Realizability models and the axiom of choice

joint work with J-L. Krivine (IRIF- University Paris 7)

Laura Fontanella

I2M - Université Aix-Marseille

September 15, 2018

Realizability aims at extracting the computational content of mathematical proofs.

A short history

Kleene 1945

Correspondence between formulas of Heyting arithmetic and (sets of indexes of) recursive functions.

Curry Howard 1958

Isomorphism between proofs in intuitionistic logic and simply typed lambda-terms.

Griffin 1990

Correspondence between classical logic and lambda-terms plus control operators.

Krivine 2000-2004

Realisability models of set theory (ZF+DC)

The Axiom of Choice

Open problem: can we realize the Axiom of Choice?

Krivine 2004

Realizability models of Dependent Choice

F. + Krivine 2018 (work in progress)

Realizability model of $ZF + \forall \alpha AC_{\alpha}$.

The Axiom of Choice

Open problem: can we realize the Axiom of Choice?

Krivine 2004

Realizability models of Dependent Choice

F. + Krivine 2018 (work in progress) Realizability model of $ZF + \forall \alpha AC_{\alpha}$.

The Axiom of Choice

Open problem: can we realize the Axiom of Choice?

Krivine 2004

Realizability models of Dependent Choice

F. + Krivine 2018 (work in progress)

Realizability model of $ZF + \forall \alpha AC_{\alpha}$.

Variants of the Axiom of Choice

Krivine's realizability models

Forcing (Cohen 1962)

Technique for defining models of set theory and proving relative consistency and independence results.

• Fix a (complete) boolean algebra \mathbb{B} .

- We assign to each formula φ of ZF a value ||φ|| in B. If φ is 'definitely true' we give it value 1; if it is 'definitely false' we give it value 0, otherwise we assign it some intermediate value in B in a way that 'respects the logic'.
- Then we look at the formulas that have value 1, they form a coherent theory. Thus there is a model that satisfy those formulas, the *forcing model*.

Forcing (Cohen 1962)

Technique for defining models of set theory and proving relative consistency and independence results.

- Fix a (complete) boolean algebra \mathbb{B} .
- We assign to each formula φ of ZF a value ||φ|| in B. If φ is 'definitely true' we give it value 1; if it is 'definitely false' we give it value 0, otherwise we assign it some intermediate value in B in a way that 'respects the logic'.
- Then we look at the formulas that have value 1, they form a coherent theory. Thus there is a model that satisfy those formulas, the *forcing model*.

Forcing (Cohen 1962)

Technique for defining models of set theory and proving relative consistency and independence results.

- Fix a (complete) boolean algebra \mathbb{B} .
- We assign to each formula φ of ZF a value ||φ|| in B. If φ is 'definitely true' we give it value 1; if it is 'definitely false' we give it value 0, otherwise we assign it some intermediate value in B in a way that 'respects the logic'.
- Then we look at the formulas that have value 1, they form a coherent theory. Thus there is a model that satisfy those formulas, the *forcing model*.

Forcing	Realizability
\mathbb{B} : set of conditions (Boolean algebra)	Λ: the 'programs' ; $Π$: the 'stacks'
$ \varphi \in \mathbb{B}$	$ arphi \subseteq {\sf \Lambda}$; (($arphi$)) $\subseteq {\sf \Pi}$
1 maximal condition	I, K, W, C, B, $cc \in \Lambda$ 'instructions'
{1}	$\Lambda^* \subseteq \Lambda$: the 'trustful' programs.
	Contains the instructions
∧	() 'application' ; . 'push' ; * 'process'
V	k_{π} 'continuation'
\leq partial order on $\mathbb{B} \setminus \{0\}$	\succ preorder on $\Lambda \star \Pi$
$\bot \subseteq \mathbb{B} \times \mathbb{B}$	$\perp \subseteq \Lambda \star \Pi$ final segment
V 'ground model'	${\cal M}$ 'ground model'
$V^{\mathbb{P}}$ the Boolean-valued model	${\cal N}$ 'realizability model'
$V^{\mathbb{P}}\modelsarphi$ if $ arphi =\mathbb{1}$	$\mathcal{N}\modelsarphi$ if $\exists heta\in \Lambda^{*}$ $(heta\in arphi)$
$\mathbb{1}\Vdash \varphi$ reads " $\mathbb{1}$ forces φ "	$\theta \Vdash \varphi$ reads " θ realizes φ "

Krivine's machine

Krivine's machine

- \succ is the least preorder on $\Lambda \star \Pi$ such that for all $\xi, \eta, \zeta \in \Lambda$ and $\pi, \sigma \in \Pi$,
 - $\xi(\eta) \star \pi \succ \xi \star \eta \cdot \pi$
 - $I \star \xi \cdot \pi \succ \xi \star \pi$
 - $K \star \xi \cdot \eta \cdot \pi \succ \xi \star \pi$
 - $E \star \xi \cdot \eta \cdot \pi \succ \xi(\eta) \star \pi$
 - $W \star \xi \cdot \eta \cdot \pi \succ \xi \star \eta \cdot \eta \cdot \pi$
 - $C \star \xi \cdot \eta \cdot \zeta \cdot \pi \succ \xi \star \zeta \cdot \eta \cdot \pi$
 - $B \star \xi \cdot \eta \cdot \zeta \cdot \pi \succ \xi(\eta(\zeta)) \star \pi$
 - $CC \star \xi \cdot \pi \succ \xi \star k_{\pi} \cdot \pi$
 - $k_{\pi} \star \xi \cdot \sigma \succ \xi \star \pi$

Non extensional set theory ZF_{ε}

 $\mathcal{L} = \{ \varepsilon \ , \in, \subseteq \}.$

- $x \simeq y$ is the formula $x \subseteq y \land y \subseteq x$
 - Extensionality: $\forall x \forall y (x \in y \iff \exists z \in y (x \simeq z));$ $\forall x \forall y (x \subseteq y \iff \forall z \in x (z \in y))$
 - Foundation: $\forall x_1...\forall x_n\forall a(\forall x(\forall y \in xF[y, x_1, ..., x_n] \Rightarrow F[x, x_1, ..., x_n]) \Rightarrow F[a, x_1, ..., x_n])$
 - Pairing: $\forall a \forall b \exists x (a \varepsilon x \land b \varepsilon x)$
 - Union: $\forall a \exists b \forall x \in a \forall y \in x(y \in b)$
 - Powerset: $\forall a \exists b \forall x \exists y \in b \forall z (z \in y \iff (z \in a \land z \in x))$
 - Replacement: $\forall x_1 ... \forall x_n \forall a \exists b \forall x \in a(\exists y F[x, y, x_1, ..., x_n] \Rightarrow (\exists y \in b F[x, y, x_1 ... x_n]))$
 - Infinity $\forall x_1...x_n \forall a \exists b[a \in b \land \forall x \in b(\exists y F[x, y, x_1, ..., x_n] \Rightarrow \exists y \in b F[x, y, x_1, ..., x_n])]$
- ZF_{ε} is a conservative extension of ZF.

We define the two truth values $|\varphi| \subseteq \Lambda$ and $(\!|\varphi|\!) \subseteq \Pi$.

$$\xi \in |\varphi| \iff \forall \pi \in (\varphi)(\xi \star \pi \in \bot)$$

 $\xi \Vdash \varphi \text{ means } \xi \in |\varphi|$

•
$$(|\top|) = \emptyset, (|\perp|) = \Pi,$$

• $(|a \notin b|) = \{\pi \in \Pi; (a, \pi) \in b\}$
• $(|a \subseteq b|) = \{\xi \cdot \pi; \exists c(c, \pi) \in a \text{ and } \xi \Vdash c \notin b\}$
• $(|a \notin b|) = \{\xi \cdot \xi' \cdot \pi; \exists c(c, \pi) \in b \text{ and } \xi \Vdash a \subseteq c \text{ and } \xi' \Vdash c \subseteq a\}$
• $(|\varphi \Rightarrow \psi|) = \{\xi \cdot \pi; \xi \Vdash \varphi \text{ and } \pi \in (|\psi|)\}$
• $(|\forall x \varphi|) = \bigcup_{a} (|\varphi| [a/x]|)$

Adequacy lemma

Let $A_1, ..., A_n, A$ be closed formulas of ZF_{ε} and suppose $x_1 : A_1, ..., x_n : A_n \vdash t : A$. If $\xi_1 \Vdash A_1, ..., \xi_n \Vdash A_n$, then $t[\xi_1/x_1, ..., \xi_n/x_n] \Vdash A$.

Corollary

If $\vdash t : A$, then $t \Vdash A$

Theorem

The axioms of ZF_{ε} are realized.

Non extensional choice

Non extensional functions

$$\varepsilon - Func(f) \equiv \forall x, y, y' ((x, y)\varepsilon f \land (x, y')\varepsilon f \Rightarrow y = y')$$

Non extensional Axiom of Choice (NEAC)

 $\forall z \exists f \ (f \subseteq z \land \varepsilon - Func(f) \land \forall x, y \exists y' \ ((x, y)\varepsilon \ z \Rightarrow (x, y')\varepsilon \ f))$

Krivine 2004

Realizability models of DC (using NEAC and the 'unicity' of natural numbers).

F. + Krivine 2018

Realizability model of $\forall \alpha AC_{\alpha}$ (using NEAC and the 'unicity' of ordinals in the model).

Non extensional choice

Non extensional functions

$$\varepsilon - Func(f) \equiv \forall x, y, y' ((x, y)\varepsilon f \land (x, y')\varepsilon f \Rightarrow y = y')$$

Non extensional Axiom of Choice (NEAC)

 $\forall z \exists f \ (f \subseteq z \land \varepsilon - Func(f) \land \forall x, y \exists y' \ ((x, y)\varepsilon \ z \Rightarrow (x, y')\varepsilon \ f))$

Krivine 2004

Realizability models of DC (using NEAC and the 'unicity' of natural numbers).

F. + Krivine 2018

Realizability model of $\forall \alpha \ AC_{\alpha}$ (using NEAC and the 'unicity' of ordinals in the model).

Laura Fontanella (Aix Marseille - I2M)

Non extensional choice

Non extensional functions

$$\varepsilon - Func(f) \equiv \forall x, y, y' ((x, y)\varepsilon f \land (x, y')\varepsilon f \Rightarrow y = y')$$

Non extensional Axiom of Choice (NEAC)

 $\forall z \exists f \ (f \subseteq z \land \varepsilon - Func(f) \land \forall x, y \exists y' \ ((x, y)\varepsilon \ z \Rightarrow (x, y')\varepsilon \ f))$

Krivine 2004

Realizability models of DC (using NEAC and the 'unicity' of natural numbers).

F. + Krivine 2018

Realizability model of $\forall \alpha AC_{\alpha}$ (using NEAC and the 'unicity' of ordinals in the model).

Thank you