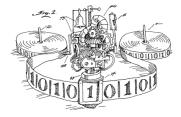
Randomness and ITTM

Benoit Monin

Worshop on Algorithmic randomness NUS - IMS

The ITTM model



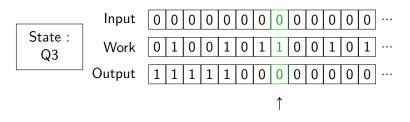
Section 1

The ITTM model

Infinite time Turing machines

An infinite-time Turing machine is a Turing machine with three tapes whose cells are indexed by natural numbers :

- The input tape
- The output tape
- The working tape

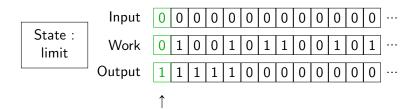


It behaves like a standard Turing machine at successor steps of computation.

Infinite time Turing machines

At limit steps of computation :

- The head goes back to the first cell.
- The machine goes into a "limit" state.
- The value of each cell equals the lim inf of the values at previous stages of computation.

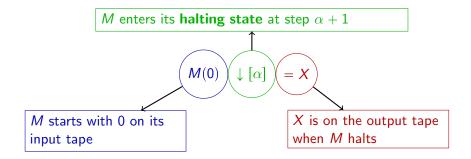


Writable reals

What is the equivalent of computable for an ITTM?

Definition

A real X is writable if there in an ITTM M such that : $M(0) \downarrow [\alpha] = X$ for some ordinal α .



Decidable classes

Which reals are writable?

Definition

A class of real \mathcal{A} is **decidable** if there is an ITTM M such that $M(X) \downarrow = 1$ if $X \in \mathcal{A}$ and $M(X) \downarrow = 0$ if $X \notin \mathcal{A}$.

Proposition (Hamkins, Lewis)

The class of reals coding for a well-order (with the code $X(\langle n, m \rangle) = 1$ iff n < m) is decidable.

Decide well-orders

Proposition (Hamkins, Lewis)

The class of reals coding for a well-order (with the code $X(\langle n, m \rangle) = 1$ iff n < m) is decidable.

The algorithm is as follow, where < is the order coded by X :

Algorithm to decide well-orders

end

```
When < is empty, write 1 and halts.
```

Decide well-orders

How to find the smallest element?

Algorithm to find the smallest element

```
Write 1 on the first cell. Set the current element c = +\infty
if state is successor then
```

else

```
if If the first cell is 0 then
    There is no smallest element
else
    c is the smallest element
end
end
```

Decidable and writable sets

Proposition (Hamkins, Lewis)

The class of reals coding for a well-order (with the code $X(\langle n, m \rangle) = 1$ iff n < m) is decidable.

Corollary (Hamkins, Lewis)

Every Π_1^1 set of reals is decidable.

Corollary (Hamkins, Lewis)

Every Π_1^1 set of integers is writable.

Computational power of ITTM

 ω_1^{ck} steps of computations are enough to write any Π_1^1 set of integers. But there is no bound in the ordinal step of computation an ITTM can use.

Using a program that writes Kleene's O, we can design a program which writes the double hyperjump O^O and then $O^{(O^O)}$ and so on.

Where does it stop?

Proposition (Hamkins, Lewis)

Whatever an ITTM does, it does it before stage ω_1 .

Computational power of ITTM

Proposition (Hamkins, Lewis)

Whatever an ITTM does, it does it before stage ω_1 .

The configuration of an ITTM is given by :

- Its tapes
- Its state
- Interposition of the head.

Let $C(\alpha) \in 2^{\omega}$ be a canonical encoding of the tapes of an ITTM at stage α .

There must be some *limit ordinal* $\alpha < \omega_1$ such that $C(\alpha) = C(\omega_1)$. The full configuration of the machine at step ω_1 is then the same than the one step α .

Computational power of ITTM

$$\sup_{n} \alpha_{n}^{+} \quad \boxed{0 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1} \dots$$

 α_0 : The smallest ordinal such that every cell converging at step ω_1 (in green) will never change pass that point.

 α_{n+1}^+ : The smallest ordinal $> \alpha_n^+$ such that the n+1 non-converging cells (in red) change value at least once in the interval $[\alpha_n^+, \alpha_{n+1}^+]$

Beyond the writable ordinals

Definition (Hamkins, Lewis)

An ordinal α is **writable** if there is an ITTM which writes an encoding of a well-order of ω with order-type α .

Proposition (Hamkins, Lewis)

The writables are all initial segments of the ordinals.

Definition (Hamkins, Lewis)

Let λ be the supremum of the writable ordinals.

Proposition (Hamkins, Lewis)

There is an ITTM which writes λ on its output tape, then leave the output tape unchanged without ever halting.

Beyond the writable ordinals

Proposition (Hamkins, Lewis)

There is a universal ITTM U which runs simultaneously all the ITTM computations $P_e(0)$ for every $e \in \omega$.

Algorithm to eventually write λ

```
for every stage s do
```

Run the universal machine U for one step.

Compute the sum α_s of all ordinals which are on the output tapes of programs simulated by U[s] and which have terminated.

Write α_s on the output tape.

end

Let s be the smallest stage such that every halting ITTM have halted by stage s in the simulation U.

- **1** We clearly have $\alpha_s \ge \lambda$.
- 2 We clearly have that $\alpha_t = \alpha_s$ for every $s \ge t$.

Beyond the eventually writable ordinals

Definition (Hamkins, Lewis)

A real is **eventually writable** if there in an ITTM and a step α such that for every $\beta \ge \alpha$, the real is on the output tape at step β .

Proposition (Hamkins, Lewis)

The eventually writable ordinals are an initial segments of the ordinals.

Definition (Hamkins, Lewis)

Let ζ be the supremum of the eventually writable ordinals.

Proposition (Hamkins, Lewis)

There is an ITTM which at some point writes ζ on its output tape.

Beyond the eventually writable ordinals

Algorithm to accidentally write $\boldsymbol{\zeta}$

```
for every stage s do
```

Run the universal machine U for one step.

Compute the sum α_s of all ordinals which are on the output tapes of programs simulated by U[s].

Write α_s on the output tape.

end

Let s be the smallest stage such that every ITTM writting an eventually writable ordinal, have done so by stage s in the simulation U. We clearly have $\alpha_s \ge \zeta$.

Beyond the eventually writable ordinals

Definition (Hamkins, Lewis)

A real is **accidentally writable** if there in an ITTM and a step α such that the real is on the output tape at step α .

Proposition (Hamkins, Lewis)

The accidentally writables are all initial segments of the ordinals.

Definition (Hamkins, Lewis)

Let Σ be the supremum of the accidentally writables.

Proposition (Hamkins, Lewis)

We have $\lambda < \zeta < \Sigma$.

ITTM and constructibility

Section 2

ITTM and constructibility

The constructibles

Definition (Godel)

The **constructible universe** is defined by induction over the ordinals as follow :

$$\begin{array}{rcl} L_{\varnothing} & = & \varnothing \\ L_{\alpha^+} & = & \{X \subseteq L_{\alpha} : X \text{ is f.o. definable with param. in } L_{\alpha}\} \\ L_{\sup_n \alpha_n} & = & \bigcup_n L_{\alpha_n} \end{array}$$

Theorem (Hamkins, Lewis)

- If α is writable and $X \in 2^{\omega} \cap L_{\alpha}$ then X is writable.
- If α is eventually writable and $X \in 2^{\omega} \cap L_{\alpha}$ then X is eventually writable.
- If α is accidentally writable and $X \in 2^{\omega} \cap L_{\alpha}$ then X is accidentally writable.

The admissibles

Definition (Admissibility)

An ordinal α is **admissible** if L_{α} is a model of Σ_1 -replacement. Formally for any Σ_1 formula Φ with parameters and any $N \in L_{\alpha}$ we must have :

$$\begin{array}{ccc} \mathcal{L}_{\alpha} & \models & \forall n \in N \; \exists z \; \Phi(n, z) \\ \rightarrow & \mathcal{L}_{\alpha} & \models & \exists Z \; \forall n \in N \; \exists z \in Z \; \Phi(n, z) \end{array}$$

 $\omega, \omega_1^{ck}, \omega_2^{ck}, \omega_3^{ck}, etc...$ are the first admissible ordinals.

Consider the formula $\exists n \ \forall k < n \ \exists m \ A(n, k, m)$ (with $A \ \Delta_0$). The formula is Σ_1 : This is because if for every k < n, there exists a witness m_k such that $A(n, k, m_k)$, then $\sup_k m_k$ is still finite.

The admissible are the sets for which this property is still true.

The admissibles

Proposition (Hamkins, Lewis)

The ordinals λ and ζ are admissible.

Suppose that for some $N \in L_{\lambda}$ and a Σ_1 formula Φ we have :

$$L_{\lambda} \models \forall n \in N \exists z \ \Phi(n, z)$$

We define the following ITTM :

Algorithm to show λ admissible

Write a code for N

for every $n \in N$ do

```
Look for the first writable \alpha_n such that L_{\alpha_n} \models \exists z \ \Phi(n, z)
```

Write α_n somewhere.

end

Write $\sup_{n \in N} \alpha_n$

The admissibles

Proposition (Hamkins, Lewis)

The ordinals λ is the λ -th admissible. The ordinals ζ is the ζ -th admissible.

Suppose λ is the α -th admissible for $\alpha < \lambda$.

Algorithm to show λ is the λ -th admissible

Write α

while $\alpha > 0$ do

Look for the smallest element e of α and remove it from α Look for the next admissible writable ordinal and write it to the e-th tape

end

Write the smallest admissible greater than all the one written previously.

How big is λ

Definition

An ordinal is **recursively inaccessible** if it is admissible and limit of admissible.

Proposition (Hamkins, Lewis)

The ordinals λ is the λ -th recursively admissible. The ordinals ζ is the ζ -th recursively admissible.

Definition

An ordinal is **meta-recursively inaccessible** if it is admissible and a limit of recursively inaccessible.

Proposition (Hamkins, Lewis)

The ordinals λ is the λ -th meta recursively admissible. The ordinals ζ is the ζ -th meta recursively admissible.

The clockable ordinals



Section 3

The clockable ordinals

The clockable ordinals

Another notion will help us to understand better λ,ζ and Σ

Definition (Hamkins, Lewis)

An ordinal α is **clockable** if there is an ITTM which halts at stage α (at stage α it decides to go into the halting state).

What is the supremum of the clockable ordinals?

Definition (Hamkins, Lewis)

Let γ be the supremum of the clockable ordinals.

Proposition (Hamkins, Lewis)

We have $\lambda \leq \gamma$.

The clockable ordinals

Proposition (Hamkins, Lewis)

We have $\lambda \leq \gamma$.

Suppose the ITTM *M* writes α . Then one can easily create an ITTM which does the following :

Algorithm to countdown α

Use M to write α

while $\alpha > 0$ do

Find the smallest element of α and remove it from α .

end

Enter the halting state.

It is easy to see that the above algorithm takes at least α step before it ends.

Theorem (Hamkins, Lewis)

The clockable ordinals are not an initial segment of the ordinals : If α is admissible then no ITTM halts in α steps.

For α limit to be clockable we need for some $i \in \{0, 1\}$ to have both :

- **()** A transition rule of the form : (limit, i) \rightarrow halt
- 2 The first cell to contain i at step α

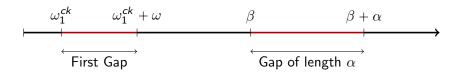
If $\{C_i(\gamma)\}_{\gamma < \alpha}$ converges we have a limit $\beta < \alpha$ s.t. $C_i(\beta) = C_i(\alpha)$ \rightarrow We have (1) and (2) for $\beta < \alpha$

If $\{C_i(\gamma)\}_{\gamma < \alpha}$ diverges, let : f(n+1) = the smallest $\alpha > f(n)$ s.t. $C_0(\beta)$ changes for $\beta \in [f(n), \alpha]$ \rightarrow By admissibility $\sup_n f(n) < \alpha$ and we have (1) and (2) for $\sup_n f(n)$

In both cases the machine stopped before stage α .

Definition (Hamkins, Lewis)

A gap of size α in the clockable ordinals is an interval of ordinals $[\alpha_0, \alpha_0 + \alpha]$ such that no ITTM halts in this interval, but some halt after that.



Theorem (Hamkins, Lewis)

For any writable $\alpha,$ there is a gap of size at least α in the clockable ordinals.

```
Algorithm to witness gap of size \alpha

Run the universal ITTM

while true do

if a new ordinal \alpha_0 is written on a tape then

if no ITTM halts in the interval [\alpha_0, \alpha_0 + \alpha] then

| Write \alpha_0 + \alpha and halt.

end

end

end
```

Note that if α is writable then $\lambda + \alpha < \zeta < \Sigma$. Suppose there is no gap of size α .

 \rightarrow Then the algorithm will at some point :

() Eventually write λ and will see that no ITTM halts in $[\lambda, \lambda + \alpha]$

2 Write $\lambda + \alpha$ and halts

This is a contradiction.

Theorem (Ouazzani)

For any writable β , there exists a writable $\alpha \ge \beta$ such that a gap of size α starts at time α .

Theorem (Carl, Durant, Laffite, Ouazzani)

Let α be the first ordinal such that a gap of size α starts at α . For any $\beta_1 < \beta_2 < \alpha$, the first gap of size β_1 appears before the first gap of size β_2 .

Lemma (Welch)

Let $i \in \omega$. If the sequence $\{C_i(\alpha)\}_{\alpha < \lambda}$ converges, then for every $\alpha \in [\lambda, \Sigma]$ we have $C_i(\alpha) = C_i(\lambda)$.

Suppose w.l.o.g. that $\{C_i(\alpha)\}_{\alpha < \lambda}$ converges to 0. Let β be the smallest such that for all $\alpha \in [\beta, \lambda]$ we have $C_i(\alpha) = 0$.

Algorithm

```
for every \alpha > \beta written by U do
Simulate another run of U for \alpha steps
if C_i(\gamma) = 1 for \gamma \in [\beta, \alpha] then
Write \alpha and halt.
end
end
```

Suppose there is an accidentally writable ordinal $\alpha > \beta$ s.t. $C_i(\alpha) = 1$. Then U will write such an ordinal at some point, and the above program will then write $\alpha > \lambda$ and halt. This is a contradiction.

Theorem (Welch)

The whole state of an ITTM at step ζ is the same than its state at step Σ . In particular, it enters an infinite loop at stage ζ .

The theorem follows from the two following lemmas :

Lemma (Welch)

Let $i \in \omega$. If the sequence $\{C_i(\alpha)\}_{\alpha < \zeta}$ converges, then for every $\alpha \in [\zeta, \Sigma]$ we have $C_i(\alpha) = C_i(\zeta)$.

Lemma (Welch)

Let $i \in \omega$. If the sequence $\{C_i(\alpha)\}_{\alpha < \zeta}$ diverges, then the sequence $\{C_i(\alpha)\}_{\alpha < \Sigma}$ diverges.

Suppose w.l.o.g. that $\{C_i(\alpha)\}_{\alpha < \zeta}$ converges to 0. Let β be the smallest such that for all $\alpha \in [\beta, \zeta]$ we have $C_i(\alpha) = 0$. The ordinal β is eventually writable through different versions $\{\beta_s\}_{s \in ORD}$

Algorithm

for every s and every $\alpha > \beta_s$ written by U do Simulate another run of U for α steps if $C_i(\gamma) = 1$ for $\gamma \in [\beta_s, \alpha]$ and β_s has changed then | Write α on the output tape. end end

Suppose there is an accidentally writable ordinal $\alpha > \beta$ s.t. $C_i(\alpha) = 1$. Then some ordinal $\alpha' \ge \alpha$ will be written at some stage at which β_s has stabilized. Thus the above program will then eventually write some $\alpha' > \zeta$. This is a contradiction.

Suppose $\{C_i(\alpha)\}_{\alpha < \Sigma}$ converges.

Algorithm
Set $\beta = 0$
for every $\alpha > \beta$ written by U do
Simulate another run of U for α steps
if $C_i(\gamma)$ changes for $\gamma \in [\beta, \alpha]$ then
Let $\beta = \alpha$ Write α
Write α
end
end

The algorithm will eventually write some ordinal α s.t. $\{C_i(\gamma)\}$ does not change for $\gamma \in [\alpha, \Sigma]$. But then α is eventually writable and $\{C_i(\alpha)\}_{\alpha < \zeta}$ converges.

Theorem (Welch)

The whole state of an ITTM at step ζ is the same than its state at step Σ . In particular, it enters an infinite loop at stage ζ .

Corollary (Welch)

 λ is the supremum of the clockable ordinals.

Indeed, suppose that we have $M(0) \downarrow [\alpha]$ for some M and α accidentally writable. Then we can run $M(0)[\beta]$ for every β accidentally writable until we find one for which M halts, and then write β . Thus α must be writable.

Suppose now that $M(0) \uparrow [\Sigma]$. Then *M* will never halt. Thus if *M* halts, it halts at a writable step.

Theorem (Welch)

The whole state of an ITTM at step ζ is the same than its state at step Σ . In particular, it enters an infinite loop at stage ζ .

Corollary (Welch)

- The writable reals are exactly the reals of L_{λ} .
- The eventually writable reals are exactly the reals of L_{ζ} .
- The accidentally writable reals are exatly the reals of L_{Σ} .

We can construct every successive configurations of a running ITTM. Also to compute a writable reals, there are less than λ steps of computation and then less than λ steps of construction. Thus every writable real is in L_{λ} .

The argumet is similar for ζ and Σ .

Understanding λ, ζ, Σ

Definition

Let $\alpha \leq \beta$. We say that L_{α} is *n*-stable in L_{β} and write $L_{\alpha} \prec_n L_{\beta}$ if

$$L_{\alpha} \models \Phi \leftrightarrow L_{\beta} \models \Phi$$

For every Σ_n formula Φ with parameters in L_{α} .

Theorem (Welch)

 (λ,ζ,Σ) is the lexicographically smallest triplet such that :

$$L_\lambda \prec_1 L_\zeta \prec_2 L_\Sigma$$

Understanding λ, ζ, Σ

Theorem (Welch)

The ordinal Σ is not admissible.

To see this, we define the following function $f: \omega \to \Sigma$:

$$f(0) = \zeta$$

$$f(n) = \text{ the smallest } \alpha \text{ s.t. } C(\alpha) \upharpoonright_n = C(\zeta) \upharpoonright_n$$

It is not very hard to show that we must have $\sup_n f(n) = \Sigma$

Theorem (Welch)

The ordinal Σ is a limit of admissible.

Otherwise, if α is the greatest admissible smaller than Σ , one could compute $\Sigma \leq \omega_1^{\alpha}$.

ITTM and randomness

ITTM and randomness

ITTM and randomness

Definition (Carl, Schlicht)

X is α -random if X is in no set whose Borel code is in L_{α} .

Definition

An open set U is α -c.e. if $U = \bigcap_{\sigma \in A} [\sigma]$ for a set $A \subseteq 2^{<\omega}$ such that :

$$\sigma \in A \leftrightarrow L_{\alpha} \models \Phi(\sigma)$$

for some Σ_1 formula Φ with parameters in L_{α} .

Definition (Carl, Schlicht)

X is α -**ML-random** if X is in no set uniform intersection $\bigcap_n U_n$ of α -c.e. open set, with $\lambda(U_n) \leq 2^{-n}$.

Projectibles and ML-randomness

Definition

We say that α is **projectible** into $\beta < \alpha$ if there is an injective function $f : \alpha \to \beta$ that is Σ_1 -definable in L_{α} . The least β such that α is projectible into β is called the **projectum** of α and denoted by α^* .

Theorem (Angles d'Auriac, Monin)

The following are equivalent for α limit such that

- $L_{\alpha} \models$ everything is countable :
 - α is projectible into ω .
 - There is a universal α -ML-test.
 - α -ML-randomness is strictly stronger than α -randomness.

λ -ML-randomness

Theorem

The ordinal λ is projectible into ω without using any parameters.

Each writable ordinal can be effectively assigned to the code of the ITTM writting it.

Corollary

Most work in Δ_1^1 and Π_1^1 -ML-randomness still work with λ -ML-randomness and λ -randomness. In particular λ -ML-randomness is strictly weaker than λ -randomness.

ζ -ML-randomness

Theorem

The ordinal ζ is not projectible into ω .

Suppose that an eventually writable parameter α can be used to have a projuctum $f: \zeta \to \omega$. Then every eventually writable ordinal become writable using α . Then ζ becomes eventually writable using α . But then ζ is eventually writable.

Corollary

 $\zeta\text{-randomness}$ coincides with $\zeta\text{-ML-randomness}.$ An analogue of Ω for $\zeta\text{-randomness}$ does not exists.

ζ -ML-randomness

Theorem

The ordinal ζ is not projectible into ω .

Corollary

For many writable ordinals α we have that $\alpha\text{-randomness}$ coincides with $\alpha\text{-ML-randomness}.$

 $L_{\Sigma} \models \exists \alpha \text{ not projectible into } \omega$

By the fact that $L_{\lambda} \prec_1 L_{\Sigma}$ we must have :

 $L_{\lambda} \models \exists \alpha \text{ not projectible into } \omega$

Σ -ML-randomness

Theorem

The ordinal Σ is projectible into ω , using ζ as a parameter.

We can use the fact that (ζ, Σ) is the least pair such that : $C(\zeta) = C(\Sigma)$, with the function :

$$f(0) = \zeta$$

$$f(n) = \text{ the smallest } \alpha \text{ s.t. } C(\alpha) \upharpoonright_n = C(\zeta) \upharpoonright_n$$

Every ordinal f(n) is then Σ_1 -definable with ζ as a parameter. As $L_{\Sigma} \models$ "everything is countable", it follows that every ordinal smaller than f(n) for some n is Σ_1 -definable with ζ as a parameter. As $\sup_n f(n) = \Sigma$, it follows that every accidentally writable is Σ_1 -definable with ζ as a parameter.

The projectum is then a code for the formula defining each ordinal.

ITTM-random and ITTM-decidable random

Definition (Hamkins, Lewis)

A class of real \mathcal{A} is **semi-decidable** if there is an ITTM M such that $M(X) \downarrow$ if $X \in \mathcal{A}$.

Definition (Carl, Schlicht)

A sequence X is **ITTM-random** if X is in no semi-decidable set of measure 0.

Definition (Carl, Schlicht)

A sequence X is **ITTM-decidable random** iff X is in no decidable set of measure 0.

Lowness for λ, ζ, Σ

Definition

We say that X is low for λ if $\lambda^X = \lambda$. We say that X is low for ζ if $\zeta^X = \zeta$. We say that X is low for Σ if $\Sigma^X = \Sigma$.

Theorem

For any ordinal α with $\lambda \leqslant \alpha < \zeta$ we have $\lambda^\alpha > \lambda$ but :

$$\ \ \, \zeta^{\alpha} = \zeta.$$

2
$$\Sigma^{\alpha} = \Sigma$$

(1) Indeed, suppose ζ is eventually writable using α and the machine M. As α is also eventually writable, we can run M on every version of α and eventually write ζ which is a contradiction. (2) Same argument.

Lowness for λ, ζ, Σ

Theorem

The following are equivalent :

$$\zeta^X > \zeta.$$

$$\Sigma^X > \Sigma.$$

 $\lambda^X > \Sigma.$

 $(1) \rightarrow (2)$: We can again use the function :

$$f(0) = \zeta$$

$$f(n) = \text{the smallest } \alpha \text{ s.t. } C(\alpha) \upharpoonright_n = C(\zeta) \upharpoonright_n$$

To show that every ordinal f(n) becomes eventually writable uniformly in *n*. Thus $\Sigma = \sup_n f(n)$ is also eventually writable.

(2) \rightarrow (3) : Define the machine that looks for the first pair of ordinals $\alpha < \beta$ such that $L_{\alpha} <_{2} L_{\beta}$. Then write β . These ordinals must be ζ and Σ .

Lowness for λ, ζ, Σ and randomness

Theorem

For any X the triplet $(\lambda^X, \zeta^X, \Sigma^X)$ is the lexicographically least pair such that $L_{\lambda^X}[X] \prec_1 L_{\zeta^X}[X] \prec_2 L_{\Sigma^X}[X]$.

Theorem (Carl, Schlicht)

If X is $(\Sigma + 1)$ -random, then $L_{\lambda}[X] \prec_1 L_{\zeta}[X] \prec_2 L_{\Sigma}[X]$. In particular $\Sigma^X = \Sigma$, $\zeta^X = \zeta$ and $\lambda^X = \lambda$.

Corollary (Carl, Schlicht)

The set $\{X : \Sigma^X > \Sigma\}$ and $\{X : \lambda^X > \lambda\}$ are included in Borel sets of measure 0.

ITTM-decidable randomness

Theorem (Carl, Schlicht)

The following are equivalent for a sequence X:

- X is ITTM-decidable random
- **2** X is λ -random

Suppose some machine M decides a set of measure 0 that X belongs to. In particular it decides a set of measure 1 X does not belong to. We have :

$$\lambda(\{X : M(X) \downarrow = 0\}) = 1$$

We then have

$$\lambda(\{X : M(X) \downarrow [\lambda] = 0\}) = 1$$

as the set of X s.t. $\lambda^X = \lambda$ has measure 1. But then by admissibility :

$$\lambda(\{X : M(X) \downarrow [\alpha] = 0\}) = 1$$

already for some writable α . The complement of this set is a Borel set of measure 0, with a writable code, and containing X.

ITTM-randomness

Theorem (Carl, Schlicht)

The following are equivalent for a sequence X :

- X is ITTM-random
- **2** X is Σ -random and $\Sigma^X = \Sigma$
- **3** *X* is ζ -random and $\Sigma^X = \Sigma$

Lemma (Carl, Schlicht)

If $\Sigma^X > \Sigma$, then X is not ITTM-random.

The set $\{X : \Sigma^X > \Sigma\}$ is an ITTM-semi-decidable set of measure 0. We saw that it is of measure 0. To see that it is ITTM-decidable, one can designe the machine which halts whenever it founds two X-accidentally writable ordinals $\alpha < \beta$ such that $L_{\alpha} <_2 L_{\beta}$.

ITTM-randomness

Lemma (Carl, Schlicht)

If X is not Σ -random, then X is not ITTM-random.

If X is not Σ -random, then with X as an oracle, we can look for the first accidentally writable code for a Borel set of measure 0 containing X.

Lemma (Carl, Schlicht)

If X is ζ -random, but not ITTM-random, then $\Sigma^X > \Sigma$.

Suppose there is a ITTM M which semi-decide a set of measure 0 containing X. Suppose $M(X) \downarrow [\alpha]$. Then we must have $\alpha \ge \zeta$ as otherwise the set $\{X : M(X) \downarrow [\alpha]\}$ would be a set of measure 0 with a Borel code in L_{ζ} . Thus we must have $\lambda^X > \zeta$ and then $\Sigma^X > \Sigma$.

ITTM-randomness

Question

Does there exists X such that X is Σ -random but not ITTM random?

Question

If X is Σ -random, do we have $L_{\zeta}[X] \prec_2 L_{\Sigma}[X]$?