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Section 1

Ramsey Theory
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Motivation

It all started with this guy...

Theorem (Ramsey’s theorem)

Let n ¥ 1. For each coloration of rωsn in a finite number of color,
there exists a set X P rωsω such that each element of rX sn has the
same color (X is said to be monochromatic).
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Motivation

Ramsey Theory

A general question

Suppose we have some mathematical structure that is then cut into
finitely many pieces. How big must the original structure be in order
to ensure that at least one of the pieces has a given interesting
property ?

Examples :

Van der Waerden’s theorem

Hindman’s theorem

...
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Motivation

Example (Van der Waerden’s theorem)

For any given c and n, there is a number wpc , nq, such that if wpc , nq
consecutive numbers are colored with c different colors, then it must
contain an arithmetic progression of length n whose elements all have
the same color.

We know that :

wpc , nq ¤ 22c
22n�9

Example (Hindmam’s theorem)

If we color the natural numbers with finitely many colors, there must
exists a monochromatic infinite set closed by finite sums.
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Partition regularity

Theorems in Ramsey theory often assert, in their stronger form, that
certain classes are partition regular :

Definition (Partition regularity)

A partition regular class is a non-empty collection of sets L � 2ω such
that :

L is upward closed : If X P L and X � Y , then Y P L

If X P L and Y0 Y � � � Y Yk � X , then there is i ¤ k such that
Yi P L

Proper partition regular classes are exactly the complements of proper set
theoretic ideals :

Definition (Ideals)

An ideal class is a non-empty collection of sets I � 2ω such that :

I is downward closed : If X P L and X � Y , then Y P I

If Y0, . . . ,Yk P I, then Y0 Y � � � Y Yk P I
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Partition regularity

The following classes are partition regular :

Classical combinatorial results :

The class of infinite sets

The class of sets with positive upper density

The class of sets X s.t.
°

nPX
1
n � 8

The class of sets containing arbitrarily long arithmetic
progressions (Van der Waerden’s theorem)

The class of sets containing an infinite set closed by finite sum
(Hindman’s theorem)

... and new type of results involving computability :

Given X non-computable, the class of sets containing an
infinite set which does not compute X (Dzhafarov and
Jockusch)
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Seetapun’s theorem

Theorem (Dzhafarov and Jockusch)

Given X non-computable, Given A0 Y A1 � ω, there exists G P rA0sω Y
rA1sω such that G does not compute X .

This theorem comes from Reverse mathematics :

What is the computational strength of Ramsey’s theorem ?

that is, given a computable coloring of say rωs2, must all monochromatic
sets have a specific computational power ?

Theorem (Seetapun)

For any non-computable set X and any computable coloring of rωs2, there
is an infinite monochromatic set which does not compute X .

Theorem (Jockusch)

There exists a computable coloring of rωs3, every solution of which com-

putes ∅1.
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Modern approach of Seetapun’s theorem

Modern approach of Seetapun’s theorem (Cholak, Jockusch, Slaman) :

Definition

A set C is tRnunPω-cohesive if C �� Rn or C �� Rn for every n.

Definition

A coloring c : ω2 Ñ t0, 1u is stable if @x limyPω cpx , yq exists.

Given a computable coloring c : ω2 Ñ t0, 1u, let Rn � ty : cpn, yq �
0u. Let C be tRnunPω-cohesive. Then c restricted to C is stable.

Let c be a stable coloring. Let Ac be the ∆0
2pcq set defined as Acpxq �

limy cpx , yq. An infinite subset of Ac or of Ac can be used to compute
a solution to c .

Ñ Find a cohesive set C (cohesive for the recursive sets) which does not
compute X and use Dzhafarov and Jockusch relative to C with AcæC .
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The general question

The following version of Dzhafarov and Jockusch’s is also true :

Theorem (Dzhafarov and Jockusch)

Let X be non-computable. The class of sets

tA : There exists G P rAsω such that G does not compute X u

is partition regular.

Dzhafarov and Jockusch’s theorem is sometimes called strong cone
avoidance of RT1

2 : the instance of RT1
2 we consider does not need

to be computable. We study here the folllowing general question,
that we derive from Dzhafarov and Jockusch’s

What computational power can we encode inside
every infinite subsets of both two halves of ω ?
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Section 2

Splitting ω in two
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The question

What can we encode inside every infinite subsets of
both two halves of ω ?

A splitting :

. . .

Such that :

Each infinite subset of the blue part has some comp. power

Each infinite subset of the red part has some comp. power

Answer : Not much...
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A precision

What if we drop the complement thing ?

Consider any set X . Then we can encode X into every infinite subset
of a set A the following way : We let A be all the integers which cor-
respond to an encoding of the prefixes of X (using some computable
bijection between 2ω and ω).

σ0   σ1   σ2   . . .X

Apnq � 1 iff n encodes σn for some n
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Encoding Hyperimmunity

Definition (Hyperimmunity)

A set X is of hyperimmune degree if X computes a function f : ω Ñ ω,
which is not dominated by any computable function.

x

y

comp. fct

hyperimmune fct

Theorem

There exists a covering A0 Y A1 � ω, such that every X P rA0sω Y rA1sω

is of hyperimmune degree.
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Encoding Hyperimmunity

Theorem

There exists a covering A0 Y A1 � ω, such that every X P rA0sω Y
rA1sω is of hyperimmune degree.

We split ω by alternating larger and larger blocks of consecutive
integers in A0 and A1.

. . .

For X infinite subset of A0 or A1, the hyperimmune function is
given by f pnq to be the n-th number which appears in X .
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Encoding DNC

Definition (Diagonally non-computable degree)

A set X is of DNC degree (diagonally non-computable) if X com-
putes a function f : ω Ñ ω, such that f pnq � Φnpnq for every n.

Theorem

The following are equivalent for a set X :

X is of DNC degree.

X computes a function which on input n can output a string
of Kolmorogov complexity greater than n.

X computes an infinite subset of a Martin-Löf random set.
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Encoding DNC

Definition (Informal definition of Kolmorogov complexity)

We say K pσq ¥ n if the size of the smallest program which outputs
σ is at least n.

Definition (Informal definition of Martin Löf randomness)

We say X is Martin Löf random if the Kolmogorov complexity of
each of its prefix σ is greater than |σ|.

Theorem

X is of DNC degree iff X computes an infinite subset of a Martin-Löf
random set.

001011101010011011001101001011010110010101010. . .
Ñ 000010000000001000000000000001000110000000010. . .
Ñ 111111111011111111011111101111111110111101111. . .
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Encoding enumerating non-enumerable things

Theorem [Tennenbaum, Denisov]

There exists a computable order of ω, of order type ω � ω� which
has no infinite ascending or descending c.e. sequence.

Consider A � ω the initial segment of order-type ω.

Any infinite subset X � A enumerates A (by enumerating
things smaller than elements of X )

Any infinite subset of X � A enumerates A (by enumerating
things larger than elements of X )

Corollary [Tennenbaum, Denisov]

There exists a set A such that every set G P rAsω Y rAsω can make
c.e. something which is not c.e.
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Cone avoidance

Theorem [Dzhafarov and Jockusch]

Let X � ω be non-computable. For every covering A0YA1 � ω, we
have some G P rA0sω Y rA1sω such that G §T X .

The proof uses computable Mathias Forcing : Dzhafarov and Jocku-
sch’s technic have then been enhanced an reused in various manner
by multiple authors to show other results of the same type, that we
shall now expose.

Theorem [Strong form of Dzhafarov and Jockusch]

Let X � ω be non-computable. The class of sets

tA : There exists G P rAsω such that G does not compute X u

is partition regular.
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More on cone avoidance

Theorem [Dzhafarov and Jockusch]

Let X � ω be non-c.e. The class of sets

tA : There exists G P rAsω such that X is not c.e. in Gu

is partition regular

But we cannot avoid more than one c.e. set. On the other hand :

Theorem [Dzhafarov and Jockusch]

Let tXnunPω be all non-computable. The class of sets

tA : There exists G P rAsω such that G computes no Xnu

is partition regular
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PA degrees

Definition

A set X is of P.A. degree if X computes a complete and consistent
extension of Peano arithmetic.

Theorem

The following are equivalent :

X is of P.A. degree.

X is diagonally non-computable with a t0, 1u-valued function.

X computes an infinite path in any non-empty Π0
1 class.

Theorem (Liu)

The class of sets

tA : There exists G P rAsω which is not of PA degree u

is partition regular
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Non high

Definition

A set X is high if it computes a function which eventually grows faster
than any computable function.

x

y

comp. fct

high fct

Theorem (M., Patey)

The class of sets

tA : There exists G P rAsω such that G is not high u

is partition regular
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Non high

Theorem (Martin)

The following are equivalent for a set X :

X is high

X 1 ¥T ∅2

Theorem (M., Patey)

Let X � ω be non-∅1-computable. The class of sets

tA : There exists G P rAsω such that G 1 does not compute X u

is partition regular

The proof uses of new forcing technique that builds upon Mathias
forcing to control the second jump.

Partition regularity is in particular a key concept of the used forcing.
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Computing random sets

Theorem (Liu)

Let f be a computabe order function. The class of sets

tA : There exists G P rAsω which is not of DNCf degree u

is partition regular

Fact

Every Martin-Löf random Z is DNCn ÞÑ2n , that is, Z computes a
DNC function bounded by n ÞÑ 2n.

Corollary [Liu]

The class of sets

tA : There exists G P rAsω which compute no MLR set u

is partition regular
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Computing generic sets

Definition

A set is weakly-n-generic if it is in every Σ0
1p∅

pn�1q
q dense open set.

It is 1-generic if for every Σ0
1p∅

pn�1q
q open set U, it is in U or in the

interior of the complement of U.

Theorem

There exists a covering A0 Y A1 � ω, such that for every G P
rA0sω Y rA1sω we have that G computes a 2-generic.

This is because any function which is not bounded by any ∆0
3 func-

tion can compute a 2-generic. This does not work anymore with
weakly-3-genericity and above.



Ramsey Theory Splitting ω in two Iterating through the ordinals

Computing generic sets

Theorem (Andrews, Gerdes, Miller)

There is a function bounded by no ∆0
3 function which computes no

weakly-3-generic set.

The previous theorem gives us material for the following
conjecture :

Conjecture

The class of sets

tA : There is G P rAsω which computes no weakly-3-generic set u

is partition regular
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Computing cohesive sets

Definition (Cohesiveness)

A set X if p-cohesive if for any primitive recursive set Re we have
X �� Re or X �� Re

Theorem (Folklore)

A set X computes a p-cohesive set iff X 1 is PAp∅1q, that is, iff X 1

computes a function f : ω Ñ t0, 1u such that f pnq � Φ∅
1

e peq.

Theorem (M., Patey)

For every ∆0
2 set A, there is an element G P rAsω Y rAsω such that

G 1 is not PAp∅1q.

Question

Is the former true for any set A ?
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Section 3

Iterating through the
ordinals
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The goal

Theorem (M., Patey)

Let X � ω be non-∅1-computable. The class of sets

tA : There exists G P rAsω such that G 1 does not compute X u

is partition regular

Does this generalizes to any jump ?

Fact

The first “second jump control” forcing did not generalize to the
third jump control.
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Largeness and partition regularity

Definition (Largeness)

A largeness class is a collection of sets L � 2ω such that :

L is upward closed : If X P L and X � Y , then Y P L

If Y0 Y � � � Y Yk � ω, then there is i ¤ k such that Yi P L

If X P L then |X | ¥ 2

Definition (Partition regularity)

A partition regular class is a collection of sets L � 2ω such that :

L is a largeness class

If X P L and Y0 Y � � � Y Yk � X , then there is i ¤ k such that
Yi P L

We add the condition |X | ¥ 2 to ensure that L contains only infinite
elements.
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Generalities

Proposition

A partition regular class L contains only infinite sets.

Proposition

Let L be a partition regular class. Then L is closed by finite change
of its elements. Furthermore if L is measurable it has measure 1.

Proof sketch :
L contains only infinite set
Ñ L is closed by finite change
Ñ L has measure 0 or 1
Ñ If L has measure 0, sufficiently MLR Z and ω � Z are not in L
Ñ But Z or ω � Z must be in L. Contradiction.
Ñ L has measure 1
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Generalities

Proposition (Compactness for largeness classes)

Suppose tAnunPω is a collection of largeness classes with An�1 � An.
Thus

�
nPω An is a largeness class.

Proposition (Compactness for partition regular classes)

Suppose tLnunPω is a collection of partition regular classes with Ln�1 � Ln.
Thus

�
nPω Ln is partition regular.

Proposition

Let A be any set. Then A is a largeness class iff the set

LpAq � tX P 2ω : @k @X0 Y � � � Y Xk � X Di ¤ k Xi P Au
is a partition regular subclass of A (in which case it is the largest).
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Π0
2 partition regular classes

Proposition

If U is a Σ0
1 large class. Then LpUq is a Π0

2 partition regular class.

Proposition

If U is a Σ0
1 upward closed class. Then predicate

U is large

is Π0
2.

Fix k , the class of element :

tY0 ` � � � ` Yk : X � Y0 ` � � � ` Yk ^ @i   k Yi R Uu
is a Π0

1pX q class uniformly in X .
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A glance at the forcing idea

Let pσ,X q be a condition.

σ ?$Dn ΦpG , nq iff

tY : Dn Dτ � Y Φpσ Y τ, nqu is a largeness class

σ ?$Dn @m0 . . .QmkΦpG , n,m0, . . . ,mkq iff

tY : Dn Dτ � Y σYτ ?&Dm0 . . . Qmk ΦpG , n,m0, . . . ,mkqu

is a largeness class

Ñ If yes, X is in the largeness class. Take an extention of τ © σ
with τ � X

Ñ If no, there is a cover Y0 Y � � � Y Yk � ω, such that for every
extention τ © σ in Yi and every n, “something is satisfied”. Take
an extention Yi X X � X for the “right” Yi .
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Canonical Π0
2 partition regular classes

The following classes are Π0
2 partition regular classes.

Exemple

For X c.e. :
LX � tY : |X X Y | � 8u

Exemple

The class :

L1{n �

#
X :

¸
nPX

1{p1 � nq � 8

+

Exemple

The class :

LW � tX : X contains arbitrarily long arithmetic progressionsu
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Minimal largeness classes

The challenge is to fix in advance all the possible largeness classes
we want to work with, whithout being definitionally too complex.

Notation

For C � ω we write UC �
�

ePC Ue

Definition (M., Patey)

Let M be a countable set. A largeness class UC is M-minimal if for
every Σ0

1pX q class U for X PM we have :

UC � U
or U X UC is not a largeness class
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Cohesive largeness classes

Definition (M., Patey)

Let M be a countable set. A largeness class L is M-cohesive if for every
X PM we have :

L � LX

or L � LX

Proposition (M., Patey)

Let M be a Scott set. An M-cohesive largeness class contains a unique
M-minimal largeness class.

Notation

Let M be a Scott set and UC be an M-cohesive class. Then xUC y is the
unique minimal largness subclass of UC .
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The forcing (1)

Let tMαuα ωck
1

be such that

Mα codes for a countable Scott set Mα

∅pαq is uniformly coded by an element of Mα

Each M 1
α is uniformly computable in ∅pα�1q

Let tCαuα ωck
1

be such that :

UMα
Cα

is an Mα-cohesive largeness class

β   α implies UMα
Cα

� xUMβ

Cβ
y

Each Cα is coded by an element of Mα�1 uniformly in α and
Mα�1.

Let S �
�
α ωck

1
UMα
Cα

. At least one among A or A belongs to S
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The forcing (2)

Let A be such that A P S. Forcing conditions are Mathias conditions
pσ,X q such that :

σ � A

X � A

X X t0, . . . , |σ|u � H

X P S

Theorem (M., Patey)

Let B be not ∆0
1p∅

pαq
q for α   ωck

1 . If G is sufficiently generic then B is
not ∆0

1pG
pαqq.

Theorem (M., Patey)

If B is not ∆1
1, for every covering A0 YA1 � ω. If G is sufficiently generic

then B is not ∆1
1pG q (with in particular ωG

1 � ωck
1 ).
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Question

Theorem (Wang)

Let X be non-computable. Let c : N2 Ñ t0, 1, 2u be any coloring. Then
there exists G and i P t0, 1, 2u such that

For all n,m P G we have cpn,mq � i .

G does not compute X

Theorem (Cholak, Patey)

Let X be non-computable. Let n and m ¡ dn. Let c : Nn Ñ t0,m� 1u be
any coloring. Then there exists G such that

#ti : cpa, bq � i for a, b P Gu ¤ dn.

G does not compute X

where d0 � 1 and dn �
°n

i�0 didn�1 are the Catalan numbers

Question

Can we iterate this (with maybe different numbers) through the jumps ?
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