Genericity and randomness with ITTM's

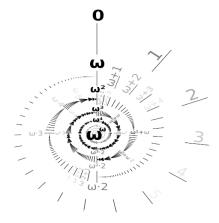
Paul-Elliot Anglès d'Auriac Benoît Monin

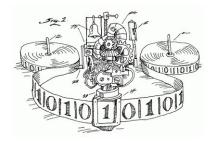
December 19, 2018

Paul-Elliot Anglès d'Auriac Benoît Monin Genericity and randomness with ITTM's

伺下 イヨト イヨト

Infinite Time Turing Machine





≣ >

Definition (Hamkins, Lewis, 2000)

An Infinite Time Turing Machine is a Turing Machine with a special state called "limit state" and three tapes:

- The input tape,
- the working tape, and
- the output tape.

We now need to define a computation by an ITTM. Computations are indexed by ordinals.

- At successor step, the behaviour is the same as regular Turing Machines.
- We need to specify the behaviour at limit steps.

・ 同 ト ・ ヨ ト ・ ヨ ト

Limit steps

At limit steps:

• The state becomes the special "limit state".

• The value of each cells is the lim inf of its values at previous stage of computation:

$$\begin{array}{cccc} \text{Cell } C_i \colon \boxed{0} \to \boxed{1} \to \boxed{0} \to \boxed{1} \to \boxed{0} \to \boxed{1} & \cdots & \stackrel{\text{lim inf}}{\longrightarrow} & \boxed{0} \\ \text{Cell } C_j \colon \boxed{1} \to \boxed{1} \to \boxed{0} \to \boxed{0} \to \boxed{0} \to \boxed{0} & \cdots & \stackrel{\text{lim inf}}{\longrightarrow} & \boxed{0} \\ \text{Cell } C_k \colon \boxed{0} \to \boxed{0} \to \boxed{1} \to \boxed{1} \to \boxed{1} \to \boxed{1} & \cdots & \stackrel{\text{lim inf}}{\longrightarrow} & \boxed{1} \end{array}$$

回 ト イヨ ト イヨト

We have a notion of computability for reals;

Definition (Writability)

A real x is writable if there is an ITTM M starting with blank input tape, which reach a halting state with x written on its output tape.

But also for classes of reals:

Definition (Decidability)

A class of reals \mathcal{A} is ITTM-decidable if there exists an ITTM M such that $M(X) \downarrow = 1$ if $X \in \mathcal{A}$ and $M(X) \downarrow = 0$ otherwise.

・ 同 ト ・ ヨ ト ・ ヨ ト

The power of ITTM-decidability

Are ITTMs really strong?

Theorem

The class WO of codes for well-orders is ITTM-decidable.

Algorithm: Decide if < is a well-order

<日</td>

The power of ITTM-decidability

Are ITTMs really strong?

Theorem

The class WO of codes for well-orders is ITTM-decidable.

Algorithm: Look for a smallest element

```
min := any element of < ;

flag := 1;

for all elements e of Field(<) do

if e < candidate then

flag := 0

flag := 1

min := e

if flag = 0 then

return "no minimum"

return min
```

The power of ITTM-decidability

Are ITTMs really strong?

Theorem

The class WO of codes for well-orders is ITTM-decidable.

Corollary

All Π_1^1 sets (resp. class) are writable (resp. decidable).

Corollary

Kleene's \mathcal{O} , and $\mathcal{O}^{\mathcal{O}}$ and $\mathcal{O}^{(\mathcal{O}^{\mathcal{O}})}$ · · · are writable.

・ 同 ト ・ ヨ ト ・ ヨ ト

Are ITTMs really strong?

Theorem

The class WO of codes for well-orders is ITTM-decidable.

Corollary

All Π_1^1 sets (resp. class) are writable (resp. decidable). Kleene's \mathcal{O} , and $\mathcal{O}^{\mathcal{O}}$ and $\mathcal{O}^{(\mathcal{O}^{\mathcal{O}})} \cdots$ are writable.

伺下 イヨト イヨト

Theorem

If an ITTM stops, it stops before ω_1 .

Definition

We define $\gamma = \sup\{\alpha : \alpha \text{ is a halting time}\}.$

By cofinality, $\gamma < \omega_1$.

(1日) (1日) (日)

Toward Set Theory

Definition (λ)

We call λ the supremum of the ordinals with writable codes.

イロン イヨン イヨン イヨン

Definition (λ)

We call λ the supremum of the ordinals with writable codes.

A real X is eventually writable if there is an ITTM that write X at some point X and never changes it.

Definition (ζ)

We call $\boldsymbol{\zeta}$ the supremum of the ordinals with eventually writable codes.

(四) (종) (종)

Definition (λ)

We call λ the supremum of the ordinals with writable codes.

A real X is eventually writable if there is an ITTM that write X at some point X and never changes it.

Definition (ζ)

We call $\boldsymbol{\zeta}$ the supremum of the ordinals with eventually writable codes.

A real X is accidentally writable if there is an ITTM that write X at some point X of its computation.

Definition (Σ)

We call $\boldsymbol{\Sigma}$ the supremum of the ordinals with accidentally writable codes.

Definition

Gödel's constructible are defined by induction over the ordinals:

$$L_{0} = \emptyset$$

$$L_{\alpha+1} = \{\{x \in L_{\alpha} : L_{\alpha} \models \Phi(x)\} : \Phi \text{ a formula}\}$$

$$L_{\lambda} = \bigcup_{\alpha < \lambda} L_{\alpha}$$

<回と < 目と < 目と

Definition

Gödel's constructible are defined by induction over the ordinals:

$$L_0[X] = \{X\}$$

$$L_{\alpha+1}[X] = \{\{x \in L_{\alpha}[X] : L_{\alpha}[X] \models \Phi(x)\} : \Phi \text{ a formula}\}$$

$$L_{\lambda}[X] = \bigcup_{\alpha < \lambda} L_{\alpha}[X]$$

<回と < 目と < 目と

Fundamental theorem for ITTMs

These ordinals $\lambda,\,\zeta$ and Σ are characterized in the following theorem:

・ 回 ト ・ ヨ ト ・ ヨ ト

Fundamental theorem for ITTMs

These ordinals $\lambda,\,\zeta$ and Σ are characterized in the following theorem:

Theorem (Welch)

 $(\lambda_{-},\zeta_{-},\Sigma_{-})$ is the smallest triplet such that

$$L_{\lambda} \quad \prec_1 L_{\zeta} \quad \prec_2 L_{\Sigma}$$

Moreover $\gamma = \lambda$.

Definition (Stability)

 $A \prec_n B$ if for every Σ_n formula ϕ with parameter in A, $A \models \Phi$ if and only if $B \models \Phi$.

Fundamental theorem for ITTMs

These ordinals $\lambda,\,\zeta$ and Σ are characterized in the following theorem:

Theorem (Welch)

Let x be any real.

 $(\lambda^x,\zeta^x,\Sigma^x)$ is the smallest triplet such that

$$L_{\lambda^{\times}}[x] \prec_1 L_{\zeta^{\times}}[x] \prec_2 L_{\Sigma^{\times}}[x]$$

Moreover $\gamma^{x} = \lambda^{x}$.

Definition (Stability)

 $A \prec_n B$ if for every Σ_n formula ϕ with parameter in A, $A \models \Phi$ if and only if $B \models \Phi$.

Theorem (Welch)

 $(\lambda_-,\zeta_-,\Sigma_-)$ is the smallest triplet such that

$$L_{\lambda} \quad \prec_1 L_{\zeta} \quad \prec_2 L_{\Sigma}$$

Moreover $\gamma = \lambda$.

Theorem (Welch)

- $(\lambda \ , \zeta \ , \Sigma \)$ are such that
 - L_{λ} is the set of sets with writable code
 - L_{ζ} is the set of sets with eventually writable code
 - L_{Σ} is the set of sets with accidentally writable code

イロン イヨン イヨン

Theorem (Welch)

Let x be any real.

 $(\lambda^x, \zeta^x, \Sigma^x)$ is the smallest triplet such that

$$L_{\lambda^{\times}}[x] \prec_1 L_{\zeta^{\times}}[x] \prec_2 L_{\Sigma^{\times}}[x]$$

Moreover $\gamma^x = \lambda^x$.

Theorem (Welch)

 $(\lambda^x, \zeta^x, \Sigma^x)$ are such that

 $L_{\lambda^{\times}}[x]$ is the set of sets with writable code $L_{\zeta^{\times}}[x]$ is the set of sets with eventually writable code $L_{\Sigma^{\times}}[x]$ is the set of sets with accidentally writable code

イロト イヨト イヨト イヨト

イロト イヨト イヨト イヨト

We will use the following paradigm to define randomness:

Paradigm

A set Z is random if it avoids all the sufficiently simple null sets.

- Having countably many simple sets ensures that the randoms are co-null
- The more null sets are avoided, the more random the set is.

(日) (コン (コン

Some notions of Randomness

Let α be an ordinal.

Definition (randomness over L_{α} , Carl and Schlicht)

A set X is random over L_{α} if X is in no null Borel set with code in L_{α} .

Example

Randomness over $L_{\omega_1^{\mathrm{CK}}}$ corresponds to Δ_1^1 -randomness

・ 同 ト ・ ヨ ト ・ ヨ ト …

Some notions of Randomness

Let α be an ordinal.

Definition (randomness over L_{α} , Carl and Schlicht)

A set X is random over L_{α} if X is in no null Borel set with code in L_{α} .

Example

Randomness over $L_{\omega_1^{CK}}$ corresponds to Δ_1^1 -randomness

Definition (ITTM-decidable-randomness, Carl and Schlicht)

A set X is ITTM-decidable random if X is in no null ITTM-decidable set.

Theorem

Randomness over L_{λ} corresponds to ITTM-decidable-randomness

イロト イヨト イヨト イヨト

Definition (α -ce open sets)

An open set U is α -ce if

$$U = \bigcup_{\substack{L_{\alpha} \models \Phi(\sigma)\\ \sigma \in 2^{<\omega}}} [\sigma]$$

for some Σ_1 formula Φ with parameters in L_{α} .

Definition (α -ML-randomness, Carl and Schlicht)

A set X is α -ML random if X is in no uniform intersection $\bigcap_n \mathcal{U}_n$ of uniformly α -ce open sets such that $\lambda(\mathcal{U}_n) \leq 2^{-n}$.

Example

 Π_1^1 -ML-randomness is also ω_1^{CK} -ML-randomness.

イロト イヨト イヨト イヨト

In higher randomness, we have the following:

Theorem

 Π_1^1 -ML randomness is strictly stronger than Δ_1^1 -randomness.

Could we generalize the results to other ordinals?

Question

For which ordinals α do we have: " α -ML randomness is strictly stronger than randomness over L_{α} "?

- For $\alpha = \omega_1^{CK}$, it is the case.
- What about $\alpha = \lambda$, or ζ , or Σ ?

Projectibility

To answer this question, we need the concept of projectibility.

Definition (Projectible ordinals)

We say that an ordinal α is projectible into an ordinal β if there is an injective function from α to β that is Σ_1 -definable in L_{α} . We say that α is projectible if α is projectible into some $\beta < \alpha$. The least such β is called the projectum of α .

Theorem (Anglès d'Auriac, Monin)

Let α be limit and such that $L_{\alpha} \models$ "everything is countable". Then, the following are equivalent:

- α is projectible into ω ,
- There is a universal α -ML random test,
- α -ML-randomness is strictly stronger than randomness over L_{α} .

Theorem (Friedman)

If $L_{\alpha} \models \exists x : x \text{ is uncountable'', then there exists } \beta, \gamma < \alpha \text{ such that } L_{\beta} \prec L_{\gamma}.$

Therefore, L_{λ} , L_{ζ} and L_{Σ} all satify "everything is countable".

- (回) (三) (三) (三) (三)

Theorem (Friedman)

If $L_{\alpha} \models \exists x : x$ is uncountable", then there exists $\beta, \gamma < \alpha$ such that $L_{\beta} \prec L_{\gamma}$.

Therefore, L_{λ} , L_{ζ} and L_{Σ} all satify "everything is countable".

Theorem

The ordinal λ is projectible into ω .

Assign any $\alpha < \lambda$ to the code of the ITTM writing α .

Corollary

 $\lambda\text{-}ML\text{-}randomness$ is strictly stronger than ITTM-decidable randomness.

(四) (日) (日)

Theorem (Friedman)

If $L_{\alpha} \models \exists x : x$ is uncountable", then there exists $\beta, \gamma < \alpha$ such that $L_{\beta} \prec L_{\gamma}$.

Therefore, L_{λ} , L_{ζ} and L_{Σ} all satify "everything is countable".

Theorem

The ordinal ζ is not projectible into ω .

Suppose that an eventually writable parameter α can be used to have a projectum $f : \zeta \to \omega$. Then every eventually writable ordinals become writable using α . Then ζ becomes eventually writable using α . But then ζ is eventually writable.

Corollary

 ζ -ML-randomness coincide with randomness over $L_{\zeta},$ and there is no universal ζ -ML-test.

Theorem (Friedman)

If $L_{\alpha} \models \exists x : x$ is uncountable", then there exists $\beta, \gamma < \alpha$ such that $L_{\beta} \prec L_{\gamma}$.

Therefore, L_{λ} , L_{ζ} and L_{Σ} all satify "everything is countable".

Theorem

The ordinal Σ is projectible into ω , using ζ as a parameter.

Recall that Σ is not admissible!

Corollary

 Σ -ML-randomness is strictly stronger than randomness over L_{Σ} .

(日) (ヨ) (ヨ)

ITTM randomness

What about equivalent of Π_1^1 randomness?

Definition (ITTM randomness)

A real X is said ITTM-random if it is in no ITTM-semi-decidable null set.

Theorem (Carl, Schlicht)

X is ITTM-random \iff X is random over L_{Σ} and $\Sigma^{X} = \Sigma$ \iff X is random over L_{ζ} and $\zeta^{X} = \zeta$ \iff X is random over L_{λ} and $\lambda^{X} = \lambda$

A (1) > A (2) > A (2) >

ITTM randomness

What about equivalent of Π_1^1 randomness?

Definition (ITTM randomness)

A real X is said ITTM-random if it is in no ITTM-semi-decidable null set.

Theorem (Carl, Schlicht)

X is ITTM-random	\iff	X is random over L_{Σ} and $\Sigma^X = \Sigma$
	\iff	X is random over L_{ζ} and $\zeta^X = \zeta$
	\iff	X is random over L_{λ} and $\lambda^{X} = \lambda$

Compared with higher randomness:

Theorem

Let X be a real. Then

X is
$$\Pi^1_1$$
-random \iff X is Δ^1_1 -random and $\omega^X_1 = \omega^{\mathrm{CK}}_1$

In the higher randomness case, we have:

Theorem

$$\Delta^1_1$$
-randomness $\subsetneq \Pi^1_1$ -ML-randomness $\subsetneq \Pi^1_1$ -randomness

However, in the ITTM case we have :

Theorem

Randomness over $L_{\lambda} \subsetneq \lambda$ -ML-randomness \subsetneq ITTM-randomness Randomness over $L_{\zeta} = \zeta$ -ML-randomness \subsetneq ITTM-randomness Randomness over $L_{\Sigma} \subseteq$ ITTM-randomness $\subsetneq \Sigma$ -ML-randomness

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

In the higher randomness case, we have:

Theorem

$$\Delta^1_1$$
-randomness $\subsetneq \Pi^1_1$ -ML-randomness $\subsetneq \Pi^1_1$ -randomness

However, in the ITTM case we have :

Theorem

Randomness over $L_{\lambda} \subsetneq \lambda$ -ML-randomness \subsetneq ITTM-randomness Randomness over $L_{\zeta} = \zeta$ -ML-randomness \subsetneq ITTM-randomness Randomness over $L_{\Sigma} \subseteq$ ITTM-randomness $\subsetneq \Sigma$ -ML-randomness

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

In the higher randomness case, we have:

Theorem

$$\Delta^1_1$$
-randomness $\subsetneq \Pi^1_1$ -ML-randomness $\subsetneq \Pi^1_1$ -randomness

However, in the ITTM case we have :

Theorem

Randomness over $L_{\lambda} \subsetneq \lambda$ -ML-randomness \subsetneq ITTM-randomness Randomness over $L_{\zeta} = \zeta$ -ML-randomness \subsetneq ITTM-randomness Randomness over $L_{\Sigma} \subseteq$ ITTM-randomness $\subsetneq \Sigma$ -ML-randomness

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

In the higher randomness case, we have:

Theorem

$$\Delta^1_1$$
-randomness $\subsetneq \Pi^1_1$ -ML-randomness $\subsetneq \Pi^1_1$ -randomness

However, in the ITTM case we have :

Theorem

Randomness over $L_{\lambda} \subsetneq \lambda$ -ML-randomness \subsetneq ITTM-randomness Randomness over $L_{\zeta} = \zeta$ -ML-randomness \subsetneq ITTM-randomness Randomness over $L_{\Sigma} \subseteq$ ITTM-randomness $\subsetneq \Sigma$ -ML-randomness

Which leaves us with the question:

Question

Do we have?

randomness over $L_{\Sigma} \neq \mathsf{ITTM}$ -randomness

Question

Do we have?

randomness over $L_{\Sigma} \neq ITTM$ -randomness

- It is equivalent to the question: Does Σ-randomness for X implies L_ζ[X] ≺₂ L_Σ[X]?
- **2** The problem comes from the fact that Σ is not admissible (ie. L_{Σ} is not a model of Σ_1 -replacement)
- 3 What about genericity?

→ 同 ▶ → 目 ▶ → 目 ▶

Question

Do we have?

randomness over $L_{\Sigma} \neq ITTM$ -randomness

- It is equivalent to the question: Does Σ-randomness for X implies L_ζ[X] ≺₂ L_Σ[X]?
- **2** The problem comes from the fact that Σ is not admissible (ie. L_{Σ} is not a model of Σ_1 -replacement)
- What about genericity?

→ 同 ▶ → 目 ▶ → 目 ▶

Generic objects corresponds to the typical objects with regard to Baire categoricity.

Definition (Meager sets)

A co-meager set is a countable intersection of dense open sets. The complement of a co-meager set is a meager set.

Generic objects corresponds to the typical objects with regard to Baire categoricity.

Definition (Meager sets)

A co-meager set is a countable intersection of dense open sets. The complement of a co-meager set is a meager set.

Definition (Genericity over L_{α})

We say that X is generic over L_{α} if X is in every dense open set with code in L_{α} .

Definition (ITTM-genericity)

We say that X is ITTM-generic if X is in no ITTM-semi-decidable meager set.

The theorem relating ITTM-genericity and genericity over \mathcal{L}_{Σ} still holds:

Theorem

Let X be a real. Then

X is ITTM-generic \iff X is generic over L_{Σ} and $\Sigma^{X} = \Sigma$

But in fact...

・ 同 ト ・ ヨ ト ・ ヨ ト

The theorem relating ITTM-genericity and genericity over L_{Σ} still holds:

Theorem

Let X be a real. Then

X is ITTM-generic
$$\Longleftrightarrow$$
 X is generic over L _{Σ} and $\Sigma^X = \Sigma$

But in fact...

Theorem

If Z is generic over L_{Σ} , then $L_{\zeta}[Z] \prec_2 L_{\Sigma}[Z]$. In particular, $\Sigma^Z = \Sigma$

Corollary

ITTM-genericity and genericity over L_{Σ} are two equivalent notions.

there is no difference between the two notions!

To conclude:

Question

Do we have?

randomness over $L_{\Sigma} \neq ITTM$ -randomness

is still unsolved...

イロン イヨン イヨン イヨン