Compactness and reflection at small cardinals

joint work with Menachem Magidor

Laura Fontanella

Hebrew University of Jerusalem, Einstein Institute of Mathematics http://www.logique.jussieu.fr/~fontanella laura.fontanella@mail.huji.ac.il

14/02/2015

Compactness and reflection

Reflection: Given some structure (e.g. a group, a topological space etc.), if the structure satisfies a certain property, then there is a substructure of smaller cardinality with the same property.

Compactness: Given some structure if every substructure of smaller cardinality satisfies a certain property, then the whole structure satisfies the same property.

Compactness and large cardinals

Definition

A cardinal κ is strongly compact if and only if $\mathcal{L}_{\kappa,\kappa}$ satisfies the compactness theorem, i.e. every collection of $\mathcal{L}_{\kappa,\kappa}$ -sentences is satisfiable if it is $<\kappa$ -satisfiable.

Definition

A cardinal κ is weakly compact if and only if $\mathcal{L}_{\kappa,\kappa}$ satisfies the *weak* compactness theorem, i.e. every collection of $\mathcal{L}_{\kappa,\kappa}$ -sentences *with at most* κ *non logical symbols* is satisfiable if it is $< \kappa$ -satisfiable.

The tree property

Definition

Let κ be a regular cardinal, we say that κ has the tree property if every tree of height κ with levels all of size less than κ , has a cofinal branch (i.e. a branch of size κ). $TP(\kappa)$ means that κ has the tree property.

Assuming the consistency of large cardinals, the following are consistent

- (Mitchell 1972) the tree property holds at every \aleph_n with $n \ge 2$ (at any double successor of a regular cardinal)
- (Magidor, Shelah 1996) the tree property holds at $\aleph_{\omega+1}$ (at any successor of singular cardinal)

The tree property

Definition

Let κ be a regular cardinal, we say that κ has the tree property if every tree of height κ with levels all of size less than κ , has a cofinal branch (i.e. a branch of size κ). $TP(\kappa)$ means that κ has the tree property.

Assuming the consistency of large cardinals, the following are consistent:

- (Mitchell 1972) the tree property holds at every \aleph_n with $n \ge 2$ (at any double successor of a regular cardinal)
- (Magidor, Shelah 1996) the tree property holds at $\aleph_{\omega+1}$ (at any successor of singular cardinal)

The stationary reflection

Definition

Let κ be a regular cardinal and let $S\subseteq \kappa$ be a stationary set, we say that S reflects if there exists $\alpha<\kappa$ of uncountable cofinality such that $S\cap\alpha$ is a stationary subset of α . $Refl(\kappa)$ is the statement that every stationary subset of κ reflects.

 $Refl(\kappa^+)$ fails if κ is a regular cardinal

Theorem (Magidor 1982

If the existence of infinitely many supercompact cardinals is consistent, then $Refl(\aleph_{\omega+1}$ is consistent.

The stationary reflection

Definition

Let κ be a regular cardinal and let $S\subseteq \kappa$ be a stationary set, we say that S reflects if there exists $\alpha<\kappa$ of uncountable cofinality such that $S\cap\alpha$ is a stationary subset of α . $Refl(\kappa)$ is the statement that every stationary subset of κ reflects.

 $Refl(\kappa^+)$ fails if κ is a regular cardinal.

Theorem (Magidor 1982)

If the existence of infinitely many supercompact cardinals is consistent, then $\textit{Refl}(\aleph_{\omega+1})$ is consistent.

Reflection of stationary sets and the tree property at \aleph_{ω^2+1}

Theorem (F., Magidor 2014)

If the existence of infinitely many supercompact cardinals is consistent, then $Refl(\aleph_{\omega^2+1}) + TP(\aleph_{\omega^2+1})$ is consistent.

A strong principle of reflection at \aleph_{ω^2+1}

Definition

For $\kappa < \lambda, \, \Delta_{\kappa,\lambda}$ is the following statement:

given a stationary set $S\subseteq E^\lambda_{<\kappa}$ and an algebra $\mathcal A$ on λ with $<\kappa$ operations, there exists a subalgebra $\mathcal A'$ of $\mathcal A$ such that the order type of $\mathcal A'$ is a regular cardinal $<\kappa$ and $S\cap \mathcal A'$ is stationary in the $sup(\mathcal A')$

Let κ be singular. Δ_{κ,κ^+} implies $Refl(\kappa^+)$.

Δ_{κ,κ^+} implies

- every almost free abelian group of size κ^+ is free.
- If G is a graph of size κ^+ and every subgraph of G of size $<\kappa$ has coloring number $\gamma<\kappa$, then G has coloring number γ .
- Given A a family of κ^+ sets all of size $<\kappa$, if every subfamily of size $<\kappa$ has a transversal, then A has a transversal.

A strong principle of reflection at \aleph_{ω^2+1}

Definition

For $\kappa < \lambda$, $\Delta_{\kappa,\lambda}$ is the following statement: given a stationary set $S \subseteq E_{<\kappa}^{\lambda}$ and an algebra $\mathcal A$ on λ with $<\kappa$ operations, there exists a subalgebra $\mathcal A'$ of $\mathcal A$ such that the order type of $\mathcal A'$ is a regular cardinal $<\kappa$ and $S \cap \mathcal A'$ is stationary in the $sup(\mathcal A')$

Let κ be singular. Δ_{κ,κ^+} implies $Refl(\kappa^+)$.

Δ_{κ,κ^+} implies

- every almost free abelian group of size κ^+ is free.
- If G is a graph of size κ^+ and every subgraph of G of size $<\kappa$ has coloring number $\gamma<\kappa$, then G has coloring number γ .
- Given A a family of κ^+ sets all of size $<\kappa$, if every subfamily of size $<\kappa$ has a transversal, then A has a transversal.

A strong principle of reflection at \aleph_{ω^2+1}

Theorem (Magidor, Shelah 1994)

If the existence of infinitely many supercompact cardinals is consistent, then $\Delta_{\aleph_{\omega^2},\aleph_{\omega^2+1}}$ is consistent.

 \aleph_{ω^2+1} is the smallest regular cardinal that can consistently satisfy the "Delta reflection".

Delta-reflection and the tree property at \aleph_{ω^2+1}

Theorem 1 (F., Magidor 2014)

If the existence of infinitely many supercompact cardinals is consistent, then $\Delta_{\aleph_{\omega^2},\aleph_{\omega^2+1}} + \mathit{TP}(\aleph_{\omega^2+1})$ is consistent.

Corollary

If the existence of infinitely many supercompact cardinals is consistent, then $Refl(\aleph_{\omega^2+1}) + TP(\aleph_{\omega^2+1})$ is consistent.

Theorem 2 (F., Magidor 2014)

The Delta-relfection does not imply the tree property. If the existence of infinitely many supercompact cardinals is consistent, then $\Delta_{\aleph_{-2},\aleph_{-2+1}} + \neg TP(\aleph_{\omega^2+1})$ is consistent.

Delta-reflection and the tree property at \aleph_{ω^2+1}

Theorem 1 (F., Magidor 2014)

If the existence of infinitely many supercompact cardinals is consistent, then $\Delta_{\aleph_{\omega^2},\aleph_{\omega^2+1}} + TP(\aleph_{\omega^2+1})$ is consistent.

Corollary

If the existence of infinitely many supercompact cardinals is consistent, then $Refl(\aleph_{\omega^2+1}) + TP(\aleph_{\omega^2+1})$ is consistent.

Theorem 2 (F., Magidor 2014)

The Delta-relfection does not imply the tree property. If the existence of infinitely many supercompact cardinals is consistent, then $\Delta_{\aleph_{-2},\aleph_{-2+1}} + \neg TP(\aleph_{\omega^2+1})$ is consistent.

Theorem 1: Delta reflection and the tree property at the successor of a singular cardinal

Theorem 1 (F., Magidor 2014)

If the existence of infinitely many supercompact cardinals is consistent, then $\Delta_{\aleph_{\omega^2},\aleph_{\omega^2+1}} + TP(\aleph_{\omega^2+1})$ is consistent.

Theorem 1: Delta reflection and the tree property at the successor of a singular cardinal

Theorem 1 (F., Magidor 2014)

If the existence of infinitely many supercompact cardinals is consistent, then $\Delta_{\aleph_{\omega^2},\aleph_{\omega^2+1}} + TP(\aleph_{\omega^2+1})$ is consistent.

Theorem 1: Delta reflection and the tree property at the successor of a singular cardinal

Theorem 1 (F., Magidor 2014)

If the existence of infinitely many supercompact cardinals is consistent, then $\Delta_{\aleph_{\omega^2},\aleph_{\omega^2+1}} + TP(\aleph_{\omega^2+1})$ is consistent.

Stationary reflection and the tree property at \aleph_{ω^2+1}

Let $\langle \kappa_n \rangle_{n < \omega}$ be indestructible supercompact cardinals, let $\lambda := \lim_{n < \omega} \kappa_n$.

$$\mathbb{S}_n := \prod_{m \geq n} Col(\kappa_m^{++}, < \kappa_{m+1})$$

 $V^{\mathbb{S}_n} \models \kappa_n$ is supercompact.

Let \dot{W}_n be an \mathbb{S}_n -name for a normal ultrafilter on $\mathcal{P}_{\kappa_n}(\lambda^+)$. Let U_n be the projection of this ultrafilter to κ_n , we can assume U_n is in V.

Theorem 2: Independence of the tree property from the Δ -reflection

Theorem 2 (F., Magidor 2014)

Assuming the consistency of infinitely many supercompact cardinals, there is a model of *ZFC* in which $\Delta_{\aleph_{\omega^2},\aleph_{\omega^2+1}}$ holds but $TP(\aleph_{\omega^2+1})$ fails.

 $\langle \kappa_n \rangle_{n < \omega}$ and λ are as before. We force with

$$\mathbb{R} * \mathbb{P}$$

where:

- \mathbb{R} the forcing that adds a Suslin tree \dot{T} at λ^+ . (The conditions of \mathbb{R} are homogeneous trees $t \in {}^{<\lambda^+}2$ of successor height)
- ullet $\mathbb P$ is the Magidor-Shelah forcing where the ultrafilters U_n are taken from $V^{(\mathbb R*^{\dot T}) imes S_n}$

Theorem 2: Independence of the tree property from the Δ -reflection

Theorem 2 (F., Magidor 2014)

Assuming the consistency of infinitely many supercompact cardinals, there is a model of *ZFC* in which $\Delta_{\aleph_{\omega^2},\aleph_{\omega^2+1}}$ holds but $TP(\aleph_{\omega^2+1})$ fails.

 $\langle \kappa_n \rangle_{n < \omega}$ and λ are as before. We force with

$$\mathbb{R} * \mathbb{P}$$

where:

- \mathbb{R} the forcing that adds a Suslin tree \dot{T} at λ^+ . (The conditions of \mathbb{R} are homogeneous trees $t \subset {}^{<\lambda^+}2$ of successor height)
- ullet $\mathbb P$ is the Magidor-Shelah forcing where the ultrafilters U_n are taken from $V^{(\mathbb R*\dot T) imes S_n}$

Thank you