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HIGHER RANDOMNESS

BENOIT MONIN

ABSTRACT. We present an overview of higher randomness and its recent developments. In
particular we present the main higher randomness notions, show how to separate them and study
their corresponding lowness classes. We study more specifically H%-Martin-Léf randomness, the
higher analogue of the most well-known and studied class in classical algorithmic randomness,
and H%-randomness7 a notion which present many remarkable properties and does not have any
analogue in classical randomness.
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2 BENOIT MONIN

1. INTRODUCTION

Mathematical objects often have a general definition which has no regard for any method or
procedure that can describe it. For instance, a function is defined as an arbitrary correspondence
between objects, but nothing in the definition requires that we are given a way to construct the
correspondence. Nonetheless, when the modern definition of functions (often credited to Dirichlet)
appeared, it was obvious that all the actual functions that were studied in practice were determined
by simple analytic expressions, such as explicit formulas or infinite series.

In the early days of logic, some mathematicians tried to delineate the functions which could be
defined by such accepted methods and they searched for their characteristic properties, presumably
nice properties not shared by all functions. Baire was first to introduce in his Thesis [1] what we
now call Baire functions, the smallest set which contains all continuous functions and is closed
under the taking of (pointwise) limits. His work was then pursued by Lebesgues [28], who initiated
the first systematic study of definable functions. According to Moschovakis [37] Lebesgue’s paper
truly started the subject of descriptive set theory.

At the time, the modern notions of computability and definability were yet to appear, but we
can see, through the work of Borel, Baire and Lebesgues, the necessity of giving a precise meaning
to the intuition we have of objects we can “describe” or “understand”. A couple of years later,
Godel’s work around his famous incompleteness theorems constituted certainly a key step leading
to the understanding of what is a computable object and to the understanding of definability in
general. This work was then pursued in the thirties, by Church with Lambda calculus, and by
Turing with his famous eponymous machine. The modern notion of computable function was made
clear and all the researchers were soon convinced of the rather philosophical following statement,
known as the Turing-Church thesis : “A function is computable (using either of the numerous
possible equivalent mathematical definitions) iff its values can be found by some purely mechanical
process”.

Let us now go back to the early days of descriptive set theory. The study of the hierarchy of
functions initiated by Baire and pursued by Lebesgue naturally led to the notion of Borel sets. One
goal here was again to refine the very general definition of sets (say of reals) in order to work with
objects we can understand and describe. The notion of Borel sets takes care of one aspect of sets
complexity, their complexity with respect to their “shape” : The sets of reals with simplest shape
complexity are the open sets (29 sets) and their complement, the closed sets (IT$ sets). The first
ones are merely unions of interval and the second ones complements of unions of interval. We then
obtain sets of higher and higher complexity by taking countable unions or countable intersections
of sets of lower complexity. We obtain a hierarchy of sets, each of them having nice properties,
such as for instance being measurable or having the Baire property. However these hierarchy of
complexity is still unsatisfactory, because even a set of simple shape, like an open set, can be
very complex from the viewpoint of effectiveness: A set may be open, but there may be no way
to describe the intervals which compose it. It is Kleene, a student of Church -like Turing- who
reintroduced computability in the study of Borel sets. We now want to work only with open sets
that can be described in some effective way. Then when we consider a countable intersection or a
countable union, we also want to be able to describe in some effective way which sets take part in
this union or intersection. This led to the very nice and beautiful theory of effectively Borel sets,
and of effectively analytic and co-analytic sets, which constitute one of the core material of higher
randomness.

Computability and definability could be used successfully in the study of sets of reals. But it
was primarily designed to study sets of integers. Interestingly, the effective sets of reals proved
themselves useful to conduct a study of the sets of integers which are far from being describable
or understandable as single objects. This is the purpose of Algorithmic randomness. This field
tries to resolve an apparent paradox that probability theory is helpless with: If one flip a fair coin
twenty times in a row, a result like this 01001011011010101110 will seem rather “normal”, whereas
a result like this one : 00000000000000000000 will appear as non-random and extraordinary, to
the point that one would probably check if the coin is valid. However, these two outcomes have
the same probability of occurrence. So why one of them seems more random than the other one?
It is simply because one is hard to describe whereas the other one is simple to describe. This is an
extreme case, and it is not always the case that strings which seem non-random (with respect to
a fair-coin fliping) are simple to describe. Consider for instance a long string with twice more 0’s
than 1’s, but chaotic enough with regards to any other aspect you could think of. This string is
not necessarily simple to describe, but it belongs to a small set that is simple to describe : the set



HIGHER RANDOMNESS 3

of strings with twice more 0’s than 1’s, which has small measure by the concentration inequalities,
like the Chernoff bounds. The mathematical formalization of this idea was a long process through
the 20’s century, started by Kolmorogov and Solomonov [45, 25]. Martin-Lof was the first in 1966
[32] to use the above paradigm to define randomness of infinite binary sequences: Such a sequence
is random if it belongs to no set of measure 0, for a given class of set which should be describable
in some way. Whichever notion of “being describable” is used, the only requirement is that at
most countably many sets are describable for this notion. This way the set of randoms still has
measure one, by the countable additivity of measures.

The field of higher randomness deals with effectively Borel, analytic and co-analytic sets. The
work conduct by various researchers in this area follows two different directions. The first direction
goes into the study of notions analogous to these of classical algorithmic randomness, which had
already led to a very rich theory. Most of the work done in algorithmic randomness carries through
higher randomness, but most of the time the proofs needs to be adapted to the new phenomenons
that appears in higher computability, in particular the lack of continuity. The second direction goes
into the study of notions which are new and specific to higher randomness, in particular the notion
of TI}-randomness. We will present here an overview of the work achieved by various authors in
this field. The presentation is however not exhaustive, and here in particular is a list of subjects
that we will not cover:

e The study of higher Kurtz randomness (see [24]).

e In [2] the authors emphasize that precautions must be taken with continuous relativization
of Turing reductions and continuous relativization of randomness. A more detailed study
of these issues is not given here, and is available in Chapter 7 of [35].

e The study of A}, 31 and ©1-Martin-Léf-randomness (see [7]).

e The study of randomness with infinite time Turing machines (see [3]).

2. HIGHER COMPUTABILITY

2.1. Background. We assume the reader is familiar with the notions of Al ,II} and ¥} sets of
integers or of reals, and with admissibility and computability over wak. We simply recall here the
notations and basic things that we are going to use.

2.1.1. Computable ordinals and Borel sets.

Definition 2.1. An ordinal « is computable if there exists a computable binary relation on
elements of w with order-type a. We let w$* denote the first non-computable ordinal.
The notion relativizes to any X € 2V. We write wi* for the smallest non X-computable ordinal.

The A} subsets of N are elements of Lex n'N, that is, elements constructed with successive
uniform unions and intersections of set of lower complexity.

Definition 2.2. The effective Kleene’s hierarchy is defined by induction over the computable
ordinals as follows:
e A ¥Y-index is given by a pair {0, ). The set A corresponding to {0, €) is given by A = W,
the e-th X9 set.
e A T1%-index is given by a pair (1,e) where e is a ¥2-index. The set A corresponding to
(1,€) is given by A = N — B where B is the set corresponding to e.
e A ¥0.index is given by a pair (2,e) where W, is not empty and enumerates only H%n—
indices for 5, < «, with sup,,(5, + 1) = a. The set A corresponding to (2, e) is given by
U,, An, where A,, is the set corresponding to the n-th index enumerated by We.
We say that a set A is X0 (resp. 1Y) if for some Y0-index (resp. IT2-index) e, A is the set
corresponding to e. We say that a set A is A if it is both X and I1%. Finally we say that a set
is B2, (resp. TZ,,) if it is Bf (resp. II}) for some 3 < o

For any «, there exists a complete 30 set, that is, a set which is X% and such that any %0 is
many-one reducible to it:

Definition 2.3. For any a < w$*, we denote by 0% a complete set for the X% sets. We denote by
0= a complete set for the X2 sets.

Note that there is not necessarily a canonical way to define 0% or 07, A way to define them
is to use codes of computable ordinals.
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Definition 2.4. A code for an ordinal « is given by the code of a Turing machine which computes
a relation on w or order-type a. We denote by O the set of codes for computable ordinals. For
a< wfk we denote by O, the set of codes of ordinal strictly smaller than a.

The notion relativizes to any X € 2. We write OX for the set of codes which computes an
ordinal using X as an oracle. Similarly for O .

For a € O (resp. a € OX) we may denote by |a|, (resp. |a]ZX) the ordinal coded by a.

A precise study of the complexity and completeness of the sets O is given in [35]. This gives
an alternative way to define A}l sets of integer is to see them as the sets which are Turing reducible

to O, for some a < wf”“.

We now similarly define A} subsets of 2%:

Definition 2.5. The effective Borel hierarchy is defined by induction over the computable ordinals
as follows:

e A Y-index is given by a pair {0,e). The set corresponding to this ¥{-index is given by
L_Ja'EVV,i [0] :

e A TT%-index is given by a pair (1,e) where e is a ¥2-index. The set corresponding to this
1Y-index is given by 2 — B where B is the set corresponding to the index e.

e A YY-index is given by a pair (2, €) where W, is not empty and enumerate only H%n indices,
with sup,, (8, + 1) = a. The set corresponding to this £9-index is given by |J,, B,, where
B,, is the set corresponding to the n-th index enumerated by W,.

We say that a set B is X0 (resp. II2) if for some X2-index (resp. I1%-index) e, B is the set
corresponding to e. We say that a set B is A if it is both XY and IIY. Finally we say that a set
is X2, (resp. TL,,) if it is £ (resp. I1}) for some 3 < a.

The following say that O is complete for the ITi sets. In particular a II} set of integers can be
seen as a uniform union of Al sets along w§*, and a II} set of reals can be seen as a uniform union
of Borel sets along w:

Proposition 2.6. A set of integer A is 111 iff there is a computable function f such that “ne€ A
iff f(n) € O”. In particular A = Ua<wfk {n : f(n)e O}

A set of reals A is TI1 iff there is an integer e such that X € A iff “e € OX”. In particular
A=UQ<W1{X e OX ).

We will also use a lot what we call a projectum function, that is, a IT1 injection from w{* into
N. Formally IT} functions are defined on integers and not ordinals. There are two ways to consider
this: Either we work with actual ordinals and see ITj functions as being ¥;-definable over L ex, or

we consider functions which are defined on a II} set of unique codes of computable ordinals (that
is a I} set O; € O such that for any a < w§* there exists exactly one code of a in Oy).

Proposition 2.7. There is a 11} function p : w$*¥ — N which is one-to-one. We call p a projectum
Sfunction.

Note that a I} set of unique codes of computable ordinals, can actually be considered as a
projectum function.

2.1.2. II} as an analogue of c.e. We will consider II] predicates from the computability theorist’s
viewpoint, that is, we will see them as enumerations of objects along computable ordinal stages of
computation. Let us cite a section of Sack’s book ([44, V.3.3]) that explains what we gain in doing
s0:

“Post in a celebrated paper ([42]) liberated classical recursion theory from formal arguments by
presenting recursive enumerability as a matural mathematical notion safely handled by informal
mathematical procedures. He also stressed what may be called a dynamic view of recursion theory.
For example, he proves the existence of a simple set S by giving instructions in ordinary language
for the enumeration of S and then verifying that the instructions do in fact produce a simple set.
A formal approach to S would refer to formulas or equations from some formal system. A static
approach would attempt to define S by some explicit formula. The advantages of Post’s informal,
dynamic method are considerable. Without it arguments in classical recursion theory would be
lengthy and hard to devise. His method, and its advantages, lift to metarecursion theory.”
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Metarecursion theory attacks the problem of transposing notions of classical recursion theory,
that take place in the world of integers, into the world of computable ordinals, where elements of
the Cantor space are now replaced by functions from w$* to {0, 1} (sequences of “length” ws*) and
where times of computation are now computable ordinals.

We will not deal here with Metarecursion theory, as we still want to work with sequences of
the Cantor space. Measure-theoretic notions and therefore algorithmic randomness are indeed
well-defined for sequences of length w, but it is not clear at all if one can extend these notions to
sequences of ordinal length. For this reason, what we keep from Metarecursion theory are just the
ordinal times of computation.

In this settings, any Al set of integer should be considered as a finite object. Any II} set A
should be seen as enumerable along the ordinal times of computation. The construction of a c.e.
set A is often done step by step, by describing As at computational step s, where A, possibly
depends on the values of A, for t < s, and by then defining A = | J,__ As. A formal description of
A can then be given by n € A <> 3s n € A,. As each set A, is A uniformly in s, the description
can then be formally written as a X9 predicate.

We can similarly build a T} set A by describing A, for each ordinal computational step s < w$*,
where A, possibly depends on the values of A; for ¢ < s, and then by defining A = [ e A If

one wants A to be formally II}, one has to use codes for computable ordinal in order to give an
actual TI} description of A. The definition should of course not depend on the code that we use,
but only the the ordinal represented by the code (and this will always be the case in what we do).
A way to go around this is otherwise to see the predicate n € A as being X{ over wak.

s<w

2.1.3. Admissibility. As explained in the previous section, we will use the informal argument of
recursion theory to enumerate sets along the computable ordinal, possibly using what happened at
previous steps of enumerations. The reason we can do that, is the admissibility of L,ex. For short,
given a < w{¥, there is no function f : a — w§* which is X{-definable in Lier (with parameter
in L,). In particular, inside admissible sets, we can safely make recursive definitions along the
ordinals. Another way to see admissibility is to consider Spector’s ¥1 boundedness principle : Let
A < O be a 1 set. Then there exists a such that A € O,,.

Admissibility will be mainly use as follow for us: whenever there is a ITI1(X) total function f
from o < w{ into wi¥, then we must have sup,, f(n) < wiX.

2.1.4. Notations. We denote the Cantor space by 2V and the set of strings of the Cantor space by
2<N. We denote the Baire space by NV and the set of strings of the Baire space by N<N. Given
o € 2<N we write [o] for its corresponding cylinder, that is, the set {X € 2V : ¢ < X}. An open
set is a union of cylinders. Given W < 2<N we write [IW]< for the set |, [0]. In particular we
will consider a lot open sets of the following type:

Definition 2.8. An open set i is a IT-open set if there is a TI} set W < 2<N such that U = [W]~.
A Yl-closed set is the complement of a IT{-open set.

We will denote the Lebesgue measure on the Cantor space by A. We then have A([¢]) = 2717
for any o € 2<N. Given a measurable set A we also write A\(A|o) for the measure of A inside o,
that is, the quantity A(A n [o])/A([o]).

Given the enumeration of an object A long the computable ordinals, we can write A; or A[s]
for the current enumeration of A up to stage s. We will especially use the latter with the measure
of objects. For instance, given a II}-open set U, we may write A\(U)[s] for the measure of U at
stage s. We also sometimes write A[< s] for the current enumeration of an object up to stage s
(but without stage s).

The notation A, will mainly be used when one want to refer as the enumeration up to stage s
as a specific object. In particular we will sometimes use the following terminology:

s<wer 18 a sequence of uniformly Aj functions

Definition 2.9. A higher computable sequence { f}
fs, that is, each f5 is A uniformly in s.

2.2. Continuity in higher computability. In higher computability, reductions and relativiza-
tion are not continuous notions (unlike with normal computability):

Definition 2.10. We write that X >;, Y and say that Y is hyperarithmetically reducible to X is
Y is AH(X).
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For instance if X >, Y, infinitely many bits of X may be needed to determine one bit of Y. The
insight that randomness and traditional relative hyperarithmetic reducibility do not interact well
goes back to Hjorth and Nies [17], but it is in [2] that Bienvenu, Greenberg and Monin enlighten
the centrality of continuous reductions to the theory of randomness.

2.2.1. Higher Turing reductions. In order to study analogues of classical randomness notions in
the higher settings, we will need a continuous higher analogue of Turing reducibility. Recall that
a functional can be seen as a set of pairs (7, 0) of finite binary strings. If ® is a functional then for
any X € 2% (finite or infinite) we have that ® is defined on X if:

(1) @ is consistent on prefixes of X, that is, if oy < X and 02 < X are comparable and if
(01,71) and (02, 72) are in @ then 71 must be comparable with 9.
(2) @ is total on X, that is, for any n, there exists 0 < X such that ¢ is mapped to a string
of length at least n.
When (1) and (2) are met there is a unique limit point Y € 2V of {[o] : In (X |,,0) € ®}.
We then write ®(X) =Y. This motivates the following definition:

Definition 2.11 (Bienvenu, Greenberg, Monin [2]). A higher Turing reduction @ is a IT{ partial
map from 2<N to 2<N. For a string o, if ® is consistent on prefixes of o, we write ®(c) = 7 where 7
is the longest string that prefixes of o are mapped to in ®; otherwise ®(o) is said to be undefined.
Given a sequence X, suppose the set:

(o] : 3n @(X1,) = o}

contains exactly one sequence Y, we write ®(X) = Y. Otherwise the functional ® is said to be
undefined on X. If ®(X) =Y for some higher Turing reduction ® we write X > ap Y and say
that X higher Turing computes Y.

Hjorth and Nies were the first to define in [17] a notion of continuous higher reduction, that they
called fin-h reduction. The fin-h reduction was define analogously to higher Turing reduction, with
the additional restriction that the mapping must be both consistent and closed under prefixes. It
appears that the fin-h reduction is too restrictive for most theorems of higher randomness that
requires a higher continuous reduction.

Note that with normal Turing reductions, one can always required a c.e. set of pairs ® to be
consistent everywhere, that is, one can uniformly transform & into a c.e. set ¥ such that ¥ is
consistent everywhere and such that if ®(X) = Y then also ¥(X) = Y. Such a thing is not
necessarily possible with higher Turing reductions. In particular there are some X,Y such that X
higher Turing compute Y but such that X does not fin-h compute Y. For more details about this,
the reader can refer to Chapter 7 of [35].

So inconsistency cannot always be removed, but it can be made of measure as small as we want:

Lemma 2.12 (Bienvenu, Greenberg, Monin [2]). From any higher functional ® one can obtain
effectively in € a higher functional ¥ so that:
(1) The correct computations are unchanged in ¥: For all X,Y such that ®(X) =Y, we also
have ¥(X) =Y
(2) The measure of the IT3-open set on which W is inconsistent is smaller than e:
A{X | Ing,ng I Lo (Xtnyy71) EV A (X Ty, m2) €U}) <e

Proof. Let us build ¥ uniformly in ® and . Recall that p : w{* — w is the projectum function.
We can assume that at most one pair enters ® at each stage. At stage s, if (o1, 71) enters ®[s], we
compute the Al set of strings:

Us = {oa : o9 is compatible with o1 and (02, 72) € U[< s] for some 75 L 1)}

We then find uniformly in U and s a finite set of strings C' with [C]< € [o1], such that [CT~ v U;
covers [o1] and such that A([C]< nUs) < 27P(9)e. Then we put in ¥[s] all the pairs (o, 7;) for
ceC.

We shall prove that (1) and (2) are satisfied. Suppose ®(X) =Y and that (X[,,,Y[,,) enters
®[s] at stage s. By definition of ®(X) =Y, we have no m and no 7 L Y,,, such that (X |,,,7)
is in ®[< s]. Then also we have no m and no 7 L Y'[,,, such that (X [,,,7) is in ¥[< s], because
(X'm,7) € ¥ implies (X,,7) € ® for n < m. Therefore X ¢ Us and as Us u C covers X [,,,, we
then have a prefix of X that is mapped to Y'[,,, in ¥[s]. Then we have (1). Also by construction,
at stage s, we add a measure of at most 2 P(*)¢ of inconsistency. Then the total inconsistency is
at most of e, which gives us (2). O
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2.2.2. Continuous relativization of II}. The higher continuous version of Turing reduction is a
way to say that some sequence Y is continuously A} in X. We will also need a way to say that
some objects are continuously I} in X. This will be used mainly for continuous relativization of
randomness notions.

Definition 2.13 (Bienvenu, Greenberg, Monin [2]). An oracle-continuous I1} set of integers is given
by a set W € 2<N x N. For a string o we write W7 to denote the set {n : 37 < o (r,n) € W}.
For a sequence X we write W to denote the set {n : 37 < X (7,n) € W}. The set W is then
called an X-continuous I} set of integers.

2.3. Refinement of the notion of higher AY. In this section we discuss the higher analogue of
the notion of being A9. We will identify in particular various restrictions of this notion, in order to
have sufficient conditions for higher Ay elements to collapse w{*. This work will be useful to show
several theorem. In particular that every non-Al higher K-trivial collapses w$*, and to separate
higher weak-2-randomness from IT}-randomness. Let us first give a higher version of Shoenfield’s
limit lemma:

2.3.1. The higher limit lemma.

Proposition 2.14 (Bienvenu, Greenberg, Monin [2]). Let A € 2V. The following are equivalent
for f e NN,
(1) O higher Turing computes f.
(2) O Turing computes f.
(3) There is a higher computable sequence {fs}
lm,_, ex fs = f.

Proof. (1)=(2). Let ¥ be a higher Turing functional such that ¥(O) is defined. We define
the Turing functional ® which using O, on each n, searches for the first pair m,k such that
3t U(Olm, n)[t] = k.

(2)= (3). Let ¥ be a Turing functional such that ¥(O) = f. We simply let fs such that
fs(n) =1iff ¥(O4,n) =1 and fs(n) = 0 otherwise.

(3)=(1). We use the projectum function p : w{*¥ — w. Given n € N, for each m € N with
$m = p 1(m), we ask to O if 3t > s,, fi(n) # fs,, (n), until we find some m such that this is not
the case. Then we set f(n) = fs, (n). O

of functions from N to N with

s<wsk

Such a function is said to be a higher A9 function. There is a topological difference between

a AJ approximation {fs},__ and a higher AJ approximation {g} o In the first case the set

{fY U{fs : s <w}is a closed set, whereas in the second case, the set {g} U {gs : s < w{*} needs
not to be closed. Also we present in this section various restrictions of the notion of higher A9
functions, introduced in [2], and that are built around this crucial point.

s<w

2.3.2. Collapsing approzimations. Gandy showed that in any non-empty 31 set of reals, there is
an element X <7 O such that wX = w{* (see [44]). As the set of non-Al elements is 21, it follows
that some non-A} higher A9 sequence does not collapse w$*. We present here a natural restriction
of being higher A9, which is enough already for non-Ai such approximable elements, to collapse
wsk.

Definition 2.15 (Bienvenu, Greenberg, Monin [2]). A collapsing approximation of a function f

is a higher Turing computable sequence {fs} <wek converging to f and such that for every stage s,

the function f is not in the closure of {f; : ¢ < s} unless it is already an element of {f; : ¢ < s}.

Theorem 2.16 (Bienvenu, Greenberg, Monin [2]). If f € NV is not Al and has a collapsing

approzimation then w{ > wik.

«. We can define the I} (f) total function

Proof. Suppose f has a collapsing approximation { fs}, <wt
g : w — wi* which to n associates the smallest ordinal s,, so that fsn In= fIn. Then we have
that f is in the closure of {f;},_, for s = sups,. Therefore we have sups, = w{". Also as g is
1 (f) and total it is also A}(f). Then we can define a Al(f) sequence of computable ordinals,
unbounded in w$* which implies w{ > w$k by admissibility. O

Note that this is not the most general way for higher A9 elements to collapse w{*. Bienvenu,
Greenberg and Monin showed [2] that there is a higher A9 sequence X such that wi® > w$* and

such that X does not have a collapsing approximation.
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2.3.3. Higher finite-change approzimations. In the lower setting, any A9 approximation {fs}sen
is collapsing simply because at every step t, there are only finitely many versions f; for s < t.
We restrict here the collapsing approximations to these which share this property with the A9
approximations indexed by N.

Definition 2.17. A higher finite-change approximation of a function f is a higher computable
sequence {fs}, <wet such that lim, f; = f and such that for any n, the sequence {fs(n)}
changes finitely often.

ck
S<UJ1

2.3.4. Higher left-c.e. approzimations. We now define the strongest restriction of higher A9, which
can be seen as a higher analogue of left-c.e.

Definition 2.18. A higher left-c.e. approximation of a function f is a higher computable sequence
{fs}wak such that lim, fs = f and such that for any stages s; < sy we have f,, smaller than f,,
for the lexicographic order.

Note that if {fs},_,,
times and then {f,}

Just like left-c.e. binary sequences are exactly the leftmost path of TI{ sets, it is not hard to see
that higher left-c.e. binary sequences are the leftmost path of ¥i-closed sets.

ok is a higher left-c.e. approximation, then {fs(n)},_,,

ok changes at most 2"

s<wer 18 higher finite-change.

3. OVERVIEW OF THE DIFFERENT CLASSES IN HIGHER RANDOMNESS

We present in this section the main higher randomness classes. These notions are obtained by
extending the definability power one can use to capture non-random sequences in nullsets.

3.1. Al randomness. Perhaps the simplest higher randomness notion, and also the first that has
been introduced is obtained by defining that a sequence is random if it belongs to no effectively
Borel set of measure 0:

Definition 3.1 (Sacks, [44] IV.2.5). We say that Z € 2" is Al-random if it is in no A} nullset.

Martin-Lof was actually the first to promote this notion (see [33]), suggesting that it was the
appropriate mathematical concept of randomness. Even if his first definition undoubtedly became
the most successful over the years, this other definition got a second wind recently on the initiative
of Hjorth and Nies who started to study the analogy between the usual notions of randomness and
theirs higher counterparts. One could also define the randomness notion obtained by considering
¥1 nullsets, but this turns out to be equivalent to Al-randomness.

Theorem 3.2 (Sacks [44] IV.2.5). A Al-random sequence is in no X1 nullset. Therefore 3i-
randomness coincides with Al-randomness.

Proof. Let A = ﬂa<w1 A, be a 31 nullset. Note that we can suppose that the intersection is

decreasing. By Theorem 3.11 we have that [, <wsk A, is already of measure 0. Then we can define

the I} function f : w — w§* which associates to n the smallest ordinal a such that A(A,) < 27"
As f is total, it is actually a Al function, and then its range is a A} set of computable ordinals,
which is then bounded by some computable ordinal 3, by the ¥1-boundedness principle. Therefore
we have A([,.34a) = 0 and then A is contained in a A{ set of measure 0. O

3.2. IIj-Martin-L6f randomness and below. Hjorth and Nies introduced in [17] a higher ana-
logue of Martin-Lof randomness.

Definition 3.3 (Hjorth, Nies [17]). A IIj-Martin-Lof test is given by an intersection of open sets
(), Un, such that A(U,) < 27" for each n and such that each U, is II] uniformly in n. A sequence
X is IT{-Martin-Loéf-random if it is in no I}-Martin-Lof test.

It will be sometimes convenient to use a higher version of Solovay tests:

Definition 3.4. A higher Solovay test is given by a sequence {U,, }, . of uniformly (in n) II{-open
sets such that > . A(Uy,) is finite. A sequence X passes the higher Solovay test if it belongs to
only finitely many U,,.

The proof that X is IT1-Martin-Loéf random iff it passes all the Solovay tests works as in the
lower setting. An interesting possibility with higher Solovay tests, that will be used sometimes, is
that we can index each open set with a computable ordinal instead of indexing it with an integer.
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Formally, given a sequence of IIi-open sets {U}, <wek, We can build the higher Solovay test V,
where each V), starts with an empty enumeration, until n is witnessed to be a code for the ordinal
s, in which case V,, becomes equal to Us. It is clear that the notion of being captured in unchanged
between {Us},per and {Vn}, -

We now discuss the relationship between I13-Martin-Lof randomness and A}-randomness. The-
orem 3.6 implies that the set of I1}-Martin-Lof randoms is included in the set of Al-randoms. In
other words, the notion of II}-Martin-Léf randomness is stronger than or equal to the notion of A}
randomness. To see that, we simply need to make effective the Lebesgue’s theorem stating that
any Borel set of arbitrary complexity is approximable from above by Hg sets of the same measure,
and from below by X9 sets of the same measure. Such an effective version of the theorem has
been done for the arithmetical hierarchy in Kurtz’s thesis [27] and in Kautz [19]. We present here
the proof of [35] for the whole effective hyperarithmetical hierarchy. We start with the following
lemma, which says that “u(A) > ¢” is a X9 predicate for A a 39 set

Lemma 3.5. Let u be a computable Borel probability measure. Let A € 2N be a 39 set. The set
{geQn[0,1] : u(A) > q}is a %9 set, uniformly in g, and in an index for A.
Proof. The proof goes by induction on computable ordinals. If A is a ¥ set, the predicate u(A) > ¢
is equivalent to 3t u(A[t]) > g, which is X9 as A[t] is a clopen set. Everything is clearly uniform.
Suppose that for an ordinal o, any X% set A and any rational ¢ > 0, the set {ge€ Q n [0,1] :
p(A) > ¢} is a X% set uniformly in an index for A. Consider the ¥9 set A = |, B,, where each
B, is 112, uniformly in n. The predicate p(A) > ¢ is equivalent to Im pu(|J,<,, Bn) > ¢. Also
for each m the set  J,, <m Bn s a %, set uniformly in m. By induction hypothesis, it follows that
{ge Qn[0,1] : p(Un<pm Br) > ¢} is a T2, set for every m and uniformly in m. It follows that
the set {g€ QN [0,1] : Im p(U,<,, Bn) > ¢} is a Y, set. O

Theorem 3.6. For any X9 set A € 2N, any positive rational ¢ and any computable Borel proba-
bility measure p, there is:

(1) A E?(@<a) set U with A S U such that p(U — A) < g

(2) A H?(@<a) set F for some B < o, with F € A such that p(A—F) < ¢
Moreover an index for U can be found uniformly in q and in an index for A, and an index for F
can be found uniformly in q, in an index for A and in 0°.
Proof. The proof goes by induction on computable ordinals. For a X{ set A, the X0 set I/ is trivially
A itself for any g. The II9 set F is U[t] for ¢ the smallest integer such that p(U — U[t]) < g. As
U —UJt] is a XY set, from Lemma 3.5 we have that u(U — U[t]) < q is a 11} predicate, making ¢
computable in @1, uniformly in ¢ and an index for &. This makes U[t] a TIY set whose index can
be uniformly obtained in an index for A, in ¢ and in @1.

Suppose that the theorem is true below ordinal o and let us prove that it is true at ordinal «.
Let A = |J,, Bn be a £9 set, with each B, a 112, set. By induction hypothesis (2), for each B,

and each positive rational ¢, we can find a E?(®<a) set U, 2 B,, uniformly in ¢, in n and in /.
such that u(U, —B,) < g. Now by induction hypothesis (1), for each B,, and each positive rational
g, we can find a H?(@<a) set F,, € B, uniformly in ¢, and in n, such that u(B, — F,) < q.

For any ¢, fix a computable sequence {gy, }n<w such that >, ¢, < ¢g. The desired E?(@<a) set U
is then the union of the Z?(@<a) sets U,, 2 B, such that u(U, — B,) < ¢,. As each open set U, is
obtained uniformly in an index for B,,, in ¢, and in (Z)<a, their union is a Z?(@<a) set, uniformly
in an index for A and in q.

Still using the computable sequence {¢y,}n<, such that >, ¢, < ¢, the desired H?(@B) set F
is equal to J,,_,, Frn Where m is the smallest integer such that pu(A — B,) < qo and with

Fn € B, and u(B, — Fn) < guy1- As each closed set F,, is IT9 (@ a) and as there are only finitely
many of them, then their union is still a H?(®<a) set. Besides A — | B, is a X9(0%) set

uniformly in m and therefore, using Lemma 3.5, the integer m can be found uniformly in @a in g

and in an index for A. We also have that A—F C Un<m( U (A=, < Bn) and therefore
PA = F) < 2o #(Bn = Fn) + ilA = Up<m Bn) < ¢ U

We now easily deduce the following:

Proposition 3.7 (Hjorth, Nies [17]). If Z is II}-Martin-Lof random, then Z is Al-random.

n<m

n<m
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Proof. Suppose Z is in a Al nullset A. This nullset is X0 for some computable a. Now using
Theorem 3.6, we can find uniformly in n a E?(@<a) set of measure less than 27", and containing
A. Also a Z?(@<a)—open set is clearly a II}-open set and we can then build a IT3-Martin-Lof test
capturing Z. (]

We shall see in Section 4.1 that II}-Martin-Lof randomness is strictly stronger than Al-
randomness.

3.3. Higher weak-2 and difference randomness. The higher analogue of weak-2-randomness
has also been studied by Chong and Yu in [6]. This notion received quite many different names in
the literature. Chong and Yu refereed to it as Strong-II}-Martin-Lof randomness, Monin [36, 35]
refereed to it as weak-II}-randomness and Bienvenu, Greenberg and Monin [2] as higher weak-2-
randomness. We stick here with this last name, which echoes to its well-know analogue in classical
randomness.

Definition 3.8 (Nies [38] 9.2.17). We say that Z is higher weakly-2-random if it belongs to no
uniform intersection of II}-open sets (), Un, with A\((, Un) = 0.

It is clear that the notion of higher weakly-2-randomness is stronger than the notion of II}-
Martin-Lof randomness. We shall see later that it is strictly stronger. In fact we will even see
another notion of randomness which is strictly between IT}-Martin-Léf randomness and higher
weak-2-randomness: Franklin and Ng defined in [11] a notion of test in classical randomness,
which exactly captures the sequences which are either not Martin-Lof random, or Turing compute
the halting problem. They called difference randomness this notion of randomness, which has been
very useful to prove various theorems.

Something analogous can be done in higher randomness, to capture exactly the I13-Martin-Lof
random sequences which higher Turing compute O.

Definition 3.9 (Yu [39]). A sequence X is not higher difference random if there is a ¥{-closed
set F and a uniform sequence of IIj-open sets {Uy,}, .y such that A(Uy, n F) < 27" and such that
X e, U, F).

Yu [39] showed that a ITi-Martin-Léf random sequence is not higher difference random iff it
higher Turing computes O. We will see this in Section 6.1.

3.4. Il}-randomness. So far, the full descriptive power of I} or ¥} predicates has not been used.
When Sacks introduced Al-randomness, he also introduced a notion stronger than any presented
so far : the tests are now the IT} nullsets. Note that a IT} set is not necessarily Borel. Lusin showed
however that they remain all Lebesgue-measurable, that is, any II} set is the union of a Borel set
and of a set which is included in a Borel set of measure 0. It is shown using the fact that any I1}
set A is a uniform union of Borel sets A, over a < wy (formally for any I1] set, there exists e € N
such that A = J,,, Aa with Ay = {X : e€ OX,}).

a<w

Theorem 3.10 (Lusin). There is an ordinal v and a Borel set B of measure 0 such that for any

I} set A= Ua<w, Aa, the set A— A, is contained in B. In particular any I} set is measurable.

Sacks proved later that the ordinal  of the previous theorem actually equals w§*, making the
set {X : wi¥ > wfF} a set of measure 0:

Theorem 3.11 (Sacks [44]). The set {X : wi¥ > w*} has measure 0. This set is in fact a Borel
set B of measure 0 such that for any I} set A = Ua<w, Aa, we have that A — Awfk is contained
in B.

Proof. Suppose wi¥ > w$*. Then there must be an integer of O coding for w$*. In particular,

there must be a functional ® : 2 x w — w, such that ®(X) is total on w and whose range
is a set of codes for X-computable ordinals, unbounded below w{*. Given any functional ®, let
Pra = {X | ®(X,n) € OX}. Note that P, o is A} uniformly in n and a. If w¥ > w§* is witnessed in
the way stated above, via the functional ®, we must have X € (), Ua<w(1:k Pro— Ua<w§k N,, Pn.a-

Let us show A(,, Ua<wer Pria = Uacwst [Ny Pra) = 0.
Let 7 = X(, Ua<wsk Pn.a). For any rational ¢ <7, let fq : w — O be the I1} function defined

by:
fq(n) = min - s.t. A <ﬂ Pk7a> >q

a<w§
1 k<n
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It is clear that f; is total. Let ay = sup, fy(n). By admissibility, we have o, < w$k. We have
in particular A([),, Pn,a,) = ¢- As we can do this for any rational ¢ < r, it follows that we have
)‘(Ua<wf’“ ﬂn Pﬂ,aq) =T

So for any functional ®, the set of X € 2V for which ® witnesses wi¥ > w{¥, is of measure 0. As

there are only countably many functionals, the set of X such that wiX > w$* is a set of measure
0. O

The proof of the previous theorem details a Borel description of the set {X : wiX > w{*}. Steel
actually showed that this set is Egck+2 and not chk+2. A full proof can be found in [35]. We
1 1
have an interesting corollary:

Theorem 3.12 (Sacks [44]). If X is not A}, then A\({Y : Y =, X}) =0.

Proof. We have Y =5, X iff OX >7 X for some a < wi*. Suppose A\({Y : Y >, X}) > 0. As
the set {X : wi® > w{¥} has measure 0, we can suppose that there is some a < w{* and a Turing
functional ® such that A({Y : ®(OY) = X}) > 0. As the set {Y : ®(OY) = X} is Borel, by the
Lebesgue density theorem, there is a string o such that A({Y : ®(OY) = X} | 0) > 1/2. To know
the value of X (n), we simply compute the values A\({Y : ®(OY ,n) = 1} | o) and A\({Y : ®(O} ,n) =
0} | o). Whichever measure is bigger than 1/2 gives us the correct value of X(n), and thus X is
Al O

Let us quickly argue that the set {X : wiX > w§¥} is also II3. We have that wX > w§* iff “Je €
OX AVnYf f is not an order-isomorphism between the order coded by e and the one coded by n”.
This is a II} statement.

The fact that every IIi set is measurable, even though it is not necessarily Borel, gives the
possibility of another notion of higher randomness, which will appear to have many remarkable
properties, and no counterpart in classical randomness:

Definition 3.13 (Sacks [44] IV.2.5). We say that Z € 2" is II}-random if it is in no I3 nullset.

This last notion is very interesting for many reasons. Omne of them is that no X such that
wi > wsk is I1}-random, and we shall see now that this is the best we can do, as any randomness
notion weaker than IT}-randomness contains elements that make w$* a computable ordinal. This is
achieved through the following simple and yet beautiful theorem of Chong, Nies and Yu (see [5]):

Theorem 3.14 (Chong, Nies, Yu [5]). A sequence Z is Ui-random iff it is A}-random and
z

wf = wsk.

Proof. Suppose Z is Al-random. If w? > w§* then by Theorem 3.11, Z is not IIi-random.
Suppose now that Z is not IT{-random and then captured by a I1} set A = Ua<w1 A, of measure

0. If there is a computable « such that Z € A, then Z is not Al-random as A, is a Al set of

measure 0. Otherwise Z € A — | J e Ao and then wf > wsk. O

a<w

Another important property of IIi-randomness is certainly the existence of a universal I1} nullset,
in the sense that it contains all the others. Kechris was the first to prove this, in [20], and he actually
proved a more general result, implying for example also the existence of a largest I} thin set (a
largest T} set which contains no perfect subset). We will discuss the relation with this largest
I1} thin set and higher randomness in Section 7.4. Later, Hjorth and Nies gave in [17] an explicit
construction of this I3 nullset.

Theorem 3.15 (Kechris [20] Hjorth, Nies [17]). There is a largest I} nullset.

Proof. Let {P,}ce., be an enumeration of the II} sets, with P, = U(KW1
that each set P, — U(wak P, . is always null and contained in the nullset {X | wi* > w{*}. Let us

P. o. Recall from above

argue that uniformly in e, one can transform the set Ua<w§k .o into a set Ua<w5k Qe.o (Where
each Q. , is Al uniformly in e and a code of O—,) such that A(Ua<wfk Qc.o) =0, and such that
if MUa<wer Pea) = 0 then [, _er Qea = Up<wer Pesa-

To do so we simply set Q¢ o = Peo if A(Pea) = 0 (recall that the measure of a A} set is
uniformly A}) and Q. , = & otherwise. Then we define Q to be U. U(ngk Qc.o together with

the set {X | wi¥ > w$*}. The set Q is clearly I}, and by construction it is a nullset containing
every 111 nullset. ]
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Chong and Yu proved in [6] that higher weak-2-randomness is strictly stronger than ITi-
Martin-Lof-randomness (see Section 6.1). Bienvenu, Greenberg and Monin later showed that
[T} -randomness is strictly stronger than higher weak-2-randomness (see Section 6.2).

4. A}l-RANDOMNESS

4.1. Separation with I1{-Martin-L6f randomness. We shall see now that I1}-Martin-Léf rand-
omness is strictly stronger than Al-randomness. This was proved by Chong, Nies and Yu in [5]
using the notion of higher Kolmogorov complexity that we will introduce later. The proof they gave
can be seen as a higher analogue of the separation between computable randomness and Martin-Lof
randomness. We give here a similar proof, without using higher Kolmogorov complexity, but rather
a combination between higher priority method and forcing with closed sets of positive measure. A
similar technique will be reused for Theorem 6.7.

Theorem 4.1 (Chong, Nies, Yu [5]). There is a sequence X which is Al-random and not 113 -
Martin-Lof random.

Proof. Let {As} . e« be an enumeration of the Al sets of measure 1. To get this enumeration,

recall that the A} sets are the X0 sets, and that the measure of a X9 set is A}, uniformly in a.
Recall that p : w{¥ — w is the projectum function, let OL, = {p(t) : t < s}, and for m € OL, let
OL,lm={neOL, : n<m}.

The construction:

We can suppose without loss of generality that Ay = 2. At stage 0 we define for each n the
set F¢ to be 2V and the string 0% to be the string consisting of 2n 0’s.

Suppose that at every stage t < s we have defined for each n € N a Al closed set F* and
a string o} such that ¢} < of*! and with |0]'| = 2n. Suppose also that for each m we have
MMpem Fi* 0 [07]) > 0 and that if m € OL, we have F/" € A,-1()-

Suppose first that s is successor and let us define F.* and o}* for each m € N. For each
m < p(s) we define ¢ = ¢, and F* = F",. For each m > p(s) in increasing order, if
m € OL,, let t = p~'(m) and let us compute an increasing union of A} closed sets | J,, F, <
Ay with M(A; — U, Fn) = 0. Let F* be the first closed set of the union (J, F, such that
MV FEAF a[om71]) > 0. If m ¢ OL,, let F* = 2Y. Then let 0™ be the first string of
length 2m which extends ¢~*, such that A((,,<,, Fa' » [07]) > 0.

Finally, for a stage s limit we define for each n the string o' to be the limit of the sequence
{07 }+<s and the closed set FI' to be the limit of the sequence {F};~s. We shall argue that later

that such a limit always exists.

The verification:
For every m there is a stage s such that {O%, rm}8$t<wfk is stable. Furthermore, for each m, the

sequence {O%, '}, <wek can change at most m times, because at most m values can be enumerated

in O'},,. It follows that at every limit stage s and for every m, the sequences {07 }; <, and {F7};
also can change at most m times, and then converge. Let F™ the convergence value of {F"};<s.

Also by design for every s < w§* such that OL, is infinite, the unique limit point X, of
{[O’g]}neolss belongs to [, F/* € [,<, A:. Let X be the limit of the sequence {XS}S<chk.

Let us argue that X is Aj-random. Let s, be the smallest stage such that {F s <t<w
stable for every m < k. It is clear that the sequences X u {Xj, }ren is a closed set. Also for every
k we have that (), <, Fn 0 (X U {Xs, }ren) is not empty because X, € (), <, Fn. It follows that
N, Frn 0 (X U {X;, }ren) is not empty and then that ), F, contains X, the only non A{ point of
{Xs}scwer U X. Therefore X € (), cx A¢ and X is Aj-random.

1
Let us argue that X is not II{-Martin-Lof random. We argued already that {o}"}, <ok can

change at most m times. Then we can put each string o} of length 2m, into the m-th component
of a TT}-Martin-Lof test which has measure smaller than m x 272" < 27™, |

ck iS
1

4.2. Lowness for Al-randomness. Chong, Nies and Yu studied in [5] lowness for Al-
randomness. They showed that it coincides with the notion of Al-traceability, that they also
defined:

Definition 4.2 (Chong, Nies and Yu [5]). A sequence X € 2V is Al-traceable if there is a Al
function g such that for any function f <j, X, there is a A} trace {T},}, oy such that:
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(1) Yn f(n)e T,
(2) Yn |T,| < g(n)

Traceability notions have also been studied in set theory. In these field, traces are called slalom.
The notion of Al-traceable can also be seen the higher analogue of the notion of computably trace-
able. Also Kjos-Hanssen, Nies and Stephan showed [23] that a sequence is computably traceable iff
it is low for Schnorr randomness. The proof that X is low for Al-randomness iff X is A}-traceable,
works analogously. We first start with an easy lemma, whose analogue for computable traceability
is well known

Lemma 4.3. Let X be Al-traceable with bound g. Then for any A order function ¢’, the sequence
X is A} traceable with bound g¢'.

Proof. Let f <, X. let h : N — N be the A} function such that 2(0) = 0 and h(n) is the smallest
greater than h(n — 1) for which Vn Vk = h(n) ¢'(k) > g(n) (which is possible as ¢’ is an order
function).

Let f’ be such that f/(n) is an encoding the the values of f from f(h(n)) to f(h(n+1)—1). Note
that f’ <, X. Also there is a A} trace {T},},y of f’ with bound g. But this trace can be easily
transformed into a A{ trace {T},}, oy of f with bound ¢’: We set T}, for 0 < k < h(1) —1 so that T},
only contains the value of f(k). Then inductively for each n we set T for h(n) < k < h(n+1)—1
so that each T} contains the decoding of the k — h(n)-th value encoded by each element of T, . As
we have ¢'(k) > g(n) for each k > h(n) and as there are at most g(n) elements in 7),, then there
are at most ¢’(k) elements in each T}, for h(n) < k < h(n+1) —1. O

Theorem 4.4 (Chong, Nies and Yu [5]). If X € 2V is Al-traceable then X is low for Al-
randomness.

Proof. Let A be a A}(X) nullset. From Theorem 3.6 one can find a uniform intersection of A}(X)
open sets (), Uy, such that:
(2) ANUnm) =277
Note that Theorem 3.6 only gives us A(U,,) < 27™. One easily complete the set U,,, by adding
in a Al way countably many string to that the measure equals 27™.
For each open set U, there is a A}(X) function f,, : N — 2<N such that U, = |, [fm(n)]. Let
us define a A}(X) function h,, : N — N such that:

m= (fa(k) © 0<k<h(1)} with = A[A]S) =1/2 %2
Aoy ={fm(k) + h(n) <k <h(n+1)} with 7rop1 = M[Ap41]™) 2 1/2x (27" =3, 1i)

Note in particular that A(A™) < 277127 for n > 1. Now let f be defined so that f({n,m)) =
A™. Let g be a computable order function such that for every m we have Y, g({(n,my)2="+127" <
2-m*2 Note that this is possible as (n,m) is polynomial in n and m. As X is Al-traceable there
is a trace {T},},cy of f with bound g.

To compute each A} open set V,, we proceed as follow : For each Tinmy for some n, we
consider all its elements of measure smaller than 27"+'2=™ and we put there union in V,. As
we have Y g({n,m))2 " T127™ < 27™*+2 then the measure of V,, is smaller than 27™+*2. As
AAT) < 277H127™ then [AM]= € V,,. It follows that (), Vi, is a A} set of measure 0 which
contains A. Then X is low for Aj-randomness. O

Theorem 4.5 (Chong, Nies and Yu [5]). If X € 2V is low for Al-randomness, then X is Al-
traceable.

Proof. Let f <, X. For technical reasons, we suppose that for every n we have that n divides
f(n). Note that this hypothesis is harmless, as if this is not the case, we can instead deal with the
function n +— n x (f(n) +1). Also note that any trace for such a function can also be transformed
into a trace for f.

Let By, = {00™ : |o| = k}. Note that for any n, k we have \([B,,x]~) = 27". We define the
A1(X) open set Vi, = U, Bm,f(m)- Note that we have A(V,,) < 3 o A([By g(m)]~) < 277FL
It follows that (), [V,]~ is a A} set of measure 0. By hypothesis there is a A}l nullset .4 which
contains [, [V,]<. Also by Theorem 3.6 there is a A} open sets U such that (,[V,]* € U and
with A(U) = 1/4.
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Claim : There exists a string o and an integer n such that AU | o) < 1/4 and such that
MVn]=—U | 0o)=0.

We suppose otherwise. Then we build a sequence oy < 01 < whose limit point Z is in (), [V,,]~
but not in U. Let o( be the empty string. Suppose o, has been defined such that A(U | ;) < 1/4.
As the claim is suppose false, we then have A([V,,]< —U | 0,,) > 0. So we can choose 7 € V,, with
T ¥ o, such that A([7] —U | 0,,) > 0. By the Lebesgue density theorem there exists an extension
on+1 Of 7 such that A([7] —U | opy1) > 3/4 and then such that AU | op41) < 1/4. The limit
point Z of the sequence {0y}, .y has the property that none of its prefix o,, is such that [0,] € U
(because A(U | 0,,) < 1/4). But then as U is open, Z is not in U and yet Z € (), [V,]~ which is a
contradiction.

So we pick a prefix o and an integer a such that A\(U | ¢) < 1/4 and such that A\([V,]<—U | o) = 0.
The trace T}, is defined as follow:
T, = {k : M[Bni]"—U|o0)=0andndividesk} if n>a
Tn = {f(n)} if n<a
It is clear that {T},}, .y traces f. We shall now prove that |T;,| < 2" for every n. It is here
that we use the fact that n divides g(n). Recall that we have A([By, x]~) = 27". Therefore if U
covers [B,, ;] it must measure at least 27"™. Now given a finite set E of multiple of n, the events
“covering By, ;" are independent events for different £. In particular we have:

A (ﬂ (2" - [Bn,k:]<)) = ker(1 = AM([Bns] ™))
keE

As A(By, ;) = 27" we then have that A((Jpep[Bnk]™) = 1 — (1 = 27™)IEl. For |E| large enough
we then have A(J,cp[Bnk]™) > 1/4. In particular we need |E| to be large enough so that
(1—2"")El < 3/4 iff (2" —1)/2")Fl < 3/4 iff (27/(2" —1))IF] > 4/3. Now for |E| = 2" we have
(27)2" = 2(2" — 1)?" which implies that (27/(2" —1))?" > 2 > 4/3. Tt follows that we must have
|T,,| < 2™ as otherwise we have A(U) > 1/4. O

5. II}-MARTIN-LOF RANDOMNESS

5.1. The higher Kuéera-Gacs theorem. Hjorth and Nies showed that for every X € 2V, there
is a IT}-Martin-Lof random Z =), X. They actually even show something stronger in that the
reduction can be made continuous in the sense of Definition 2.11. The proof is the same as the
one from Kucera in the lower settings. We first need the following combinatorial lemma:

Lemma 5.1. let o be a string and F a closed set so that A(F | o) = 27 ™. Then there are at least
two extensions 71, 72 of o of length |o| +n + 1 so that for i € {1,2} we have A\(F | ;) =2 "L

Proof. Let C be the set of strings of length |o| + n + 1 that extend o. We have that A(F n [o]) =
Yrec MF n[7]). Suppose that for strictly less than two extensions of length || + n + 1 we have
MF A [r:]) = 2717177~ Then we have:

Yoo MFAlr]) < 27l ondt _pyp-inlen—t
< 9-lol=n—1 4 gntlg—|o|-2n-2 _ 9—|o|-2n-2
< 2_|0\—n—1 + 2—|a|—n—1 _ 2—|g’|_2(n+1)
< 27lof=n
which contradicts A(F | o) = 27" .

We now prove the higher analogue of Kucera-Gacs theorem:

Theorem 5.2 (Hjorth, Nies [17]). For any sequence X and any X1 closed set F < 2N of positive
measure, there exists Z € F such that Z higher Turing computes X.

Proof. Consider a X} closed set F € 2N with A\(F) > 27¢ and a sequence X. According to what
Lemma 5.1 tells us, we define some length my = 0 and inductively m, .1 =m, +c+n + 1.

We define o to be the empty word. Assuming o, of length m,, is defined with A(F | o,) = 277",
we will define an extension 0,1 of o, with the same property. From Lemma 5.1 there are at least
two extensions 7 of o, of length m,, + ¢+ n + 1 = my41 such that \(F | 7) > 2=c=(n+1) = Algo if
X (n) =0 let 0,41 be the leftmost of those extensions and if X(n) =1 let 0,41 be the rightmost
of those extensions. The unique limit point Z of {[0,]},,oy is our candidate. We shall now show
how we use it to compute X, by describing the reduction ® < 2<N x 2<N,
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At stage 0, we map the empty word to the empty word in ®. Then at successor stage s, and
substage n + 1, for each string o of length m,, which is mapped to 7 in ®,_1, if there are distinct
leftmost and a rightmost extensions o1, o2 of o of length m,, ;1 such that \(F | o;)[s] = g—c=(n+1)
for i € {0,1}, we map the leftmost one to 70 in ® at stage s; then we map the rightmost one to
71 in ® at stage s. At limit stage s we let ®4 to be the union of ®; for ¢ < s.

By design, the functional ® is consistent everywhere because for any two strings oo > o1 which
are mapped to something in ®, the string o9 is always mapped to an extension of what the string
o1 is mapped to. We also clearly have ®(Z) = X, because for any prefix o1 of Z of length m,,
which is mapped to X |, there is always a stage at which the prefix o9 of Z of length m,, 1 will
be witnessed to be either the leftmost or the rightmost path of F that extends o; and such that
MF | 02)[s] = 27¢ Y in which case it will be mapped to X ,41. O

5.2. Higher Kolmogorov complexity. In this section, we introduce a higher version of the
notion of prefix-free Kolmogorov complexity, a fundamental concept of classical randomness. For
a very complete survey on the subject of lower Kolmorogov complexity, the reader can refer to [10]
[38] or [30].

While defining the notion of IT}-Martin-Lof randomness in [17], Hjorth and Nies also defined
the notion of IT}-Kolmorogov complexity, in order to study higher analogies of theorems occurring
in classical randomness.

Definition 5.3 (Hjorth, Nies [17]). A Ili-machine M is a II} partial function M : 2<N — 2<N,
A TIi-prefix-free machine M is a II1 partial function M : 2<N — 2<N whose domain of definition
is a prefix-free set of strings. We denote by Ky (o) the IIi-Kolmorogov complexity of a string o
with respect to the II}-machine M, defined to be the length of the smallest string 7 such that
M(7) = o, if such a string exists, and by convention, oo otherwise.

The proof that there is a universal computable prefix-free machine works similarly with IT3-
prefix-free machine:

Theorem 5.4 (Hjorth, Nies [17]). There is a universal 11} -prefiz-free machine U, that is, for each
11 -prefiz-free machine M, there exists a constant cp; such that Ky (o) < Ky(o) + e for any
string o.

Proof. We first have to make sure that we can enumerate the IT3-prefix-free machines: we have a
total computable function such that for any e, the integer f(e) is always an index for a IT}-prefix-
free machine, and if e is already an index for a ITi-prefix-free machine, then f(e) is an index for
the same machine.

We see the machine M, as an enumeration of pairs (o, 7) (if M(0) = 7) along the computable
ordinal times of computation. Given the machine M., suppose that (o, 7) is enumerated in M,
at stage s. If My)[< s] contains (0’,7') such that ¢’ is compatible with o, then we enumerate
nothing in My at stage s. Otherwise we enumerate (o, 7) in My (. at stage s.

Then we simply define U to be the machine which enumerates (0”17 ¢, 7) for each e, o and 7
such that (o,7) is enumerated in My (). For each machine M of index f(e), the constant cps is
given by e + 1. O

Definition 5.5. For a string o, we define K(o) to be Ki7(o) for a universal IT3-prefix-free machine
U, fixed in advance.

Hjorth and Nies [17] gave a general technique, used to build II}-prefix-free machines, that is, a
higher version of the well-known KC theorem. For this purpose we need the following definitions.

Definition 5.6. Given a set A € N x 2<N the weight of A, denoted by wg(A), refers to the
quantity Z(l,a)eA 2~ if this quantity is finite, and refers to co otherwise. A set A € N x 2<N such
that wg(A) < 1 is called a bounded request set.

In classical randomness, given a computably enumerable bounded request set A, we can effecti-
vely build a prefix-free machine M such that as long as (I,0) € A, then also M(7) = o for some
string 7 of length [. Here is a higher version of the KC theorem:

Theorem 5.7 (Hjorth, Nies [17]). For any I1}-bounded request set A, there is a I1i-prefiz-free
machine M such that for any string o, if (I,0) € A, then for a string T of length | we have
M(t)=o0.
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Proof. The prefix-free machine M can be found uniformly in A. However, handling the case where
A is a finite set such that wg(A) = 1 makes the proof slightly more complicated. To keep things
as simple as possible, we assume wg(A) < 1 (see below how this hypothesis is used). Except for
the sake of uniformity (which again can be achieved with a bit more work), such an assumption
is harmless, because if wg(A) = 1, by admissibility, there exists a computable stage s at which
wg(As) = 1 already, and we can then directly define a IT}-prefix-free machine M that matches the
conditions of the theorem with respect to the Al bounded request set A,.

At each stage s, for each length | > 1 we define a string o' either of length I or equal to the
empty word, and a sequence r, € 2V. The strings o) which are different from the empty word,
correspond to the strings available for a mapping at stage s + 1. The role of r is double. First,
the real number represented by 7 in a binary form, will be equal to the weight of A, which is also
the measure of the set of strings that is mapped to something in M. Then, if the (n — 1)-th bit
of 75 is O (starting at position 0), it will also mean that the string ¢ is different from the empty
word and available for a future mapping. We need to ensure at each stage s that:

(1) The set of strings currently mapped in M, together with each ¢! different from the empty
word, forms a prefix free set of strings.

(2) rs is a binary representation of the weight of A, which is also the measure of the set of
strings mapped to something in M;.

(3) If rs(n — 1) = 0, the string o? is a string of length n. Otherwise it is the empty word.

At stage 0, we define o) = 0'"171 and 7y to be only 0’s. We have that (1), (2) and (3) are
verified at stage 0.

At successor stage s suppose (I,7) enters A,. If r,_1(I — 1) = 0 we put (¢! ;,7) into M,, we
set ol to the empty word and 74(l — 1) to 1. Fori # [ and i > 1 we set 74(i — 1) = r,_;(i — 1)
and 0! = ol_,. We can easily verify by induction that (1), (2) and (3) are true at stage s.
Otherwise, if r4_1(l — 1) = 1, let n be the largest integer bigger than 0 and smaller than ! such
that rs_1(n — 1) = 0. We should argue that such an integer always exists. Suppose otherwise,
then either r,_; = 1000..., 1 = 1 and wg(A,_1) + 27! = 1, which is not possible by our special
assumption, or wg(As_1) + 27! > 1, which is not possible because A is a bounded request set.
Thus such an integer n exists. We then set 0¥ to be the empty string and rs(n — 1) = 1. Then
for every n < i <1, we set o to 0™ ;70" 171 and re(i — 1) = 0. Then we map o ;07170
to T in M. For 1 <i<mnandi>1wesetrs(i—1)=rs_1(i—1) and ¢! = ol_;. We can easily
verify by induction that (1), (2) and (3) are true at stage s.

At limit stage s we set rs to the pointwise limit of {r;};<s. Then we set each ol to the
convergence value of the sequence {o”};~s. We shall argue that those convergence values always
exist. When for some n and some stage s we have g, % rs+1[n, then 7511 [,, is bigger than r4f, in
the lexicographic order, but as there are at most 2" strings of length n, the sequence {rsl,}, <
can change at most 2" time. Then for any s, a convergence value for {r;};<s always exists. Also
when for some n and some s we have o}’ | # o, then also ryy1[,# rsl,. But as the sequence

{rsfn}wak can change at most 2™ times, then also the sequence {U?}wak can change at most
2™ times. We can easily verify by induction that (1), (2) and (3) are true at stage s.
Because (1) is true at every stage s, we then have that M is a IIj-prefix-free machine, also by

construction we clearly have that if (I,0) € A, then M(7) = o for a string 7 of length I. O

For a given IIi prefix-free machine M, we can consider the probability that M outputs a given
string 0. One can imagine the following process : We flip a fair coin to get a bit, either 0 or 1,
and we repeat the process endlessly. So we get bigger and bigger strings 01 < 02 < 03 < .... In
the meantime we test each of our strings o; available so far, as an input for our machine M. If at
some point M (o;) halts for one i (and it can be at most one i), then we stop the process.

It is clear that following the previous protocol, the probability that we output a given string
7 is given by Y{27l°l . M(o) = 7}. Note that this all make sense, thanks to the prefix-free
requirement we have for our machine.

Definition 5.8. For a IIj prefix-free machine M, we denote by Py(c) the probability that M
outputs o, that is, Z{Q‘M : M(1) =0}

We now have the following higher analogue of the coding theorem, which is useful for the study
of lowness for ITi-Martin-Lof randomness.

Theorem 5.9 (Hjorth, Nies [17]). For any I1}-prefiz-free machine M, we have a constant cp; such
that Py (o) < 275 x ¢cpr for any o.
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Proof. We build a IT}-bounded request set A from our machine M. At successor stage s, for every
string o such that Pys(0)[s] # 0, we simply put into A the pair (m, o) for m = [—log(Pas(o)[s])]+1
(as long as (m, o) is not already in A[s]). At limit stage s, we define A[s] to be |J,_, A[t].

For a given ¢ suppose that Pys(o) = r for r a real number and let n be the smallest integer such
that 27" < 7. By construction the weight corresponding to o in A is of at most >, - 2 ol =
27" < r. Also because Y Pyr(0) < 1 we have that A is a bounded request set for which we can
build a prefix-free machine N. Also for each string o with Pys(0) = r and 2™ the greatest power
of 2 such that 27" < r, we have that (n+1, ) is enumerated in A and then that Py;(0) < 27"%! <
2771 x4 = 27 Kn(9) 5 4 < 27 K(9) x ¢) for ¢y a constant depending on M. O

5.3. Equivalent characterizations of I1}-Martin-L6f randomness. We shall now see an im-
portant lemma. It is clear that any X9 set can be described by a X{ prefix-free set of strings. But
this does not hold anymore in the higher setting. Nonetheless, from a measure theoretical point of
view, a IT}-open set can be described by a set of strings which is as close as we want from being
prefix-free.

Definition 5.10. We say that a set of strings W is e-prefix-free if >} _i;, M[o]) < AM([W]™) +e.

Lemma 5.11. For any II}-open set U, one can obtain uniformly in e and in an index for U, a
e-prefix-free I} set of strings W with [W]= =U.

Proof. We use here the projectum function p : w§* — w. Let U be a I1} set of strings describing
U. At successor stage s, if o enters U, we find a finite prefix-free set of strings Cj, each of them
extending o, such that [o] € [W,_1]< u [Cs]< and such that A([W,_1]< n [Cs]%) < 27P0) x ¢
(and if nothing enters U we define Cs = ). We then add each string of Cs to W. At limit stage
s we define W, to be |J,_, W;.

It is clear by construction that we have U = [W]=. Moreover, we have > ., A([o]) < A(U) +
Scet Wt ]® 0 [C]F S AMU) + e X e 2770 AU + <. O

We can now show the higher equivalent of the well known Levin-Schnorr theorem, in classical
randomness.

Theorem 5.12 (Hjorth, Nies [17]). Given a sequence Z, the following statements are equivalent.

(1) The sequence Z is 113 -Martin-Léf-random.
(2) There is a constant ¢ such that for every n we have K(Z|,) = n —c.

Proof. (1) = (2): Let us show that —(2) implies —(1). Uniformly in ¢ € N, we define Y. =
{X | 3In K(X|,) <n—c}. Each U, is a II}-open set and [ U, contains all the sequences that
do not verify (2). It remains to prove A(U.) < 2¢ to deduce that none of them is IT{-Martin-Lof
random. Suppose for contradiction that A(U.) > 27¢ and let W be the (non effective) prefix-
free set of strings which describes U, and which is minimal under the prefix ordering. We have
1> w2 %@ >3 o 27l92¢ > \(U,)2¢ > 1, which contradicts that p is a II}-continuous
semi-measure.

(2) = (1): Consider now a II}-Martin-Léf-test (), Uy, and let us build a IT}-prefix-free machine
M such that for every X € [, U, and every ¢ we have some n with Ky;(X |,,) < n—c. Using
Lemma 5.11, we can get a II} set of strings W,,, uniformly in n, such that U,, = [W,,]< and such
that >, . A([o]) < AU,) +27"

Then to define M, we first define the II}-bounded request set A by enumerating (|o| — n, o)
for each n and each 0 € Wa, 2. We have that A is a bounded request set because wg(A)
Y Yoewn a2 < X2 Yew,, 0 2717 < X, 2" (A Uzng) +27207F) < X, 20270
Dn 2771 < 1. Also we have for any X € (), U, and any n, a prefix of X in Wy, which is
compressed by at least n, with the II} prefix-free machine defined from A. Therefore for every c
there is an n such that K(X1,) <n —c. O

<
<

We can also deduce from Lemma 5.11 a characterization of II}-Martin-Lof-randomness, an
analogue of a result of Kucera’s [26].

Proposition 5.13. A sequence Z is 111 -Martin-Léf-random if and only if Z has a tail in every
non-null ¥} closed set.

Proof. Suppose that Z is not I1}-Martin-Lof-random. Then every tail of Z is not I13-Martin-Lof-
random, so Z and all of its tails miss every ¥} closed set consisting only of IT}-Martin-Lf-random
sequences (e.g. complements of components of the universal I1}-Martin-Lof-test).
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Suppose that Z is II}-Martin-Lof-random. Let P be X1 closed and non-null, and let V be the
complement of P. Let € be such that A(V) + ¢ < 1. By Lemma 5.11, let V be a e-prefix-free 111
set of strings which generates V. We let V™ = [V™]~, where V™ is the set of concatenations of m
strings, all from V. We have >, .. A([0]) < (2, A([e]))™, and the measure of V™ is bounded
by the weight of V™. The important point is that A(V™) goes to 0 computably, so (), V" is a
IT1-Martin-Lof test. Let m be least such that X ¢ V™; as VO = 2%, m > 0. Let 0 € V™! which is
a prefix of X. Let Y be such that X = cY. Then Y € P. O

5.4. Lowness for II}-Martin-L6éf randomness. The sequences which are low for Martin-Lof
randomness have been extensively studied. We shall transpose in this section the main results of
the lower setting to the higher setting, using continuous relativization.

In general, given a randomness notion C' whose definition relativizes to any oracle X, we say
that X is low for C if CX = C.

Definition 5.14 (Hjorth, Nies [17]). We say that A is low for II}-Martin-Lof randomness iff every
[I}-Martin-Lof random Z is also 11} (A)-Martin-Lof random.

5.4.1. higher K-trivial sequences.

Definition 5.15 (Hjorth, Nies [17]). A sequence A is higher K-trivial if for some constant d,
K(Al,) <K(n) + d.

It is obvious that any A} sequence is higher K-trivial, because up to an index for such a sequence
A, the information about the length of a prefix of A is enough to retrieve that prefix. We shall see
that just like for the lower setting, there are non-Al and higher K-trivial sequences. Solovay was
the first in [46] to build an incomputable K-trivial sequence. Later, Hjorth and Nies showed that
similarly, there are non-A} higher K-trivial sequences. Both proofs are similar in the lower and in
the higher setting.

Theorem 5.16 (Hjorth, Nies [17]). There is a higher K-trivial which is not A}.

Proof. The construction :

We want to build a I} higher K-trivial sequence X which is co-infinite and which intersect any
infinite [T} set. Let {P.}cen be an enumeration of the I1} sets and let U be a universal ITi-prefix-free
machine. We enumerate X and build at the same time a IT}-bounded request set M such that
inf{m : (m,X,) e M} <Ky(n)+ 1. We keep track of a set of Boolean values R., initialized to
false and meaning that X does not intersect P. yet.

At successor stage s, at substage e for which R, is false, if there is n € P, 5 with n > 2e and such
that the weight of M at stage s and substage e — 1, restricted to strings of length bigger than n,
is smaller than 277!, then we enumerate n in X at stage s, we set R, to true, and for every pair
(I, Xs—1lm) in M at stage s and substage e — 1, we put (I, XsI,,) in M at stage s and substage e.

After all substages e, if (0,n) is enumerated in U at stage s, we enumerate (|o| + 1, Xs[,) in
M at stage s.

The verification :

We should prove that wg(M) < 1. The weight of all the pairs we enumerate in M because of
some (0,n) in U, is bounded by 1/2 (because X, ,\c1/ 27171 < 1 and because for each (o,n) € U
we increase the weight of M by at most 2*“’|’1). Then for each e, the additional weight we put
in is bounded by 27¢~!. Therefore the weight of M is bounded by 1.

We should now prove that X is not Al. It is clearly co-infinite, as for each e we add in X at
most one integer bigger than 2e. Suppose that P, is infinite. Then at some stage s it is already
infinite, by admissibility. Also at any stage t we have wg(M|[t]) < 1. Therefore there is a smallest
length n such that the weight of M at stage s, restricted to strings of length bigger than n, is
smaller than 27!, At this point, the integer n is enumerated in X if R, is still false. So X
intersects every infinite IT} set.

Also by construction it is clear that inf{m : (m,X|,) € M} < Ky(n) + 1. Therefore X is
higher K-trivial. ]

Chaitin proved in [4] that there are only countably many K-trivial sequences. With a similar
proof, we also have that there are only countably many higher K-trivial sequences.

Theorem 5.17 (Hjorth, Nies [17]). There is a constant ¢, such that for each constant d and each
n, there are at most ¢ x 2¢ many strings o of length n such that K(o) < K(|o|) + d.
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Proof. Let M be the machine which on a string 7 outputs |U(7)|. If 7 is a short description for
any string of length n via U, then 7 is a short description for n, via the machine M. Also by the
coding theorem (Theorem 5.9) we have Py(n) < 27X x ¢j; for some constant cp; (recall Py,
from Definition 5.8). We now claim that for any length n and any d, there are at most cp; x 2¢
strings o of length n such that K(¢) < K(n) + d. Suppose otherwise for a given length n. Then
Pyr(n) = cpr x 2% x 2~ K(n)—d — ¢ x 27K which is a contradiction. O

Corollary 5.18 (Hjorth, Nies [17]). There is a constant ¢, such that for each constant d there are
at most ¢ x 24 many sequences X such that K(X ) < K(n) + d for every n. In particular there
are at most countably many higher K-trivial sequences.

Proof. With ¢ the constant of the previous theorem, if there are more than ¢ x 2% many sequences
X such that K(X1,) < K(n) + d for every n, then also for n large enough, there are more than
¢ x 24 many strings o of length n such that K(o) < K(|o]) + d. O

The previous theorem will allow us to determine that higher K-trivial sequences are actually
fairly simple to describe: They are all higher Ay sequences. Also we can even put them in the
sharper class of sequences with a collapsing approximation.

Theorem 5.19 (Hjorth, Nies [17]). Every higher K-trivial sequence A has a collapsing approxi-
mation.

Proof. Suppose that A is higher K-trivial with constant d. For each stage s < w§¥, let us define
the Al function f, : 2N — N by f,(0) = 1 if V7 < o K(7)[s] < K(|7|)[s] + d and f.(c) = 0
otherwise. Note first that T, = {o : fs(0) = 1} is a tree, that is, if fs(o) = 1 then also we must
have fy(7) =1 for 7 < 0. Let us show that {f}, <wew 18 a finite-change approximation converging
to some function f. Suppose otherwise and let ¢ be minimal for the prefix ordering, such that
{fs(0)}, <wsk changes infinitely often. By minimality of o we have stages s; < s3 < w{* such that
{fs(7)},, <s<s, 18 stable for any 7 < o but such that {fs(0)}, <., changes infinitely often. Note
also that in this case we must have fs(7) = 1 for every 7 < o and every s € [s1, s2] because any
set Ty is a tree and because we must have infinitely many stages s € [s1, s2] with fs(o) = 1. This
imply in particular that Vs € [s1,s2] V7 < 0 K(7) < Ks(|7]) + d. Also we must have infinitely
stages to < t; <tg < -+ € [s1, $2] such that f;, (o) =1 but f;,+1(0) = 0 for i € N. For each stage
t; we have K(o)[t;] < K(|o|)[t:] + d but K(o)[t; + 1] > K(|o|)[t; + 1] + d. As K is decreasing it
means that K(|o|)[t; + 1] < K,[t;]. But then we have K(|o|)[to] > K(|o)[t1] > K(|o|)[t2] > ...
which is a contradiction.

Thus {fs} ok is a finite-change approximation converging to some function f. This implies

that the sequence of trees {Ts}

s<w

s<wek converges pointwise to a tree T" whose paths are exactly the

sequences which are higher K-trivial with constant d. In particular A € [T]. As [T] contains
finitely many elements, then there must be a prefix o of A such that A is the only element of [T7].
Now let A; be the set of stages such that s € A; iff for every n, T, contains at most ¢ x 2¢ strings
of length n. Let Ao be the set of stages such that s € Ay iff T, contains at least one infinite path
extending o. By admissibility, we have that both A; and A, are unbounded below w*. Also As
{fs}s <wgk 15 @ finite-change approximation, we also have that both A; and As are closed. Thus
A n Ay is a closed unbounded set of stages. Let {7}, < be the approximation of T restricted
to stages s € A1 N As. As stage s let Ag be the leftmost path of T extending o.

It is clear that {A} ¢k converges to A, because there is only one infinite path extending
o in T, and because {fs}s<wg’ﬂ is a finite-change approximation. Let us show that {4}
collapsing. For contradiction, suppose otherwise, that is for some lengths n; < ny < ... and some
stages s; < s < ... such that s = sup; s; < w§¥, we have Al,,< A,, for each i € N. As As the

sequence {fs},_ o is a finite-change approximation, we must have A € T,. But as s € A; n Ay we
1

must have that T contains at most ¢ x 2¢ many path and thus that A4 is Af. O

s<w

ck is
s<w§

Using Theorem 2.16, the following is immediate:
Corollary 5.20 (Hjorth, Nies [17]). If X is higher K-trivial and X is not A}, then wi® > wik.

5.4.2. Lowness and continuity. Hjorth and Nies showed [17] that A is low for II}-Martin-Lof rand-
omness iff A is Ai. In order to see that, we will restrict the notion of relativization in the same
way we restricted the notion of hyperarithmetical reducibility : by forcing to keep continuity. In
the lower settings, any ¥9(X) set of reals U, can also be seen as a c.e. set of pairs W € 2<N x 2<N|
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such that U = | J{[r] : (o,7) € W and 0 < X}. Note that such a set W gives 29(Y) sets of reals
for every Y e 2N,

Definition 5.21 (Bienvenu, Greenberg, Monin [2]). An open set I is X-continuously II} if there
is an X-continuous I} set of strings W such that & = [WX]~.

Definition 5.22 (Bienvenu, Greenberg, Monin [2]). An X-continuous IT}-Martin-Lof test is given
by a uniform sequence of X-continuous I} open sets {U,,} such that for any n we have A(UX) <
27,

neN?

In the lower settings, given c.e. description W < 2<N x 2<N of a 9(X) set of reals U such that
AU) < ¢, it is possible to uniformly transform W into V < 2<N x 2<N such that YX MV¥) < e
and such that VX A(W¥) < e — [W]X = [V]¥. Note that this is not always possible with X-
continuous IT}-open sets. In particular, there are some oracle X such that there exists no universal
X-continuous IT}-Martin-Lof test (see Chapter 7 of [35]). The fact that continuous relativization
lacks such convenient properties, diminishes its interest. It is nonetheless still a well-defined notion,

and it will find its use in the study of lowness for II}-Martin-Lof randomness. In particular we
define:

Definition 5.23 (Bienvenu, Greenberg, Monin [2]). A sequence A is continuously low for II}-
Martin-Lof randomness if the A-continuous IT3-Martin-Lof randoms coincide with the ITi-Martin-
Lof randoms.

It is clear that if A is low for II}-Martin-Lof randomness, then also it must be continuously
low for IT}-Martin-Lof randomness. Also we will now see that higher K-triviality coincides with
continuous lowness for ITi-Martin-Loéf randomness. We will then see that no non-A} higher K-
trivial is low for ITj-Martin-Lof randomness (using this time full relativization), which will imply
that only the Al sets are low for IT1}-Martin-Lof randomness.

We have defined continuous lowness for ITi-Martin-Lof randomness. Let us now define the
analogue notion for the higher Kolmogorov complexity.

Definition 5.24 (Bienvenu, Greenberg, Monin [2]). A sequence X is continuously low for K if for
any X-continuous II} prefix-free machine M we have a constant ¢ such that K(o) < K3y (o) 4 car
for every o.

Lemma 5.25 (Bienvenu, Greenberg, Monin [2]). Given an oracle-continuous ITi-open set U <
2<N » 2<N one can define uniformly in n € N and in ¢ € Q* an oracle-continuous IT}-open set
V € 2<N x 2<N guch that:

o If ANUX) <27 then UX = VX,

e MN{X : AVX)>2""}) <.

Proof. Let n be fixed. Recall that p : w{*¥ — w is the projectum function. At stage 0 we set
Vo = . At successor stage s, suppose that (o, 7) is enumerated in U. Let us consider the Aj-open
set W={X : AM(VX,uU[r]) >2 "}. Let us find a finite set of strings B such that [B]<uW = [o]
and such that A([B]< n W) < € x 27703, For any string p in B we then add (p,7) in V at stage
s. At limit stage s we define Vs to be the union of V, for ¢t < s.

It is obvious that if A(U¥X) < 27", then YX = V¥X. Also by construction, at successor stage
s, we add in {X : A(VX,) > 27"} something of measure at most & x 27P(), Tt follows that
AM{X A X)>27") <. O

Before we continue, we emphisize that continuous relativization can be used, thanks to the
previous lemma, to show the higher analogue of the van Lambalgen theorem:

Theorem 5.26 (Bienvenu, Greenberg, Monin [2]). The sequence X @Y is 11 -Martin-Ldf random
iff X is 111 -Martin-Lof random and Y is X -continuously 11} -Martin-Lof random.

Proof. Suppose first that some sequence X @Y is captured by some I1}-Martin-Lof test N,, Un. For
Un = U,, »,[01 @ 02], note that we clearly have A(U,, ,,[01 @ 02]) = Ao, 0, (U[o1] X [02]). Also
we can consider that the pair (X,Y) is not IT}-Martin-Lof random in the product space 2V x 2N,
Let (), Un be a uniform intersection of IT}-open sets of 2% x 2N with A(U4,,) < 27" and (X,Y) €
(,, Un. For astring o and an integer n, let us denote by U7 the II{-openset {Y : VX > o (X,Y) €
Uy,}. Let V, be the X-continuously IIi-open set containing ¥ and equal to | J,_ Ug,. Suppose
that for all but finitely many n we have A(V,,) < 27 ™. Then Y is not X-continuously IT{-Martin-L&f
random. Otherwise there are infinitely many n such that A(V,) > 27™. Also consider now for each
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n the Ili-open set S, = {Z : A(UZ,) > 27 "}. Let us show that A\(S,) < 2 ™. Suppose otherwise
and let A be a pairwise disjoint set of strings describing S,,. We have A(Uay,) = > -4 2-loINUg,) >
27" A 27191 > 9727 which is a contradiction. Thus A(S,) < 27" for every n and we have for
infinitely many n such that X € S,,. Also {S,},,oy is a II}-Solovay test capturing X, which is then
not IT}-Martin-Lof random.

Conversely, suppose that X is not IT13-Martin-Lof random or that Y is not X-continuously IT3-
Martin-Lof random. It is enough to deal with the last case, as if X is not I3 -Martin-Lof random
it is certainly not Y-continuously IT}-Martin-Lof random either. So suppose that Y is in some
X-continuous I1}-Martin-Lof test (), U where each U, can be seen as a I} subset of 2<N x 2<N,
From Lemma 5.25 we can consider that each U, is such that A({Z : AUZ) > 27"} < 27" still
with Y € (), U, It is clear that the set | J p<n [7] X U] is a II{-open subset of 2V x 2Y, defined
uniformly in n and which contains (X,Y). Let us prove that it has measure smaller than 2-"+1.
Since for 7 < 7/ we have U7 € U , we then have AMUrea<n [7] x Ug) = supp, 257 2 AM[T] x UT).
Also for each m, the measure of the set of strings 7 of length m such that A(U) > 27" is of
em < 27", whereas on other strings 7 of length m we have A\(U]) < 27". We then have:

Z A([T] X Z/[:z—) < (1 — Em)2_” +em < g—n+1
|7|=m

It follows that A({J,eo<v [7] x Up) < 27™*! and we then have a II}-Martin-Lof test capturing
(X,Y). 0

5.4.3. Low for K and low for IIi -Martin-Léf randomness.

Proposition 5.27 (Bienvenu, Greenberg, Monin [2]). If a sequence X is continuously low for K,
then it is higher K-trivial.

Proof. Let U be a universal I1}-prefix-free machine and let M be the II} set of triples where we
enumerate {0, 7,0} in M at stage s if U(7) = |o| at stage s. We have for every oracle X that
M is a prefix-free machine. We also have for any X and any o < X that K3, (c) = K(n). Now
because X is low for K we have K(X[,,) < K37 (X n) + car = K(n) + cpr which makes X higher
K-trivial as well. ]

It is clear that continuous lowness for K implies continuous lowness for II}-Martin-Lof random-
ness. The converse also holds but requires some work. We shall show that just as in the lower
settings, continuous lowness for IT}-Martin-Léf randomness implies continuous lowness for K. A
direct proof of that would certainly be possible, but we will instead show more, by using the
following notion:

Definition 5.28 (Bienvenu, Greenberg, Monin [2]). The sequence A is a continuous base for II}-
Martin-Lof randomness if there is some A-continuous ITi-Martin-Lof random sequence Z such that
Z wakT A.

We can first observe that any sequence which is continuously low for K is also a continuous base
for T1}-Martin-Lof randomness.

Proposition 5.29 (Bienvenu, Greenberg, Monin [2]). If A is continuously low for K, then A is a
continuous base for 1} -Martin-Léf randomness.

Proof. Being continuously low for K implies being continuously low for IT}-Martin-Lof randomness.
Also by Theorem 5.2, for any sequence A, there is a I1}-Martin-Lof random Z such that Z higher
Turing computes A. Also as A is continuously low for IT1}-Martin-Lof randomness, the sequence Z
is A-continuously IT{-Martin-Lof random. O

Hirschfeldt, Nies and Stephan proved in [16] that the two notions actually coincide in the lower
setting. The result can be transfered in the higher setting, but the proof needs to be modified due
to the usual topological issues of higher computability.

Theorem 5.30 (Bienvenu, Greenberg, Monin [2]). If A is a base for continuous 11} -Martin-Ldf
randomness, then A is continuously low for K.

Proof. Suppose that Z is A-continuously II}-Martin-Lof random and suppose that ®(Z) = A
for some higher Turing functional ®. We can assume that if (7,0) is in ® then ® also contains
(r,0') for each ¢ < o. Let M be any higher A-continuous prefix-free machine. Note that
we see M as a I} subset of 2<N x 2<N x 2<N guch that MX is a prefix-free machine. Note
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also that MY need not to be a prefix-free machine for any oracle Y. We can assume that
each triple (7,0, p) is enumerated w§*-cofinally many times in M. For each integer d we will
describe an algorithm having d as a parameter. Each instance of the algorithm will enume-
rate some II} set of strings C; ., for each triple (7,0, p) € 2<N x 2<N x 2<N (50 called ‘hungry
sets’ by Hirschfeldt, Nies and Stephan) and will enumerate a I} bounded request set N € N x 2<N.

The algorithm for a parameter d:

Before giving the algorithm, let us first fix for each triple (7,0, p) a rational 6, . , such that
2ir0.pOr0p < 1. Recall also that p: w§® — w is the projectum function.

At the beginning of the algorithm, for each triple (7,0, p) we set C o= = . Then at successor
stage s + 1 of the algorithm, let (7,0, p) be the new triple enumerated in M,. Look at all pairs
(n, 7) enumerated in ® at stage ¢ < s until two conditions are met: First the string 7 should not
be marked as used (as defined below). Then we must have A([C? , ,]<) + 2l < 2-42-lel If no
such pair (n,7) is found then we go to the next stage.

Otherwise we want to add n to C7 , ,. But we also want to keep all the open sets described by
each C7 ; , pairwise disjoint. Since it is not be always possible, we keep them ‘mostly disjoint’. Let
U® be the set of all the strings in any of the C7 , , which are compatible with 7. It is possible that
[7] — [U®]™ is not an open set. To remedy thls Just like in the proof of Lemma 5.11, let B® be a
finite set of strings such that [B*]< u [U*]< = [5] and such that A\([B*]< n [U*]<) < 277()5, , .
Note that it is Al uniformly in s to find such a set B*. Then we mark n and all strings extending

n as ‘used’ and we set 31 = C3 U B, Then if A([C25]]<) > 279712717/ we enumerate the

T,0,p o,z,q T,0,p
pair (d + 1+ |o]|, p) into N.
Finally, at limit stage s we set each C? ,  to be | J,_,C T o,p°

Verification : Bounded request set

We have to prove that for each d, the set N created by the instance of the algorithm with para-
meter d, is a bounded request set. In other words we have to prove that wg(N) = Z(l,p)eN 27t < 1.
It is clear that we have wg(N) < %Zf,a,p M[Cr.0,5]) because each [C , ,]< has measure at most
2= x 2-191 " and for each of them we enumerate at most once some (d 4 1+ |o|, p) into N. So it is
enough to prove that 3’ M[Cro.p]™) <2. Let

T,0,p
E = U ([Crop]™ N [Crorp]7)
(r',0",p")#(7,0,p)

and let E. , , be the open set generated by strings n such that [7] is covered by [C; 4, ,] after [n]
is covered by some [Crr 41 = for (7,0",p') # (1,0,p). Let £, , , be the open set generated by
strings 1 such that [n] € F and such that [5] is covered by [CT,(,,,)] before it is covered by other
[Crr ot ] for (7,07 p’) # (7' o, p). We have:

Z/\ To’p ZA 'ro’p Z )‘ 'ro’p Z A TUP

T,0,p T,0,p (1,0,p) (1,0,p)
Clearly >, M[Crop]™ — E) + X, 5 ) MES 5 ,) < 1 because all the sets involved are pairwise

T,0,p
disjoint, by the definition of E' and E7 , ,. Let us prove that }, ., » A(E70,) < 1. We have:

D AMEroy) <DL 2 MBI AU

(1,7.0) (1,0.p) s<wi®

Z Z 9—p(s) « Srop

(7.0.6) s<wik

/N

/N

1

Therefore IV is a bounded request set.

Verification : Martin-Lo6f test

Let Cfa p be the set of strings C;,,, created by an instance of the algorithm with d as para-
meter. Let C4 = | JC4 By construction we have that A([C4]<) < 2ir<aop M[Crop]™) <
Zaedom( M) 2 2-d9=lel As M4 is an A-continuous higher prefix-free machine we have that

2oedom(M) 2 ~lol < 1 and then A([C4]<) < 27 Then (,[C4] is a A-continuous ITI}-Martin-Lof

T<A,0,p"
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test. This implies by hypothesis that there is some d such that Z ¢ [C4]<.

Verification : Continuously low for K

First note that if Z € C;,, for some strings 7,0, p, we necessarily have 7 < A, because
otherwise some prefix of Z would be mapped to something incomparable with A, which is a
contradiction. We now only consider the algorithm with d as a parameter where Z ¢ [Cé“]f We
pretend that if (7,0, p) is enumerated in M for o < A then (d + 1 + |o|, p) will be enumerated in
N. Suppose not, then it means that A([Cr 5 ,]<) < 2—d=1 « 9=lol Let n < Z be large enough so
that A([Cr.0p]<) + 271" < 279 x 27191, There exists s such that (7,0, p) is enumerated in M at
stage s and such that for some t < s we have (7, 7) which is enumerated in ® at stage ¢ for ' > 7.
At this stage, if  was marked as used it means that some prefix of 1/ was already enumerated
in another C7, ,, , for 7 < A, and so that Z is in [CZ4]< which is a contradiction. If 5’ was not
marked as used then some B? is created such that 7' = [B*]< u [U®]~. If a prefix of Z is in B*
then Z is in [C5H!]< otherwise Z was already in some [C3 1 ] for 7/ < A. In either case it is a
contradiction. Therefore (d + 1 + |o|, p) will be enumerated in N. It follows that from N, we can
build a IT} prefix-free machine that compresses as well as M4, up to the constant d + 1. O

Corollary 5.31 (Bienvenu, Greenberg, Monin [2]). If a sequence A is continuously low for II3-
Martin-Lof randomness, then also it is continuously low for K.

Proof. Suppose A is continuously low for ITi-Martin-Loéf randomness. By the higher Kuéera-
Gécs theorem (Theorem 5.2), there is a IT}-Martin-Lof random sequence Z which higher Turing
computes A. But Z is also A-continuously IT{-Martin-Lof random, making A a continuous base
for IT}-Martin-Lof randomness. Therefore A is continuously low for K. ]

Corollary 5.32 (Hjorth, Nies [17]). A sequence A is low for 11} -Martin-Lof randomness, with full
relativization, iff it is Al.

Proof. Suppose A is not continuously low for ITi-Martin-Lof randomness, then it is certainly not
low for ITi-Martin-Lof randomness using full relativization. Now if it is low for IT{-Martin-Lof
randomness it is then continuously low for K and therefore higher K-trivial. If furthermore it is
not A}, by Corollary 5.20 we then have wi' > w{*. Also then we have A >;, O and therefore A
hyperarithmetically computes a member in any non-empty ¥} class. In particular it hyperarithme-
tically computes a IT3-Martin-Lof random Z which is therefore in a A}(A) nullset. It follows that
A is not low for I1}-Martin-Lof randomness. ([

So no non-A} sequence is low for I1}-Martin-Lof randomness. It is however possible to show
that non-A} sequences are continuously low for IT3-Martin-Lof randomness. Actually it is possible
to show that any higher K-trivial is also continuously low for ITi-Martin-Lof randomness. The
proof works similarly to the one of Hirschfeldt and Nies in the lower settings, with some additional
care due to the continuity problems which comes with higher computability. The proof is rather
long and technical, which is why we do not present it here, but the reader who is interested in it
can refer to Section of 4.5 of [35].

6. MORE HIGHER RANDOMNESS NOTIONS

6.1. Higher difference randomness. Recall higher difference randomness from Definition 3.9.
We shall now show that a II}-Martin-Lof random is higher difference random iff does not higher
Turing computes O.

Lemma 6.1. Let Z be a I1}-Martin-Lof random sequence. Let @ be a functional. For any ¢, let ®.
be the transformation of ® given by Lemma 2.12, so that the open set of sequences on which & is
not consistent has measure smaller than . Then there exists ¢ such that A(®,'.(Z1],)) < 27"2¢
for every n.

Proof. Let u(o) = A(@;,l‘(,‘ (0)). Let us show that there must be a constant ¢ such that u(Z},) <
27"2¢ for every n. Let W, = {0 | u([o]) > 271912¢%1}. Let us show that A\([W,.]<) < 27¢. Suppose
otherwise, that is A([W.]~) > 27°. Let {0, }nen be a prefix-free set of strings of W,, minimal for
the prefix ordering. Let A, be the open set of strings which are mapped to extensions of o,, via

®yjo,. Because o, € W, we have \(A,,) > 2717#12¢71 Let E, be the open set of string which
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are in sets A,, N A,, for i # n. By hypothesis on ®_.,,; we have A\(E,,) < 27/7» and thus that
MAy, — E,, ) > 271onl2e+1 _9=lonl Also the sets A,, — E,, are pairwise disjoint. It follows that:

n

S A4y, —Ep) > %, 2 ll2en gl
> o+l Zn 9—lon| _ Zn 9—lon|
> Ty, 2l
> (2c+1 _ 1)2—c
> 1
This is a contradiction. It follows that A([W.]<) < 27¢. As Z is IIi-martin-L6f random, there
exists ¢ such that Z ¢ U, and thus there exists ¢ such that u(Z1],) < 27"2¢ for every n. O

Theorem 6.2 (Yu [39]). Let Z be a II}-Martin-Léf random sequence. Then Z is not higher
difference random iff Z higher Turing computes O.

Proof. Suppose Z higher Turing compute O. Then also Z higher Turing computes €, the leftmost
path of a Y}-closed set containing only ITi-martin-Loéf random sequences. Let ® be such that
®(Z) = Q. From Lemma 6.1 there exists a constant ¢ such that A(®,,(Z1,)) < 27"2° for every
n. In what follows, the notation ®~!([¢]) implicitly means <I>2__1|0| ([e])-

For every n, we define the IIi-open set U, to be U5<w(1:k ® ([ In]). Then we define the

I1}-open set V to be ey Uscuer {271 ([Qs1n]) © Qln# Qui1ln}. Because Q is higher left-c.e.

we clearly have Z € () (Un, N V). Also U,, n V¢ is actually equal to ®~([Q2,,]) and therefore its
measure is smaller than 2772¢ for every n. Thus Z is not higher difference random.

For the converse, suppose that a II}-Martin-Lof random Z belongs to (), (U, n F) with A(Uy, N
F) < 27" We build a ITi-Solovay test {V,, }men. If m enter O at stage s, we search for the smallest
stage t > s such that AU, N Fi) < 27 and we set V,,, = Uy, n By with B, 2 F; a clopen set
such that AU, N B;) <27 ™*+L. Note that we can find B; uniformly in U, Fr and m.

As Z is II}-Martin-Lof random, there is some n such that for all m > n, the sequence Z is not in
Vin- Also to know if m = n is in O, with the help of Z, we search for the smallest stage s such that
Z € Up,s. We claim that m € O iff m € O,. Suppose otherwise, that is, m € O but m ¢ O;. Note
that for every stage t > s we have Z € U, n F;, because otherwise Z could not be in U, N F.
Now for ¢ the smallest stage bigger than s such that m € O; and such that A(Up, N Fi) < 277,
we then have that U, + N B, is enumerated in V,,. But then Z € V,, which is a contradiction. [

Corollary 6.3 (Yu [39]). Higher difference randomness is strictly stronger than I1}-Martin-Léf
randommness.

Proof. Tt is clear that a IT}-Martin-Lof test is also a higher difference test. So the set of higher
difference randoms is included in the set of II}-Martin-Lof randoms.

Also using the higher Kuéera-Gécs theorem (see Theorem 5.2), there is some ITi-Martin-Lof
random sequence which higher Turing computes O and which is then not higher difference random,
so the inclusion is strict. ]

6.2. Higher weak-2-randomness.

6.2.1. An equivalent test notion. In order to get a better understanding of higher weak-2-
randomness, Bienvenu, Greenberg and Monin [2] developed an equivalent new type of test. We
start by generalization of a result from Chong and Yu (see [6]) which says that every higher
left-c.e. sequence can be captured by a higher weak-2-test.

Theorem 6.4 (Bienvenu, Greenberg, Monin [2]). No sequence X € 2% with a higher finite-change
approzimation is higher weakly-2-random.

Proof. Let {X,} <; be a finite-change approximation of X. In particular, note that the set C =
{Xs}scwer is a closed set. Let Uy, = J [Xs1n] and let us prove that (), U, < C. If an element
is in U,, then its distance to the closed set C is smaller than 2™ (it shares the same first n bits with
an element of C). Thus if it is in all the U,,, its distance to the closed set C is null and thus it is an
element of C. Therefore we have (1), U, € C and as C is countable it has measure 0. Therefore we
have that (1), Uy, is a higher weak-2-test containing X. 0

ck
s<w1

We now bring the technique of Theorem 6.4 to its full generalization, by giving an equivalent
notion of higher weak-2-tests, that uses finite-change approximations of elements of the Baire space.
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Theorem 6.5 (Bienvenu, Greenberg, Monin [2]). Let {U.} ., be a standard enumeration of the
11 -open sets. For a sequence X we have that the following is equivalent :

(1) X is higher weakly-2-random.
(2) X is in no uniform intersection of I1{-open sets (), Us(n) where [ has a finite change
approzimation and with AUy (,)) < 27"

Proof. (1) = (2) : Consider a set (), Us(n) with {fs},.cr a finite-change approximation of f,
with AUy (,)) < 27" and with X € (1), Uy(n). Note that that we can consider without loss of
generality that A(Uy, (,)) < 27" for any n and any stage s (as we can simply stop enumerating
Uy, (ny if the measure gets too big). Let us prove that X is not higher weakly-2-random. To do so
consider the set A = Usgwf’“ ﬂneN ufs (n) and the set B = ﬂn<w U8<wi‘k ﬂmén uf~ (m)-

Let us prove that B € A. Suppose that Y € B. Then for all n there is a smallest stage s,, so
that Y € ﬂmSn Uy, (m)- As f has a finite-change approximation we have that the limit point of
{fs. Inen is equal to fs for some s = sup,, s,,. For any k there is ¢ > k be such that f, = fslx and
then such that [, <, Uy, (m) = (M<i Us. (m)- Now we have by definition of the sequence {s, }nen
that Y € ﬂméiufsi (m) and therefore we have that Y € [, . Uy, (m)- Since this holds for any F,
this shows that Y belongs to [, Uy, (ry and thus we have Y € A.

Let us prove that A(B) = 0. By measure countable subadditivity we have A(A) <
Dlscwsk A (N, Us.(ny)- For each s < wi* we have A((),, Uy, (n)) = 0 and then that A(A) = 0. But
then as B € A we have A\(B) = 0.

Let us prove that X € B. For all n, there is some stage s, such that fs .= f[,. Then at stage
S, we have X € ﬂmgn Uy, (m)- As this is true for all n, we have X € B. We can then conclude
that B is in a higher weak-2-test containing X.

(2) = (1) : Suppose now that X is not higher weakly-2-random in order to prove that it
is in some set [, Up(ny where f has a finite change approximation. Suppose that X € N, Vn
with A((),, V») = 0. We define f(n) to be the smallest m such that A(V,,) < 27". We have for
every n that A(Vy,)) < 27" and X € Vy(,). All we need to prove is that f has a finite change
approximation {f5}8<w;k,. We simply let fs(n) be the smallest m such that A(V,,[s]) < 27". Then
we clearly have for each n that the set {s : fs(n) # fs11(n)} is finite. O

Corollary 6.6 (Bienvenu, Greenberg and Monin [2]). Higher weak-2-randomness is strictly stron-
ger than higher difference randomness.

Proof. From the previous theorem, we can deduce that higher weak-2-randomness is stronger than
higher difference randomness. Consider the leftmost path  of a ¥} closed set containing only
I1i-Martin-Lof randoms. In particular € is higher left-c.e. and then it is Turing computable by
O. Also if Z higher Turing computes O it also higher Turing computes €. Let {Q} <weh be a
higher left-c.e. sequence converging to 2. Given Z that is II}-Martin-Lof random and not higher
difference random, let ® be the higher Turing functional such that ®(Z) = Q. From Lemma 6.1,
there exists ¢ such that Vn <I>2__1n (Q,) < 27™2¢. Using this, we simply define f(n) to be the index
of the open set fI)__ln_c(Qs Fnte)- It is clear that {fs},_, cx is finite-change, as {)}

S<UJ1
clear that Z € Uy(y) for every n and that A(Us(,)) < 27". Thus Z is not higher weakly-2-random.
Now to prove that the inclusion is strict. Let 21, 25 be the two halves of €2, that is, Q = Q;@Qs.
By the higher van Lambalgen theorem (see Theorem 5.26) we have that ©; and s are higher
Turing incomparable. Therefore, neither €23 nor €5 higher Turing compute O. It follows that
neither Q; nor €25 is higher difference random. However 27 and 9 still have higher finite-change
approximations. Therefore they are not higher weakly 2 random. O

s<wsek 18- It is also

6.2.2. Separation of higher weak-2-randomness and 111 -randomness. We now separate the notion
of higher weak-2-randomness and the notion of IT{-randomness. This is actually done by building a
collapsing approximation of a sequence X which is higher weakly-2-random. To do so we build an
approximation {X,}, <weh such that for any n, there is no infinite sequence of ordinals so < s7 < ...
for which X1,= X, I, and for which X, (n) # X,,,,(n). It is clear that such an approximation is
collapsing when X is not A}: Suppose X is in the closure of {X; : t < s} for some smallest stage
s. Then X cannot be the only limit point of {X; : t < s} as otherwise X would be Al. But then
there are several limit points and this implies infinitely many changes above some prefix of X.

Theorem 6.7 (Bienvenu, Greenberg and Monin [2]). There is a higher weak-2-random X with a
collapsing approzimation. In particular, there is a higher weak-2-random X that is not I -random.
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The rest of the section is dedicated to the proof of Theorem 6.7. Let {S;}ic. be an enumeration
of all the higher Y9 sets. For each S; and each j let us define the i closed set F; ; so that
Si=U,; Fij-

A Y g

Sketch of the proof:

We will build X as a limit point of some {XS}K‘U;;C. Each X is built as the unique limit point

of a sequence {[07]}nen, Where o} < 02 < .... At each stage we will ensure that X, is in some

sense higher weakly-2-random at stage s. By this, we mean that for any n, as long as A(S,,[s]) = 1,
we believe that X, should belong to S,[s]. If at some point we have A(S,[s]) < 1 (which is by
admissibility equivalent to A(S,) < 1) then n is removed from the set of indices that we use to
make X higher weakly-2-random.

Concretely we have at each stage s a set of indices {e,, }nen Which are initialized at stage 0 with
e, = n. Suppose that at stage s we have for each n that A(S., [s]) = 1. Then it is easy to build
a Af sequence X in [, S, [s]: We can suppose that eq is such that Fe,; = 2" for all i. So for
do = 0 and o equal the empty word, we have A(Fe, .4, | 00) = 1. Then, inductively, assuming that
for some n we have M((,<, Fey.di | on) = 27", we then continue the construction as follows:

Step 1: We find one strict extension o,41 of o, so that /\(ﬂkgn Ferod | ont1)[s] =277
Step 2: We find some index dp,+1 such that M((,<,i1 Fepode | Ons1)[s] =271

This way we have an intersection of closed sets containing at most one point X,. Also by
the measure requirement, this intersection is not empty at each step and then we really have
X, €[, Se.[s]- Note that for the actual construction we will need different lower bounds for the
measure requirements. This is due to some technicalities, explained in the next paragraphs.

We only try here to give the general idea. To have that the X converge to some X, we have to
keep the chosen strings and closed sets at stage s + 1 equal if possible to those of stage s. When
do we have to change them? Three things can happen :

(1) We might have A(S,, )[s] =1 for all s <t but A(S,, )[t] < 1.

(2) We might have a smallest n such that (3) does not happen up to n — 1 and such that the
measure of [, ., Fe, a, inside [0y, 1] drops below 27" at stage t.

(3) We might have a smallest n such that (2) does not happen up to n and such that the
measure of (), ¢, 1 Fey.d, inside [0y,41] drops below 277! at stage ¢.

If (1) happens then the index e, is set to some fixed index a so that A(S,) = 1, therefore each
index e, can change at most once. If (2) happens, it is the responsibility of the string o,41 to
change, and if (3) happens it is the responsibility of the index d,,+1 to change.

For (2), we are sure that there exists one extension o, of o, of length |o,| + 1 such that the
measure inside [0,41] does not drop below 27". So as long as the construction is stable ‘below
the choice of 0,1, the string 0,,1 can change at most once. We will see that in practice we will
need extensions of length |o,| + 2n, but for the same reason, the string o,,4+1 can then change at
most finitely often.

For (3), as long as A(S.,,,) = 1, we are sure that we will change only finitely often of index
dpy1. However if A(Sc,,,) < 1 it can happen that d,.; will change infinitely often at stages
51 < 82 < ..., and that t = sup,, s, is the first stage for which we witness A\(S,,,,)[t] <1 (then at
stage t the integer e, 1 is set to a the fixed index such that A(S,) = 1). There is nothing we can
do to prevent those infinitely many changes, which could lead as well to infinitely many changes of
the string 0,,+5. However we can still ensure that if this happens, the string o,41 will then change,
and its previous value will be banished forever, so that the approximation of the sequence X is
still collapsing. To do so, we need to take extensions sufficiently long, so that the current closed
set still has positive measure inside at least two of them. That way we can afford to banish one of
them. So before the formal proof, we recall here Lemma 5.1 that helps us to achieve this:

Lemma 6.8. let o be a string and F a closed set so that A(F | o) = 27™. Then there is at least
two extensions 11,72 of o of length |o| +n + 1 so that for i € {1,2} we have A\(F | 7;) =2 "L

Before the construction:

Let {S;}ien be an enumeration of all the higher X sets, with S; = UjeN
a Y1 closed set. We can assume that each union is increasing. We start by deciding in advance the
length m,, of each extension. We set mg = 0 and then recursively we set m,+1 = m, + (2n + 1).
Finally, let a be an integer so that F,; = 2" for every i.

Fi,; where each F; ; is
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For each stage s and each n we will define indices e and df for the closed set Fen gn, as well
as strings o. Also to simplify the reading, we define three predicates:
A(n,s)  means ANy, Fer,ar | 00)[s] = 272"
A(n,s,0)  means ANy, Feroar | 0)[s] =272
A(n,s,0,d)  means N[Ny, Ferar 0 Fonir 4 | 0)[s] = 9—2n—2

The construction:

At stage 0 we define for each n the set Pj to be the set of strings of length m,,, ordered
lexicographically. We initialize each string of to be the first string of P}* (so they are all a range
of 0), we initialize €] to a and ef** to n. Then we initialize to 0 each index d" of the sets Fen an-

At successor stage s + 1 and substage 0, we set € | = €2 =a, 0¥ | = 0¥ (always the empty
word) and d%,; = d? = 0. Now assume that at substage n we have defined e*_,, d*.; and o* ;
for k < n and that we have A(n, s+ 1) is true. Let us now define e}, 2 and o} at substage
n+ 1.

Def. of /! : If A(S, ni1)[s + 1] = 1, set eltl = ettt and P! = PP+l otherwise set
et =aand P = PPl — {o"*1} (the string o7+ is banished).
Def. of o] : If A(n,s+1 a"“) and o *1 extends o7, 1, set o = 071 Otherwise set
ot to be the first string of P'7' extending o™, ; such that A(n, s + 1 U;’jfll)

Def. of d} : If A(n,s + 1,00}, dr+h) set d2f] = d?*1l. Otherwise set d] to be the

smallest integer such that A(n,s + 1,070, d?ﬂ)

Finally after every substage, define X;;1 to be the unique element in (), [67,].

At limit stage s, for each n > 0 set e? to be the convergence value of {€}};<s and set P to
be the convergence value of {P/'};<s (among other things we will have to prove that we always
have convergence). At substage n, if {o}'};<s does not converge, set o” to be the first string of
P™ extending 077!, otherwise set ¢” to be the convergence value. If {d7};~4 does not converge,
set d to 0, otherwise set it to its convergence value. Finally after every substage, define X, to be
the unique element in (), [07]

The verification:
Claim 1: For every n the sequence {e{}, .
s and every n we have that {e}'},_, converges.
It is clear because e, ; # e only if A(Sen[s + 1]) < 1. Also when this happens we have
ey,1 = a and then it can not happen anymore.

o can change at most once. In particular, for every

Claim 2: For every stage s, any string 7 of size m,, and any closed set F such that A\(F | 7) =
272 there is a string o € P! which extends T so that \(F | o) = 2721

Suppose that A(F | 7) = 272" for |7| = m,,. Using Lemma 5.1 we have two strings 7 and 7 of
length m,, + 2n + 1 so that for i € {1,2} we have A(F | 7;) = 272"7L. Also my41 = m, +2n + 1
and then 71,75 € PP, By construction and by Claim 1, at any stage s we have that Py
contains at most one more string than P?!. Then at any stage s we have at least one string
o € P! which extends 7 and so that A\(F | o) > 27271,

Claim 3: The construction converges, in particular the sequence {Xs},_ = converges to X.
There is no difficulty here.

S<UJ

Claim 4: The sequence {Xs}s<wfk is collapsing.

Let D(s,n) be the sentence : “There is an infinite sequence of ordinal sp < s1 < ... with
sup; s; = s, such that X, [,= X, I, and such that X, (n) # X,,,,(n)".

For {XS}K(%Ic to be collapsing, it is enough to prove that for any s and any n, if D(s,n) is true,
then X1,# Xsl,. Let s be any stage such that D(s,n) is true for some n. Let n be the smallest
integer such that D(s,n) is true, and let sg < s; < ... be a sequence of ordinals making D(s,n)
true.

Let us prove that there is some i such that {X;[n}, ,_, is stable. If n = 1 it is clear because
Xi11=0 for every t < wlk. If n > 1, then by minimality of n, we necessarily have that {X;l2},_,
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converges, otherwise D(s, 1) would be true. So for some ¢ we have that {X;[2} is stable. We
continue inductively to prove that there is some i such that {X;!,}

Let us now fix the integer m such that {o}"

s;<t<s
s, <t<s 18 stable.
}s,<t<s 18 stable, and such that U;’;H # a;jj} for j €
N. We shall now prove that for at least one k < m (presumably for k = m), the sequence {df}, ,_,
does not converge. Suppose otherwise, that is, the sequence {df | k < m},,<i<s converges, then
there is some j > i such that {d} | k < m},,<i<s is stable. But then for all ¢ with s; <t < s we
have A(m, t) and then we also have A(m, s). Then using Claim 2 with (), ,, Fer qx[s] as the closed
set F, we have at least one string o in P™*! extending o such that A(m, s, o) is true and then
such that A(m,t,0o) is true for every ¢ with s; <t < s. Also this contradicts that {o}""'}
does not converge.

So let k < m be the smallest integer such that {dF}
lim;—, d¥ = oo. In particular we have A(k — 1,s,0%), but there is no d large enough such that
A(k — 1,s,0% d). This is only possible if A(Ser)[s] < 1. Then at stage s + 1 we have that
oF < o™ < X,I, is banished, that is, removed from PF.

It follows that we have X [,# X |,. Thus, by minimality of n, for every n’ such that D(s,n’)
is true, we have X |, # X ln.

s; <t<s

s;<t<s does not converge, equivalently

Claim 5: The sequence X is higher weakly-2-random.

It is clear that if A(S,,) = 1, then e"™! = lim _en e™*1 is equal to n. Therefore any sequence
in ), Sen is higher weakly-2-random. We shall then simply prove that we have X €[, Sen.

Let s, be the smallest ordinal such that {(ef,dF) | k <n} .« is stable and equal to

Spn St<w]
{(e*,d*) | k <n}. In particular we have that A = {X;, }uen U {X} is a closed set and that
For ge 0 A is not empty because it contains X . Then also Feor go 0 A is not empty
k<n ) n keN )
and it then contains X, as it is the only non A} point of A.

7. II}-RANDOMNESS

7.1. The Borel complexity of the set of Il}-randoms. For a while not much was known about
IT}-randomness, mainly because the community did not have an angle of attack. This came with
the work of Monin [36] who found a decomposition of the largest I} nullset into simpler objects,
objects that computability theorists are used to work with. Monin defined for this two genericity
notions equal respectively to higher weak-2-randomness and IT{-randomness. This then helped to
answer several open questions.

Definition 7.1 (Monin [36]). We say that X is weakly-Y1-Solovay-generic if it belongs to all sets
of the form | J,, ;, which intersect with positive measure all the Y1-closed sets of positive measure,
where each F,, is a X1-closed set uniformly in n.

Definition 7.2 (Monin [36]). We say that X is ¥{-Solovay-generic if for any set of the form | J,, F,
where each F,, is a L1-closed set uniformly in n, either X is in U,, Fn or X is in some Y1-closed
set of positive measure F, disjoint from [ J,, Fp.

Proposition 7.3 (Monin [36]). A sequence X is weakly-1-Solovay-generic iff it is higher weakly-
2-random.

Proof. Note first that X is higher weakly-2-random iff it is in every uniform union of %1-closed sets
of measure 1. We shall prove that a uniform union of ¥1-closed sets is of measure 1 iff it intersects
with positive measure every ¥1-closed set of positive measure.

Let us prove that a uniform union of ¥} closed sets of measure less than 1 cannot intersect all 31-
closed sets of positive measure. Let | J,, F,, be a uniform union of X{-closed sets of measure strictly
smaller than 1. Let (), U, be its complement. We shall prove that already for some computable s
we have that (), U, s is of positive measure. We actually have that A = (), Uy, — Us<w(1;k N, Un,s S
{X @ wif > ws*}. Indeed, if X € A then the I1}(X) total function which to n associates the smallest
s such that X € (), <, Um,s has its range unbounded in w§* implying that wi > wf*. Also using
Theorem 3.11 saying that A({X : w{® > w$*}) = 0 we then have A([), Un) = AU cwgr N, Un.s)s
and as A([),, Un) > 0, there exists then some s such that A([), Un,s) > 0. Also (), Un s is a Al
set of positive measure, and then by Theorem 3.6 there exists a Al-closed set of positive measure
Fc ﬂn Upns S ﬂn U,. Thus Un F, does not intersect all Z%—closed sets of positive measure.



HIGHER RANDOMNESS 29

Conversely a uniform union of Yi-closed sets of measure 1 obviously intersects with positive
measure any Y1-closed set of positive measure. Then the weakly-Y1-Solovay-generics are exactly
the higher weakly-2-randoms. ]

We shall now prove that the notion of %}-Solovay-genericity coincides with the notion of II}-
randomness. We already know from Theorem 3.14 that if X is higher weakly-2-random but not
[}-random, then wi > wf*. We first should prove that if X is ¥}-Solovay-generic then wi¥ = wg*
(this is the difficult part of the equivalence).

Note first that wX > w$* iff there is @ € OX such that |a|X = w{*. In particular, wi¥ > wsk
iff there is a Turing functional ® : 2<N x N — N such that for any n we have ®(X,n) € OX

<wgk

and with sup,, |®(X,n)|X = wf*. We should show that if X is ¥1-Solovay-generic and if we have

some ® such that ®(X,n) € OF . for all n, then sup,, |®(X,n)[} < w§F. To show this we need
1

an approximation lemma, which can be seen as an extension of Theorem 3.6, saying that any A}
set can be approximated from below by a uniform union of Al-closed sets of the same measure.
We cannot extend this to all 31 sets, but we can for a restricted type of ¥} set:

Lemma 7.4. For a Xy set S = (|, cx Sa Where each S, is A} uniformly in a, one can find
uniformly in an index for S and in any n, a 31 closed set F € S with A(S — F) < 27"

Proof. Recall that p : w$¥ — w is the projectum function. Using Theorem 3.6, one can find
uniformly in o < wf* a Al-closed set F € S, such that A\(S, — F,) < 27P(®)27", We now define
the Y{-closed set F to be [, Fa. We clearly have 7 € S and we have:

MSE=F) = MS—Macur Fo)
A(Ua<wf" (S - ]:Ot))

MUa<wst (Sa = Fa))
Y cust A(Sa — Fa) <27

V/AN/AN

We can now prove the desired theorem:

Theorem 7.5 (Monin [36]). If Y is X1-Solovay-generic then wy = wsk.

Proof. Suppose that Y is 31-Solovay-generic. For any functional ®, consider the set
P={X|V¥n Ja<wi" ®X,n)e0X}

Let P, = {X | Joa < w{* ®(X,n) € OX} and P o = {X | ®(X,n) € OX}, so P =), Pn and
Po = Uncug o

Note that the complement of each P,, is a restricted type of X1 set, on which we can then apply
Lemma 7.4. So we can find uniformly in n a uniform union of ¥}-closed sets included in PS¢ with
the same measure as PS. From this we can find a uniform union of X}-closed sets included in
P¢ with the same measure as P¢. Suppose that Y is in P. As it is ¥1-Solovay-generic we have a
Y1-closed set F of positive measure containing Y which is disjoint from P¢ up to a set of measure 0,
formally A(F nP¢) = 0. In particular for each n we have A\(F nP¢) = 0 and then A\(F° U P,) = 1.
Then let f be the II} total function which to each pair {n, m) associates the smallest computable
ordinal a < w{* such that:

MFEUPp)>1—27"

where {FS} o is the co-enumeration of 7. Let o* = sup,, ,, [f(n,m)|. As f is total and II},
we have by admissibility that a* < w§*. Also

Vn AMFSe U Up<ox Pan)
- Vn )‘(J:Ot* N ﬂa<o¢* P(i,n)
Vn MF = Up<car Pan) =
)‘(‘F - ﬂn Ua<a* Pa,n) =

As Y is ¥1-Solovay-generic it is in particular weakly-Y1-Solovay-generic and then higher weakly-2-
random. Thus by Theorem 3.2 it belongs to no ¥ set of measure 0. Then as F — (), Uy <ox Pan
is a X} set of measure 0 we have that Y belongs to [, U, -q# Pa.n and then sup, |®(Y,n)|¥ <
a* < wik. O

a<w

OO O =

—
—

We can now prove the equivalence:
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Theorem 7.6 (Monin [36]). The set of $1-Solovay-generics coincides with the set of 111 -randoms.

Proof. Using Theorem 3.14 combined with the previous theorem, we have that the ¥1-Solovay-
generics are included in the ITi-randoms. We just have to prove the reverse inclusion.

Suppose Y is not ¥1-Solovay-generic. If wi > ws* then Y is not II}-random. Otherwise
wy = w* and also there is a sequence of X}-closed sets | J, F,, of positive measure such that Y is
not in | J,, 7, and such that any Y1-closed set of positive measure which is disjoint from U,, Fn does
not contain Y. Let (1), U, be the complement of | J, F,,. As wi = wf* we have that Y € (), Uy, s
for some computable ordinal s (the proof of this is like in the proof of Proposition 7.3). Also as
(), Un,s is a Af set, either it is of measure 0 and then Y is not Aj-random, or it is of positive
measure and can then be approximated from below, using Theorem 3.6 by a uniform union of
Al-closed sets, of the same measure. Also as Y is in none of them it is in their complement in
(M, Un,s, which is a Al-set of measure 0. Then Y is not A}-random. O

The previous theorem gives a higher bound on the Borel complexity of the II}-randoms, and
then on the Borel complexity of the largest 113 nullset.

Corollary 7.7 (Monin [36]). The set of I1i-randoms is T13.

The previous corollary, combined with a result of Liang Yu (see [40]) shows that the complexity
of the set of II}-randoms is exactly II3. Yu’s result is an adaptation of one of its earlier result,
showing that the set of weakly-2-randoms (in the lower settings) cannot be X9 [48].

Theorem 7.8 (Yu [40]). Let P be the set of forcing condition consisting of %1 -closed sets containing
only I} -Martin-Léf randoms, and ordered by reverse inclusion. Let (), U, be a II3 set containing
only higher weakly-2-randoms. Then the set {F € P | (), Un N F = &} is dense in P.

Proof. We first show that for any Yi-closed set F, there is a uniform sequence of IT}-open set
(,, Vn such that:

(1) For every n we have A(F n'V,,) < 27" (so in particular F n (), V, is a higher difference
test).
(2) For any o, if F n[o] # &, then Fn o] n(), Vo # D
As stage s, for every o, we put in V,, the leftmost extension of o of length 2|o| +n + 1 which is in
Fs] (if it exists). Note that for every o, there is at most one string of length 2|o| +n + 1 which is
in F. It follows that \(F 0 V) < X e Mjgjmm <2771 <Y,y 27" "1 <277 Note also
that for any o, the set (), V, contains the leftmost path of F if this leftmost path exists.
Consider now a ¥i-closed set F only II}-Martin-Lof randoms together with the set (1), V,, of
the previous paragraph. Suppose that for every o such that F n [o] is not empty, then (1), Uy
intersects F n[o]. Then both (), Uy, and [, V,, are dense in F (for the partial order of strings). In
particular (), U, N[, Vn is dense in F and thus there must be an element X € (), U, N[, V" F.
As X € F n (), Vn, it follows that X is not higher difference random. But then X is not higher
weakly-2-random which contradicts X € (), Uy. It follows that there must exists o such that o n F
is not empty but such that (), U, n F n [o] is empty. O

It follows that the set of higher weakly-2-randoms cannot be X9 but also that the set of IIi-
randoms cannot be X9, and more generally:

Corollary 7.9 (Yu [40]). No set A containing the set of I1}-random sequences and contained in
the set of higher weakly-2-random sequences is X9.

Proof. Suppose that such a set A is equal to |J,, [, Un,m each U, ,, being open. Let P be the
partial order of Theorem 7.8. For each n let B, = (J{F € P | ), Un,m N F = &}. We have
N, Br 0 U, Ny Unm = . Also each set (), Un,m is a TIS set containing only higher weakly-2-
randoms. Therefore by Theorem 7.8 we have that (), B,, contains some Solovay-Y1{-generic element
(some II}{-random element), which contradicts that A = |, (), Un,m contains all of them. O

7.2. Randoms with respect to (plain) II}-Kolmogorov complexity. Monin deduced from
Corollary 7.9 another interesting theorem. Before stating it, we need to introduce a few notions.
In classical randomness, we can define a non prefix-free Kolmogorov complexity C' : 2<N — N,
also called plain complexity. Miller [34] together with Nies, Stephan, and Terwijn [41] proved
that a sequence X is 2-random iff infinitely many prefixes of X have maximal plain Kolmogorov
complexity. We can make a similar definition in the higher setting:
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Definition 7.10. A II}-machine M is a II} partial function M : 2<N — 2<N. We denote by Cs (o)
the ITi-Kolmorogov complexity of a string o with respect to the ITi-machine M, defined to be the
length of the smallest string 7 such that M(7) = o, if such a string exists, and by convention, oo
otherwise.

Just like we proved that there exists a universal I1}-prefix-free machine (see Theorem 5.4) we
can prove that there is a universal II}-machine (we leave the proof to the reader, as it is very
similar to the proof of Theorem 5.4):

Theorem 7.11 (Universal I1}-machine theorem). There is a universal I1}-machine U, that is, for
each TI1-machine M, there exists a constant cy; such that Cy (o) < Cpr(0) + ¢, for any string o.

We can then give a meaning to the ITj-Kolmorogov complexity of a string:

Definition 7.12. For a string o, we define C(o) to be Cy(o) for a universal IIi-machine U, fixed
in advance.

Let us now define the set A of sequences which have infinitely many prefixes of maximal II}-
Kolmogorov complexity:

A={X |3ecV¥nIm=n C(X|y) =m—c}

Proposition 7.13. The set A contains the I -randoms and is contained in the I13-Martin-Lif
randoms.

Proof. 1t is clear that A is a X1 set. So to show that it contains the IIi-randoms, it is enough to
show that it is of measure 1. For every length n, there are at most Zignﬂ:q 27 = 277¢ strings
of length smaller than or equal to n — ¢ — 1. Thus the number of strings ¢ of length n such that
C(o) < n —cis at most of 2"¢. Thus the measure of the clopen set generated by these strings
is at most of 27¢. It follows that for any ¢,n we have A({X | Vm = n C(X ) <m —c}) < 27C.
Also for ny < ng we have {X | VYm = ny C(X ) <m—c} € {X | Vm = ng C(X|,n) <m—c}.
Thus we have A\({X | In Vm = n C(X1,,) < m—c}) < 27 It follows that the measure of A must
be 1. In particular A contains the set of II}-randoms.

Let us argue that A is contained in the set of IT}-Martin-Lof randoms. Indeed, given a prefix-free
machine M such that Ye In Ky (X1,) < n — ¢, one can build the machine N which on any string
o look for strings 71, 7o with 0 = 7172 such that M(71) | and then output M (71)72. Now given 71
of length smaller n — ¢ such that M(7m) = X |, we clearly have that N compresses every string
X1 by at least ¢ for every m = n. O

It follows directly from Corollary 7.9 that A does not coincide with the set of IIi-randoms or
with the set of higher weakly-2-randoms:

Proposition 7.14 (Monin [35] Section 6.2). The set A strictly contains the set of 11} -randoms.
The set A is not contained in the set of higher weakly-2-randoms.

Proof. The set A is easily seen to be 9. The results follows then from Corollary 7.9. ]
The following question remains open:

Question 7.15. Does the set A contain the higher weakly-2-randoms?

7.3. Lowness an cupping for IIi-randomness.

7.3.1. Lowness for II{-randomness. Greenberg and Monin could use Theorem 7.6 to solve the
question of lowness for IT}-randomness [38, question 9.4.11]: Is there some sequence A which is not
Al and such that the largest I1}(A) set equals the largest I1} set? They answered the question by
the negative, in a strong sense.

Theorem 7.16 (Greenberg, Monin [15]). If A is not hyperarithmetic, then some Ii-random is
not 11} (A)-Martin-Lof random.

Greenberg and Monin also improved this result with Theorem 7.21 by showing that a non-
hyperarithmetic A can be cupped above O with a ITi-random sequence Z, that is, Z @ A > O.
However the direct proof of Theorem 7.16 is simpler and we believe is interesting in its own
right. Indeed the second proof elaborates on the simpler one. The proof can be transfered in a
straightforward way to the lower setting, simplifying the proof that a non K-trivial is not low for
weak-2-randomness [9].
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The proof is also based on Hjorth and Nies’s Corollary 5.32 : only the A}l sets are low for
[1}-Martin-Lof-randomness (with full relativisation). Our first step is a higher version of Kjos-
Hanssen’s characterization of lowness for Martin-Lof randomness [21].

Lemma 7.17. Suppose that A is not hyperarithmetic. Let U be a I} (A)-open set which contains
all reals which are not I1}(A)-Martin-Lof-random. Then U intersects with positive measure every
¥1-closed set of positive measure.

Proof. As mentioned, we use the fact that A is not low for I1}-Martin-Lof-randomness. Let X be
a Ii-Martin-Lof random which is not 11} (A)-Martin-Lof-random. Let P be a non-null ¥} closed
set. By Kucera’s Proposition 5.13, there is a tail Y of X in P. Since Y is not IT3(A)-Martin-Lof-
random, Y € U, soUd n P # . Also this intersection must have positive measure: for o < Y and
[0] € U, we have that [0] n P is a non-empty %}-closed set containing Y. As Y is II}-Martin-Lof
random then we must have A\([o] n P) > 0. O

Proof of Theorem 7.16. Let A ¢ Al; let {U,} be the universal 11} (A)-Martin-Lof test. Let P be
the set of forcing condition consisting of ¥1-closed set containing only IT{-Martin-Lof randoms,
and ordered by reverse inclusion. By Lemma 7.17, for every n, the set of elements of P included

in U, is dense in P. It follows that if a sequence of conditions p; > ps > ps > ... is sufficiently
generic, then every element of (), [pn] is a member of (), U,.

By Theorem 7.6 if a sequence of condition p; > po > p3 > ... is sufficiently generic, then every
element of (), [p,] is II}-random.

It follows that there are II{-random elements in (), U,. g

7.3.2. Cupping with a 113 -random.

Definition 7.18 (Chong, Nies, Yu [5]). A real X is II{-random cuppable if there is a II}-random
sequence Z such that X ® Z >, O.

Chong, Nies and Yu, together with Harrington and Slaman proved in [5] a theorem making
an interesting connection between lowness for II}-randomness and lowness for Aj-randomness: A
sequence Z is low for II}-randomness iff it is low for A}-randomness and non II}-random cuppable.
Later Greenberg and Monin showed [15] that every non-A{ real is II}-random cuppable. Note that
if A®Z =), O, then wi*®? > w* and that the set {Z : wi'®? > w5} is a T1}(A) nullset. Thus if
A is ITi-random cuppable it is not low for II}-randomness. It implies that Greenberg and Monin’s
result strengthen Theorem 7.16. They actually even showed something stronger : If A is not A},
then A can join with a IT}-random above any degree. This cupping result is very similar to another
cupping result of Greenberg, Miller, Monin and Turetsky [13]; they show that if A €y r B then A
can be cupped (in the Turing degrees) with B-Martin-Lof-randoms arbitrarily high. Before we
continue, we need to show two lemmas. The first one is the same as in [13].

Lemma 7.19 (Greenberg, Monin [15]). Let W be a set of strings such that A\([W]~) < 0.1 and such
that [W]< intersects every Yi-closed set of positive measure. For any string 7 and any ¥1-closed
set P such that A(P | 7) > 0.1 there is some o € W such that A\(P | 7o) = 0.8.

Proof. First we find an extension p of 7 such that p extends no string in 7W (where 7W = {70 :
o € W}), and such that \(P | p) > 0.9. This is done with the Lebesgue density theorem. Letting
G=2N—[tW]%,as AM(G | 7) > 0.9 and A(P | 7) > 0.1, we must have A(GnP | 7) > 0 and
by the Lebesgue density theorem there is an extension p of 7 such that A(G NP | p) > 0.9. In
particular we must have A\(P | p) > 0.9 and G n [p] is nonempty. In particular p cannot extend a
string in 7W.

Next we find an extension v of p such that v € 7W and such that A(P | v) > 0.8 as required.
We let @ be the Yi-closed subset obtained from P n [p] by removing all cylinders in which the
measure of P drops below 0.8. Formally

Q={XePnlp]:Vn=|p| (AM(P|XI,)=08)}.
By considering the antichain of minimal strings removed we see that A(P — Q | p) < 0.8. Since
AP | p) > 0.9 we see that A(Q | p) > 0.1. In particular, Q is a positive measure 1 subset of
[7], and so by hypothesis on W, we have that [rW]~ intersects Q. Choose v € TW such that

[v] n Q@ # . Note that we must have v > p because p extends no string in 7W. Thus by the
definition of @ we have A(P | v) > 0.8. O

The second one is needed in order to deal with the usual topological issues that one have with
higher computability.
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Lemma 7.20 (Greenberg, Monin [15]). Let U be a II}-open set. Then for every ¢ > 0 there is a IT3
set of strings W (and a higher effective enumeration {Ws} of W) such that:

e [W]~ equals U up to a set of measure 0.
e For every s < wSk, if 0 € Wyq — W then A([W,]< | o) <e.

Proof. Let U be a II1 set of strings generating . As above we assume that at most one string
enters U at each stage. We enumerate W: say o € Ug11 — Us. Let

Gs={r>0 : \MUs|T)<e}

This is A]. We then eumerate in Wy, 1 a Al prefix-free set of strings which generates [G]<. Note
that [W]~ € U, (and so [W]= c U).

By induction on s we show that A\(Us; — [W,]<) = 0. Suppose it is true at stage s and let us
show it is true at stage s + 1. It suffices to show that for o € Us11 — Us we have that [o] equals
[Gs] U ([Ws]= n[o]) up to a set of measure 0. Suppose not. Then by the Lebegue density
theorem there is some 7 > ¢ such that A([Gs]< u [W,]< | 7) < e. Since by induction hypothesis
we have A(Us; — [W;s]<) = 0 we then have \(Us | 7) < e which implies that 7 € G, which is a
contradiction.

It remains to show that A([W,]~ | 7) < € for any 7 € Wy11 — W,. But such 7 is an element
of Gs, s0 A(Us | 7) < &, and Us equals [W,]™ up to a set of measure 0. |

We can now show the cupping result:

Theorem 7.21 (Greenberg, Monin [15]). If A is not A} then for all Y € 2V there is some IIi-
random Z such thatY <, A®@ Z.

Proof. We are given A which is not hyperarithmetic and some Y € 2V. Let U be a I} (A)-open set
of measure less than 0.1, which contains all reals which are not I} (A)-random. Using Lemma 7.20
let W be a I§ set of strings such that [W]=< equals & up to a set of measure 0 and such that for
every s < wSk if 0 € Wy — W, then A\([W,]< | o) < 0.1. Let also Si,Ss, ... be a list of X9 sets
which are each the union of ¥{-closed sets, co-null, and such that (), Sy contains only II}-random
sequences (this is given by Theorem 7.6). We construct Z as a sequence Y (0)ogY (1)o7 --- with
each 0, € W. To make Z II}-random we that Z € [, S,. To make sure that Z @ A computes Y,
we also makes sure that for each n with 7, = Y(0)ooY (1)oy ...0,-1Y(n), we have that o, is
the first string in W such that 7,0,4+1 < Z. The computation then works as follow : Suppose we
have retried Y'(0),...Y(n) and oy,...0n—1 with 7, = Y(0)ooY (1)o7 ...0p-1Y (n). Then using A
we enumerate W until we find a string o € W such that 7,0 < Z. Then we must have 0,, = 0 and
we must have that Y (n + 1) is the bit of Z following 7,,0.,.

We start with Py = 2V and 79 = Y(0). Suppose that at step n we have defined oy, ...,0,_1 € W
and 79, ...,7, with 7, = Y(0)ooY (1)1 - Y (n—1)o;—1Y (i) for every i < n. Suppose also that we
have defined a ¥1-closed set of positive measure P,, € ()., S; such that:

(1) MPpn | 7) > 0.1.

(2) For any i < n for s; + 1 the first stage such that o; € W, 11, we have P, n ([0;] — [Ws,]™)

is empty.

Let us define 0, 7,11 and P41 such that (1) and (2) are still true at step n+ 1. By Lemma 7.19
there exists a string o, € W such that A\(P,, | 7,0,,) = 0.8. Now let 7,41 = 7,0, Y (n +1). It is
clear that we must have A(P,, | 7,0,Y (n + 1)) > 0.3. Then let P, to be the intersection of P,
together with [1,0,] — [ W5, ]~ where s, + 1 is the smallest stage such that o,, € W. By the
choice of W we have that A(P/, | 7,,0,,) = 0.2. Finally we find a ¥} closed set F € S,,41 of measure
sufficiently close to 1, so that A(Pp+1 | Thon) = 0.1 for P, = Py F. |

i<n

7.4. Ii-randomness with respect to different measures. Algorithmic randomness has been
studied with respect to different measures. As long as a measure p is computable, the definitions
of randomness with respect to p are the same but with replacing A\ by pu. When the measure p
is not computable, it makes sense to have access to the measure to define the tests. For instance
to show that there is a universal Martin-Lof test, it is important to have access to the measure.
The problem is that the measure is a complex object, and in particular, there is not necessarily
a smallest representation of a measure in the Turing degree. This has been showed by Day and
Miller in [8], building upon some work of Levin [29].

Several authors could overcome this issue in two different ways that turned out to be equivalent
(see [12] [18] and [8]) : either one can extend the notions of computability to metric spaces (in
particular the metric space of probability measures) and define randomness notions accordingly,
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or one can define X to be non-random with respect to a measure p if for any representation ji of
1, the sequence X is captured by a p-random test that uses ji as an oracle.

Reimann and Slaman showed [43] that X is not computable iff it is Martin-Lof random with
respect to a measure p such that pu({X}) = 0. Reimann and Slaman also showed that there are
some non-computable sequences X such that for any measure p for which p({X}) =0, if X is
Martin-Lof random with respect to u, then g must concentrate positive measure on some single
points (we call these points atoms of the measure).

Reimann and Slaman then defined the class NCR of element which are Martin-Lo6f random with
respect to no continuous measure, that is, measures with no atoms. They showed that this class
is a subclass of the Al sequences.

Following this work, Chong and Yu [6] studied the class of elements which are not ITj-random
with respect to any continuous measure.

Definition 7.22 (Chong, Yu [6]). Given a representation i € 2 of a measure 1, we say that X
is IT}-random relative to j if it does not belong to any I} (j1) set A with u(A) = 0.

Definition 7.23 (Chong, Yu [6]). We say that Z € 2" is II}-random relative to a measure p if
there exists a representation /i of y such that Z is II}-random relative to fi.

Definition 7.24 (Chong, Yu [6]). The class NC R is the class of element X € 2% such that for
any continuous measure u, X is not II}-random relative to p.

A well known set of higher computability is the largest IT set which contains no perfect subset.
This is the set:

C={Xe2V : XelL,x}
1

Theorem 7.25 (Mansfield [31] Solovay [47]). The set C is the largest II} set which contains no
perfect subset.

Chong and Yu then provided another characterization of C:

Theorem 7.26 (Chong, Yu [6]).

The theorem follows from the two following lemmas:

Lemma 7.27 (Chong, Yu [6]). NCRyy is a IIj set which contains no perfect subset. Therefore

Proof. Let us show that N C’RH% is a IT}. Given any representation /i of a measure, one can define
uniformly in @ the largest I} (1) set Q such that u(Qz) = 0. To do so we need to adapt the
proof of Theorem 3.11 to show that {X : wi @" > wf} is a II}(ji) set of u measure 0. The proof
relativizes with no difficulty. We then need to adapt the construction of the largest ITi nullset
given in the proof of Theorem 3.15. Here again everything relativizes smoothly with no difficulty.
Now we have:

X eNCRqp < Yii(f is te representation of a continuous measure — X € Q)

which is a IT1 predicate.
Let us now show that NCR: contains no perfect subset. Consider a perfect tree 7. We define

the measure p as u(2V) = 1 and then inductively:

o) = wllol)  ife(l—i)gT
w([oi]) = 1/2u([c]) otherwise

It is clear that p is a continuous measure. It is also clear that we have u([T]) = 1. Note that for
any representation fi of p, the set of elements of 7" which are IIi-random relative to /i is a set of
p-measure 1. It is also clear that p has a smallest representation f in the Turing degree, i.e. a
computable encoding of the set {(o,n) : p(o) = 27"} (note that not all measure have a smallest
representation in the Turing degree). It follows that the set of elements of which are IT}-random
relative to u is the same as the set of element which are II}-random relative to fi. Therefore T'
contains elements which are not in NCRyy1. ]

Lemma 7.28 (Chong, Yu [6]). C = NCRm
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Proof. Suppose X € C. Let u be any continuous measure with any representation fi. Suppose first
that i =5 X. Then {X} is in a Af(j1) set. Also as u is continuous, this Al(j) set is of y-measure
0. Thus X is not ITi-random relative to ji. Suppose now i *; X. Note that X € wa(. Also

if W > w¥ we must have X € L, and thus o >, X. It follows that w) < wi*. But the set
1

(X : wf >wh}is alll(j) set of p-measure 0. Thus X is not II}-random relative to ji. Then for
any representation fi of u, the sequence X is not II}-random relative to ji. As this is true for any
measure 4, we then have X € NCRH%. ]

7.5. IIi-randomness and minimal pair with O. Recall the following theorem of Downey, Nies,
Weber and Yu (see [9]) of classical randomness: For a sequence Z Martin-Lof random the following
are equivalent:

(1) Z is weakly-2-random.

(2) Z forms a minimal pair with @(1).

(3) Z does not compute any non-computable c.e. set.

A first higher counterpart of (1) < (2) of the above would be: ‘For Z ITi-Martin-Lof random,

Z is higher weakly-2-random iff Z forms a higher Turing minimal pair with Kleene’s O’. But this
cannot be true, as by the Gandy Basis theorem, there is a IT}-random, and therefore a higher
weakly-2-random, which is Turing computable by Kleene’s O. However, we will be able instead to
obtain a higher version of the equivalence (1) <> (3), but with IT}-randomness in place of higher
weak-2-randomness.

7.5.1. TIi-randomness and computing 11} sequences. We shall prove here that a ITj-Martin-Lof
random Z is IT}-random iff it does not higher Turing compute a II} sequence which is not Al.
Note that by the separation of IT}-randomness from higher weak-2-randomness, this implies that
some higher weak-2-random sequences compute non-Ai I} sequences.

Theorem 7.29 (Greenberg, Monin [15]). For a set Z 11}-Martin-Léf random, the following are
equivalent:

(1) Z is I} -random.

(2) Z does not higher Turing compute a 11} sequence which is not Al.

Proof. (1)= (2): This is the easy direction. Suppose that Z higher Turing computes a II}
sequence A which is not Aj. As A is II}, we have an approximation {A},_x of A such that for
any limit ordinal s we have lim;, Ay = As. As A is not A}l it cannot be equal to A for some
computable s. We can now define the I1}(A) total function f : w — w§* by sending f(n) to the
smallest ordinal s such that Agl,= Al,. Therefore we have sup,, f(n) = w§*. Also as A is higher
Turing below Z we also have that f is I1}(Z), and as f is total it is also Al(Z) and therefore the

range of f is a Al(Z) set of ordinals, cofinal in w*, which implies that wf > w$*.

(2) = (1): Suppose that Z is ITIi-Martin-Loéf random but not IT}-random. Then from Theo-
rem 7.6 there is a uniform intersection of IIj-open sets (), U, so that Z € (), Uy, and so that no
Af-closed set F < (), Uy of positive measure contains Z. Then as Z is Aj-random we actually
have that no A{ closed set F € (), U, contains Z. Let {W,}.<, be an enumeration of the IT}
subsets of N. We will construct a IT sequence A which is not Al and such that Z higher Turing
computes A. The usual way to make A not A}, is by meeting each requirement:

R, : W, infinite - AnW, # &

making sure in the meantime that A is co-infinite.

Construction of A:

At stage s, at substage {e,m, k), if R, is actively satisfied, go to the next substage, otherwise if
m € We[s] with m > 2e, then consider the Aj set (), U,[s] and compute an increasing union of
Af-closed sets | J,, F, with |, Fn S, Unls] and AX(U,, Fn) = AN, Un[s])-

If AU [s] — Fr) < 27¢ then enumerate m into A at stage s, mark R, as ‘actively satisfied’ and
let V<m)e> = Um[s] — F.

This ends the algorithm. The sets V¢, ¢, are intended to form a higher Solovay test.

Verification that A is not Al:
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A is co-infinite because for each e at most one m is enumerated into A and this m is bigger
than 2e. Now suppose that W, is infinite. By the admissibility there exists s < w§* so that W,[s]
is infinite. Then there exists ¢ > s so that A\([", Un — [, Un[t]) < 27¢. Then there is a A}-closed
set Fi, € (), Un[t] so that A((),, Un — Fr) < 27°. Then there exists an integer a such that for all
b > a we have A(Up — Fi) < 27° and in particular A(Up[r] — Fr) < 27¢ for any stage r. But as
We[t] is infinite we have some m € W,[t] with m > 2e such that A(U,[t] — Fr) < 27°. Then at
stage t and substage {e,m, k), the integer m is enumerated into A, if R, is not met yet.

Verification that {V,, cy}m.cen is a higher Solovay test:

Note that each Vi, ¢y is well-defined uniformly in m and e. We implicitly have that Ve, .
enumerates nothing until the algorithm decides otherwise, which can happen at most once for a
given pair (m,e), and even at most once for a given e, as when it happens, R, is actively satisfied.
Also as each V,, . has measure smaller than 27¢, we have a higher Solovay test.

Computation of A from Z:

We now just describe the algorithm to compute A from Z. The verification that the algorithm
works as expected is given in the next paragraph. Let p be the smallest integer so that for any
m = p, the set Z is in no V¢, . for any e, which exists because Z passes the Solovay test Vi, c»-
To decide whether m > p is in A, we look for the smallest s such that Z € U,y,[s]. Then decide
that m is in A iff m is in A[s].

Verification that Z computes A:

Let p be the smallest integer so that for any m > p the set Z is in no V,, .y for any e. Suppose
for contradiction that we have m > p and s < w§* such that Z € U,,[s] and m ¢ A[s], but m € A[t]
for t > s. By construction, it means that we have some e and some A%—closed set Fr < ﬂn U,
with MU [t] — Fr) < 27¢ and Vi ey = U [t] — Fi.

As Z does not belong to V¢, ., and does not belong to Fy, it does not belong to Uy, [t] which
contradicts the fact that it belongs to Uy, [s] S Up[t]- O

Corollary 7.30 (Greenberg, Monin [15]). Some higher weakly-2-random computes a 11} set which
is not Af.

Proof. This follows from the previous theorem and from Theorem 6.7 saying that the set of II}-
randoms is strictly included in the set of higher weakly-2-randoms. O

Theorem 7.29 can now be used to give another equivalent notion of test for II}-randomness, in
the same spirit as the definition of higher difference randomness.

Theorem 7.31 (Greenberg, Monin [15]). For a sequence X, the following are equivalent:

(1) X is captured by a set F (), Un with \(F n (), Un) = 0 where F is a X} set and each
U, is a TT-open set uniformly in n.

(2) X is not I1}-random.

(3) X is captured by a set F n (), Un with N(F n (), Un) = 0 where F is a $i-closed set and
each Uy, is a T -open set uniformly in n.

Proof. (1) = (2): Suppose first that X is captured by a set F n (), U, of measure 0. Then either
wi¥ > w¢, in which case X is not IT{-random, or there exists some stage s for which X € (), Uy[s].
As also X € F we then have X € U,[s] n F, which is a 2} set of measure 0. Therefore X is not
Al-random and thus not ITj-random.

(2) => (3): Suppose now that X is not II}-random. Then by Theorem 7.29, either it is not
I1}-Martin-Lof random, in which case we have (3) with 7 = 2% and {U,},,_, a II}-Martin-Lof test,
or it higher Turing computes a IT set Y which is not A}, via a higher functional ®. We define
U, =], P 1 (Ys1,). We now define a ¥1-closed set by defining its complement F¢: We put in F*
at successor stage s + 1, the open set ®~1(Y,|,,) for every n as soon as we witness Yy, # Y11 n.
It follows that (), U, N F contains only the sequences which higher Turing computes Y with the
functional ®, or some sequences on which ® is not consistent. In particular, by Theorem 3.12,
the set of sequences which higher Turing compute Y has measure 0. Therefore the measure of
(,,Un N F is bounded by the measure of the inconsistency set of ®.

Also recall Lemma 2.12 saying that uniformly in e, we can obtain a version of ® for which the
inconsistency set of ® has measure smaller than €. We can then uniformly in ¢ define a uniform
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intersection of IT{-open sets (), UZ such that A((), US n F) < e. Note that we can keep the same
set JF for any e. Then we have A\(()_,,U; nF) =0and X € ()_, U; n F.

3) = (1) is immediate. O
(B3)=(@1)

7.5.2. 1Ii -Martin-Lof[O]-randomness. Greenberg and Monin [15] also studied a randomness notion
which is strong enough to make non-random any higher A9 sequence. The motivation for this
notion goes back to the notion of test, equivalent in the lower setting to weak-2-tests. The two
following are equivalent:

(1) X is weakly-2-random.
(2) X is in no set [, Uy(,) with f: N - Na Q)(l)—computable function such that A(Uy(,)) <
2",
This resemble the test notion of Theorem 6.5, except that in Theorem 6.5 we had to restrict

ourselves to functions with a finite-change approximation. We study now what we obtain if one
can use any higher A9 function.

Definition 7.32 (Greenberg, Monin [15]). A sequence X is II}-Martin-Lof[O]-random (to be
pronounced, for a mysterious reason: I13-Martin-Lof ‘plop O’ randomness) if X is in no set N, U t(n)
with f higher Turing computable by O and with A(Uy,) < 27" for each n.

So as we will see, we don’t have the equivalence between II{-Martin-L5f[O]-randomness and
higher weak-2-randomness. Nevertheless there is a way to remove O from this definition, in order
to get a better understanding of it:

Proposition 7.33 (Greenberg, Monin [15]). The following are equivalent for a sequence X € 2N:
(1) X is IIi-Martin-Lif[O]-random.
(2) X does not belong to any test (Us),y,er not necessarily nested where each Us is a I1}-open
set uniformly in s, and such that \((,Us) = 0.

Proof. Let us show that (2) implies (1). Let [, Us(,) be an II}-Martin-Lof[O] test. Recall that
p: wi¥ — w is the projectum function and let us define V, = ﬂn<p(s) Usss Uy, (n)- Tt is clear that
. Usny Sy Vs. To prove that A([(, Vs) = 0, let us prove that (), Vs S [, Usn). For each n
there exists s large enough such that n < p(s) and Ym <n | J,.,Uy,(m) = Usm). Then we have
for that n and s that V, € [, <, Usm) and then [ Vs S [, Us)-

Let us show that (1) implies (2). Suppose now that we have a test (Us)<pex With A((),Us) = 0.
Then using O we can higher Turing compute the measure of each U uniformly in s. Then for each
n, O can higher Turing compute s,, such that AU, ) < 27" and then we can find an equivalent
[13-Martin-Lof[O] test, by setting V,, = U, . O

We shall now see that I1}-Martin-Lof[O]-randomness is strictly stronger than IT}-randomness.
For this we first prove:

Proposition 7.34 (Greenberg, Monin [15]). If X € 2V higher Turing computes a non Al higher
AY sequence Y, then X is not I1}-Martin-Léf[O J-random.

Proof. The set A = [, U;», @ (Y2 14) is also equal to the set (1, ®~'(Y; ). Also by Sack’s
theorem (Theorem 3.12), as Y is not A}, the set of sequences which higher Turing compute Y is
a nullset. However the function ® can also be inconsistent. Therefore the measure of the set A is
bounded by the measure of the II}-open set on which @ is inconsistent. Also by Lemma 2.12 we
can transform ® uniformly in any € so that the measure of this open set is smaller than e, without
damaging the right computations of ®. But then uniformly in n we can define the set A, like
above, but with the measure of A4,, bounded by 27". Also by Proposition 7.33, we then have that
N, An is a II}-Martin-Lof[O] test, and by design, it contains X. O

Theorem 7.35 (Greenberg, Monin [15]). ITi-Martin-Lof[O]-randomness is strictly stronger than
I} -randomness.

Proof. By the proposition above we have that IT3-Martin-Loéf[O]-randomness is either incompa-
rable with II}-randomness, or strictly stronger than IT}-randomness: Indeed, by the Gandy basis
theorem, there is a higher AY sequence which is IT}-random. All that remains to be proved is that
[1}-Martin-Lof[O]-randomness is stronger than I1}-randomness.
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By Theorem 7.6, if X is Al-random but not II}-random, then there exists a uniform intersection
of ITi-open sets [, Uy, such that X € (), Uy, but X is in no X}-closed set F with F < (), U,. Let
us argue that there is an effective enumeration {F,} » of the Yi-closed sets included in (), U,.

For a given Y1-closed set F, we can build the I} function f : w — w$* which to n associates the
least ¢ such that F; C ﬂmgn Up i If we really have F C (), U, then f is total and then its range
is bounded by some computable ordinal ¢, for which we already have 7, € (), Un,t S [, Un.

So if a {-closed set is included in (), U, we will know it at some computable ordinal stage.
Then we can easily get an effective enumeration {Fs} ck of the X}-closed sets included in [, U,

by checking at each stage ¢ and for each index of a Xi-closed set F if we have Fy € (), Un,¢. Also we
have that X isin (1), U, N ﬂs<wfk F¢ which is a set of measure 0 and therefore, by Proposition 7.33

a ITi-Martin-Lof[O] test. O

c
S<UJ1

s<w

This theorem yields a natural question, which is still open at the moment. We have that no
sequence computing a higher AY sequence is II}-Martin-Lof[O]-random. Does the converse hold
on IT{-Martin-Lof random sequences? Using Theorem 7.29, we already know that the IT{-Martin-
Lof randoms which are not ITi-random can higher Turing computes higher AJ sequences (even
I} sequences). But what about the sequences which are ITj-random but not IT}-Martin-L6f[O]-
random?

Question 7.36. Is there some X which is Iz -random, not I3 -Martin-Lif/O]-random, and which
does not higher Turing compute any higher A sequence?

8. RANDOMNESS ALONG A HIGHER HIERARCHY OF COMPLEXITY OF SETS

The notion of higher weak-2-randomness deals with uniform intersection of ITi-open sets, the
uniformity being along the natural numbers. Also one could think of iterating this notion. We
could consider for example uniform union of uniform intersections of I3 open sets. Recall that
we proved in Section 6.2.2 that higher weak-2-randomness is strictly weaker than ITi-randomness,
that is, uniform intersections of ITi-open sets, of measure 0, are not enough to cover the largest I}
nullset.

Greenberg and Monin [15] showed that if we just allow a little bit more descriptional power to
define our nullsets, that is allowing more successive intersection and union operations over IT}-open
sets, we can then define nullsets that capture every non IT}-random sequence. We start by defining
formally the new hierarchy on the complexity of sets, that we will use.

Definition 8.1 (Greenberg, Monin [15]). A set is X¢* if it is a [I}-open set. It is II$* if it is a
Yi-closed set. It is X5 | if it is an effective union over N of a sequence of II¢* sets and it is TI%,
if it is an effective intersection over N of a sequence of X¢* sets.

We do not iterate the definition through the computable ordinal, first because we will not use
it, and then because it is not clear what should be the meaning of k. Indeed, this new hierarchy
has the unusual property that a II$¥ set is not necessarily a IIS¥ set; more generally, a TISX set is
not necessarily H%kﬂ) for p odd, and a XX set is not necessarily E%ﬁp for p odd. Indeed, II°* sets
for n odd and Xk for n even are all ¥} sets, but I1¢¢ sets for n even and XX for n odd are all I1}

sets. We give here an illustration of this new hierarchy:

FIGURE 1. The higher hierarchy of complexity of sets.
The blue complexities correspond to I1} sets.
The correspond to 1 sets.

With this higher complexity notion, we have by definition that any sequence is higher weakly-
2-random iff it is in no null II§€ set. The question we study here is :

What randomness notions do we obtain by considering null TI¥ sets or null X¢* sets?

Definition 8.2 (Greenberg, Monin [15]). We say that X is ¥¢-random, respectively II°*-random,
if X is in no ¥ nullset, respectively in no I1* nullset.
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8.1. On the ¥! randomness notions in the higher hierarchy. It is clear that complexities
corresponding to ¥ sets will give us a notion at least weaker than ¥}-randomness and then than
Al-randomness. Concretely, the notion of being in no null 2§ sets, or no null TIS¥ sets, etc... gives
us a notion of randomness at least weaker than Yi-randomness. The notion of II{*-randomness
has been studied by Kjos-hanssen, Nies, Stephan, and Yu in [24], under the name of Al-Kurtz
randomness. In particular they studied lowness for the notion of Al-Kurtz randomness.

The notion of Al-randomness where the Borel complexity of the null sets is restrained has also
been studied by Chong, Nies and Yu in [5]. In particular, they observed that uniform intersection
of Al open sets, effectively of measure 0, are enough to capture any non Al-random. What we
consider here is different, as we start our successive unions and intersections with X1 closed sets.

Theorem 8.3 (Greenberg, Monin [15]). We have:
O§<-randomness < X§<-randomness « I -randomness = Ai-randomness.

The reverse implication is strict. Also it follows from TS$<-randomness = Al-randomness that
Hgljrp-mndomness and Egljrp-mndomness for p even are all equivalent to Al-randomness.

Proof. It is clear that II{*-randomness is the same as ¥$K-randomness, because in both cases the
non random sequences are those which are in the union of all ¥1-closed null sets.

Let us prove that II¢ nullsets are enough to cover any Al nullsets. Using Theorem 3.6 we
can approximate from above any A set by a uniform intersection of A{-open sets [, U,. Also
as each U, is Al uniformly in n, the predicate ¢ € U,, and the predicate o & U,, are both A}
which implies that we can easily define uniformly in n a A} total function h,, : w — 2<% such that
U, [~n(m)] = U,,. We then define uniformly in (n,m) the Aj-closed set F7 to be [h,(m)]. We
then have (1, U,, Fr. =, Un-

Let us prove that II{-randomness is strictly weaker than Al-randomness. The proof is similar
to the one that Kurtz-randomness (being in no I1{ sets of measure 0) is strictly weaker than Martin-
Lof randomness. We use here some Baire category notions: The set of II{*-randoms is a countable
intersection of open sets of measure 1. Also it is clear that an open set of measure 1 is necessarily
dense. But then this intersection contains some Cohen generic sequences. Also any X which is
generic for even the weakest notion of genericity generally studied, namely weakly-1-generic, is not
Martin-Lof random (because each open set of a universal Martin-Lof test is dense), and therefore
certainly not Al-random.

Now, as Hglip nullsets and Egkﬂ, nullsets are all X1 nullsets for p even, the corresponding
randomness notions are all equivalent to Xi-randomness = Al-randomness. ]

8.2. On the II} randomness notions in the higher hierarchy. We know that the higher
weakly-2-randoms are exactly the elements which are II§¢-random. Also it is clear that this notion
coincides with ¥$K-randomness, as in both case the non-random elements are the unions of all the
IS¢ null sets. We shall now prove that II$-randomness coincide with IT}-randomness.

To do so, we will use II} functionals ® from 2V into sequences of computable ordinals, that
is, (w§*)N. Concretely such a functional ® is given by a II} subset of 2<N x N x w{*. We then
say that ® is defined on X, if for every n, there exists a unique « such that for some m we have
(Xlm,n,a) € ®.

Note that just like for usual higher Turing reductions, we cannot guarantee that such a functional
is consistent everywhere. Also if along some oracle X, some n is mapped to at least two distinct
ordinals, then the functional is said to be inconsistent on X. The inconsistency set cannot be
completely removed, however, as in Lemma 2.12, it can be made of measure as small as we want.
We will prove this formally in Lemma 8.4, but first we give a few notations.

The set of elements on which ® is defined (and consistent) will be denoted by Cdom(®). If for
some X and n there is some « (not necessarily unique) such that (X |,,,n,a) € ® for some m, we
write ®(X,n) = a. One can consider ®¥ as a multivalued function. Note that the equality symbol
‘="used in the expression ®(X,n) = « does not mean that ®(X,n) is equal to « in the strict
sense of equality, but more than ®(X,n) is mapped to « (among possibly other values). Then the
set of elements X such that for any n we have ®(X,n) = « for at least one o will be denoted by
dom(®). Formally:

dom(®) = ﬂ {(X : Im,a, (X, n,a,) € D}
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One nice thing about dom(®) is that it is a TIS¥ set, whereas Cdom(®) is more complicated. We
now prove, as a consequence of Theorem 7.29 (a sequence Z is IT}-Martin-Lof random but not IT}-
random iff it higher Turing computes a strictly IT1 sequence) that the measure of the inconsistency
set of a functional ® can be made as small as we want:

Lemma 8.4. If Z is II}-Martin-Lof random and not ITj-random, one can define uniformly in e € Q
a I} functional ® € 2<N x N x w$* such that:

e & is defined (and consistent) on Z, and sup,, ®(Z, n) = wsk.

e The measure of the II} open set on which ® is not consistent is smaller than . Formally:

A({X 2 dn,my,mo o # ao (I)(erlan) = a1 and @(erzvn) = a2}) <e€

Proof. From 7.29 we have a higher Turing functional ¥ so that ¥(Z) = A for A a II} set which is
not Al. From Lemma 2.12, the measure of the inconsistency set of ® can be made smaller than &,
uniformly in &.

To define @, we enumerate (o, n,«) in ® if there exists 7 of length bigger than n and « such
that (o,7) € ¥ and « is the first ordinal for which we have 7|, = A,l,. We verify easily that such
a functional ® has the desired properties. O

Using those II} functionals, we now state the following theorem, which is the heart of the proof
that TI§*-randomness coincide with IT}-randomness.

Theorem 8.5 (Greenberg, Monin [15]). For any I functional ® € 2<N x N xw§*, One can define,
uniformly in an index for ®, a TI$< nullset A such that {X € Cdom(®) : sup, ®(X,n) = wk} C A.

Before proving Theorem 8.5 we see some of its consequences, in particular using Lemma 8.4, it
implies that IT§%-randomness coincides with II}-randomness:

Theorem 8.6 (Greenberg, Monin [15]). We have:
sk -randomness < LSk-randomness < M -randomness = I} -randomness.

The reverse implication is strict. Also it follows from T$<-randomness = I1}-randomness that
Hﬁp-mndomness and Egﬁp-mndomness are all equivalent to 11} -randomness for p even and all
weaker than 11} -randomness for p odd.

Proof. Let us first prove that Theorem 8.5 implies that I1§-randomness = I1}-randomness. One
direction is obvious as the largest II} nullset covers any ITS¥ nullset. For the other direction, suppose
that Z is not IIi-random. If Z is not II}-Martin-Lof random it is by definition covered by a IISk
nullset. Otherwise we can define using Lemma 8.4 a I1} functional ® € 2<N x N x w§* defined on
Z, with sup,, ®(Z,n) = w§¥. It follows using Theorem 8.5 that Z can be captured by a II§¢ nullset.

We also deduce that IISk-randomness, corresponding to higher weak-2-randomness, is strictly
weaker than TI$*-randomness, using Theorem 6.7 that separates the two notions. The fact that
Yk randomness coincide with II§¢-randomness is clear. The rest of the proposition follows: For
any n the null X¢¢ or II¥ sets are either also null IT} sets, or covered by some null I1} sets. ]

Corollary 8.7 (Greenberg, Monin [15]). The set of I1}-randoms is TIE<.

Proof. We actually have an effective listing {®.}.en of the TI} functionals ®, € 2<N x N x ws*, as
it is simply the listing of all the IT} subsets of 2<N x N x w{* (recall that inconsistency is allowed).
Then using Theorem 8.5, we can define uniformly in e a TISK null set A, which captures:

{X € Cdom(®) : sup ®.(X,n) = w*}

Also using Lemma 8.4 we know that as long as Z is not II}-random and IT{-Martin-Léf random,
it will be captured by some of those set A.. Therefore, the uniform union of all the sets A, itself
joined with the universal IT}-Martin-Lof test, is a Egk nullset containing the biggest I} nullset.
And as a X¢¥ set is itself IT1, it actually coincides with the biggest TI1 nullset. ]

It is unkown whether the above Corollary is optimal or not. Bienvenu, Greenberg and Monin
[2, Proposition 5.3] showed that the set of II} randoms is not I1$¢, but the following remains open:

Question 8.8. Is the set of I} randoms X< 2

The rest of this section is dedicated to the proof of Theorem 8.5. So consider a II} functi-
onal ® € 2<N x N x w¢*. Let us fix some ¢ and let us assume that the inconsistency set of ®
has measure smaller than €. From now on, the construction will remain uniform in ® and then in €.
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The strategy:

The strategy is to define uniformly in each version of ® that have an inconsistency set of measure
smaller ¢, a TI§¢ set C such that:

e {X € Cdom(®) : sup, ®(X,n) =wf*} < C < dom(P).
e {X € Cdom(®) : sup, ®(X,n) <wiF}c2N-C.

In particular, it will follow that C contains either some element X such that wi* > w$*, or some
element X € dom(®) such that ® is not consistent on X. As by Theorem 3.11 the measure of
the set of X such that wi* > w{* is null, it follows that the measure of C is bounded by ¢, the
measure of the inconsistency set of ®. Also uniformly in ¢ we can define the TISK set C. contai-
ning {X € Cdom(®) : sup, ®(X,n) = w§*} and of measure smaller than e. It follows that the
intersection over ¢ of the sets C. is a II$€ nullset containing {X € Cdom(®) : sup,, ®(X,n) = wf*}.

Some notations:

In what follows, we denote by R, the e-th c.e. subset of NxN, that is, (n,m) € R, < (n,m) e W,
where W, is the usual e-th c.e. subset of N. We will consider such a set as a c.e. binary relation.
Also for a computable ordinal a we denote by R, the c.e. binary relation coded by the smallest
integer a € O such that |a|, = a.

We also denote by R [, the binary relation R, restricted to elements ‘smaller’ than k in
the sense of R, that is, the pair (n,m) is in R [ iff the pair (m, k) and (n,m) are both in R,
((n,m) € R, is intended to be understood as n < m in the sense of R.). Note that R, [ is well
defined for any e, but the underlying idea really makes sense when R, represents an order, and we
actually intend to use it only when R, represents a linear order.

Finally, we say that a function f : N — N is a morphism from a linear order coded by a
binary relation R., to another linear order coded by a binary relation R.,, if f is total on
dom R.,, with f(domR,,) € dom R,, and if (x,y) € R., — (f(x),f(y)) € Re,. Here dom R,
denotes the support of R, that is, the set of integer a such that (a,b) € Re or (b,a) € R, for some b.

Definition of the Ik set C
We now do the proof of Theorem 8.5. Let us define uniformly in each integer e the sets A, and

B.:

" X c ol In da, P(X,n) = o, and
e = € :
Vf f is not a morphism from R, to R,

and

5 X e o Im Vn 3oy, (X, n) =, and
. = € :
Vf f is not a morphism from R.[,, to R,,

Let us now define the I13 set G of integers e such that R, is a linear order of N. We finally

define:
¢ = () (dom(®) n (A U B.))
eeG

Proof that C is TISk:

We have that dom(®) is TIS¥, that A, is ¢ uniformly in e and that B, is X§¢ uniformly in e.
Then the set dom(®) n (A, U Be) is € uniformly in e. As G has a I19 description, we then have
that C is a TIS¥ set.

Proof that C captures enough:

We should prove that {X € Cdom(®) : sup,, ®(X,n) = w§*} = C. Fix some Z € Cdom(®) and
suppose that sup,, ®(Z,n) = w§®. Let us prove for any e € G that Z € A, u B.. It will follow that
ZeC.

Suppose first that R, is a well-founded relation. As e is already in G we have that R, is a
c.e. well-ordered relation with |R.| < w$*. But then there is some n so that ®(Z,n) = a, with
|an| > |Re| and we cannot have a morphism from R,, to R.. Then Z € A..

Suppose now that R, is an ill-founded relation. There is then some m so that R.[,, is already
ill-founded. But as R,,, is well-founded for every «,, = ®(Z,n), then for every n we cannot have
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a morphism from R.[,, to R,, , and then Z € B,.

Proof that C does not capture too much:

Let us now prove that for any X € Cdom(®), if sup,, ®(X,n) < w$* then X ¢ C. Consider such
a sequence X with sup, ®(X,n) = a < w{*. In particular there exists some integer e € G so that
R, is a well-order of order-type a. For this e we certainly have for all «,, = ®(X,n) a morphism
from R, into R. and then X ¢ A..

Let us now prove that X ¢ B.. For any m we have |R.!,, | < a. But because a = sup,, (X, n)
there is necessarily some n so that ®(X,n) = a,, > |Rely, |- Thus there is a morphism from R [,
into R,,,. Then X ¢ B., and therefore X ¢ C. This ends the proof.

9. OPEN QUESTIONS

We sum up in this section the open questions which appear in this paper. We also add three
new open questions, one of them not directly related to higher randomness, but more with higher
genericity and with higher computability.

9.1. Higher Plain complexity. In Section 7.2 we defined the set A of sequences which have
infinitely many prefixes of maximal IT{-Kolmogorov complexity:

A={X |3ecV¥nIm=n C(X|y) =m—c}

We saw that the set A contains the IT{-randoms and is contained in the II}-Martin-Léf randoms.
We deduced from that using Corollary 7.9 that we cannot have ITi-randoms € A S weakly-2-
randoms. The following question remains open:

Question 9.1. Does the set A contain the higher weakly-2-randoms?
We add this question which is also still unanswered:
Question 9.2. Does the set A coincides with the 111 -Martin-Lof randoms ?

9.2. Higher randomness and minimal pair with O. The notion of II}-Martin-L5f[O] rand-
omness defined in Section 7.5.2 removes all the higher A randoms and even all the randoms which
higher Turing compute higher AY sequences. We do not know if this is optimal, that is, we do not
know if a IT{ random Z which is not IT{-Martin-L&f[O] has to compute a higher AS:

Question 9.3. Is there some X which is IIi-random, not 113 -Martin-Lif[O]-random, and which
does not higher Turing compute any higher AY sequence?

9.3. Complexity of the set of II}-randoms. We showed with Corollary 8.7 that the set of II}-
random is TT1E¢. Bienvenu, Greenberg and Monin showed [2, Proposition 5.3] that every TISK set of
measure 1 contains a sequence X with a finite-change approximation. In particular this sequence
cannot be ITi-random and then the set of IIi-randoms cannot be TIS¥. The proof of Bienvenu,
Greenberg and Monin strongly uses the measure 1 assumption, and not just a positive measure
assuption. Also it is unkown if there exists a Hgk set of positive measure which contains only
II}-randoms, or more specifically:

Question 9.4. Is the set of IIi-random $§¢ ?

9.4. Higher randomness and DNR functions. Just like for partial computable functions, there
is a uniform enumeration {®,}.cy of the II} partial functions. We can then define a higher version
of being DNC : a function f : N — N is a II}-DNC function if for every e we have f(e) # ®.(e).
Liang Yu asked the following question:

Question 9.5 (Yu). Does every II}-DNR function hyperarithmetically compute a 11}-Martin-Léf
random real ¢

In the lower setting, X computes a DNC function iff X computes an infinite subset of a random,
and this is provably different from computing a random (see [22] and [14]). It is unknown if things
are different in the higher settings.



HIGHER RANDOMNESS 43

9.5. Higher randomness and LR reductions. Yu asked the following question:

Question 9.6 (Yu). Suppose wiX = w$*. Does there exists a A}(X) random sequence Y so that

X<g,Y ?

When X is not Al, note that if Y is Al(X)-random, then for any a < w§*, we cannot have
Y =7 X. Also a Al(X) sequence Y such that Y >, X must be such that w} > w$*.

It follows that a positive answer to the following question would provide a negative answer to
Question 9.6.

Question 9.7 (Yu). Does there exists X such that wi = w§¥ and such that every A}(X)-random
is 11} -random ¢

Note that the previous question is connected with a higher version of the LR reduction : X is
LR above Y if every X-random is also Y-random. Higher versions of the LR reduction could be,
for instance, defined for A} and II}-randomness, and these reductions have not been studied yet.

9.6. Genericity and higher computability. We end with a small digression. In [15] Greenberg
and Monin define the notion of ¥1-genericity and show that it is the categorical analogue of II}-
randomness. A characterization of lowness for ¥1-genericity is still unkown:

Question 9.8. Is there a non-A} sequence which is low for ¥1-genericity ?
The question is connected to a higher computability question of Liang Yu:

Question 9.9 (Yu). Let C be a perfect X} set. Let A be a non A} sequence. Does there necessarily
exists X € C such that wi®X > ek 2

If some non-Aj sequence was low for ¥1-genericity, it would negatively answer the question

of Liang Yu, as the set of ¥i-generics is ¥}, and as we have wf@x = wsk for every X which is

Y1-generic relative to A.
The closest known answer to the question is given by the following theorem, from Chong and
Yu [6]:

Theorem 9.10 (Chong, Yu [6]). Given two perfect X1 sets Cy,Ca, there exists X1 € C; and Xo € Co

such that wi *®X2 > ek,
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