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Motivation

It all started with this guy...

Theorem (Ramsey's theorem)

Let n = 1. For each coloration of [w]|" in a finite number of color,

there exists a set X € [w]“ such that each element of [X]" has the
same color (X is said to be monochromatic).
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Motivation

Ramsey Theory

A general question

Suppose we have some mathematical structure that is then cut into
finitely many pieces. How big must the original structure be in order
to ensure that at least one of the pieces has a given interesting
property ?

Examples :
@ Van der Waerden's theorem
@ Hindman's theorem
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Motivation

Example (Van der Waerden's theorem)

For any given c and n, there is a number w(c, n), such that if w(c, n)
consecutive numbers are colored with ¢ different colors, then it must
contain an arithmetic progression of length n whose elements all have
the same color.

We know that :

Example (Hindmam'’s theorem)

If we color the natural numbers with finitely many colors, there must
exists a monochromatic infinite set closed by finite sums.
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Partition regularity

Theorems in Ramsey theory often assert, in their stronger form, that
certain classes are partition regular :

Definition (Partition regularity)

A partition regular class is a non-empty collection of sets £ € 2% such
that :

@ L is upward closed : If X € L and X € Y, then Ye L

@ If Xe L and Ypu ---uU Yy 2 X, then there is i < k such that
Y.:e L

v

Proper partition regular classes are exactly the complements of proper set
theoretic ideals :

Definition (ldeals)

An ideal class is a non-empty collection of sets Z € 2“ such that :
@ 7 is downward closed : If X e L and X 2 Y, then Ye T
@ If Yo,...,Yv€Z then Ypu---u Y€l
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Partition regularity

The following classes are partition regular :

Classical combinatorial results :

@ The class of infinite sets
@ The class of sets with positive upper density
@ The class of sets X s.t. >,

@ The class of sets containing arbitrarily long arithmetic
progressions (Van der Waerden's theorem)

nEXn_oo

The class of sets containing an infinite set closed by finite sum
(Hindman's theorem)

.. and new type of results involving computability :

@ Given X non-computable, the class of sets containing an
infinite set which does not compute X (Dzhafarov and
Jockusch)
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Seetapun’s theorem

Theorem (Dzhafarov and Jockusch)

Given X non-computable, Given A° U Al = w, there exists G € [A°]“ U
[A]“ such that G does not compute X.

This theorem comes from Reverse mathematics :

What is the computational strength of Ramsey's theorem ? I

that is, given a computable coloring of say [w]?, must all monochromatic
sets have a specific computational power ?

Theorem (Seetapun)

For any non-computable set X and any computable coloring of [w]?, there
is an infinite monochromatic set which does not compute X.

o

Theorem (Jockusch)

There exists a computable coloring of [w]3, every solution of which com-
putes (Z),.
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Modern approach of Seetapun's theorem

Modern approach of Seetapun's theorem (Cholak, Jockusch, Slaman) :

Definition

A set C is {R,}new-cohesive if C €* R, or C C* R, for every n.

Definition

A coloring ¢ : w? — {0, 1} is stable if Vx lim,e, c(x,y) exists.

@ Given a computable coloring ¢ : w? — {0,1},let R, = {y : c(n,y) =
0}. Let C be {R,}nc.-cohesive. Then c restricted to C is stable.

@ Let ¢ be a stable coloring. Let A be the Aj(c) set defined as Ac(x) =
lim, c(x,y). An infinite subset of A. or of Ac can be used to compute
a solution to c.

— Find a cohesive set C (cohesive for the recursive sets) which does not
compute X and use Dzhafarov and Jockusch relative to C with Ag..
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The general question

The following version of Dzhafarov and Jockusch'’s is also true :

Theorem (Dzhafarov and Jockusch)

Let X be non-computable. The class of sets

{A . There exists G € [A]* such that G does not compute X}

is partition regular.

Dzhafarov and Jockusch's theorem is sometimes called strong cone
avoidance of RT} : the instance of RT} we consider does not need
to be computable. We study here the folllowing general question,
that we derive from Dzhafarov and Jockusch's

What computational power can we encode inside
every infinite subsets of both two halves of w?
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The question

What can we encode inside every infinite subsets of
both two halves of w?

A splitting :

Such that :

@ Each infinite subset of the blue part has some comp. power

@ Each infinite subset of the red part has some comp. power

Answer : Not much...
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A precision

What if we drop the complement thing?.

Consider any set X. Then we can encode X into every infinite subset
of a set A the following way : We let A be all the integers which cor-
respond to an encoding of the prefixes of X (using some computable
bijection between 2* and w).

O’o<0’1<0’2<...X

A(n) = 1 iff n encodes o, for some n
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Encoding Hyperimmunity

Definition (Hyperimmunity)

A set X is of hyperimmune degree if X computes a function f : w — w,
which is not dominated by any computable function.

y

—

|

/ comp. fct

hyperimmune fct

There exists a covering A® U Al 2 w, such that every X € [A%]“ U [Al]*
is of hyperimmune degree.
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Encoding Hyperimmunity

There exists a covering A° U Al 2 w, such that every X € [A%]¥ U
[Al]“ is of hyperimmune degree.

We split w by alternating larger and larger blocks of consecutive
integers in A® and Al

For X infinite subset of A® or A!, the hyperimmune function is
given by f(n) to be the n-th number which appears in X.
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Encoding DNC

Definition (Diagonally non-computable degree)

A set X is of DNC degree (diagonally non-computable) if X com-
putes a function f : w — w, such that f(n) # ®,(n) for every n.

Theorem

The following are equivalent for a set X :
@ X is of DNC degree.

e X computes a function which on input n can output a string
of Kolmorogov complexity greater than n.

@ X computes an infinite subset of a Martin-Lof random set.
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Encoding DNC

Definition (Informal definition of Kolmorogov complexity)

We say K(o) > n if the size of the smallest program which outputs
o is at least n.

v

Definition (Informal definition of Martin L&f randomness)

We say X is Martin Lof random if the Kolmogorov complexity of
each of its prefix o is greater than |o]|.

Theorem

| \

X is of DNC degree iff X computes an infinite subset of a Martin-L6f
random set.

001011101010011011001101001011010110010101010. ..
— 000010000000001000000000000001000110000000010. . .
— 111111111011111111011111101111111110111101111...

4
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Encoding enumerating non-enumerable things

Theorem [Tennenbaum, Denisov]

There exists a computable order of w, of order type w + w™ which
has no infinite ascending or descending c.e. sequence.

Consider A € w the initial segment of order-type w.
@ Any infinite subset X € A enumerates A (by enumerating
things smaller than elements of X)

@ Any infinite subset of X = A enumerates A (by enumerating
things larger than elements of X)

Corollary [Tennenbaum, Denisov]

There exists a set A such that every set G € [A]* U [A]“ can make
c.e. something which is not c.e.
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Cone avoidance

Theorem [Dzhafarov and Jockusch]

Let X € w be non-computable. For every covering A° U Al D w, we
have some G € [A%]“ U [A]¥ such that G 27 X.

The proof uses computable Mathias Forcing : Dzhafarov and Jocku-
sch’s technic have then been enhanced an reused in various manner
by multiple authors to show other results of the same type, that we
shall now expose.

Theorem [Strong form of Dzhafarov and Jockusch]

Let X € w be non-computable. The class of sets

{A : There exists G € [A]* such that G does not compute X}

is partition regular.
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More on cone avoidance

Theorem [Dzhafarov and Jockusch]

Let X € w be non-c.e. The class of sets
{A : There exists G € [A]“ such that X is not c.e. in G}

is partition regular

But we cannot avoid more than one c.e. set. On the other hand :

Theorem [Dzhafarov and Jockusch]

Let {Xnh}new be all non-computable. The class of sets
{A : There exists G € [A]* such that G computes no X,}

is partition regular
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PA degrees

A set X is of P.A. degree if X computes a complete and consistent
extension of Peano arithmetic.

Theorem

| \

The following are equivalent :
o X is of PA. degree.
e X is diagonally non-computable with a {0, 1}-valued function.

@ X computes an infinite path in any non-empty I'I(l) class.

Theorem (Liu)

The class of sets
{A : There exists G € |A]* which is not of PA degree }

is partition regular
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Non high

Definition

A set X is high if it computes a function which eventually grows faster
than any computable function.

Yy
high fct

comp. fct

Theorem (M., Patey)

The class of sets
{A : There exists G € [A]* such that G is not high }

is partition regular
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Non high

Theorem (Martin)

The following are equivalent for a set X :
o X is high
o X' =71 0"

Theorem (M., Patey)

Let X € w be non—@l—computable. The class of sets

{A : There exists G € [A]“ such that G’ does not compute X}

is partition regular

The proof uses of new forcing technique that builds upon Mathias
forcing to control the second jump.

Partition regularity is in particular a key concept of the used forcing.
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Computing random sets

Theorem (Liu)
Let f be a computabe order function. The class of sets

{A . There exists G € [A]* which is not of DNCs degree }

is partition regular

Fact
Every Martin-Lof random Z is DNC,, ,2n, that is, Z computes a
DNC function bounded by n — 2".

| A\

Corollary [Liu]
The class of sets

{A : There exists G € [A]” which compute no MLR set }

is partition regular

A
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Computing generic sets

Definition

A set is weakly-n-generic if it is in every Z?(@("fl)) dense open set.
It is 1-generic if for every Z(l)(@("fl)) open set U, itisin U or in the
interior of the complement of U.

There exists a covering A° U Al 2 w, such that for every G €
[A%]“ U [AL]“ we have that G computes a 2-generic.

This is because any function which is not bounded by any Ag func-
tion can compute a 2-generic. This does not work anymore with

weakly-3-genericity and above.
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Computing generic sets

Theorem (Andrews, Gerdes, Miller)

There is a function bounded by no Ag function which computes no
weakly-3-generic set.

The previous theorem gives us material for the following
conjecture :

The class of sets

{A . Thereis G € [A]” which computes no weakly-3-generic set }

is partition regular
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Computing cohesive sets

Definition (Cohesiveness)

A set X if p-cohesive if for any primitive recursive set R. we have
XC*R.or XC* Re

Theorem (Folklore)
A set X computes a p-cohesive set iff X' is PA((), that is, iff X'

computes a function f : w — {0,1} such that f(n) # ¢? (e).

Theorem (M., Patey)

For every AS set A, there is an element G € [A]* U [A]“ such that
G’ is not PA()).

Is the former true for any set A?
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The goal

Theorem (M., Patey)
Let X € w be non—@l—computable. The class of sets
{A . There exists G € [A]“ such that G' does not compute X}

is partition regular

Does this generalizes to any jump? I

The first “second jump control” forcing did not generalize to the
third jump control.
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Largeness and partition regularity

Definition (Largeness)

A largeness class is a collection of sets £ € 2“ such that :

@ L is upward closed : If X € L and X C Y, then Y e L

@ If Yu---uU Yy 2w, then there is i < k such that Y;e £

o If X € L then [X| > 2

A

Definition (Partition regularity)
A partition regular class is a collection of sets £ < 2 such that :
@ L is a largeness class

@ If XeLand Ygu ---uU Y, 2 X, then there is i < k such that
Yie L

<

We add the condition |X| > 2 to ensure that £ contains only infinite
elements.
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Generalities

Proposition
A partition regular class £ contains only infinite sets.

Proposition

Let £ be a partition regular class. Then L is closed by finite change
of its elements. Furthermore if £ is measurable it has measure 1.

Proof sketch :

L contains only infinite set

— L is closed by finite change

— L has measure 0 or 1

— If £ has measure 0, sufficiently MLR Z and w — Z are not in £
— But Z or w — Z must be in L. Contradiction.

— L has measure 1
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Generalities

Proposition (Compactness for largeness classes)

Suppose {Ap}ne. is a collection of largeness classes with A,.1 S A,.

Thus [, An is a largeness class.

A

Proposition (Compactness for partition regular classes)

Suppose {L,} new is a collection of partition regular classes with £,.1 € L.
Thus ), £n is partition regular.

new

Proposition

| A

Let A be any set. Then A is a largeness class iff the set
LIA)={X€2 : VkVXou: ---uX,2X3Ti<k X e A}

is a partition regular subclass of .4 (in which case it is the largest).
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M3 partition regular classes

Proposition

IfU is a X9 large class. Then L(U) is a NS partition regular class.

Proposition

IfU is a 2(1) upward closed class. Then predicate

U is large

- 0
is 5.

Fix k, the class of element :
Yo® @Yk : XSY0@® - DY aAVi<kY¢U}

is a MY(X) class uniformly in X.



Iterating through the ordinals
000000@000000

A glance at the forcing idea

Let (o, X) be a condition.
e o 73n ®(G,n) iff
{Y : Andr < Y &(c uT,n)} is a largeness class
@ o?=3AnVmy... Qm®(G, n, my, ..., my) iff
{Y :dn3arc Your?Img...~Qm—d(G, n,mg, ..., my)}

is a largeness class

— If yes, X is in the largeness class. Take an extention of 7 > ¢
with 7 € X

— If no, there is a cover Yy U --- U Yy 2w, such that for every
extention 7 > o in Y; and every n, “something is satisfied”. Take
an extention Y; n X € X for the "right” Y.
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Canonical MY partition regular classes

The following classes are M3 partition regular classes.

For X c.e. :
Lx ={Y : | XnY]|=o0}

The class :
Lijn = {x C Y 1/(1+n) = oo}

neX

4

The class :

Lw = {X : X contains arbitrarily long arithmetic progressions}

A
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Minimal largeness classes

The challenge is to fix in advance all the possible largeness classes
we want to work with, whithout being definitionally too complex.

For C € w we write Uc = [ )oec Ue

Definition (M., Patey)

Let M be a countable set. A largeness class U¢ is M-minimal if for
every ¥9(X) class U for X € M we have :

e lUUcCU

@ or U nUc is not a largeness class
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Cohesive largeness classes

Definition (M., Patey)

Let M be a countable set. A largeness class £ is M-cohesive if for every
X € M we have :

@ LC Lx

@ or LS Ly

A\

Proposition (M., Patey)

Let M be a Scott set. An M-cohesive largeness class contains a unique
M-minimal largeness class.

v

Let M be a Scott set and Uc be an M-cohesive class. Then {Uc) is the
unique minimal largness subclass of Uc.
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The forcing (1)

Let {M,}

@ M, codes for a countable Scott set M,,

ck be such that

a<w

o 0 s uniformly coded by an element of M,

e Each M/, is uniformly computable in pletd)

Let {Co} o be such that :

a<<w
° L{é\:o‘ is an M ,-cohesive largeness class
. . M
o B <aimplies U™ < U ")
e Each C, is coded by an element of M1 uniformly in o and
Ma+1-

Let S =) ck Z/lé\:a. At least one among A or A belongs to S

a<w
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The forcing (2)

Let A be such that Ae S. Forcing conditions are Mathias conditions
(o, X) such that :

@ 0CA
@ XCA
e Xn{0,...,|0|} =0
@ Xes

Theorem (M., Patey)

Let B be not A(l)(@(a)) for o < wsk. If G is sufficiently generic then B is
not AY(G(®).

\

Theorem (M., Patey)

If B is not Al, for every covering A° U A' 2 w. If G is sufficiently generic
then B is not AY(G) (with in particular w¢ = w§k).

4
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Question

Theorem (Wang)

Let X be non-computable. Let ¢ : N> — {0,1,2} be any coloring. Then
there exists G and i € {0,1,2} such that

@ Forall n,me G we have c(n,m) # i.

@ G does not compute X

Theorem (Cholak, Patey)

Let X be non-computable. Let n and m > d,,. Let ¢ : N" — {0, m— 1} be
any coloring. Then there exists G such that

o #{i : c(a,b)=ifora,be G} <d,.

@ G does not compute X

where dy = 1 and d, = 3" did,_1 are the Catalan numbers

Can we iterate this (with maybe different numbers) through the jumps?
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