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Von Neumann’s
coin trick
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Von Neumann’s coin trick

I want to play Head or Tail

Suppose that you want to play a fair game of ”head or tail”, but
all you have at your disposal is a biased coin, and you don’t know
the bias.

How to achieve this ?

An easy but nice solution is to group the bits two by two, then you
replace 01 by 0, replace 10 by 1 and you discard blocks 00 and 11.
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The biased coin : Ppheadq � p and Pptailq � 1 � p



Von Neumann’s coin trick Algorithmic randomness Randomness extraction

Von Neumann’s coin trick example

Example

The biased coin : Ppheadq � p and Pptailq � 1 � p
The first results : 110111100101101101111100
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Example

The biased coin : Ppheadq � p and Pptailq � 1 � p
The first results : 110111100101101101111100
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The fair coin tossing : 010010



Von Neumann’s coin trick Algorithmic randomness Randomness extraction

Von Neumann’s coin trick example

.

.

Nice things about von Neumann’s trick :

We have a computable extraction procedure.

It works even if the measure is not computable.

It is uniform for all Bernoulli measures (except trivial ones)
and all of their random elements.
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A more general framework

.

.

On a more abstract level, the situation is the following :

We have access to a random sequence for a given measure µ
which we do not know.

However, we do know that µ belongs to some particular
class C .

Based on this information we are able to build a computable
procedure which works for all µ P C .
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A more general framework

.

.

On a more abstract level, the situation is the following :

We have access to a random sequence for a given measure µ
which we do not know.

However, we do know that µ belongs to some particular
class C .

Based on this information we are able to build a computable
procedure which works for all µ P C .

For which other class C can such an extraction procedure be built ?
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Algorithmic randomness

Section 2

Algorithmic
randomness
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Algorithmic randomness

Algorithmic randomness :

What does it mean for a string to be random ?

Are

c :00000000000000100000000010000000000100000000000001 . . .

or

π :00100100001111110110101010001000100001011010001100 . . .

random ?
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Algorithmic randomness

Algorithmic randomness :

What does it mean for a string to be random ?

Intuition

A sequence of 2ω should be random if it belongs to the smallest
set of measure 1.

Definition (Martin-Löf)

A sequence of 2ω is Martin-Löf random if it belongs to the
smallest Σ0

2 set, effectively of measure 1.
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Algorithmic randomness

Definition (Martin-Löf test)

A Π0
2 subset of 2ω is a Martin-Löf test if it is effectively of measure

0, which means that the n-th open set of the intersection should
be of measure less than 2�n.

Definition (Martin-Löf test)

There is a largest Martin-Löf test. A sequence is not Martin-Löf
random if it belongs to the largest Martin-Löf test.
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Von Neumann’s coin trick Algorithmic randomness Randomness extraction

Algorithmic randomness : Martin-Löf test example

Illustration of a test :

Measure fp., 1q fp., 2q fp., 3q fp., 4q . . .

λpf p1,Nqq ¤ 1
2 σ1,1 σ1,2 σ1,3 σ1,4 . . .

λpf p2,Nqq ¤ 1
4 σ2,1 σ2,2 σ2,3 σ2,4 . . .

λpf p3,Nqq ¤ 1
8 σ3,1 σ3,2 σ3,3 σ3,4 . . .

λpf p4,Nqq ¤ 1
16 σ4,1 σ4,2 σ4,3 σ4,4 . . .

. . . . . . . . . . . . . . . . . .
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Algorithmic randomness : universal Martin-Löf test

Universal test :

Measure Test 1 Test 2 Test 3 Test 4 . . .

@n λ

�¤
iPN

σn1,i

�
¤

1

2
pσ11,i qiPN pσ21,i qiPN pσ31,i qiPN pσ41,i qiPN . . .

@n λ

�¤
iPN

σn2,i

�
¤

1

4
pσ12,i qiPN pσ22,i qiPN pσ32,i qiPN pσ42,i qiPN . . .

@n λ

�¤
iPN

σn3,i

�
¤

1

8
pσ13,i qiPN pσ23,i qiPN pσ33,i qiPN pσ43,i qiPN . . .

@n λ

�¤
iPN

σn4,i

�
¤

1

16
pσ14,i qiPN pσ24,i qiPN pσ34,i qiPN pσ44,i qiPN . . .

. . . . . . . . . . . . . . . . . .



Von Neumann’s coin trick Algorithmic randomness Randomness extraction

Algorithmic randomness : universal Martin-Löf test
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Algorithmic randomness : Integrable test

Switch to analysis

To test the randomness of sequences, we can equivalently use a
more analytical notion.

Intuition

We can define t : 2ω Ñ R� to be on a string x : The smallest n
such that x does not belong to the n-th open set of the universal
test.
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Algorithmic randomness : Integrable test

Illustration tpxq � 4 :

Num 1 2 3 4 5 6 7 8 . . .

1 σ1,1 σ1,2 σ1,3 σ1,4 σ1,5 σ1,6 σ1,7 σ1,8 . . .

2 σ2,1 σ2,2 σ2,3 σ2,4 σ2,5 σ2,6 σ2,7 σ2,8 . . .

3 σ3,1 σ3,2 σ3,3 σ3,4 σ3,5 σ3,6 σ3,7 σ3,8 . . .

4 σ4,1 σ4,2 σ4,3 σ4,4 σ4,5 σ4,6 σ4,7 σ4,8 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Properties of t

We have that :

t is computabily approximable from below, uniformily in x (t
is lower semi-computable).³
tpxqdx is finite (as the

°
npn � 1q2�n is finite).

Definition (integrable test)

Such a function is called an integrable test. There is a universal
integrable test.

Randomness

We have that x is random iff tpxq is finite for all integrable tests iff
tpxq is finite for the universal integrable test.
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Algorithmic randomness for other measures

The space of probability measures on 2ω will be denoted by Mp2ωq.

Question

What if we want to define random sequences obtained by flipping a
biased coin ? The definition generalizes itself pretty well as long as
the measure is computable.

Definition (Martin-Löf randomness for computable measure)

Let µ be a computable measure. A sequence of 2ω is Martin-Löf
random for the measure µ if it belongs to the smallest Σ0

2 set,
effectively of µ measure 1.
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Algorithmic randomness for other measures

Problem

When the measure is not computable, we cannot necessarily obtain
universal Martin-Löf test for the measure...

Intuition

A possibility is to add the measure as an oracle to create our test,
but a measure can have many different binary representations
having different Turing-degrees. So it is not clear which one to
choose.
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Algorithmic randomness for other measures

Idea

You can take a representation such that any other representation
can compute it. (the smallest one).

Theorem (Day, Miller)

Some measures does not have a smallest representation in the
Turing degree !

Solution

Instead of using representations, we should extend the notion of
computability to the space of measures
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Algorithmic randomness for other measures

Computability in Mp2ωq

How can we extend the notion of integrable test
t : Mp2ωq � 2ω Ñ R� ?

What do we do in R ?

In R we say that a function f is computable if from any fast
cauchy sequence converging to x we can output a fast cauchy
sequence converging to f pxq.

What do we do in R ?

Equivalently, f is computable if from any sequence of all intervals
with rationals endpoints containing x , f can output the sequence
of intervals with rationals endpoints contaning f pxq.
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Algorithmic randomness for different measures

A basic open set in the space of measure :

v0w

1

0

�

v00w

1

0

� . . . �

vs102w

1

0

� . . . �

vs1000203w

1

0

� . . .

Mp2ωq � r0, 1sN
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Algorithmic randomness for different measures

The space of measures

The space of measure is a closed subset of r0, 1sN.
@s P 2ω µpsq � µps0q � µps1q.

The topology is the one induced by the product topology on
r0, 1sN.

A measure is computable iff the set of basic open sets
containing it is effectively enumerable.

Integrable tests

To define what it means for a point x P 2ω to be µ-MLR, we
extend the notion of integrable test.
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Algorithmic randomness for different measures

Definition (Uniform tests)

A uniform integrable test is a lower semi-computable function
t : 2ω �Mp2ωq Ñ R such that :

³
tpx , µqdµpxq is finite for all µ

Theorem (Levin-Gács-Hoyrup-Rojás)

There exists a universal uniform integrable test u which dominates
every other integrable tests up to a multiplicative constant.

Randomness

Intuitively upx , µq can represent the randomness deficiency of x
with respect to the measure µ. We say that x is Martin-löf random
for the measure µ iff upx , µq   �8. The notion matches the
previous one for computable measures.
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Theorem (Levin-Gács-Hoyrup-Rojás)

There exists a universal uniform integrable test u which dominates
every other integrable tests up to a multiplicative constant.

Randomness

Intuitively upx , µq can represent the randomness deficiency of x
with respect to the measure µ. We say that x is Martin-löf random
for the measure µ iff upx , µq   �8. The notion matches the
previous one for computable measures.



Von Neumann’s coin trick Algorithmic randomness Randomness extraction

Algorithmic randomness for different measures

Definition (Uniform tests)

A uniform integrable test is a lower semi-computable function
t : 2ω �Mp2ωq Ñ R such that :

³
tpx , µqdµpxq is finite for all µ

Theorem (Levin-Gács-Hoyrup-Rojás)
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Randomness extraction

Section 3

Randomness extraction
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Reformulation of the problem

Reformulation of the problem

Given a class C �Mp2ωq, is there a computable function
f : 2ω Ñ 2ω such that :

For all x such that upx , µq   8 for some µ P C,
f pxq is a binary sequence random for the uniform measure ?

A first piece of the puzzle

Randomness can be extracted when the measure is known.
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The Levin-Kautz conversion procedure

Theorem (Levin-Kautz)

If µ is a computable measure on 2ω, then there is a computable
f : 2ω Ñ 2ω such that f pxq is random for all µ-random x which
are not atoms of µ (x is an atom of µ if µptxuq ¡ 0, which
implies that x is computable).

It is not hard to see that Levin-Kautz theorem is uniform :

Theorem (Levin-Kautz, extended)

There is a computable f : 2ω �Mp2ωq Ñ 2ω such that f px , µq is
random whenever x is µ-random without being an atom of µ.
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Guessing the measure

Guessing the measure

Suppose a measure µ was such that it could be guessed, in some
uniform way from any of its random (non-atomic) elements. Then
randomness extraction for such measures would be possible on that
particular µ.
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Guessing the measure

Example

Suppose µ is represented with a Markov chain of type

0 1

p q

1-p

1-q

And we get a random x � 0000000010000000110000000000 . . ..
Can we deduce anything about p and q after reading finitely many
bits ? No ! Maybe p is small and only the beginning of the
sequence is atypical.
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Layerwiseness

However...

We could compute p and q if we knew a bound on the randomness
deficiency of x with respect to µ !

Layerwise computability (Hoyrup and Rojás)

A function F is µ-layerwise computable over a space x if it is
defined on all µ-random reals and it can be uniformly computed
modulo an ”advice” which is an upper bound on the randomness
deficiency upx , µq.

Definition (Bienvenu-Monin)

A measure µ is (layerwise) learnable if it can be layerwise
computed from its random elements.
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A criterion

A criterion for learnability :

Theorem (Bienvenu-Monin)

If a measure µ belongs to a class C of measures such that

(i) C is Π0
1

(ii) no distinct ν1, ν2 have a random in common (�)

then µ is learnable.

Surprisingly, the converse holds :

Theorem (Bienvenu-Monin)

If a measure µ is learnable, then it can be embedded into a Π0
1

class of measures with the (�) property.
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Putting things together

We are ready to present a partial answer to the original question.

Theorem (Bienvenu-Monin)

Let C be a Π0
1 class of measures with the (�) property. Then

uniform randomness extraction is possible, i.e., there exists a
partial computable function f : 2ω Ñ 2ω such that :

if x is µ-random for some µ P C and x is not an atom of µ,
then f pxq is random for the uniform measure.

(this even extends to Σ0
2 classes with the (�) property).
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source x

(x,µ)

Guess µ such that
u(x,µ) < c 

Does u(x,µ) < c 
actually hold?

if not,
c := c+1

output y

Levin-Kautz
conversion

(start with c=1)
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Thank you. Questions ?
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