From Forcing to Realizability

Laura Fontanella

Institut de mathématiques de Marseille Université Aix-Marseille

October 10, 2017

Laura Fontanella (I2M - Aix Marseille)

Establishes a correspondence between formulas provable in a logical system and programs interpreted in a model of computation. Then uses tools from computer science to extract information about proofs in the logical system.

A short history

Kleene 1945

Correspondence between formulas of Heyting arithmetic and (sets of indexes of) recursive functions.

Curry Howard 1958

Isomorphism between proofs in intuitionistic logic and simply typed lambda-terms.

Griffin 1990

Correspondence between classical logic and lambda-terms plus control operators.

Krivine 2000-2004

The programs-formulas correspondence is extended to any formula provable in ZF+DC. Krivine's technique generalizes Forcing: forcing models are special cases of realizability models.

Realizability models of set theory- spoiler alert!

The Axiom of Choice

Open problem: can we realize the Axiom of Choice? Krivine 2004 -> Dependent Choice can be realized (by 'quote')

Realizability is not forcing... maybe

Krivine 2013 - Consistency (relatively to the consistency of ZF) of the theory: ZF + DC + there is a sequence $\langle X_n \rangle_{n \in \mathbb{N}}$ of infinite subsets of \mathbb{R} such that:

- for n ≥ 2, the sequence is 'strictly increasing', i.e. there is an injection but no surjection between X_n and X_{n+1}
- $X_m \times X_n$ is equipotent with X_{mn} for every $n, m \ge 2$

Syntax of λ -calculus

 λ -terms: $M, N ::= x \mid MN \mid \lambda x.M$ ($\Lambda = \{ all \lambda$ -terms $\}$)

β -reduction

 $(\lambda x.M)N \rightarrow_{\beta} M[x := N].$

Forcing	Realizability
\mathbb{P} : set of conditions (Boolean algebra)	Λ: the 'programs' ; Π : the 'stacks'
∧ 'meet'	() 'application' ; . 'push' ; * 'process'
	k_{π} 'continuation'
\leq partial order on $\mathbb P$	\succ preorder on $\Lambda \star \Pi$
1 maximal condition	<i>I</i> , <i>K</i> , <i>W</i> , <i>C</i> , <i>B</i> , <i>cc</i> , $\varsigma \in \Lambda$ 'instructions'
$\bot \subseteq \mathbb{P} \times \mathbb{P}$	$\bot \subseteq \Lambda \star \Pi$ final segment
V 'ground model'	${\cal M}$ 'ground model'
$V^{\mathbb{P}}$ the Boolean-valued model	${\cal N}$ 'realizability model'
$ \varphi \in \mathbb{P}$	$ arphi \subseteq {\sf \Lambda}$; (($arphi$)) $\subseteq {\sf \Pi}$
{1}	$\Lambda^* \subseteq \Lambda$: the 'proof-like programs'.
	Contains the instructions
	and it's closed by application.
$V^{\mathbb{P}}\models arphi ext{ if } arphi =\mathbb{1}$	$\mathcal{N}\modelsarphi$ if $\exists heta\in \Lambda^{*}$ $(heta\in arphi)$
$\mathbb{1} \Vdash \varphi$ reads " $\mathbb{1}$ forces φ "	$\theta \Vdash \varphi$ reads " $ heta$ realizes φ "

Krivine's machine

Krivine's machine

- \succ is the least preorder on $\Lambda \star \Pi$ such that for all $\xi, \eta, \zeta \in \Lambda$ and $\pi, \sigma \in \Pi$,
 - $\xi(\eta) \star \pi \succ \xi \star \eta \cdot \pi$
 - $I \star \xi \cdot \pi \succ \xi \star \pi$
 - $K \star \xi \cdot \eta \cdot \pi \succ \xi \star \pi$
 - $E \star \xi \cdot \eta \cdot \pi \succ \xi(\eta) \star \pi$
 - $W \star \xi \cdot \eta \cdot \pi \succ \xi \star \eta \cdot \eta \cdot \pi$
 - $C \star \xi \cdot \eta \cdot \zeta \cdot \pi \succ \xi \star \zeta \cdot \eta \cdot \pi$
 - $B \star \xi \cdot \eta \cdot \zeta \cdot \pi \succ \xi(\eta(\zeta)) \star \pi$
 - $cc \star \xi \cdot \pi \succ \xi \star k_{\pi} \cdot \pi$
 - $k_{\pi} \star \xi \cdot \sigma \succ \xi \star \pi$

We call 'combinatory terms' or *c*-terms the programs which are written with variables, instructions and the application. Every lambda-term can be translated into a *c*-term.

Execution theorem

Let $\theta[x_1, ..., x_n] \in \Lambda$ be a *c*-term, let $\xi_1, ..., \xi_n \in \Lambda$ and $\pi \in \Pi$, then

 $\lambda x_1 \dots \lambda x_n \cdot \theta \star \xi_1 \cdot \dots \cdot \xi_n \cdot \pi \succ \theta[\xi_1/x_1, \dots, \xi_n/x_n] \star \pi$

Non extensional set theory ZF_{ε}

 $\mathcal{L} = \{ \varepsilon \ , \in, \subseteq \}.$

- $x \simeq y$ is the formula $x \subseteq y \land y \subseteq x$
 - Extensionality: $\forall x \forall y (x \in y \iff \exists z \in y (x \simeq z));$ $\forall x \forall y (x \subseteq y \iff \forall z \in x (z \in y))$
 - Foundation: $\forall x_1...\forall x_n\forall a(\forall x(\forall y \in xF[y, x_1, ..., x_n] \Rightarrow F[x, x_1, ..., x_n]) \Rightarrow F[a, x_1, ..., x_n])$
 - Pairing: $\forall a \forall b \exists x (a \varepsilon x \land b \varepsilon x)$
 - Union: $\forall a \exists b \forall x \in a \forall y \in x(y \in b)$
 - Powerset: $\forall a \exists b \forall x \exists y \in b \forall z (z \in y \iff (z \in a \land z \in x))$
 - Replacement: $\forall x_1 ... \forall x_n \forall a \exists b \forall x \in a(\exists y F[x, y, x_1, ..., x_n] \Rightarrow (\exists y \in b F[x, y, x_1 ... x_n]))$
 - Infinity $\forall x_1...x_n \forall a \exists b[a \in b \land \forall x \in b(\exists y F[x, y, x_1, ..., x_n] \Rightarrow \exists y \in b F[x, y, x_1, ..., x_n])]$
- ZF_{ε} is a conservative extension of ZF.

The realizability relation

We define the two truth values $|\varphi| \subseteq \Lambda$ and $(|\varphi|) \subseteq \Pi$.

•
$$(|\top|) = \emptyset$$
, $(|\perp|) = \Pi$, $(|a \not\in b|) = \{\pi \in \Pi; (a, \pi) \in b\}$
• $(|a \subseteq b|) = \{\xi \cdot \pi; \exists c(c, \pi) \in a \text{ and } \xi \Vdash c \notin b\}$
• $(|a \notin b|) = \{\xi \cdot \xi' \cdot \pi; \exists c(c, \pi) \in b \text{ and } \xi \Vdash a \subseteq c \text{ and } \xi' \Vdash c \subseteq a\}$
• $(|\varphi \Rightarrow \psi|) = \{\xi \cdot \pi; \xi \Vdash \varphi \text{ and } \pi \in (|\psi|)\}$
• $(|\forall x \varphi|) = \bigcup_{a} (|\varphi[a/x]|)$

 $\xi \in |\varphi| \iff \forall \pi \in (\!\!|\varphi|\!\!) (\xi \star \pi \in \perp)$

 $\xi \Vdash \varphi \text{ means } \xi \in |\varphi|$

The excluded middle is realized

Theorem

 $\mathit{cc} \Vdash ((A \Rightarrow B) \Rightarrow A) \Rightarrow A$

Lemma

If $\pi \in (A)$, then $k_{\pi} \Vdash A \Rightarrow B$

Proof.

Let $\xi \Vdash A$, then for every stack $\pi' \in (B)$, we have $k_{\pi} \star \xi \cdot \pi' \succ \xi \star \pi \in \bot$

Proof of theorem

Let $\xi \Vdash (A \Rightarrow B) \Rightarrow A$ and $\pi \in (A)$. Then $cc \star \xi \cdot \pi \succ \xi \star k_{\pi} \cdot \pi$ which is in \bot , because $k_{\pi} \Vdash A \Rightarrow B$ by the above lemma.

Adequacy lemma

Let $A_1, ..., A_n, A$ be closed formulas of ZF_{ε} and suppose $x_1 : A_1, ..., x_n : A_n \vdash t : A$. If $\xi_1 \Vdash A_1, ..., \xi_n \Vdash A_n$, then $t[\xi_1/x_1, ..., \xi_n/x_n] \Vdash A$.

Corollary

If $\vdash t : A$, then $t \Vdash A$

ZF_{ε} - Pairing axiom is realized:

Given two sets *a* and *b*, let $c = \{a, b\} \times \Pi$. We have $(a \notin c) = (b \notin c) = (\bot) = \Pi$, thus $I \Vdash a \in c$ and $I \Vdash b \in c$.

Remark

c may contain many other elements than a and b which have no name in \mathcal{M} .

Quote

Integers

Fix $\theta \mapsto n_{\theta}$ and enumeration of Λ Inductively define for each $n \in \mathbb{N}$ an element $\underline{n} \in \Lambda$: let $\underline{0} = KI$, and S = (BW)(BB); for each $n \in \mathbb{N}$, let $\underline{n+1} = S(\underline{n})$.

•
$$\varsigma \star \xi \cdot \eta \cdot \pi \succ \xi \star \underline{n}_{\eta} \cdot \pi$$

For each formula F[x, y] we can define a function symbol *f* such that:

 $\varsigma \Vdash \forall x \forall m^{\tilde{\mathbb{N}}} F[x, f(m, x)] \Rightarrow \forall y F[x, y]$

Now, let $\varphi(x) = f(m, x)$ for the first *m* such that $\neg F[x, f(m, x)]$, if there is one; or else 0. Then

$$\mathcal{N} \models \forall x F[x, \varphi(x)] \Rightarrow \forall y F[x, y]$$

This implies Dependent Choice: indeed if *A* is a non empty set and *R* is an entire binary relation on *A* (i.e. for every $x \in A$, there is $y \in A$ such that R(x, y)) then we let F[x, y] be $\neg R(x, y)$. By hypothesis $\forall x \exists y R(x, y)$, thus $\forall x \exists y \neg F[x, y]$. It follows from the statement above that $\neg F[x, \varphi(x)]$, i.e. $R(x, \varphi(x))$. Then fix any $a_0 \in A$, by letting $a_{n+1} = \varphi^{n+1}(a_0)$ we get the desired sequence.

For each formula F[x, y] we can define a function symbol *f* such that:

$$\varsigma \Vdash \forall x \forall m^{\tilde{\mathbb{N}}} F[x, f(m, x)] \Rightarrow \forall y F[x, y]$$

Now, let $\varphi(x) = f(m, x)$ for the first *m* such that $\neg F[x, f(m, x)]$, if there is one; or else 0. Then

$$\mathcal{N} \models \forall x F[x, \varphi(x)] \Rightarrow \forall y F[x, y]$$

This implies Dependent Choice: indeed if *A* is a non empty set and *R* is an entire binary relation on *A* (i.e. for every $x \in A$, there is $y \in A$ such that R(x, y)) then we let F[x, y] be $\neg R(x, y)$. By hypothesis $\forall x \exists y R(x, y)$, thus $\forall x \exists y \neg F[x, y]$. It follows from the statement above that $\neg F[x, \varphi(x)]$, i.e. $R(x, \varphi(x))$. Then fix any $a_0 \in A$, by letting $a_{n+1} = \varphi^{n+1}(a_0)$ we get the desired sequence.

For each formula F[x, y] we can define a function symbol f such that:

$$\varsigma \Vdash \forall x \forall m^{\tilde{\mathbb{N}}} F[x, f(m, x)] \Rightarrow \forall y F[x, y]$$

Now, let $\varphi(x) = f(m, x)$ for the first *m* such that $\neg F[x, f(m, x)]$, if there is one; or else 0. Then

$$\mathcal{N} \models \forall x F[x, \varphi(x)] \Rightarrow \forall y F[x, y]$$

This implies Dependent Choice: indeed if *A* is a non empty set and *R* is an entire binary relation on *A* (i.e. for every $x \in A$, there is $y \in A$ such that R(x, y)) then we let F[x, y] be $\neg R(x, y)$. By hypothesis $\forall x \exists y R(x, y)$, thus $\forall x \exists y \neg F[x, y]$. It follows from the statement above that $\neg F[x, \varphi(x)]$, i.e. $R(x, \varphi(x))$. Then fix any $a_0 \in A$, by letting $a_{n+1} = \varphi^{n+1}(a_0)$ we get the desired sequence.

For each formula F[x, y] we can define a function symbol *f* such that:

 $\varsigma \Vdash \forall x \forall m^{\tilde{\mathbb{N}}} F[x, f(m, x)] \Rightarrow \forall y F[x, y]$

Proof.

For each $m \in \mathbb{N}$ we let $P_m = \{\pi \in \Pi; \xi \star \underline{m} \cdot \pi \notin \bot$ and $m = n_{\xi}\}$. For each individual x, we have $(\forall x F[x, y]) = \bigcup_{a} (F[a, y])$. By means of the axiom of choice there is a function f such that given $m \in \mathbb{N}$ and y such that $P_m \cap (\forall x F[x, y]) \neq \emptyset$, we have $P_m \cap (F[f(m, y), y]) \neq \emptyset$. Now we want to show $\varsigma \Vdash \forall m^{\widetilde{\mathbb{N}}} F[x, f(m, x)] \Rightarrow \forall y F[x, y]$ for every individuals x, y. Let $\xi \Vdash \forall m^{\widetilde{\mathbb{N}}} F[f(m, y), y]$ and $\pi \in (F[a, y])$. Suppose by contradiction that $\varsigma \star \xi \star \pi \notin \bot$, then $\xi \star \underline{i} \star \pi \notin \bot$ with $i = n_{\xi}$. It follows that $\pi \in P_i \cap (F[a, y])$, thus there is $\pi' \in P_i \cap (F[f(i, y), y])$. We have $\underline{i} \star \pi' \in (\forall m^{\widetilde{\mathbb{N}}} F[f(m, y), y])$ and therefore, by hypothesis on ξ we have $\xi \star \underline{i} \star \pi' \in \bot$, contradicting $\pi' \in P_i$.

For each formula F[x, y] we can define a function symbol *f* such that:

$$\varsigma \Vdash \forall x \forall m^{\tilde{\mathbb{N}}} F[x, f(m, x)] \Rightarrow \forall y F[x, y]$$

Proof.

For each $m \in \mathbb{N}$ we let $P_m = \{\pi \in \Pi; \xi \star \underline{m} \cdot \pi \notin \bot$ and $m = n_{\xi}\}$. For each individual x, we have $(\forall x F[x, y]) = \bigcup_{a} (F[a, y])$. By means of the axiom of choice there is a function f such that given $m \in \mathbb{N}$ and y such that $P_m \cap (\forall x F[x, y]) \neq \emptyset$, we have $P_m \cap (F[f(m, y), y]) \neq \emptyset$. Now we want to show $\varsigma \Vdash \forall m^{\overline{\mathbb{N}}} F[x, f(m, x)] \Rightarrow \forall y F[x, y]$ for every individuals x, y. Let $\xi \Vdash \forall m^{\overline{\mathbb{N}}} F[f(m, y), y]$ and $\pi \in (F[a, y])$. Suppose by contradiction that $\varsigma \star \xi \cdot \pi \notin \bot$, then $\xi \star \underline{i} \cdot \pi \notin \bot$ with $i = n_{\xi}$. It follows that $\pi \in P_i \cap (F[a, y])$, thus there is $\pi' \in P_i \cap (F[f(i, y), y])$. We have $\underline{i} \cdot \pi' \in (\forall m^{\overline{\mathbb{N}}} F[f(m, y), y])$ and therefore, by hypothesis on ξ we have $\xi \star \underline{i} \cdot \pi' \in \bot$, contradicting $\pi' \in P_i$.

For each formula F[x, y] we can define a function symbol *f* such that:

$$\varsigma \Vdash \forall x \forall m^{\tilde{\mathbb{N}}} F[x, f(m, x)] \Rightarrow \forall y F[x, y]$$

Proof.

For each $m \in \mathbb{N}$ we let $P_m = \{\pi \in \Pi; \xi \star \underline{m} \cdot \pi \notin \bot$ and $m = n_{\xi}\}$. For each individual x, we have $(\forall x F[x, y]) = \bigcup_{a} (\langle F[a, y] \rangle)$. By means of the axiom of choice there is a function f such that given $m \in \mathbb{N}$ and y such that $P_m \cap (\forall x F[x, y]) \neq \emptyset$, we have $P_m \cap (\langle F[f(m, y), y] \rangle) \neq \emptyset$. Now we want to show $\varsigma \Vdash \forall m^{\mathbb{N}} F[x, f(m, x)] \Rightarrow \forall y F[x, y]$ for every individuals x, y. Let $\xi \Vdash \forall m^{\mathbb{N}} F[f(m, y), y]$ and $\pi \in (\langle F[a, y] \rangle)$. Suppose by contradiction that $\varsigma \star \xi \star \pi \notin \bot$, then $\xi \star \underline{i} \star \pi \notin \bot$ with $i = n_{\xi}$. It follows that $\pi \in P_i \cap (\langle F[a, y] \rangle)$, thus there is $\pi' \in P_i \cap (\langle F[f(i, y), y] \rangle)$. We have $\underline{i} \star \pi' \in (\forall m^{\mathbb{N}} F[f(m, y), y])$ and therefore, by hypothesis on ξ we have $\xi \star \underline{i} \star \pi' \in \bot$, contradicting $\pi' \in P_i$.

For each formula F[x, y] we can define a function symbol *f* such that:

$$\varsigma \Vdash \forall x \forall m^{\tilde{\mathbb{N}}} F[x, f(m, x)] \Rightarrow \forall y F[x, y]$$

Proof.

For each $m \in \mathbb{N}$ we let $P_m = \{\pi \in \Pi; \xi \star \underline{m} \cdot \pi \notin \bot$ and $m = n_{\xi}\}$. For each individual x, we have $(\forall x F[x, y]) = \bigcup_{a} (F[a, y])$. By means of the axiom of choice there is a function f such that given $m \in \mathbb{N}$ and y such that $P_m \cap (\forall x F[x, y]) \neq \emptyset$, we have $P_m \cap (F[f(m, y), y]) \neq \emptyset$. Now we want to show $\varsigma \Vdash \forall m^{\widetilde{\mathbb{N}}} F[x, f(m, x)] \Rightarrow \forall y F[x, y]$ for every individuals x, y. Let $\xi \Vdash \forall m^{\widetilde{\mathbb{N}}} F[f(m, y), y]$ and $\pi \in (F[a, y])$. Suppose by contradiction that $\varsigma \star \xi \star \pi \notin \bot$, then $\xi \star \underline{i} \star \pi \notin \bot$ with $i = n_{\xi}$. It follows that $\pi \in P_i \cap (F[a, y])$, thus there is $\pi' \in P_i \cap (F[f(i, y), y])$. We have $\underline{i} \star \pi' \in (\forall m^{\widetilde{\mathbb{N}}} F[f(m, y), y])$ and therefore, by hypothesis on ξ we have $\xi \star \underline{i} \star \pi' \in \bot$, contradicting $\pi' \in P_i$.

For each formula F[x, y] we can define a function symbol *f* such that:

$$\varsigma \Vdash \forall x \forall m^{\tilde{\mathbb{N}}} F[x, f(m, x)] \Rightarrow \forall y F[x, y]$$

Proof.

For each $m \in \mathbb{N}$ we let $P_m = \{\pi \in \Pi; \xi \star \underline{m} \cdot \pi \notin \bot$ and $m = n_{\xi}\}$. For each individual x, we have $(\forall xF[x, y]) = \bigcup_{a} (\langle F[a, y] \rangle)$. By means of the axiom of choice there is a function f such that given $m \in \mathbb{N}$ and y such that $P_m \cap (\forall xF[x, y]) \neq \emptyset$, we have $P_m \cap (\langle F[f(m, y), y] \rangle) \neq \emptyset$. Now we want to show $\varsigma \Vdash \forall m^{\mathbb{N}} F[x, f(m, x)] \Rightarrow \forall yF[x, y]$ for every individuals x, y. Let $\xi \Vdash \forall m^{\mathbb{N}} F[f(m, y), y]$ and $\pi \in (\langle F[a, y] \rangle)$. Suppose by contradiction that $\varsigma \star \xi \cdot \pi \notin \bot$, then $\xi \star \underline{i} \cdot \pi \notin \bot$ with $i = n_{\xi}$. It follows that $\pi \in P_i \cap (\langle F[a, y] \rangle)$, thus there is $\pi' \in P_i \cap (\langle F[f(i, y), y] \rangle)$. We have $\underline{i} \cdot \pi' \in (\forall m^{\mathbb{N}} F[f(m, y), y])$ and therefore, by hypothesis on ξ we have $\xi \star \underline{i} \cdot \pi' \in \bot$, contradicting $\pi' \in P_i$.

For each formula F[x, y] we can define a function symbol *f* such that:

$$\varsigma \Vdash \forall x \forall m^{\tilde{\mathbb{N}}} F[x, f(m, x)] \Rightarrow \forall y F[x, y]$$

Proof.

For each $m \in \mathbb{N}$ we let $P_m = \{\pi \in \Pi; \xi \star \underline{m} \cdot \pi \notin \bot$ and $m = n_{\xi}\}$. For each individual x, we have $(\forall xF[x, y]) = \bigcup_{a} (F[a, y])$. By means of the axiom of choice there is a function f such that given $m \in \mathbb{N}$ and y such that $P_m \cap (\forall xF[x, y]) \neq \emptyset$, we have $P_m \cap (F[f(m, y), y]) \neq \emptyset$. Now we want to show $\varsigma \Vdash \forall m^{\widetilde{N}}F[x, f(m, x)] \Rightarrow \forall yF[x, y]$ for every individuals x, y. Let $\xi \Vdash \forall m^{\widetilde{N}}F[f(m, y), y]$ and $\pi \in (F[a, y])$. Suppose by contradiction that $\varsigma \star \xi \cdot \pi \notin \bot$, then $\xi \star \underline{i} \cdot \pi \notin \bot$ with $i = n_{\xi}$. It follows that $\pi \in P_i \cap (F[a, y])$, thus there is $\pi' \in P_i \cap (F[f(i, y), y])$. We have $\underline{i} \cdot \pi' \in (\forall m^{\widetilde{N}}F[f(m, y), y])$ and therefore, by hypothesis on ξ we have $\xi \star \underline{i} \cdot \pi' \in \bot$, contradicting $\pi' \in P_i$.

For each formula F[x, y] we can define a function symbol *f* such that:

$$\varsigma \Vdash \forall x \forall m^{\tilde{\mathbb{N}}} F[x, f(m, x)] \Rightarrow \forall y F[x, y]$$

Proof.

For each $m \in \mathbb{N}$ we let $P_m = \{\pi \in \Pi; \xi \star \underline{m} \cdot \pi \notin \bot$ and $m = n_{\xi}\}$. For each individual x, we have $(\forall xF[x, y]) = \bigcup_{a} (\langle F[a, y] \rangle)$. By means of the axiom of choice there is a function f such that given $m \in \mathbb{N}$ and y such that $P_m \cap (\forall xF[x, y]) \neq \emptyset$, we have $P_m \cap (\langle F[f(m, y), y] \rangle) \neq \emptyset$. Now we want to show $\varsigma \Vdash \forall m^{\widetilde{N}} F[x, f(m, x)] \Rightarrow \forall yF[x, y]$ for every individuals x, y. Let $\xi \Vdash \forall m^{\widetilde{N}} F[f(m, y), y]$ and $\pi \in (\langle F[a, y] \rangle)$. Suppose by contradiction that $\varsigma \star \xi \cdot \pi \notin \bot$, then $\xi \star \underline{i} \cdot \pi \notin \bot$ with $i = n_{\xi}$. It follows that $\pi \in P_i \cap (\langle F[a, y] \rangle)$, thus there is $\pi' \in P_i \cap (\langle F[f(i, y), y] \rangle)$. We have $\underline{i} \cdot \pi' \in (\langle \forall m^{\widetilde{N}} F[f(m, y), y] \rangle)$ and therefore, by hypothesis on ξ we have $\xi \star \underline{i} \cdot \pi' \in \bot$, contradicting $\pi' \in P_i$.

The Axiom of Choice

Open problem: can we realize the Axiom of Choice?

Is Realizability stronger than forcing?

Krivine 2013 - Consistency (relatively to the consistency of ZF) of the theory: ZF + DC + there is a sequence $\langle X_n \rangle_{n \in \mathbb{N}}$ of infinite subsets of \mathbb{R} such that:

- for n ≥ 2, the sequence is 'strictly increasing', i.e. there is an injection but no surjection between X_n and X_{n+1}
- $X_m \times X_n$ is equipotent with X_{mn} for every $n, m \ge 2$

Thank you