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Lowness paradigms

Given a set A � N. How close is A to being computable?

Several paradigms have been suggested and studied.

� A has little power as a Turing oracle.

� Many oracles compute A.

A recent paradigm: A is coarsely computable.
This means there is a computable set R such that the
asymptotic density of tn : Apnq � Rpnqu equals 1.

Reference: Downey, Jockusch, and Schupp, Asymptotic density and computably enumerable sets,

Journal of Mathematical Logic, 13, No. 2 (2013)



The γ-value of a set A � N
A computable set R tries to approximate a complicated set A:

A : 100100100100 000101001001 010101111010 101010100111
R : 000010110111loooooooooooooooooon

�1{2 correct

010101000101

loooooooooooooooooooooooooooooooooooooon
�2{3 correct

010001011010

loooooooooooooooooooooooooooooooooooooooooooooooooooooooooon
�3{4 correct

101010100111

loooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooon
�4{5 correct

Take sup of the asymptotic correctness over all computable R’s:

γpAq � sup
R computable

ρtn : Apnq � Rpnqu

where ρpZq � lim inf
n

|Z X r0, nq|

n
.



Some examples of values γpAq

Recall

γpAq � sup
R computable

ρtn : Apnq � Rpnqu

where ρpZq � lim inf
n

|Z X r0, nq|

n
.

Some possible values

A computable ñ γpAq � 1

A random ñ γpAq � 1{2.



Γ-value of a Turing degree

Andrews, Cai, Diamondstone, Jockusch and Lempp (2013)
looked at Turing degrees, rather than sets. They defined

ΓpAq � inftγpBq : B has the same Turing degree asAu.

A smaller Γ value means that A is further away from computable.

Example

An oracle A is called computably dominated if every function that
A computes is below a computable function. They show:

� If A is random and computably dominated, then ΓpAq � 1{2.

� If A is not computably dominated then ΓpAq � 0.



ΓpAq ¡ 1{2 implies ΓpAq � 1

Fact (Hirschfeldt et al., 2013)

If ΓpAq ¡ 1{2 then A is computable (so that ΓpAq � 1).

Idea:

� Obtain B of the same Turing degree as A by “padding”:

� “Stretch” the value Apnq over the whole interval
In � rpn� 1q!, n!q.

� Since γpBq ¡ 1{2 there is a computable R agreeing with B
on more than half of the bits in almost every interval In.

� So for almost all n, the bit Apnq equals the majority of
values Rpkq where k P In.



The Γ-question

Question (Γ-question, Andrews et al., 2013)

Is there a set A � N such that 0   ΓpAq   1{2?

 ??????????  � � ����� 
Γ � 0 Γ � 1{2 Γ � 1



New examples towards answering the question

Recall: Γ-question, Andrews et al., 2013

Is there a set A � N such that 0   ΓpAq   1{2?

Summary of previously known examples:
ΓpAq � 0 A non computably dominated or A PA

ΓpAq � 1{2 A low for Schnorr; A random & comp. dominated

ΓpAq � 1 A computable

� Towards answering the question, we obtain natural classes
of oracles with Γ value 1{2, and with Γ value 0.

� This yields new examples for both cases.



Weakly Schnorr engulfing

� We view oracles as infinite bit sequences, that is, elements
of Cantor space 2N.

� A Σ0
1 set has the form

�
irσis for an effective sequence

xσiyiPN of strings. rσs denotes the sequences extending σ.

� A Schnorr test is an effective sequence pSmqmPN of Σ0
1 sets

in 2N such that

– each λSm is a computable real uniformly in m
– λSm ¤ 2�m. (λ is the usual uniform measure on 2N.)

� Fact:
�
m Sm fails to contain all computable sets.

We can relativize these notions to an oracle A.

We say that A is weakly Schnorr engulfing if
A computes a Schnorr test containing all the computable sets.

This highness property of oracles was introduced by Rupprecht (2010),

in analogy with 1980s work in set theory (cardinal characteristics).



Examples of A such that ΓpAq ¥ 1{2

� The two known properties of A implying ΓpAq ¥ 1{2 were:

(1) Computably dominated random, and
(2) low for Schnorr test:

every A-Schnorr test is covered by a plain Schnorr test.

� Both properties imply non-weakly Schnorr engulfing.

� There is a non-weakly Schnorr engulfing set without any of
these properties. (Kjos-Hanssen, Stephan and Terwijn, 2015).

So the following result yields new examples, answering Question
5.1 in Andrews et al.

Theorem

Let A be not weakly Schnorr engulfing. Then ΓpAq ¥ 1{2.

Proof: Given B ¤T A and rational ε ¡ 0, build an A-Schnorr test so
that any set R passing it approximates B with asymptotic correctness
¥ 1{2� ε. This uses Chernoff bounds.



Characterization of w.S.e. via traces

An obvious question is whether conversely, ΓpAq ¥ 1{2 implies
that A is not weakly Schnorr engulfing. We characterised w.S.e.
towards obtaining an answer. Again this is analogous to earlier
work in cardinal characteristics.

Let H : N ÞÑ N be computable with
°

1{Hpnq finite.
tTnunPω is a small computable H-trace if

� Tn is a uniformly computable finite set

�

°
n |Tn|{Hpnq is finite and computable.

Theorem

A is weakly Schnorr engulfing iff for some computable
function H, there is an A-computable small H-trace capturing
every computable function bounded by H.



Version of Γ in computational complexity

Fix an alphabet Σ. For Z,A � Σ� let

ρpZq � lim inf
n

|Z X Σ¤n|

|Σ¤n|

γpolypAq � sup
R poly time computable

ρptw : Apwq � Rpwquq

ΓpolypAq � inftγpolypBq : B �pT Au.

� The basic facts from computability used above need to be
re-examined in the context of complexity theory.

� We only know at present that the values ΓpolypAq can be
each of 0, 1

|Σ| , 1.



Examples of ΓpAq � 0: infinitely often equal

We know that A � N not computably dominated implies ΓpAq � 0.

� We say g : NÑ N is infinitely often equal (i.o.e.) if
D8n fpnq � gpnq for each computable function f : NÑ N.

� We say that A � N is i.o.e. if A computes function g that is i.o.e.

Surprising fact: A is i.o.e ô A not computably dominated.

ñ Suppose A computes a function g that equals infinitely often to
every computable function. Then no computable function bounds g.

ð Idea. Suppose A computes a function g that is dominated by no
computable function. Then g is infinitely often above the halting time
of any computable total function.



New Examples of ΓpAq � 0: weaken infinitely often
equal

We know A not computably dominated implies ΓpAq � 0.

Recall

We say that A is infinitely often equal (i.o.e.) if A computes a function
g such that D8n fpnq � gpnq for each computable function f : NÑ N.

We can weaken this:

Let H : NÑ N be computable. We say that A is H-infinitely often
equal if A computes a function g such that D8n fpnq � gpnq

for each computable function f bounded by H.

This appears to get harder for A the faster H grows.



New example of ΓpAq � 0

Let H : NÑ N be computable. We say that A � N is H-infinitely
often equal if A computes a function g such that D8nfpnq � gpnq

for each computable function f bounded by H.

Theorem

Let A be 2pα
nq-i.o.e. for some α ¡ 1.

Then ΓpAq � 0.

Previously known examples of sets A with ΓpAq � 0:

� not computably dominated, and

� degree of a completion of Peano arithmetic (PA for short).

If A is in one of these classes, for any computable bound H, A can
compute an H-i.o.e. function.

Given a computable H ¥ 2, we can build an H-i.o.e. set A that is
computably dominated, and not PA. So we have a new example of
ΓpAq � 0 (using Rupprecht (2010)).



New example of ΓpAq � 0

(Recall: A is H-infinitely often equal if A computes a function g such

that D8nfpnq � gpnq for each computable function f bounded by H.)

Theorem

Let A be 2pα
nq-i.o.e. for some computable α ¡ 1.

Then ΓpAq � 0.

Proof sketch. First step: Let f be 2pα
nq-i.o.e. Then for any k P N, f

computes a function g that is 2pk
nq-i.o.e.

f(0) f(1) f(2) f(3) f(4) f(5) . . . i.o.e. every comp. funct. ¤ 2pα
nq

Ñ fp0qfp2qfp4q . . . i.o.e. every comp. funct. ¤ n ÞÑ 2pα
2nq

or fp1qfp3qfp5q . . . i.o.e. every comp. funct. ¤ n ÞÑ 2pα
2n�1q

Iterating this Ñ f ¥T g which i.o.e. every comp. funct. ¤ 2pk
nq



Proof sketch. Second step: g is 2pk
nq-i.o.e. implies g ¥T Z with

ΓpZq ¤ 1{k.

gp0q gp1q . . . gpnq . . .
� � . . . � . . .

Z : σ0loooon
|σ0|�k0

σ1loooon
|σ1|�k1

. . . σnloooon
|σn|�kn

. . .

Computable R : τ0 τ1 . . . τn . . .
Ó (bit flip)

R : τ0 τ1 . . . τn . . .
� � � �
jp0q jp1q . . . jpnq . . .

j equals g infinitely often. Then for infinitely many n, τnpiq � σnpiq
everywhere. We have

|τn| ¥ pk � 1q
¸

i n

|τi|

Then the lim inf of fraction of places where R agrees with Z is
bounded by 1{k.



Infinitely often equal: hierarchy

It is interesting to study infinite often equality for its own sake.

Question

Let H be a computable bound. Can we always find H 1 ¡¡ H
such that some f is H-i.o.e. but f computes no function that is
H 1-i.o.e. ?

First step : What about H-i.o.e. for H constant?
X computable Ñ X not 2-i.o.e. Ñ X not c-i.o.e. for c P N
X not 2-i.o.e. Ñ X computable.
X not 3-i.o.e. Ñ ?

Z P 2N : 0010101000100100101
R computable : 1101010111011011010

Z P 3N : 0210122002100102122
R computable : 1102010111011211210



Infinitely often equal: constant bound

For any c P N, we can show X not c-i.o.e. Ñ X computable.
Let c � 3.
For Z P 2ω, let #Z

2 : ω2 Ñ ω the function which on a, b P N
returns |Z X ta, bu|. Note that #Z

2 can take three different
values : 0, 1 and 2.

Theorem (Kummer)

Suppose Z is an oracle such that #Z
3 is traceable via some trace

tTnunPω, where each Tn is c.e. uniformly in n and |Tn| ¤ 3.
Then Z is computable.

Example:

0 1 2 3 4 5 6 7 � � �
Z � 0 1 0 0 1 1 0 1 � � �

#Z
3 p2, 3q P t0, 2u

#Z
3 p1, 4q P t1, 2u

#Z
3 p3, 7q P t0, 1u

. . .



Infinitely often equal: implications

Known implications:

c-i.o.e. for c ¥ 2 Ð Hpnq-i.o.e with H computable
order function s.t.

°
n

1
Hpnq � 8

Ù Ò
not computable Hpnq-i.o.e with H computable

order function s.t.
°
n

1
Hpnq   8

We don’t know that there is a proper hierarchy for functions H
with 8 ¡

°
n 1{Hpnq.
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