the existence of a supercompact cardinal is consistent with ZFC, then the
reflection principle is also consistent.

Proposition 4.9. The reflection principle at No is equiconsistent with the existence of a
weakly compact cardinal.

Theorem 4.10. The reflection principle implies the singular cardinal hypothesis.

4.3. The strong reflection principle. Todorc¢evi¢ formulated a stronger version of the
reflection principle, called Strong reflection principle.

Strong reflection principle, SRP: for every &, every S C [k]* and for every regular § > k
there is an increasing continuous €-chain {N,; o < w;} of countable elementary models of
Hyp (with Ny containing a predefined element of Hp) such that for all & < wy, Ny Nk € S
if and only if there exists a countable elementary submodel M of Hy such that N, C M,
MNwi =NyNwiand MNkeS.

Definition 4.11. A set S C [A]¥ is projective stationary if for every stationary set T C wy,
the set {X € S; X Nwy € T} is stationary.

Equivalently, for every club C' C [A]“, the projection (SN C) | wy contains a club.

Strong reflection principle is equivalent to: for every A > No, if S C [H,]“ is projective
stationary, then there exists an elementary chain (M,; a < wy) of countable models such
that M, € S for all «.

Theorem 4.12. (Woodin) SRP implies that the continuum is Na.

5. LECTURE FIVE

General Chang conjecture:

Definition 5.1. Given a countable first order language £ with a distinguished unary pred-
icate R, a structure A in £ is said to be a (A, k)-structure if the underlying set of .4 has
size A\ and R is a set of size k.

The general form of Chang Conjecture, denoted (Ai,k1) — (Ao, ko), states that every
(A1, k1)-structure has a (Ao, ko) elementary substructure.

This is a two-cardinal version of Lowenheim-Skolem theorem.

Fact 5.2. Let k be a huge cardinal and let j : V — M witnessing its hugeness, let A\ = j(k)
then (A, k) = (K, < K).

Proof. Let A4 = (N, R) be a (A, k)-structure. We can assume that N = X\ and R = k. Let
j : V. — M be an elementary embedding witnessing the fact that x is huge and with j(k) = A.
Then j(A) = (§j(N),j(R)) is a (j(N), j(k))-structure. Let N* := j”X and R* :== j”" R=k
then (N*, R*) is a (A, k)-structure. Moreover A = j(k) and k < j(k) so it is in fact a
(j(k), < j(k))-structure. (N*, R*) is an elementary substrucure of j(.4"), so M thinks that
j(A) has an elementary substructure of order type (j(k,< j(x))). By elementarity there
exists in V' an elementary (k, < k)-substructure for .4". O
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The usual Chang’s Conjecture, CC is (w2, wi) — (w1,w)
Fact 5.3. (Todorcevié) RC implies CC.
Theorem 5.4. (Silver, Donder) Cons(3x wi-Erdés cardinal) — Cons(CC).

(The existence of an wq-Erdos cardinal is a weaker axiom than the existence of a measur-
able cardinal).

Theorem 5.5. (Laver) Cons(3k huge) — Cons((ws, w2) — (w2, w1)).
Theorem 5.6. for n > 1, Cons(3x huge) — Cons((wn4+2,wnt+1) = (Wnt1,wn))-
Theorem 5.7. (Levinski, Magidor, Shelah) Cons(3x huge) — Cons((Ny41,Ry) = (w1,wp)).
Open question:
e Forn>1,is (Ny,,,,N,) = (Wn,wn—1)) consistent?

e Isit possible to prove the result of Levinski, Magidor and Shelah from a supercompact
cardinal?

Strong Chang Conjecture, CC*: there are arbitrarily large uncountable regular cardinals
0 such that for every well ordering < of Hy and every countable elementary submodel
M < (Hy,€,<) and every ordinal < we, there exists an elementary countable submodel
M* such that

(1) MC M*and M Nwy = M*Nwy

(2) (M*Nwe)\n#0.
Theorem 5.8. (Todorcevié) CC* implies 280 < ws.
Theorem 5.9. (Torres-Perez, Wu) CC* + ~CH implies T P(Rs)
5.1. Square principles.

Square principle was introduced by Jensen.
Square principle: [, is the statement that there exists a sequence (Cy; o € Lim(xk™))
such that

(1) every Cy C v is a club;

(2) B € Lim(Cy) implies Cz = Co N B;

(3) 0.t.(Co) < K

Fact 5.10. (3) can be replaced by the following: if cof(a) < k, then 0.t.(Cy) < K.

Proof. Fixaclub C C k with 0.t.(C) = cof(k), then replace Cy, by {8 € Cq; 0.t.(CoNS) € C}
whenever 0.t.(C,) € Lim(C) U {k}. O

Theorem 5.11. Let K > w, then O, implies that there is a stationary subset of k* that
does not reflect.

Proof. Let (Cyn; a € Lim(k™)) be a square sequence. For every a < s limit ordinal,
let f(a) = 0.t.(Cy). The function f is a regressive function on k™ — (k + 1), so by Fodor
theorem there exists T C k™ stationary such that f | T is constant. We show that T' does
not reflect. For every a < ™ of uncountable cofinality and every 8 € acc(C,), we have
f(B) =0.t.(Cs) = 0.t.(Canp) < 0.t.(Cy). Then f | acc(Cy) is injective, so |[T'Nacc(Cy)| < 1.
In particular T'N « is not stationary in a (because acc(Cy) is a club in «), thus 7" does not
reflect. g
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Corollary 5.12. If k is strongly compact, then [, fails for every p > k.

Ok has a generalisation, which is due to Schimmerling.

Oy, x: there exists a sequence (Co; « € Lim(x™1)) such that
(1) for every C € C,, C C v is a club of order type < k;

(2) 0<|Cal <A
(3) for every C € Cy, if f € Lim(C), then C N S € Cg;

Remark 5.13. We note that the silly square principle U, ,+ is always true, since we may
just fix Do club in o for every a < pt and let Cg = {Dy N B : B € Lim(Dy) U {a}}.

O corresponds to [y 1.

Weak square: [} is the principle U,
Theorem 5.14. (Jensen) DZ is equivalent to the existence of a special p*-Aronszajn tree
Even the weak square is incompatible with strongly compact cardinals.

Theorem 5.15. (Shelah) If k is a strongly compact cardinal then L, fails for every singular
cardinal 1 such that cof(u) < kK <

Theorem 5.16.

e (Todorcevic) RC implies the failure of Oy for all uncountable k.

e (Torres-Perez, Todorcevic) RC implies the failure of 0% for all singular k of countable
cofinality

e (Torres-Perez, Todorcevic) Assume RC, then CH is equivalent to (I}, (we already
metioned this results)

Theorem 5.17. (Todorcevic) CC implies the failure of O, .

Hayut and my self proved that the Delta-reflection at x* is compatible with another
square principle denoted (J(x™) that was introduced by Todorcevic and is weaker than [,
(The Delta-reflection implies the failure of [J,; because it implies the reflection of stationary
sets).
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6. APPENDIX

huge
y
almost huge
Vopenka’s Principle
Y
Extendible
Supercompact
Superstrong Strongly compact
\ Woodin
v
Strong
v
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v
Ramsey
y
Weakly Compact
y

Mahlo
y

Inaccessible

URL: http://www.logique. jussieu.fr/~fontanella
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