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Compactness

Compactness: Given some structure (e.g. a set of ordinals, a group, a
topological space etc.) if every substructure of smaller cardinality satisfies a

certain property, then the whole structure satisfies the same property.

Example of compactness: König’s lemma
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Compactness and Reflection

Reflection: Given some structure S, if the structure satisfies some property P,
then there is a substructure S ′ of smaller cardinality with the same property.

When we have compactness for some property, then we have reflection for the negation
of the property, and vice versa.
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Shelah’s compactness theorem for singular cardinals

Shelah’s compactness theorem for singular cardinals (Shelah 1975)

If κ is singular, then

Given an abelian group G of size κ, if every subgroup of size < κ is free abelian,
then G is free abelian.

Given a graph G of size κ. If every subgraph of G of size < κ has coloring number
≤ γ < κ, then G has coloring number ≤ γ.
Given A a family of κ many countable sets, if every subfamily of size < κ has a
transversal, then A has a transversal.

(Magidor 2015) Given X a topological space locally of cardinality < κ, if X is
< κ-collectionwise Hausdorff, then X is collectionwise Hausdorff
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When do we have compactness for structures of cardinality a regular cardinal?
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Compactness for regular cardinals

V=L implies the failure of compactness properties for regular cardinals
(e.g. if V = L than no regular cardinal κ except weakly compacts has the
tree property, i.e. the generalisation of König’s lemma to κ)
Large cardinals imply compactness properties for regular cardinals
(e.g. if κ is weakly compact all the compactness properties above hold for
structures of size κ)
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Large cardinals and compactness for abelian groups

Lemma

Let κ be a measurable cardinal and let G be an abelian group of size κ. If G is < κ-free
abelian, then G is free abelian.

Proof.

W.l.o.g. we can assume that G = (κ,+). Fix an elementary embedding j : V → M with
critical point κ. By elementarity

M |= j(G) = (j(κ), j(+)) is abelian and every subgroup of size < j(κ) is free abelian

Let H be the subgroup of j(G) generated by κ, then H is isomorphic to G (j � G is the
isomorphism). H is free abelian, hence G is also free abelian.
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Large cardinals and compactness for graphs

Lemma

Let κ be a measurable cardinal and let G be a graph of size κ. If every subgraph of size
< κ has coloring number ≤ γ < κ, then G has coloring number ≤ γ.

Proof.

W.l.o.g. we can assume that G = (κ,E). Fix an elementary embedding j : V → M with
critical point κ. By elementarity

M |= every subgraph of j(G) = (j(κ), j(E)) of size < j(κ) has coloring number ≤ j(γ) = γ

Let H be the subgraph of j(G) generated by κ, then by elementarity G is isomorphic to
H.H has coloring number ≤ γ, hence G has also coloring number ≤ γ.
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Large cardinals and compactness for being collectionwise Hausdorff

Lemma

Let κ be a measurable cardinal and let X be a topological space of size κ. If X is
< κ-collectionwise Hausdorff, then X is collectionwise Hausdorff.

Proof.

W.l.o.g. we can assume that X = (κ, τ). Fix an elementary embedding j : V → M with
critical point κ. By elementarity

M |= j(X ) = (j(κ), j(τ)) is a topological space < j(κ)-collectionwise Hausdorff

Let H be the subspace of j(X ) generated by κ, then by elementarity X is isomorphic to
H.Let C be a closed discrete set in X , then C∗ := j ′′C is a closed discrete set in H,
hence in j(X ). Since j(X ) is < j(κ)-collectionwise Hausdorff and C∗ has size
≤ κ < j(κ), we have a separation {Ux

∗}x∈C∗ for C∗.Taking Ux := j−1′′Ux for every x , we
get a separation for C.
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When do we have compactness for structures of cardinality a small regular cardinal?
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Delta-reflection

Definition (Magidor, Shelah ’94)

For κ < λ, ∆κ,λ is the following statement:
given a stationary set S ⊆ Eλ

<κ and an algebra A on λ with < κ operations, there exists
a subalgebra A′ of A such that the order type of A′ is a regular cardinal < κ and

S ∩ A′ is stationary in sup(A′)

We say that λ has the Delta-reflection if ∆κ,λ holds for every κ < λ.
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Applications of Delta-reflection

Applications (Magidor, Shelah ’94)

Suppose that κ has the Delta-reflection, then

Given an abelian group G of size κ, if every subgroup of size < κ is free abelian,
then G is free abelian.

Given a graph G of size κ. If every subgraph of G of size < κ has coloring number
≤ γ < κ, then G has coloring number ≤ γ.
Given A a family of κ many countable sets, if every subfamily of size < κ has a
transversal, then A has a transversal.

Given X a topological space locally of cardinality < κ, if X is < κ-collectionwise
Hausdorff, then X is collectionwise Hausdorff
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Consistency of the Delta-reflection at ℵω2+1

If κ is weakly compact, then κ has the Delta-reflection.

Theorem (Magidor, Shelah ’94)

Cons(∃(κn)n<ωsupercompact cardinals)→ Cons(∆ℵ
ω2 ,ℵω2+1

)

Moreover, ℵω2+1 is the smallest regular cardinal that can have the Delta-reflection.

Theorem (Magidor, Shelah ’94)

Cons(∃(κn)n<ωsupercompact cardinals)→
Cons(κ is the first cardinal fixed point and for every regular λ > κ, ∆−κ,λ)
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The tree property

The tree property is the generalization of König’s lemma to uncountable cardinals.

Definition

A regular cardinal κ has the tree property (denoted TP(κ)) if for every tree of height κ
with levels all of size < κ there is a branch of size κ

Theorem

An inaccessible cardinal is weakly compact if and only if it has the tree property.
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Delta-reflection and the tree property

Theorem

(F. , Magidor 2015)
Cons(∃(κn)n<ωsupercompact cardinals)→ Cons(∆ℵ

ω2 ,ℵω2+1
+ TP(ℵω2+1))

Theorem

(F. , Magidor 2015) The Delta-reflection at ℵω2+1 does not imply the tree property at
ℵω2+1. (i.e. Cons(∃(κn)n<ωsupercompact cardinals)→ Cons(∆ℵ

ω2 ,ℵω2+1
+ ¬TP(ℵω2+1)))
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Square principle

(Jensen) Square �κ:

There exists a sequence 〈Cα; α ∈ Lim(κ+)〉 such that
1 every Cα ⊆ α is a club;

2 o.t .(Cα) ≤ κ
3 β ∈ Lim(Cα) implies Cβ = Cα ∩ β;
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Square principle

Square is an anti-compactness principle

(Solovay) �κ implies the failure of the reflection of stationary subsets of κ+ (hence it
implies the failure of the Delta-reflection at κ+).

(Todorčević ?) �κ implies the failure of the tree property at κ+

(Rinot) If �κ holds and 2κ = κ+, then there is a graph G of size κ+ such that every
subgraph of size < κ+ is countably chromatic while G has chromatic number κ.
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Todorčević square

(Todorčević) �(κ):

There exists a sequence 〈Cα; α ∈ Lim(κ)〉 such that
1 every Cα ⊆ α is a club;
2 β ∈ Lim(Cα) implies Cβ = Cα ∩ β;

3 there are no threads for the sequence, i.e. there is no club C ⊂ κ such that
β ∈ Lim(C) implies Cβ = C ∩ β;

Fact: �κ implies �(κ+)
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Todorčević square

�(κ) is an anti-compactness principle

(Todorčević) �(κ) implies the failure of the tree property at κ

(Veličković) �(κ) implies the existence of two stationary subsets of Eκ
ω that do not

reflect simultaneously (i.e. there is no α such that both reflect to α).
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Theorem (F. , Hayut)

Cons(∃(κn)n<ωsupercompact cardinals)→ Cons(∆ℵ
ω2 ,ℵω2+1

+ �(ℵω2+1))

in particular the Delta-reflection does not imply the tree property at ℵω2+1 (another
proof of F. , Magidor 2015).
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Some open questions

What other compactness properties are incompatible with �(κ)? Does �(κ) implies
the failure of compactness for being countably chromatic?

For which cardinals is it consistent to have compactness for being countably
chromatic?

Is there a natural principle of reflection for small cardinals that implies every
interesting compactness property?
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