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Coarse computability

Given a set A € N. How close is A to being computable ? J

A recent paradigm : A is coarsely computable. This means there is
a computable set R such that the asymptotic density of

{n: A(n) = R(n)}

equals 1.

Reference : Downey, Jockusch, and Schupp, Asymptotic density and computably enumerable sets, Journal of

Mathematical Logic, 13, No. 2 (2013)



The y-value of a set A N

A computable set R tries to approximate a complicated set A :

A :100100100100000101001001 010101111010 101010100111
R : 000010110111 010101000101 010001011010101010100111
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V(A) = sup  p{n: A(n) = R(n)}

R computable

where p(Z) = liminf

n

[Z ~ [0, n)]
e




Some examples of values 7(A)

(A) = sup  p{n: A(n) = R(n)}
R computable
where p(Z) = liminf M

Theorem (Hirschfeldt, Jockusch, McNicholl, Schupp)

For any real r € |0, 1], there is a set A with y(A) = r. Moreover
this value can either be both reached or not reached by some
computable R in the definition of ~y.




[-value of a Turing degree

Andrews, Cai, Diamondstone, Jockusch and Lempp (2013) looked
at Turing degrees, rather than sets. They defined

I(A) = inf{y(B): Bhas the same Turing degree as A} J

A smaller I value means that A is further away from computable.

An oracle A is called computably dominated if every function that
A computes is below a computable function. They show :

@ If Ais random and computably dominated, then '(A) = 1/2.

@ If Ais not computably dominated then I'(A) = 0.




(A) > 1/2 implies T(A) =1

Fact (Hirschfeldt, Jockusch, McNicholl and Schupp)

IfT(A) > 1/2 then A is computable (so that T (A) =1).

The idea is to obtain B of the same Turing degree as A by
“padding” :
@ “Stretch” the value A(n) over the whole interval
In=[(n—=1),n!).
@ Since y(B) > 1/2 there is a computable R agreeing with B on
more than half of the bits in almost every interval /,.

@ So for almost all n, the bit A(n) equals the majority of values
R(k) where k € I,.



The '-question

Question (M-question, Andrews et al., 2013)

Is there a set A < N such that 0 < T(A) <1/27

. 2?2?2777 ° X X X X X X X '

r=o r=1/2 r=1

Let Ac 2N, IfT(A) < 1/2 then T(A) = 0.

The proof uses the field of error-correcting codes.



Examples of ['(A) = 0 : infinitely often equal

We know that A € N not computably dominated implies ['(A) = 0.

@ We say g : N — N is infinitely often equal (i.o.e.) if
3%n f(n) = g(n) for each computable function f : N — N.

@ We say that A< Nis i.o.e. if A computes function g that is i.o0.e.

Surprising fact : Ais i.0.e < A not computably dominated.

= Suppose A computes a function g that equals infinitely often to every
computable function. Then no computable function bounds g.

< Idea. Suppose A computes a function g that is dominated by no
computable function. Then g is infinitely often above the halting time of
any computable total function.



New Examples of I'(A) = 0 : weaken infinitely often equal

We know A not computably dominated implies ['(A) = 0.

We say that A is infinitely often equal (i.o.e.) if A computes a function g
such that 3*n f(n) = g(n) for each computable function f : N — N.

We can weaken this :

A computes a function g such that 3% n f(n) = g(n) for each computable

Let H: N — N be computable. We say that A is H-infinitely often equal if
function f bounded by H. J

This appears to get harder for A the faster H grows.



Ai.o.e. implies T(A) =0

Let H: N — N be computable. We say that A € N is H-infinitely often
equal if A computes a function g such that 3%n f(n) = g(n) for each
computable function f bounded by H.

Theorem (Monin, Nies)
Let A be 2(®")-j.0.e. for some a > 1. Then T'(A) = 0.




New example of ['(A) =0

Recall : A is H-infinitely often equal if A computes a function g such that
3%n f(n) = g(n) for each computable function f bounded by H.

Let A be 2(")-j.0.e. for some computable « > 1. Then T(A) = 0.

Proof sketch. First step : Let  be 2(®")-j.0.e. Then for any ke N, f
computes a function g that is 2(k")-j.o0.e.

f(0) f(1) f(2) f(3) f(4) f(5) ... i.0.e. every comp. funct. < 2(®")

- f(0)f(2)f(4)... i.o.e. every comp. funct. < nw— 2(a®)
or f(1)f(3)f(5)... i.0.e. every comp. funct. < nw— (e

terating this — f >7 g which i.0.e. every comp. funct. < 2(<")



Proof sketch. Second step : g is 2(K")-i.0.e. implies g =7 Z with
MNz)<1/k.

g0) g(1) ... g(n)

Z: 00 o1 On
N— N—_—r N—

loo|=k0  |ou|=kK! lon|=k"



Proof sketch. Second step : g is 2(K")-i.0.e. implies g =7 Z with
MNz)<1/k.

g(0) g(1) g(n)
SRR I,
loo|=k0 |o1|=kK |on|=k"
Computable R : 70 5l ... Th
1 (bit flip)
R: 7 T ... T
Jj©o 1 .. J(n)

J equals g infinitely often. Then for infinitely many n, 7,(i) # o,(f)
everywhere.



Proof sketch. Second step : g is 2(K")-i.0.e. implies g =7 Z with
MNz)<1/k.

g(0) g(1) g(n)
SRR I,
loo|=k0 |o1|=kK |on|=k"
Computable R : 70 5l ... Th
1 (bit flip)
R: 7 T ... T
Jj©o 1 .. J(n)

J equals g infinitely often. Then for infinitely many n, 7,(i) # o,(f)

everywhere. We have
Imal = (k= 1) ) 7|
i<n
Then the liminf of fraction of places where R agrees with Z is bounded
by 1/k.



Nothing between 0 and 1/2

Theorem
Suppose T'(X) < 1/2 —e.

Then there is k € N and an X-computable sequence {Tn}nen
with |7,| = 2"*, such that :

For every computable sequence {op}nen With |o,| = |7s|, there are
infinitely many n such that o, agrees with T, on a fraction of at
least 1/2 + ¢ bits.

v

{Tn}rew 70 T T2 T3 T4 Ts Te T7 T8

{ontnew 00, op 02 03 04 05 O 07 08
>1/2+4¢ >1/24¢

P S S A A

>1/2+¢ >1/2+¢



The error-correcting codes

We want to transmit a message of length m on a noisy chanel.

vy
001010 LNOse 7010




The error-correcting codes

We want to transmit a message of length m on a noisy chanel. We
use an injection ¢ : 2™ — 2" for n > m in such a way that the
strings in the range of ® are pairwise as far as possible.

Codewords of length n > m

Messages of length m

If 0 is the smallest relative Hamming distance between two strings
in the range of ®, we can correct up to a fraction of §/2 errors.



Nothing between 0 and 1/4

Theorem (Basic error-correcting)

For any € > 0, there exists B > 0 sufficientky small such that for
any n we have 25" many strings of length n with pairwise Hamming
distance bigger than 1/2 — ¢.

Implication : We can correct up to a ratio of 1/4 of error by
increasing the length a messages by a multiplicative factor.

Suppose now ['(X) < 1/4. Let {7y} nen with |7,| = 27k such that :

{Tntnew 70 TT T2 T3 T4 Ts Te T7 T8

{Un}nEw & 01 g2 & 04 05 06 o7 Og
>3/4+e >3/4+e

{oh}rew 00 01 oy 03 oy o5 o5 07 O

>3/4+e >3/4+e



Nothing between 0 and 1/4

{Talnew 70 TT T2 T3 T4 Ts Te T7 T8
{Un}new & 01 02 & 04 05 06 o7 Og
>3/4+¢ >3/4+¢
e b L A A A
>3/4+e >3/44e

For any n we compute a sequence C, of 2(82"%) many strings of
length 2% which all have pairwise Hamming distance larger than
1/4 —e.

From {7} nen, we compute the sequence {pnp}nen of the strings of
length 52"k whose code in C, agrees with 7, on more than 3/4+¢
bits.

Claim : For every computable function g bounded by 2(52"/’(), there
are infinitely many n such that g(n) = p, (seen as a binary string).



Nothing between 0 and 1/2

We need to correct up to 1/2 errors. For this we need to use the
list decoding theorem :

Theorem (List decoding theorem)

Let € > 0. For L € N sufficiently large and 3 > 0 sufficiently small,
there exists for any n€ N a set C of 2°" many strings of length n
such that :

For any string o of length n, there are at most L elements T of C
such that o agrees with T on a fraction of bits of at least 1/2 + ¢.
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