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Lowness paradigms

Given a set A € N. How close is A to being computable?

Several paradigms have been suggested and studied.
» A has little power as a Turing oracle.

» Many oracles compute A.

A recent paradigm: A is coarsely computable.
This means there is a computable set R such that the
asymptotic density of {n: A(n) = R(n)} equals 1.

Reference: Downey, Jockusch, and Schupp, Asymptotic density and computably enumerable sets,

Journal of Mathematical Logic, 13, No. 2 (20183)



The ~-value of a set A € N

A computable set R tries to approximate a complicated set A:

A : 100100100100 000101001001 010101111010 101010100111
R : 000010110111 010101000101 010001011010101010100111

~1/2 correct
. -~

~2/3 correct

~3/4 correct

~4/5 correct

Take sup of the asymptotic correctness over all computable R’s:

WA) = swp  pin: A(n) = R(n)}
R computable
where p(Z) = liminf w

n n




Some examples of values y(A)

v(4) = sup  p{n: A(n) = R(n)}
R computable
where p(Z) = liminf M

Acomputable = ~(A4)=1
1

Arandom = ~(A)=1/2.




['-value of a Turing degree

Andrews, Cai, Diamondstone, Jockusch and Lempp (2013)
looked at Turing degrees, rather than sets. They defined

I'(A) = inf{y(B): Bhas the same Turing degree as A}.

A smaller I" value means that A is further away from computable.

Example

An oracle A is called computably dominated if every function that
A computes is below a computable function. They show:

» If A is random and computably dominated, then I'(A) = 1/2.
» If A is not computably dominated then I'(A) = 0.




['(A) > 1/2 implies ['(A) =1

Fact (Hirschfeldt et al., 2013)
IfT'(A) > 1/2 then A is computable (so that T'(A) =1).

Idea:
» Obtain B of the same Turing degree as A by “padding”:
» “Stretch” the value A(n) over the whole interval
I, =[(n—1),n!).
» Since y(B) > 1/2 there is a computable R agreeing with B
on more than half of the bits in almost every interval I,,.

» So for almost all n, the bit A(n) equals the majority of
values R(k) where k € I,.



The I'-question

Is there a set A € N such that 0 < I'(4) < 1/27

R 2772727777 . X X X X X X X .

I'=20 r=1/2 I'=1



New examples towards answering the question

Recall: I'-question, Andrews et al., 2013
Is there a set A < N such that 0 < I'(A) < 1/27

Summary of previously known examples:
I'A)=0 A non computably dominated or A PA
I'(A) = 1/2 | Alow for Schnorr; A random & comp. dominated
r4)=1 A computable

» Towards answering the question, we obtain natural classes
of oracles with I' value 1/2, and with I" value 0.

» This yields new examples for both cases.



Weakly Schnorr engulfing

» We view oracles as infinite bit sequences, that is, elements
of Cantor space 2.

» A 39 set has the form | J;[o;] for an effective sequence
(0i);en Of strings. [o] denotes the sequences extending o.

» A Schnorr test is an effective sequence (S, )men of X9 sets
in 2N such that

— each \S,, is a computable real uniformly in m
— AS,, <27™. (X is the usual uniform measure on 2".)

» Fact: [, Sm fails to contain all computable sets.

We can relativize these notions to an oracle A.

We say that A is weakly Schnorr engulfing if
A computes a Schnorr test containing all the computable sets. }

This highness property of oracles was introduced by Rupprecht (2010),
in analogy with 1980s work in set theory (cardinal characteristics).



Examples of A such that I'(A) > 1/2

» The two known properties of A implying I'(A) > 1/2 were:
(1) Computably dominated random, and
(2) low for Schnorr test:
every A-Schnorr test is covered by a plain Schnorr test.

» Both properties imply non-weakly Schnorr engulfing.
» There is a non-weakly Schnorr engulfing set without any of
these properties. (Kjos-Hanssen, Stephan and Terwijn, 2015).

So the following result yields new examples, answering Question
5.1 in Andrews et al.

Theorem
Let A be not weakly Schnorr engulfing. Then T'(A) > 1/2.

Proof: Given B <t A and rational ¢ > 0, build an A-Schnorr test so
that any set R passing it approximates B with asymptotic correctness
> 1/2 — e. This uses Chernoff bounds.



Characterization of w.S.e. via traces

An obvious question is whether conversely, I'(A) > 1/2 implies
that A is not weakly Schnorr engulfing. We characterised w.S.e.
towards obtaining an answer. Again this is analogous to earlier
work in cardinal characteristics.

Let H : N — N be computable with >;1/H (n) finite.
{T}new is a small computable H-trace if

» T, is a uniformly computable finite set
» >, |Th|/H(n) is finite and computable.

Theorem

A is weakly Schnorr engulfing iff for some computable
function H, there is an A-computable small H-trace capturing
every computable function bounded by H.




Version of I' in computational complexity

Fix an alphabet X. For Z, A € ¥* let

= limin 7|ZmE<”|
B(Z) = 1 ! f =
Ypory(A) = sup p{w: A(w) = R(w)})

R poly time computable
inf{ypory(B): B =} A}.

1—‘poly(14)

» The basic facts from computability used above need to be
re-examined in the context of complexity theory.

» We only know at present that the values I'po1y(A) can be
each of 0, ﬁ, 1.



Examples of I'(A) = 0: infinitely often equal

We know that A € N not computably dominated implies I'(A) = 0.

» We say g : N — N is infinitely often equal (i.o.e.) if
3*n f(n) = g(n) for each computable function f : N — N.

» We say that A € Nis i.o.e. if A computes function g that is i.0.e.

Surprising fact: A is i.0.e <& A not computably dominated.

= Suppose A computes a function g that equals infinitely often to
every computable function. Then no computable function bounds g.

< Idea. Suppose A computes a function g that is dominated by no
computable function. Then g is infinitely often above the halting time
of any computable total function.



New Examples of I'(A) = 0: weaken infinitely often
equal

We know A not computably dominated implies T'(A4) = 0.

Recall

We say that A is infinitely often equal (i.0.e.) if A computes a function
g such that 3%n f(n) = g(n) for each computable function f : N — N.

We can weaken this:

Let H: N — N be computable. We say that A is H-infinitely often
equal if A computes a function g such that 3*°n f(n) = g(n)
for each computable function f bounded by H.

This appears to get harder for A the faster H grows.



New example of ['(A) =0

Let H: N — N be computable. We say that A € N is H-infinitely
often equal if A computes a function g such that 3%*nf(n) = g(n)

for each computable function f bounded by H.

Theorem

Let A be 2(@")i.0.e. for some o > 1.

Then I'(4) = 0.

Previously known examples of sets A with I'(A) = 0:
» not computably dominated, and
» degree of a completion of Peano arithmetic (PA for short).

If A is in one of these classes, for any computable bound H, A can
compute an H-i.o.e. function.

Given a computable H > 2, we can build an H-i.o.e. set A that is
computably dominated, and not PA. So we have a new example of
I'(A) = 0 (using Rupprecht (2010)).



New example of ['(A) =0

(Recall: A is H-infinitely often equal if A computes a function g such
that 3*n f(n) = g(n) for each computable function f bounded by H.)
Theorem

Let A be 2(¢").0.e. for some computable @ > 1.
Then I'(A) = 0.

Proof sketch. First step: Let f be 2(®")-i.0.e. Then for any k € N, f
computes a function ¢ that is 2F")-i.0.e.

n

£(0) £(1) £(2) £(3) f(4) £(5) ... i.0.e. every comp. funct. < 2(@")

— F(0)f(2)f(4)... io.e. every comp. funct. <n— 2
or  f(1)f(3)f(5)... io.e. every comp. funct. <n > 2

Iterating this — f =7 ¢ which i.o.e. every comp. funct. < 2(+")



Proof sketch. Second step: g is 2(*")-i.o.e. implies g =7 Z with
I(Z) < 1/k.

g(0)  g(1) g(n)
Zr &, & I
lool=kO oy |=k? o |=kn
Computable R : 0 5l . Tn
_ L (bit flip)
R: ) T Tn
J(0)  4(1) j(n)

j equals g infinitely often. Then for infinitely many n, 7,,(7) # 0, (7)
everywhere. We have

Tl = (k= 1) ) |7l
<n

Then the liminf of fraction of places where R agrees with Z is
bounded by 1/k.



Infinitely often equal: hierarchy

It is interesting to study infinite often equality for its own sake.

Question

Let H be a computable bound. Can we always find H' >> H
such that some f is H-i.o.e. but f computes no function that is
H'-i.0.e.?

First step : What about H-i.o.e. for H constant?

X computable —» X not 2-i.0.e. — X not c-i.o.e. for ce N
X not 2-i.0.e. —» X computable.

X not 3-i.o.e. — 7

Ze2¥: 0010101000100100101
R computable : 1101010111011011010
Z e 3V 0210122002100102122
R computable : 1102010111011211210




Infinitely often equal: constant bound

For any c € N, we can show X not c-i.o.e. — X computable.
Let ¢ = 3.

For Z € 2¥, let #Z : w? — w the function which on a,be N
returns |Z n {a,b}|. Note that #% can take three different
values : 0,1 and 2.

Theorem (Kummer)

Suppose Z is an oracle such that #g is traceable via some trace
{T, }new, where each T, is c.e. uniformly in n and |T,| < 3.
Then Z is computable.

Example:
#5(2,3) € {0,2}
01234567---  #4(1,4) e {1,2}
Z= 01001101---  #43,7) € {0,1}



Infinitely often equal: implications

Known implications:

c-i.0.e for c 22 < H(n)-i.o.e with H Computable
order function s.t. >, H(n) =
0 T
not computable H(n)-i.o.e with H computable
order function s.t. >} 4 Ty < ©

We don’t know that there is a proper hierarchy for functions H
with co > >} 1/H(n).
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