Reflection and anti-reflection at the successor of a singular cardinal

joint work with Yair Hayut

Laura Fontanella

Hebrew University of Jerusalem, Einstein Institute of Mathematics http://www.logique.jussieu.fr/~fontanella laura.fontanella@mail.huji.ac.il

03/08/2015

We present the following result:

Theorem (F. , Hayut) $Cons(\exists (\kappa_n)_{n < \omega} supercompact cardinals) \rightarrow Cons(\Delta_{\aleph_{\omega^2}, \aleph_{\omega^2+1}} + \Box(\aleph_{\omega^2+1}))$

Δ_{ℵ_{ω²},ℵ_{ω²+1}} is a strong version of the reflection of stationary sets at ℵ_{ω²+1}.
 □(κ⁺) is a weak version of □_κ.

Reflection: Given some structure (e.g. a set of ordinals, a group, a topological space etc.), if the structure satisfies a certain property, then there is a substructure of smaller cardinality with the same property.

Reflection of stationary sets

Let κ be a regular cardinal, $Refl(\kappa)$: for every stationary subset *S* of κ , there exists $\alpha < \kappa$ of uncountable cofinality such that

 $S \cap \alpha$ is a stationary subset of α .

Applications: $Refl(\kappa)$ is equiconsistent with "every κ -free abelian group is κ^+ -free"

Reflection of stationary sets

Let κ be a regular cardinal, $Refl(\kappa)$: for every stationary subset *S* of κ , there exists $\alpha < \kappa$ of uncountable cofinality such that

 $S \cap \alpha$ is a stationary subset of α .

Applications: *Refl*(κ) is equiconsistent with "every κ -free abelian group is κ^+ -free"

Reflection of stationary sets

- If κ is weakly compact, then $Refl(\kappa)$ holds.
- $Refl(\kappa^+)$ fails if κ is a regular cardinal.

Theorem (Magidor '82)

 $Cons(\exists (\kappa_n)_{n < \omega} \text{supercompact cardinals}) \rightarrow Cons(Refl(\aleph_{\omega+1}))$

Definition (Magidor, Shelah '94)

For $\kappa < \lambda$, $\Delta_{\kappa,\lambda}$ is the following statement: given a stationary set $S \subseteq E^{\lambda}_{<\kappa}$ and an algebra \mathcal{A} on λ with $< \kappa$ operations, there exists a subalgebra \mathcal{A}' of \mathcal{A} such that the order type of \mathcal{A}' is a regular cardinal $< \kappa$ and

 $S \cap A'$ is stationary in sup(A')

We say that λ has the Delta-reflection if $\Delta_{\kappa,\lambda}$ holds for every $\kappa < \lambda$.

Applications (Magidor, Shelah)

Suppose that κ has the Delta-reflection, then

- $Refl(\kappa)$ holds
- every almost free abelian group of size κ is free.
- Given a graph *G* of size κ . If every subgraph of *G* of size $< \kappa$ has coloring number $\gamma < \kappa$, then *G* has coloring number γ .
- Given A a family of κ sets all of size $< \kappa$, if every subfamily of size $< \kappa$ has a transversal, then A has a transversal.
- Given X a topological space locally of cardinality $< \kappa$, if X is $< \kappa$ -collectionwise Hausdorff, then X is collectionwise Hausdorff

Consistency of the Delta-reflection at \aleph_{ω^2+1}

Theorem (Magidor, Shelah '94)

 $Cons(\exists (\kappa_n)_{n < \omega} \text{supercompact cardinals}) \rightarrow Cons(\Delta_{\aleph_{\omega^2}, \aleph_{\omega^2+1}})$

Moreover, \aleph_{ω^2+1} is the smallest regular cardinal that can have the Delta-reflection.

(Jensen) Square \Box_{κ} :

There exists a sequence $\langle C_{\alpha}; \alpha \in Lim(\kappa^+) \rangle$ such that

- every $C_{\alpha} \subseteq \alpha$ is a club;
- $\exists \beta \in \operatorname{Lim}(C_{\alpha}) \text{ implies } C_{\beta} = C_{\alpha} \cap \beta;$
- \bullet o.t. $(C_{\alpha}) \leq \kappa$

Square is an anti-reflection principle

- (Solovay) □_κ implies ¬*Refl*(κ⁺) (in particular it implies the failure of the Delta-relfection at κ⁺).
- (Solovay) if κ is strongly compact, then \Box_{μ} fails for every $\mu \geq \kappa$.

(Todorčević) $\Box(\kappa)$:

There exists a sequence $\langle C_{\alpha}; \alpha \in Lim(\kappa) \rangle$ such that

- every $C_{\alpha} \subseteq \alpha$ is a club;
- $\ \ \, \boldsymbol{\beta} \in \operatorname{Lim}(\boldsymbol{C}_{\alpha}) \text{ implies } \boldsymbol{C}_{\beta} = \boldsymbol{C}_{\alpha} \cap \boldsymbol{\beta};$
- there are no threads for the sequence, i.e. there is no club *C* ⊂ κ such that $\beta \in \text{Lim}(C)$ implies $C_{\beta} = C \cap \beta$;

Fact: \Box_{κ} implies $\Box(\kappa^+)$

$\Box(\kappa)$ is an anti-reflection principle

- (Veličković) □(κ) implies the existence of two stationary subsets of E^κ_ω that do not reflect simultaneously (i.e. there is no α such that both reflect to α).
- (Rinot) □(κ) implies that every stationary subset of κ can be split into κ many disjoint stationary parts that do not reflect simultaneously
- (Todorčević) $\Box(\kappa)$ implies the failure of the tree property at κ
- (Solovay, Veličković) if κ is strongly compact, then $\Box(\mu)$ fails for every $\mu \geq \kappa$.

We present the following result:

Theorem (F., Hayut)

 $Cons(\exists (\kappa_n)_{n < \omega} \text{supercompact cardinals}) \rightarrow Cons(\Delta_{\aleph_{\omega^2}, \aleph_{\omega^2+1}} + \Box(\aleph_{\omega^2+1}))$

- The Delta-reflection at *κ*⁺ is incompatible even with the weak square □^{*}_κ, so in a way this result is optimal.
- The Delta-reflection implies the failure of the approachability property, so in particular □(ℵ_{ω²+1}) does not imply the approachability property at ℵ_{ω²}
- □(κ⁺) implies the failure of the tree property at κ⁺, so in particular the Delta-reflection does not imply the tree property at ℵ_{ω²+1} (see also F. , Magidor).

We present the following result:

```
Theorem (F., Hayut)
```

 $Cons(\exists (\kappa_n)_{n < \omega} \text{supercompact cardinals}) \rightarrow Cons(\Delta_{\aleph_{\omega^2}, \aleph_{\omega^2+1}} + \Box(\aleph_{\omega^2+1})))$

- The Delta-reflection at κ⁺ is incompatible even with the weak square □_κ^{*}, so in a way this result is optimal.
- The Delta-reflection implies the failure of the approachability property, so in particular □(ℵ_{ω²+1}) does not imply the approachability property at ℵ_{ω²}
- □(κ⁺) implies the failure of the tree property at κ⁺, so in particular the Delta-reflection does not imply the tree property at ℵ_{ω²+1} (see also F. , Magidor).

Theorem (Solovay)

Suppose $\lambda = \lim_{n < \omega} \kappa_n$ is a limit of supercompact cardinals, then λ^+ has the Delta-reflection.

Proof.

Let S and A be a stationary set and an algebra as in the statement of the Delta-reflection.

Theorem (Solovay)

Suppose $\lambda = \lim_{n < \omega} \kappa_n$ is a limit of supercompact cardinals, then λ^+ has the Delta-reflection.

Proof.

Theorem (Solovay)

Suppose $\lambda = \lim_{n < \omega} \kappa_n$ is a limit of supercompact cardinals, then λ^+ has the Delta-reflection.

Proof.

Theorem (Solovay)

Suppose $\lambda = \lim_{n < \omega} \kappa_n$ is a limit of supercompact cardinals, then λ^+ has the Delta-reflection.

Proof.

Theorem (Solovay)

Suppose $\lambda = \lim_{n < \omega} \kappa_n$ is a limit of supercompact cardinals, then λ^+ has the Delta-reflection.

Proof.

Theorem (Solovay)

Suppose $\lambda = \lim_{n < \omega} \kappa_n$ is a limit of supercompact cardinals, then λ^+ has the Delta-reflection.

Proof.

Theorem (Solovay)

Suppose $\lambda = \lim_{n < \omega} \kappa_n$ is a limit of supercompact cardinals, then λ^+ has the Delta-reflection.

Proof.

Theorem (Solovay)

Suppose $\lambda = \lim_{n < \omega} \kappa_n$ is a limit of supercompact cardinals, then λ^+ has the Delta-reflection.

Proof.

Theorem (Magidor, Shelah '94)

 $Cons(\exists (\kappa_n)_{n < \omega} \text{supercompact cardinals}) \rightarrow Cons(\Delta_{\aleph_{\omega^2}, \aleph_{\omega^2+1}})$

Use a forcing ${\mathbb P}$ similar to diagonal Prikry forcing. The conditions have the following form

 $p = \langle \alpha_0, g_0, f_0, ..., \alpha_{n-1}, g_{n-1}, f_{n-1}, A_n, g_n, F_n ... \rangle$

Laura Fontanella (HUJI)

Theorem (Magidor, Shelah '94)

 $Cons(\exists (\kappa_n)_{n < \omega} \text{supercompact cardinals}) \rightarrow Cons(\Delta_{\aleph_{\omega^2}, \aleph_{\omega^2+1}})$


```
Theorem (Magidor, Shelah '94)
```

```
Cons(\exists (\kappa_n)_{n < \omega} \text{supercompact cardinals}) \rightarrow Cons(\Delta_{\aleph_{\omega^2}, \aleph_{\omega^2+1}})
```

```
Delta-refl
-\alpha_{n+2} \text{ inacc.}
-\kappa_{n+1}
-\alpha_{n+1} \text{ inacc.}
-\kappa_n
-\alpha_n \text{ inacc.}
```

Use a forcing $\mathbb P$ similar to diagonal Prikry forcing. The conditions have the following form

 $\boldsymbol{p} = \langle \alpha_0, \boldsymbol{g}_0, \boldsymbol{f}_0, ..., \alpha_{n-1}, \boldsymbol{g}_{n-1}, \boldsymbol{f}_{n-1}, \boldsymbol{A}_n, \boldsymbol{g}_n, \boldsymbol{F}_n ... \rangle$

Laura Fontanella (HUJI)

Theorem (Magidor, Shelah '94)

 $Cons(\exists (\kappa_n)_{n < \omega} \text{supercompact cardinals}) \rightarrow Cons(\Delta_{\aleph_{\omega^2}, \aleph_{\omega^{2+1}}})$

Use a forcing $\mathbb P$ similar to diagonal Prikry forcing. The conditions have the following form

 $\boldsymbol{p} = \langle \alpha_0, \boldsymbol{g}_0, \boldsymbol{f}_0, ..., \alpha_{n-1}, \boldsymbol{g}_{n-1}, \boldsymbol{f}_{n-1}, \boldsymbol{A}_n, \boldsymbol{g}_n, \boldsymbol{F}_n ... \rangle$

Laura Fontanella (HUJI)

We want both the Delta-reflection at \aleph_{ω^2+1} and $\Box(\aleph_{\omega^2+1})$.

Problem: if $\Box(\lambda^+)$ holds, then there are no λ^+ -supercompact cardinals.

An attempted solution: Force with

- \mathbb{S} : forces a $\Box(\lambda^+)$ -sequence \mathcal{S}
- $\bullet~\mathbb{T}$: adds a thread to $\mathcal S$

Then $\mathbb{S} * \mathbb{T}$ contains a λ^+ -directed closed dense subset, thus

 $V^{\mathbb{S}*\mathbb{T}} \models \operatorname{each} \kappa_n$ is supercompact

Forcing with \mathbb{P} , we have

$$V^{(\mathbb{S}*\mathbb{T}) imes\mathbb{P}}\models\Delta_{leph_{\omega^2},leph_{\omega^2+1}}$$

$$V^{\mathbb{S}\times\mathbb{P}}\models \Delta_{\aleph_{\omega^2},\aleph_{\omega^2+1}}+\Box(\aleph_{\omega^2+1})$$

We want both the Delta-reflection at \aleph_{ω^2+1} and $\Box(\aleph_{\omega^2+1})$.

Problem: if $\Box(\lambda^+)$ holds, then there are no λ^+ -supercompact cardinals.

An attempted solution: Force with

- \mathbb{S} : forces a $\Box(\lambda^+)$ -sequence \mathcal{S}
- $\bullet~\mathbb{T}$: adds a thread to $\mathcal S$

Then $\mathbb{S} \ast \mathbb{T}$ contains a $\lambda^+\text{-directed closed dense subset, thus}$

 $V^{\mathbb{S}*\mathbb{T}} \models \operatorname{each} \kappa_n \operatorname{is supercompact}$

Forcing with \mathbb{P} , we have

$$V^{(\mathbb{S}*\mathbb{T}) imes\mathbb{P}}\models\Delta_{leph_{\omega^2},leph_{\omega^2+1}}$$

$$V^{\mathbb{S}\times\mathbb{P}}\models \Delta_{\aleph_{\omega^2},\aleph_{\omega^2+1}}+\Box(\aleph_{\omega^2+1})$$

We want both the Delta-reflection at \aleph_{ω^2+1} and $\Box(\aleph_{\omega^2+1})$.

Problem: if $\Box(\lambda^+)$ holds, then there are no λ^+ -supercompact cardinals.

An attempted solution: Force with

- \mathbb{S} : forces a $\Box(\lambda^+)$ -sequence \mathcal{S}
- $\bullet \ \mathbb{T}$: adds a thread to $\mathcal S$

Then $\mathbb{S}*\mathbb{T}$ contains a $\lambda^+\text{-directed closed dense subset, thus}$

 $V^{\mathbb{S}*\mathbb{T}} \models \operatorname{each} \kappa_n \operatorname{is supercompact}$

Forcing with \mathbb{P} , we have

$$V^{(\mathbb{S}*\mathbb{T}) imes\mathbb{P}}\models\Delta_{\aleph_{\omega^2},\aleph_{\omega^2+1}}$$

$$V^{\mathbb{S}\times\mathbb{P}}\models \Delta_{\aleph_{\omega^2},\aleph_{\omega^2+1}}+\Box(\aleph_{\omega^2+1})$$

We want both the Delta-reflection at \aleph_{ω^2+1} and $\Box(\aleph_{\omega^2+1})$.

Problem: if $\Box(\lambda^+)$ holds, then there are no λ^+ -supercompact cardinals.

An attempted solution: Force with

- \mathbb{S} : forces a $\Box(\lambda^+)$ -sequence \mathcal{S}
- $\bullet \ \mathbb{T}$: adds a thread to $\mathcal S$

Then $\mathbb{S} * \mathbb{T}$ contains a λ^+ -directed closed dense subset, thus

 $V^{\mathbb{S}*\mathbb{T}} \models \operatorname{each} \kappa_n \operatorname{is supercompact}$

Forcing with \mathbb{P} , we have

$$V^{(\mathbb{S}*\mathbb{T})\times\mathbb{P}}\models\Delta_{\aleph_{\omega^2},\aleph_{\omega^2+1}}$$

$$V^{\mathbb{S}\times\mathbb{P}}\models\Delta_{\aleph_{\omega^2},\aleph_{\omega^2+1}}+\Box(\aleph_{\omega^2+1})$$

We want both the Delta-reflection at \aleph_{ω^2+1} and $\Box(\aleph_{\omega^2+1})$.

Problem: if $\Box(\lambda^+)$ holds, then there are no λ^+ -supercompact cardinals.

An attempted solution: Force with

- \mathbb{S} : forces a $\Box(\lambda^+)$ -sequence \mathcal{S}
- $\bullet \ \mathbb{T}$: adds a thread to $\mathcal S$

Then $\mathbb{S} * \mathbb{T}$ contains a λ^+ -directed closed dense subset, thus

 $V^{\mathbb{S}*\mathbb{T}} \models \operatorname{each} \kappa_n \operatorname{is supercompact}$

Forcing with \mathbb{P} , we have

$$V^{(\mathbb{S}*\mathbb{T}) imes\mathbb{P}}\models\Delta_{leph_{\omega^2},leph_{\omega^2+1}}$$

$$V^{\mathbb{S}\times\mathbb{P}}\models \Delta_{\aleph_{\omega^2},\aleph_{\omega^2+1}}+\Box(\aleph_{\omega^2+1})$$

New problem: \mathbb{T} destroys stationary sets, so it may destroy stationary sets that do not reflect in $V^{\mathbb{S}*\mathbb{P}}$, thus the preservation lemma cannot be proven.

New solution: we do some preparation, namely we define an iteration \mathbb{R} that preventively destroy all the stationary sets in $V^{S \times \mathbb{P}}$ that would be destroyed by \mathbb{T} .

New problem: \mathbb{T} destroys stationary sets, so it may destroy stationary sets that do not reflect in $V^{\mathbb{S}*\mathbb{P}}$, thus the preservation lemma cannot be proven.

New solution: we do some preparation, namely we define an iteration \mathbb{R} that preventively destroy all the stationary sets in $V^{\mathbb{S}\times\mathbb{P}}$ that would be destroyed by \mathbb{T} .

Factorising $\mathbb P$

$$\mathbb{C}_n := \prod_{m \ge n} \textit{Coll}(\kappa_m^{++}, < \kappa_{m+1})$$

For $c, c' \in \mathbb{C}_0$, let

•
$$c \sim c' \iff \exists n \forall m \ge n c(m) = c'(m)$$

• $c \le^* c' \iff \exists n \forall m \ge n c(m) \le c'(m)$

$$\mathbb{C}_{\textit{fin}} := (\mathbb{C}_0 / \sim, \leq^*)$$

 $\ensuremath{\mathbb{P}}$ can be factorised like this

$$\mathbb{P} \equiv \mathbb{C}_{\textit{fin}} * \mathbb{P}^*$$

In $V^{\mathbb{C}_{fin}\times\mathbb{S}}$ we define \mathbb{R} such that if E is a stationary set in $V^{(\mathbb{C}_{fin}\times\mathbb{S})*\mathbb{R}}$, then $V^{(\mathbb{C}_{fin}\times\mathbb{S})*\mathbb{R}} \models "1_{\mathbb{T}} \Vdash E$ is stationary".

For every $n < \omega$, $(\mathbb{C}_n \times \mathbb{S}) * \mathbb{R} * \mathbb{T}$ contains a κ_n^+ -directed closed dense subsets, thus

 $V^{(\mathbb{C}_n \times \mathbb{S}) * \mathbb{R} * \mathbb{T}} \models \kappa_n \text{ is supercompact}$

In this model fix a normal ultrafilter on $\mathcal{P}_{\kappa_n}(\lambda^+)$, it has a projection to a normal ultrafilter U_n on κ_n , U_n is already in V. From $\{U_n\}_{n < \omega}$ define \mathbb{P} in V.

The final model is

 $V^{(\mathbb{C}_{fin}\times\mathbb{S})*(\mathbb{R}\times\mathbb{P}^*)}$

In $V^{\mathbb{C}_{fin} \times \mathbb{S}}$ we define \mathbb{R} such that if E is a stationary set in $V^{(\mathbb{C}_{fin} \times \mathbb{S})*\mathbb{R}}$, then $V^{(\mathbb{C}_{fin} \times \mathbb{S})*\mathbb{R}} \models "1_{\mathbb{T}} \Vdash E$ is stationary".

For every $n < \omega$, $(\mathbb{C}_n \times \mathbb{S}) * \mathbb{R} * \mathbb{T}$ contains a κ_n^+ -directed closed dense subsets, thus

 $V^{(\mathbb{C}_n \times \mathbb{S}) * \mathbb{R} * \mathbb{T}} \models \kappa_n \text{ is supercompact}$

In this model fix a normal ultrafilter on $\mathcal{P}_{\kappa_n}(\lambda^+)$, it has a projection to a normal ultrafilter U_n on κ_n , U_n is already in V. From $\{U_n\}_{n<\omega}$ define \mathbb{P} in V.

The final model is

 $V^{(\mathbb{C}_{fin} \times \mathbb{S}) * (\mathbb{R} \times \mathbb{P}^*)}$

In $V^{\mathbb{C}_{fin} \times \mathbb{S}}$ we define \mathbb{R} such that if E is a stationary set in $V^{(\mathbb{C}_{fin} \times \mathbb{S})*\mathbb{R}}$, then $V^{(\mathbb{C}_{fin} \times \mathbb{S})*\mathbb{R}} \models "1_{\mathbb{T}} \Vdash E$ is stationary".

For every $n < \omega$, $(\mathbb{C}_n \times \mathbb{S}) * \mathbb{R} * \mathbb{T}$ contains a κ_n^+ -directed closed dense subsets, thus

 $V^{(\mathbb{C}_n \times \mathbb{S}) * \mathbb{R} * \mathbb{T}} \models \kappa_n \text{ is supercompact}$

In this model fix a normal ultrafilter on $\mathcal{P}_{\kappa_n}(\lambda^+)$, it has a projection to a normal ultrafilter U_n on κ_n , U_n is already in V. From $\{U_n\}_{n < \omega}$ define \mathbb{P} in V.

The final model is

 $V^{(\mathbb{C}_{fin}\times\mathbb{S})*(\mathbb{R}\times\mathbb{P}^*)}$

In $V^{\mathbb{C}_{fin} \times \mathbb{S}}$ we define \mathbb{R} such that if E is a stationary set in $V^{(\mathbb{C}_{fin} \times \mathbb{S})*\mathbb{R}}$, then $V^{(\mathbb{C}_{fin} \times \mathbb{S})*\mathbb{R}} \models "1_{\mathbb{T}} \Vdash E$ is stationary".

For every $n < \omega$, $(\mathbb{C}_n \times \mathbb{S}) * \mathbb{R} * \mathbb{T}$ contains a κ_n^+ -directed closed dense subsets, thus

 $V^{(\mathbb{C}_n \times \mathbb{S}) * \mathbb{R} * \mathbb{T}} \models \kappa_n \text{ is supercompact}$

In this model fix a normal ultrafilter on $\mathcal{P}_{\kappa_n}(\lambda^+)$, it has a projection to a normal ultrafilter U_n on κ_n , U_n is already in V. From $\{U_n\}_{n < \omega}$ define \mathbb{P} in V.

The final model is

 $V^{(\mathbb{C}_{fin} \times \mathbb{S}) * (\mathbb{R} \times \mathbb{P}^*)}$

The idea of the proof

Part 1: $V^{\mathbb{S}} \models \Box(\lambda^+)$

A forcing \mathbb{B} does not add a thread to a $\Box(\lambda^+)$ -sequence if $\mathbb{B} \times \mathbb{B}$ does not change the cofinality of λ^+ .

 $\mathbb{C}_{fin}, \mathbb{R}$ and \mathbb{P}^* satisfy this requirement, thus

 $V^{(\mathbb{C}_{fin}\times\mathbb{S})*(\mathbb{R}\times\mathbb{P}^*)}\models\Box(\lambda^+)$

Part 1: $V^{\mathbb{S}} \models \Box(\lambda^+)$

A forcing \mathbb{B} does not add a thread to a $\Box(\lambda^+)$ -sequence if $\mathbb{B} \times \mathbb{B}$ does not change the cofinality of λ^+ .

 $\mathbb{C}_{fin}, \mathbb{R}$ and \mathbb{P}^* satisfy this requirement, thus

 $V^{(\mathbb{C}_{fin}\times\mathbb{S})*(\mathbb{R}\times\mathbb{P}^*)}\models\Box(\lambda^+)$

Part 1: $V^{\mathbb{S}} \models \Box(\lambda^+)$

A forcing \mathbb{B} does not add a thread to a $\Box(\lambda^+)$ -sequence if $\mathbb{B} \times \mathbb{B}$ does not change the cofinality of λ^+ .

 $\mathbb{C}_{\textit{fin}}, \mathbb{R} \text{ and } \mathbb{P}^*$ satisfy this requirement, thus

 $V^{(\mathbb{C}_{fin}\times\mathbb{S})*(\mathbb{R}\times\mathbb{P}^*)}\models\Box(\lambda^+)$

The idea of the proof

Part 2: Suppose that

$V^{(\mathbb{C}_{fin} \times \mathbb{S})*(\mathbb{R} \times \mathbb{P}^*)} \models \dot{S} \subseteq E_{<\kappa_n}^{\lambda^+}$ stationary, A algebra on λ^+ with $<\kappa_n$ -many operations

Define in $V^{(\mathbb{C}_{in} \times \mathbb{S})*\mathbb{R}}$ "fake versions" S^* of \dot{S} and A^* of \dot{A} . By the preparation \mathbb{R} , there exists a generic G_T for \mathbb{T} such that

$$V^{(\mathbb{C}_{fin} \times \mathbb{S}) * \mathbb{R}}(G_T) \models S^*$$
 is stationary

Forcing with $\mathbb{C}_n/\mathbb{C}_{fin}$, we still have

 $V^{(\mathbb{C}_n \times \mathbb{S}) * \mathbb{R}}(G_T) \models S^*$ is stationary.

Moreover κ_n is supercompact in $V^{(\mathbb{C}_n \times \mathbb{S})*\mathbb{R}}(G_T)$, so here S^* reflects on a subalgebra B^* of A^* of order type $< \kappa_n$. By the distributivity of \mathbb{T} , the subalgebra B^* already existed in $V^{(\mathbb{C}_n \times \mathbb{S})*\mathbb{R}}$.

This gives us a subalgebra B of the real algebra A where the real stationary set S reflects, so we have the conclusion.

Laura Fontanella (HUJI)

 $V^{(\mathbb{C}_{fin} \times \mathbb{S})*(\mathbb{R} \times \mathbb{P}^*)} \models \dot{S} \subseteq E_{<\kappa_n}^{\lambda^+}$ stationary, A algebra on λ^+ with $<\kappa_n$ -many operations

Define in $V^{(\mathbb{C}_{fin} \times \mathbb{S})*\mathbb{R}}$ "fake versions" S^* of \dot{S} and A^* of \dot{A} . By the preparation \mathbb{R} , there exists a generic G_{τ} for \mathbb{T} such that

 $V^{(\mathbb{C}_{fin} \times \mathbb{S}) * \mathbb{R}}(G_T) \models S^*$ is stationary

Forcing with $\mathbb{C}_n/\mathbb{C}_{fin}$, we still have

 $V^{(\mathbb{C}_n \times \mathbb{S}) * \mathbb{R}}(G_T) \models S^*$ is stationary.

Moreover κ_n is supercompact in $V^{(\mathbb{C}_n \times \mathbb{S})*\mathbb{R}}(G_T)$, so here S^* reflects on a subalgebra B^* of A^* of order type $< \kappa_n$. By the distributivity of \mathbb{T} , the subalgebra B^* already existed in $V^{(\mathbb{C}_n \times \mathbb{S})*\mathbb{R}}$.

This gives us a subalgebra B of the real algebra A where the real stationary set S reflects, so we have the conclusion.

Laura Fontanella (HUJI)

 $V^{(\mathbb{C}_{fin} \times \mathbb{S})*(\mathbb{R} \times \mathbb{P}^*)} \models \dot{S} \subseteq E_{<\kappa_n}^{\lambda^+}$ stationary, A algebra on λ^+ with $<\kappa_n$ -many operations

Define in $V^{(\mathbb{C}_{fin} \times \mathbb{S})*\mathbb{R}}$ "fake versions" S^* of \dot{S} and A^* of \dot{A} . By the preparation \mathbb{R} , there exists a generic G_T for \mathbb{T} such that

$$V^{(\mathbb{C}_{\textit{fin}} imes \mathbb{S}) * \mathbb{R}}(G_T) \models S^*$$
 is stationary

Forcing with $\mathbb{C}_n/\mathbb{C}_{fin}$, we still have

 $V^{(\mathbb{C}_n \times \mathbb{S}) * \mathbb{R}}(G_T) \models S^*$ is stationary.

Moreover κ_n is supercompact in $V^{(\mathbb{C}_n \times \mathbb{S})*\mathbb{R}}(G_T)$, so here S^* reflects on a subalgebra B^* of A^* of order type $< \kappa_n$. By the distributivity of \mathbb{T} , the subalgebra B^* already existed in $V^{(\mathbb{C}_n \times \mathbb{S})*\mathbb{R}}$.

This gives us a subalgebra B of the real algebra A where the real stationary set S reflects, so we have the conclusion.

Laura Fontanella (HUJI)

 $V^{(\mathbb{C}_{fin} \times \mathbb{S})*(\mathbb{R} \times \mathbb{P}^*)} \models \dot{S} \subseteq E_{<\kappa_n}^{\lambda^+}$ stationary, A algebra on λ^+ with $<\kappa_n$ -many operations

Define in $V^{(\mathbb{C}_{fin} \times \mathbb{S})*\mathbb{R}}$ "fake versions" S^* of \dot{S} and A^* of \dot{A} . By the preparation \mathbb{R} , there exists a generic G_T for \mathbb{T} such that

$$V^{(\mathbb{C}_{fin} \times \mathbb{S}) * \mathbb{R}}(G_T) \models S^*$$
 is stationary

Forcing with $\mathbb{C}_n/\mathbb{C}_{fin}$, we still have

$$V^{(\mathbb{C}_n \times \mathbb{S}) * \mathbb{R}}(G_T) \models S^*$$
 is stationary.

Moreover κ_n is supercompact in $V^{(\mathbb{C}_n \times \mathbb{S})*\mathbb{R}}(G_T)$, so here S^* reflects on a subalgebra B^* of A^* of order type $< \kappa_n$. By the distributivity of \mathbb{T} , the subalgebra B^* already existed in $V^{(\mathbb{C}_n \times \mathbb{S})*\mathbb{R}}$.

This gives us a subalgebra B of the real algebra A where the real stationary set S reflects, so we have the conclusion.

 $V^{(\mathbb{C}_{fin} \times \mathbb{S})*(\mathbb{R} \times \mathbb{P}^*)} \models \dot{S} \subseteq E_{<\kappa_n}^{\lambda^+}$ stationary, A algebra on λ^+ with $<\kappa_n$ -many operations

Define in $V^{(\mathbb{C}_{fin} \times \mathbb{S})*\mathbb{R}}$ "fake versions" S^* of \dot{S} and A^* of \dot{A} . By the preparation \mathbb{R} , there exists a generic G_T for \mathbb{T} such that

$$V^{(\mathbb{C}_{fin} \times \mathbb{S}) * \mathbb{R}}(G_T) \models S^*$$
 is stationary

Forcing with $\mathbb{C}_n/\mathbb{C}_{fin}$, we still have

$$V^{(\mathbb{C}_n \times \mathbb{S}) * \mathbb{R}}(G_T) \models S^*$$
 is stationary.

Moreover κ_n is supercompact in $V^{(\mathbb{C}_n \times \mathbb{S})*\mathbb{R}}(G_T)$, so here S^* reflects on a subalgebra B^* of A^* of order type $< \kappa_n$. By the distributivity of \mathbb{T} , the subalgebra B^* already existed in $V^{(\mathbb{C}_n \times \mathbb{S})*\mathbb{R}}$.

This gives us a subalgebra B of the real algebra A where the real stationary set S reflects, so we have the conclusion.

Laura Fontanella (HUJI)

 $V^{(\mathbb{C}_{fin} \times \mathbb{S})*(\mathbb{R} \times \mathbb{P}^*)} \models \dot{S} \subseteq E_{<\kappa_n}^{\lambda^+}$ stationary, A algebra on λ^+ with $<\kappa_n$ -many operations

Define in $V^{(\mathbb{C}_{fin} \times \mathbb{S})*\mathbb{R}}$ "fake versions" S^* of \dot{S} and A^* of \dot{A} . By the preparation \mathbb{R} , there exists a generic G_T for \mathbb{T} such that

$$V^{(\mathbb{C}_{fin} \times \mathbb{S}) * \mathbb{R}}(G_T) \models S^*$$
 is stationary

Forcing with $\mathbb{C}_n/\mathbb{C}_{fin}$, we still have

$$V^{(\mathbb{C}_n \times \mathbb{S}) * \mathbb{R}}(G_T) \models S^*$$
 is stationary.

Moreover κ_n is supercompact in $V^{(\mathbb{C}_n \times \mathbb{S})*\mathbb{R}}(G_T)$, so here S^* reflects on a subalgebra B^* of A^* of order type $< \kappa_n$. By the distributivity of \mathbb{T} , the subalgebra B^* already existed in $V^{(\mathbb{C}_n \times \mathbb{S})*\mathbb{R}}$.

This gives us a subalgebra B of the real algebra A where the real stationary set S reflects, so we have the conclusion.

 $V^{(\mathbb{C}_{fin} \times \mathbb{S})*(\mathbb{R} \times \mathbb{P}^*)} \models \dot{S} \subseteq E_{<\kappa_n}^{\lambda^+}$ stationary, A algebra on λ^+ with $<\kappa_n$ -many operations

Define in $V^{(\mathbb{C}_{fin} \times \mathbb{S})*\mathbb{R}}$ "fake versions" S^* of \dot{S} and A^* of \dot{A} . By the preparation \mathbb{R} , there exists a generic G_T for \mathbb{T} such that

$$V^{(\mathbb{C}_{fin} \times \mathbb{S}) * \mathbb{R}}(G_T) \models S^*$$
 is stationary

Forcing with $\mathbb{C}_n/\mathbb{C}_{fin}$, we still have

$$V^{(\mathbb{C}_n \times \mathbb{S}) * \mathbb{R}}(G_T) \models S^*$$
 is stationary.

Moreover κ_n is supercompact in $V^{(\mathbb{C}_n \times \mathbb{S})*\mathbb{R}}(G_T)$, so here S^* reflects on a subalgebra B^* of A^* of order type $< \kappa_n$. By the distributivity of \mathbb{T} , the subalgebra B^* already existed in $V^{(\mathbb{C}_n \times \mathbb{S})*\mathbb{R}}$.

This gives us a subalgebra B of the real algebra A where the real stationary set S reflects, so we have the conclusion.

Laura Fontanella (HUJI)

Thank you