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Abstract
We answer in this paper an open question (known as the
“Gamma question”), related to the recent notion of coarse
computability, which stems from complexity theory. The
question was formulated by Andrews, Cai, Diamondstone,
Jockusch and Lempp in “Asymptotic density, computable
traceability and 1-randomness” [1]. The Gamma value of
an oracle set measures to what extent each set computable
with the oracle is approximable in the sense of density by a
computable set. The closer to 1 this value is, the closer the
oracle is to being computable. The Gamma question asks
whether this value can be strictly in between 0 and 1⇑2.

In this paper, we pursue some work initiated by Monin
and Nies in “A unifying approach to the Gamma question”
[19]. Using notions from computability theory, developed
by Monin and Nies, together with some basic techniques
from the field of error-correcting codes, we are able to give
a negative answer to this question.
The proof we give also provides an answer to a related

question, asked by Denis Hirschfeldt in the expository paper
“Some questions in computable mathematics” [12]. We also
solve the Gamma problem for bases other than 2, answering
another question of Monin and Nies.

Keywords Computability, Coarse computability, Turing de-
grees

1 Introduction
1.1 A brief history of the Γ question
Generic-case complexity is a subfield of computational com-
plexity. It started with the observation that some problems
that are difficult to solve in full are easy to solve on “most in-
puts”, namely on a set of inputs of density 1. This notion was
introduced by Kapovich, Myasnikov, Schupp and Shpilrain
[17]. They showed among other things that for a large class
of finitely generated groups, the generic case complexity of
the word problem is linear.
This notion has recently been extended to computability

by Jockusch and Schupp [15]. The authors identified two
notions that can be proved to be incomparable. The first is
generic computability, where one must always give the right

PL’17, January 01–03, 2017, New York, NY, USA
2017.

answer, without having to provide an answer for a small
set of inputs. The second is coarse computability, for which
one always has to provide an answer, with the right to be
wrong on a small set of inputs. In both cases, a set of inputs
is considered small if it is of density 0; this will be made
precise in Section 2.
Hirschfeldt, Jockusch, McNicholl and Schupp [13] intro-

duced and studied a value γ (A) to an arbitrary subset A
of natural numbers which measures how closely A is from
being coarsely computable, that is, how closely A can be
approximated by computable sets. Namely, γ (A) is the least
upper bound of lower asymptotic densities of all sets {n ∈ N ∶
A(n) = C(n)} where C is computable (see Section 2.2 for a
more formal definition). Then Andrews, Cai, Diamondstone,
Jockusch and Lempp [1] assigned a value Γ to each Turing
degree. For a Turing degree d , they defined Γ(d) to be the
greatest lower bound of γ (A) where A is a set of degree d
(see Section 2.2 for a more formal definition). Hirschfeldt et
al [13] had shown that for any degree d , if Γ(d) > 1⇑2, then d
must be the computable degree, implying that Γ(d) = 1. This
implied no real 1⇑2 < r < 1 can be realized by the Γ value of
a degree. They also showed the existence of degrees d such
that Γ(d) = 0. Later Andrews et al [1] showed the existence
of degrees d such that Γ(d) = 1⇑2, and they asked whether a
Turing degree could have a Γ value strictly between 0 and
1⇑2.

In this paper, we answer this question by showing that if
a Turing degree has a Γ value strictly smaller than 1⇑2, then
its Γ value must be 0. This implies, together with the results
of [1] and [13] mentioned in the previous paragraph, that
0, 1⇑2 and 1 are the only reals that can be realized by the Γ
value of a degree, giving a natural trichotomy of the Turing
degrees.

1.2 On the relevance of the Γ question
From the second half of the 20th century until today, a con-
siderable amount of work has been conducted in order to
understand the realm of non-computable objects - most of
the time elements of 2N. Such sequences, as non-computable,
will always remain somehow inaccessible. Nonetheless it is
still possible to study some of their properties, in particular
properties relating to their computational power. Doing so,
it becomes apparent that it is often not the properties of the
object itself, that we are interested in, but the properties of its
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equivalence class under the relation “X is computable using
Y as an oracle and Y is computable using X as an oracle” :
The Turing degrees.

Many such properties were introduced and studied, lead-
ing tomore andmore detailed characterizations of the Turing
degrees. Some of them became very popular, due to their
numerous non-trivially equivalent characterizations, as well
as their use in many situations. We give here two examples
of such properties, that also have interactions with the Γ
question.

For the first example, we say that a degree d is PA, if d can
compute a complete and consistent extension of Peano Arith-
metic (by the well known Gödel’s first incompleteness theo-
rem, no such computable extension exists). The PA degrees
have been widely used and studied in computability the-
ory. We provide here a non-trivially equivalent (and rather
intriguing) characterization, in order to illustrate a typical
theorem about characterizations of Turing degrees. One di-
rection is due to Dana Scott [20] and the other to Solovay
(unpublished) : “A degree d is PA iff for any computable tree
T ⊆ 2<N (a set of strings closed under prefixes), such that T
has at least one infinite path (a set of compatible elements
of T ), d computes an infinite path of T .
For the second example, we say that a degree d is com-

putably dominated if every function that d computes, is dom-
inated by a computable function. The computable degree is
of course computably dominated, but it is not the only one.
There are for instance computably dominated PA degrees. A
non-trivially equivalent (and still rather intriguing) charac-
terization of the non-computably dominated degrees is as
follow [19]: A degree d is non-computably dominated, iff d
can compute a function from N to N which equals infinitely
often every computable function from N to N.

Let us now come back to the Γ question. Here again, we
question a property related to the computational power a set
Amight have : “being able to compute sets which are hard to
approximate by computable sets”. Before we continue, let us
mention how the Γ question relates with the two notions of
computability introduced above : Andrews et al. [1] showed
that if A is of PA or non-computably dominated degree, then
we must have Γ(A) = 0. Monin and Nies [19] showed later
that the converse does not hold. In this paper, we show that
the only possible Γ values for a degree are 0, 1⇑2 and 1. In
order to help the reader understand what is surprising in
this trichotomy, we provide here a simplified version of this
paper’s main achievement.

Given anyA ∈ 2N, we are interested in all the sequences of
binary strings {σn}n∈N with ⋃︀σn ⋃︀ = 2n , that are computable
from A. We are then interested in algorithms P (not using

oracles) taking n in parameter, and trying then to approxi-
mate each string σn by a string τn of the same length. We
will show that for any A, exactly one of the following is true:

1. There exists an A-computable sequence {σn}n∈N with
⋃︀σn ⋃︀ = 2n , such that for any algorithm P , there are
infinitely many n such that P is wrong on every bit
of σn .

2. Both (2a) and (2b):
(2a) For anyA-computable sequence {σn}n∈N with ⋃︀σn ⋃︀ =

2n , for any ε > 0, there is an algorithmwhich (asymp-
totically) correctly guesses a fraction of 1⇑2 − ε bits
of every σn .

(2b) There is also an A-computable sequence {σn}n∈N
with ⋃︀σn ⋃︀ = 2n , such that for any ε > 0, no algorithm
(asymptotically) correctly guesses a fraction of 1⇑2+ε
bits of every σn .

3. The set A is computable.
The first non-trivial part of this trichotomy is “Suppose

(2b) is not true. Then why must A be computable?”. This
had already been answered by Hirschfeldt, Jockusch, McNi-
choll and Schupp [13]. The second non-trivial part of this
trichotomy is “Suppose (2a) is not true. Then why must we
have (1) ?”. A slightly more complicated version of this ques-
tion is answered with Theorem 3.11, the main result of this
paper.

1.3 The content of this paper
In order to solve the Γ question, we use the key notion
of bounded infinite often equality, that was introduced by
Monin and Nies [19]. Informally, given two computable func-
tions f ,H fromN toN, we say that f is infinitely often equal
with bound H , if it equals infinitely often every computable
function bounded by H . Monin and Nies [19] showed that if
a Turing degree contains a function which is infinitely often
equal with bound 2(2n), then its Γ value must be 0. We show
here that the following are equivalent for a Turing degree d :

1. The Γ value of d is strictly smaller than 1⇑2.
2. d computes a function which is infinitely often equal

with bound 2(2n).
3. The Γ value of d is equal to 0.
We then deal with related questions that naturally arise

from the Γ question and have been asked previously. In par-
ticular Monin and Nies assigned [19] for any integer q > 2
a value Γ in base q, to any Turing degree. This new notion
is naturally derived from the original one, by considering
infinite q-ary sequences instead of infinite binary sequences.
Monin and Nies showed that if the Γ value in base q of a
Turing degree is strictly bigger than 1⇑q, the degree is in fact
the computable degree and its Γ value in base q must be one.
It is worth mentioning that the proof is not a straightfor-
ward modification of the one from Hirschfeldt et al. in base
2. Monin and Nies also argued that every known example
of Turing degree with a Γ value of 1⇑2 has a Γ value in base
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q of 1⇑q. They asked whether this is always the case. We
answer the question here by showing that the following are
equivalent for a Turing degree d :

1. The Γ value in base q of d is strictly smaller than 1⇑q.
2. d contains a function which is infinitely-often-equal

with bound 2(2n).
3. The Γ value (in any base) of d is equal to 0.

This will also imply that the only possible Γ value in base
q of a Turing degree are 0, 1⇑q and 1. Again, the proof will
not be a straightforward modification of the proof of the
equivalent statement for base 2.

We will finally argue that our proofs also give the same an-
swer to a version of the Γ question in the tt-degrees, asked in
[11]. Wewill briefly defend the relevance of this question and
explain why our proofs automatically settles the Γ question
in the tt-degrees.
An analogue of the Γ question was also studied for the

many-one degrees, and in this case,MatthewHarrison-Trainor
[10] was able to provide the opposite answer, in extreme con-
trast to the situation for Turing and truth-table degrees : For
any r ∈ (︀0, 1⇑2⌋︀, there exists anm-degree d with Γm(d) = r ,
where Γm is the version of Γ for many-one degrees.

1.4 On the relation between Γ and the
error-correcting codes

For one key step of the proof that Γ(d) < 1⇑2 implies Γ(d) =
0, we will need to borrow some basic techniques from the
field of error-correcting codes, which copes with the problem
of reliable transmission of information on a noisy channel. If
one wants to transmit, say, a binary message of lengthm, the
idea is to encode this message in a codeword of length n >m,
and to transmit this codeword instead. The codeword must
then be robust to the noise, say random bit flip, that may
occur during the transmission: If the number of bit flips is
not too large, the receiver must be able to retrieve the initial
message. The research in this area focuses on improving
robustness to various type of noise, as well as providing
efficient encoding and decoding algorithms.
Error-correcting codes are not only used in many data

communication protocols. They also have been an important
tool in theoretical computer sciences. They play a central
role in different areas such as cryptography (e.g. [21] and [4]),
probabilistic proofs (e.g. [3] [22] and [2]), pseudorandomness
theory (e.g. [6]), and many more. To our knowledge, it is one
of the first time they are used in computability theory. A
previous example occurs in [5].

2 Preliminaries and notations
In the following, byN⋆, wemean the set of all strictly positive
integers (and by N the set of integers which are positive or
null). We work in the space of infinite sequences over a finite
alphabet {0, . . . ,q − 1} for an integer q > 1, denoted by qN.

We call q-ary sequences, or sequences elements of qN and q-
ary strings, or strings, the finite sequences over the alphabet
{0, . . . ,q − 1}. The set of q-ary strings is denoted by q<N. We
sometimes also use the word sequence to denote sequences
of various objects (typically integers), and when we do so
we will always specify it to avoid any ambiguity.

For q > 1 and for a string σ ∈ q<N, we denote the set of ele-
ments of qN extending σ by (︀σ⌋︀ and we call those sets cylin-
ders. We denote by λ the unique probability measure on qN

such that λ((︀σ⌋︀) = q−⋃︀σ ⋃︀ for any string σ , where ⋃︀σ ⋃︀ denotes
the length of σ . For a sequenceX ∈ qN and a finite interval I ⊂
N, we denote by X ↾I the string X(I(0)) ˆ . . . ˆX(I(m − 1)),
wherem is the length of I . The notationX ↾n for n ∈ Nmeans
X ↾

(︀0, ...,n−1⌋︀.
In this paper we will be interested in having a canonical

coding between sequences and functions f ∶ N→ N which
are strictly bounded by some H ∶ N → N. Such a function
H will generally be an order function, that is, a computable
function H such that H(n) ≤ H(n + 1) and limn H(n) = +∞.
In the context of q-ary sequences and strings, to make the
coding work nicely we will consider that the bound H is
always of the form qH̃(n). Given a q-ary sequence X and
such a bound H(n) = qH̃(n), we denote by fX the function
bounded by H , whose values are the integers encoded by
successive chunks of bits of X , of length H̃(n). Formally we
define H ′(n) = ∑m<n H̃(m) (with H ′(0) = 0), and fX (n) to
be the integer smaller than qH̃(n) which is encoded by the
string X ↾

(︀H ′(n),H ′(n+1)). Conversely, given f with f (n) <
H(n) = qH̃(n), we write Xf to denotes the sequence X such
that fX = f .
Finally, for a q-ary sequence X and a p-ary sequence Y ,

we write Y ≤T X to mean that Y is Turing computable from
X . We write Y ≡T X if Y ≤T X and X ≤T Y . We write
Y <T X if Y ≤T X but not X ≤T Y . The equivalence classes
for the relation ≡T are the Turing degrees. Turing degrees are
usually defined only over binary sequences. Here the use of
q-ary sequences for q > 2 will have its importance. We thus
consider that Turing degrees are defined over the union of
the q-ary sequences for all integers q > 1.

2.1 Concentration inequalities
We briefly recall here the few concentration inequalities that
will be used in this paper.

Definition 2.1. For q > 1, for a given n ∈ N and two strings
σ1,σ2 ∈ qn , the Hamming distance between σ1 and σ2 is the
number of positions where σ1 and σ2 differ. We denote by
δ(σ1,σ2) the normalized hamming distance:

δ(σ1,σ2) =
#{i < n ∶ σ1(i) ≠ σ2(i)}

n

For q > 1, n > 0 and σ a q-ary string of length n, Ho-
effding’s inequality bounds the measure of the set of q-ary
strings of the same length, whose Hamming distance with
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σ is smaller than 1 − 1⇑q − ε or larger than 1 − 1⇑q + ε (with
ε > 0 such that both values are greater than 0 and smaller
than 1):

λ({τ ⋃︀ δ(σ ,τ) < 1 − 1⇑q − ε}) ≤ e−2ε2n (1)

λ({τ ⋃︀ δ(σ ,τ) > 1 − 1⇑q + ε}) ≤ e−2ε2n (2)

In the first case, the set {τ ⋃︀ δ(σ ,τ) < 1 − 1⇑q − ε} is the
Hamming ball of radius 1−1⇑q−ε and centered in σ , that we
will denote with B(σ , 1 − 1⇑q − ε). There are known slightly
sharper bounds in this case:

λ(B(σ , 1 − 1⇑q − ε)) ≤ q−n(1−Hq(1−1⇑q−ε)) (3)

where Hq(α) is the q-ary entropy function defined by:

Hq(α) = α logq(q − 1) − α logq(α) − (1 − α) logq(1 − α)
Note that Hq(0) = 0, that Hq(1 − 1⇑q) = 1 and that Hq is
strictly increasing on (︀0, 1 − 1⇑q⌋︀.
Equations (1), (2), (3) will be referred to in this paper as

the concentration inequalities. The reader can see [14] for (1)
and (2), and chapter 1 of [23] for (3).

2.2 Preliminaries on coarse computability
The notion of coarse computability received quite a lot of
recent attention by various authors (see for example [1] and
[13]).

Definition 2.2. A sequenceX is coarsely computable if there
is a computable sequence A such that the lim inf of the fre-
quency of positions n on which X(n) = A(n), equals 1. More
formally, let us introduce the function:

ρ(X ,A) = lim inf
n

1 − δ(X ↾n ,A↾n)

The sequence X is coarsely computable if for some com-
putable sequence A we have ρ(X ,A) = 1.

A real number can naturally be assigned to non-coarsely
computable objects. This number can be seen as an indication
of how far the object is from being coarsely computable.

γ (X) = sup
A computable

ρ(X ,A)

We will refer to this as the γ value of X . Note that for
any q > 1 and X ∈ qN, the supremum in the above definition
is reached equivalently by considering only computable q-
ary sequences. Andrews, Cai, Diamondstone, Jockusch and
Lempp [1] had the interesting idea to define a similar value
for Turing degrees, which indicates how far a degree is from
being coarsely computable. Here on the contrary, the defi-
nition depends on the base. We first present the definition
only for binary sequences, as it was defined first. We will
discuss later the case of q-ary sequences for q > 2.

Γ(d) = inf{γ (X)∶ X ∈ 2N is in the Turing degree d}
This will be referred to in this paper as the Γ value of d . In

practice we will often write Γ(X) for a set X ∈ 2N to mean

Γ(d) where d is the Turing degree of X . It is easy to see that
one can equivalently consider Γ(X) to be the infimum over
the values γ (Y) for every Y ≤T X , rather than just every
Y ≡T X . The reason is that given any Y <T X , we can add
to the sequence Y all the information about X at some very
sparse computable set of positions, giving a new set Turing
equivalent to X , with the same γ value as Y ’s.

The Γ question is: which real numbers can be realized by
the Γ value of a degree? Hirschfeldt, Jockusch, McNicholl and
Schupp [13] showed that every real number r can be realized
by the γ value of a binary sequence. Their results also show
that Γ(X) > 1⇑2 if and only if X is computable and thus
Γ(X) = 1 and gave examples of sequences X with Γ(X) =
0. Then Andrews et al. [1] gave examples of sequences X
with Γ(X) = 1⇑2. Monin and Nies [19] then provided new
examples of sequences X with Γ(X) = 0, and new examples
of sequences X with Γ(X) = 1⇑2. The work of all these
authors had left so far open the existence of sequences X
with 0 < Γ(X) < 1⇑2. This paper achieve to fully answer the
Γ question, by showing that if Γ(X) < 1⇑2 then we must have
Γ(X) = 0. Thus only the reals 0, 1⇑2 and 1 can be realized by
the Γ value of a degree.

Monin and Nies also defined Γ values for bases other than
2. For an integer q ≥ 2 and X ∈ qN we define the value Γq(X)
as before except we now consider an infimum over elements
of qN which are Turing equivalent to X . Finally for a (non
rational) real r ∈ R we define Γq(r) to be Γq(X) for X ∈ qN
the canonical representation of r in base q.

Monin and Nies showed that for any q ≥ 2 and anyX ∈ qN,
we have Γq(X) > 1⇑q iff Γq(X) = 1 iff X is computable. They
showed that for any known example of real r such that
Γ2(r) = 1⇑2, we also have Γq(r) = 1⇑q for any q ≥ 2. They
asked whether this is always the case. We will also answer
here this question in the affirmative.

2.3 Preliminaries on error-correcting codes
An encoding function with parameters k , n is a function
E ∶ qk → qn that maps a q-ary string m of length k into
a longer, redundant q-ary string E(m) of length n. An input
m of the function is referred to as the message, whereas its
output E(m) is referred to as a codeword. The error-correcting
code itself, or simply the code, is defined to be the image of
the encoding function. In other words, it is the set of all
codewords which are used to encode the various messages.

In practice, we often work directly with subsets C ⊆ qn of
size qk . The encoding function is then induced by taking any
enumeration of C , and such a set is said to be a (n,k)q-code.

A key parameter of a (n,k)q-code C is its distance, which
refers to the smallest Hamming distance between two code-
words. We write d(C) for the distance of C and δ(C) for its
normalized distance, d(C)⇑n. If d is the distance of C , the
receiver of a codeword would be able to correct up to d⇑2
errors (assuming he knows the encoding function): If the
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number of errors is smaller than d⇑2, the originally transmit-
ted string is simply given by the codeword that is the closest
to the received message.

Another important parameter of a code is its rate: For the
sake of efficiency, one would like the length n of a code-
word not to be much longer than the length k of messages
we have to transmit. The rate is the quantity k⇑n, and mea-
sures, in some sense, the amount of redundancy added by
the encoding.

The following proposition is almost trivial and says that it
is possible to build a code with good rate (independent from
the messages’ length) and with relative distance as close to
1 − 1⇑q as we want (in the following ⟨︀r⧹︀ for a real r is the
largest integer smaller than or equal to r ).

Proposition 2.3 (Asymptotic Gilbert bound [23]). Let q > 1.
Let ε with 0 < ε < 1 − 1⇑q, let α = 1 − Hq(1 − 1⇑q − ε) and
n ∈ N. There exists a (n, ⟨︀αn⧹︀)q-codeC of normalized distance
δ ≥ 1 − 1⇑q − ε .

Proof. Suppose that we have a set C ⊆ qn such that for ev-
ery string τ ∈ qn , there exists σ ∈ C with δ(τ ,σ) < 1 −
1⇑q − ε . Thus ⋃σ ∈C B(σ , 1 − 1⇑q − ε) = qN and in particular
∑σ ∈C λ(B(σ , 1− 1⇑q − ε)) ≥ 1. By the concentration inequal-
ity (3) above, λ(B(σ , 1−1⇑q−ε)) ≤ q−n(1−Hq(1−1⇑q−ε)) which
implies that ⋃︀C ⋃︀q−n(1−Hq(1−1⇑q−ε)) ≥ 1. Thus we must have
at least q⟨︀n(1−Hq(1−1⇑q−ε))⧹︀ elements in C .
It follows that the code satisfying the proposition can

be built in a greedy manner: at any step, put in the code
any string such that its relative distance to every previously
picked string is large enough, until this is not possible. �

From the previous proposition, for every ε > 0 as small
as we want, there exists α > 0 such that we can build a
(n, ⟨︀αn⧹︀)2-code for any n ∈ N with normalized distance of at
least 1⇑2 − ε . Thus we can correct as close as we want to 1⇑4
of errors. It is not possible with binary codes to correct more
errors, and in general, with q-ary codes, to correct more
than (1 − 1⇑q)⇑2 errors: By the well known Plotkin bound,
the maximal number of strings of length n with pairwise
normalized distance larger than 1 − 1⇑q + ε is a constant
independent of n. This will not be good enough for us, and
to solve the Γ question, we will need to be able to correct up
to a ratio of 1⇑2 errors for binary codes.

We will then use an alternate notion of decoding called list
decoding, proposed independently by Elias [8] and Wozen-
craft [24] in the late 50s. List decoding allows the decoder to
output a list of possible codewords rather than a unique one.
Even when constrained to output a relatively small number
of answers, list decoding permits recovery from errors well
beyond the d⇑2 barrier that comes with unique decoding.

This is formally done in the following theorem, known as
the list decoding capacity theorem. It says that for any ε , it is
possible to perform list decoding with lists of constant size
and successfully correct up to a ratio of 1 − 1⇑q − ε errors.

Moreover, the rate of the code can be made as close as we
want to 1 −Hq(1 − 1⇑q − ε) by taking larger and larger lists.

The word “capacity” in the theorem’s name refers to the
quantity 1−Hq(1−1⇑q−ε) and goes back to the study of noisy
channels. The reader can see for instance chapter 8 of [7] for
more information about the capacity of noisy channels.

Theorem 2.4 (The list decoding capacity theorem [9]). Let
q > 1. Let ε with 0 < ε < 1 − 1⇑q and n ∈ N. For any L ∈ N
and 0 < α < 1 −Hq(1 − 1⇑q − ε) − 1⇑L, there exists a set C of
q⟨︀αn⧹︀ many q-ary strings of length n such that for any q-ary
string σ of length n, there are at most L elements τ of C with
δ(σ ,τ) ≤ 1 − 1⇑q − ε .

Note that for 0 < ε < 1 − 1⇑q, we always have 0 < Hq(1 −
1⇑q − ε) < 1 and then one can always find suitable α and L.

The version of this theorem with q = 2 will suffice to
solve the Γ question in base 2. To solve the Γ question in
bases larger than 2, we will need a variation of the list de-
coding theorem. This variation will be introduced later, in
Section 4.1. The reader who is interested in the proof of the
list decoding theorem can also refer to the proof we will give
of its variation, which is very similar.

3 The possible Γ values
3.1 Previous work
Denis Hirschfeldt, Carl Jockusch, Timothy McNicholl, and
Paul Schupp showed the following theorem:

Theorem 3.1 ([13]). Let X ∈ 2N. If Γ(X) > 1⇑2 then X is
computable and Γ(X) = 1.

Informally, given a binary sequence X , the idea is to com-
pute from it another sequence Y where each bit of X is
repeated inY a number of times much larger than the sum of
the number of times each previous bit is repeated. As some
computable sequence R must almost always agree with Y
more than half of the time, it is possible to use a so called
“majority vote” technique: With at most finitely many ex-
ceptions, the bit of X is the one that occurs the most in R
when looking at the positions where this bit is repeated in Y .
Andrews, Cai, Diamondstone, Jockush and Lempp showed
the first part of the following theorem (the second part being
from Hirschfeldt et al.):

Theorem 3.2 ([1, 13]). There exists X ∈ 2N such that Γ(X) =
1⇑2. There exists X ∈ 2N such that Γ(X) = 0.

Andrews et al. [1] gave two distinct examples of sequences
with a Γ value of 1⇑2, and two distinct examples of sequences
with a Γ value of 0 (as mentioned in the introduction, the se-
quences of non-computably dominated or PA degree). Later
Monin and Nies identified a unique notion covering the pos-
sible known examples of sequences having a Γ value of 1⇑2,
and they identified a unique notion covering possible known
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examples of sequences having a Γ value of 0: being respec-
tively non-weakly Schnorr engulfing and infinitely often
equal with bound 2(2n).
We won’t give here more details about the property of

being weakly Schnorr engulfing and having a Γ value of 1⇑2.
The reader can refer to [19] for more details on the subject.
The notion of being infinitely often equal with bound h,
introduced in [19], was new and appears to be a key step in
the resolution of the Γ question.

3.2 Being infinitely often equal
Definition 3.3. Given a bound H ∶ N ↦ N we say that
f ∶ N↦ N is H -infinitely often equal (or H -i.o.e.) if f equals
infinitely often every computable function strictly bounded
byH . A sequenceA is ofH -i.o.e. degree ifA Turing computes
an H -i.o.e. function.

Note that as long as H ≥ 2, we obtain the same notion by
replacing “infinitely often” by “at least once” in the definition:
If f equals only finitely often to some computable function
bounded by H ≥ 2, then there also exists a computable func-
tion bounded by H which never equals f . Therefore if f
equals every computable function bounded by H at least
once, it must equals every computable function bounded by
H infinitely often.

If A is of 2(2n)-i.o.e. degree, then Γ(A) = 0. This uses a
very simple but key idea, that will also be reused to solve
the Γ question. In the following f (2n) and H(2n) are short
notations to denote respectively the functions n ↦ f (2n)
and n ↦ H(2n).
Proposition 3.4 ([19]). Let H ∶ N → N. Let f ∶ N → N be
bounded by H . If f is H -i.o.e., then f (2n)must be H(2n)-i.o.e.
or f (2n + 1) must be H(2n + 1)-i.o.e.
Proof. By contrapositive, suppose there exist computable
functions д1 ≤ H(2n) and д2 ≤ H(2n + 1) such that д1(n) ≠
f (2n) for all but finitelymanyn and such thatд2(n) ≠ f (2n+
1) for all but finitely many n. Then the computable function
д such that д(2n) = д1(n) and д(2n + 1) = д2(n) equals to f
only finitely often, and f is then not H -i.o.e. �

Corollary 3.5 ([19]). If a sequence A is of 2(2n)-i.o.e. degree,
then for any a ∈ N∗, the sequence A is of 2(a

n
)-i.o.e. degree.

Proof. Suppose that A is of 2(2n)-i.o.e. degree. Then from
Proposition 3.4, A is of 2(22n

)-i.o.e. degree or A is of 2(22n+1
)-

i.o.e. degree. Also it should be clear that if a function is
H -i.o.e., then it is also H ′-i.o.e. for any H ′ ≤ H . In any case
we have that A is of 2(22n

)-i.o.e. degree.
By iterating the same argument, we have that A is of

2(2kn)-i.o.e. degree for any k ∈ N∗, and therefore that A is of
2(a

n
)-i.o.e. degree for any a ∈ N∗. �

Theorem 3.6 ([19]). If a sequence A is of 2(2n)-i.o.e. degree,
then Γ(A) = 0.

Proof. By Corollary 3.5 it is enough to show that if A is of
2(a

n
)-i.o.e. degree for a natural number a > 1, then Γ(A) ≤

1⇑a. Let a > 1 be an integer and suppose that A computes
a 2(a

n
)-i.o.e. function f , that we can bound without loss of

generality by 2(a
n
). Let Jn be the integer interval (︀an−1,an)

for n > 0, and let J0 = {0}. Note that the length of Jn is at
most of an . We define the f -computable sequence B such
that B ↾Jn is equal to the string corresponding to the n-th
value of f . Consider now any computable sequenceX and its
bitwise complement X , together with the function д which
to n associates the integer corresponding to the string X ↾Jn .
As f equals д infinitely often, then for infintely many n we
have that X and B agree on every point in Jn , and thus that
X and B disagree on every point in Jn . For any such n, the
density below an of the set of points where X and B agree is
at most an−1⇑an . As this is true for every computable X we
have γ (B) ≤ 1⇑a and hence Γ(A) ≤ 1⇑a. �

We now introduce a concept related to infinite often equal-
ity, which directly comes from inspecting aspects of the Γ
question. This notion is also what will connect the Γ question
to the field of error-correcting codes:

Definition 3.7. Let H ∶ N → N be a computable function
and α ∈ (︀0, 1⌋︀. A sequence of binary strings {σn}n∈N where
⋃︀σn ⋃︀ = H(n) is 2H(n)-infinitely often α-equal (or i.o.α-e.) if
for every computable sequence of binary strings {τn}n∈N,
with ⋃︀τn ⋃︀ = ⋃︀σn ⋃︀, we have:

lim sup
n

1 − δ(σn ,τn) ≥ α

Informally, we want {σn}n∈N to be equal infinitely often, on
a fraction of at least α bits, to every computable sequence
{τn}n∈N where ⋃︀τn ⋃︀ = H(n).

3.3 Γ(X) < 1⇑2 implies Γ(X) = 0
The γ value of a sequence is defined by considering longer
and longer initial segments. In order to solve the question,
we would like to consider successive chunks of bits instead
of initial segments. This is done in the following theorem,
which will also be used to solve the Γ question for bases
other than 2.

Theorem 3.8. Let ε > 0. Let q ≥ 2 and X ∈ qN. We have (2)
implies (1):
(1) Γq(X) ≥ 1⇑q − ε .
(2) For every k ∈ N∗, for any X -computable sequence of q-

ary strings {σn}n∈N where ⋃︀σn ⋃︀ = ⟨︀2n⇑k ⧹︀, there is a com-
putable sequence of q-ary strings {τn}n∈N with ⋃︀τn ⋃︀ =
⋃︀σn ⋃︀ such that for everyn, we have 1−δ(σn ,τn) ≥ 1⇑q−ε .

Proof. Suppose that (2) is true. Consider any sequenceY ∈ qN
computed by X and fix c ∈ N∗. Pick k such that for n large
enough ⟨︀2(n+1)⇑k ⧹︀ is smaller than 1⇑c times the sum of ⟨︀2i⇑k ⧹︀
for i ≤ n. Such a thing is always possible: By the sum of
the geometric series we have that 2(n+1)⇑k − 1 is equal to
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(21⇑k−1)∑n
i=0 2i⇑k . The largerk is, the closer to 0 the quantity

(21⇑k − 1) is. To have 2(n+1)⇑k ≤ 1⇑c∑n
i=0⟨︀2i⇑k ⧹︀ we need

to compensate the imprecisions due to the additional −1
constant and due to the use of the floor function. This is
easily done for instance with k such that (21⇑k − 1) < 1⇑(2c).
Split then Y into chunks of bits {σn}n∈N with ⋃︀σn ⋃︀ = ⟨︀2n⇑k ⧹︀.
Thus the length of σn+1 is smaller than 1⇑c times the

sum of the length of ⋃︀σi ⋃︀ for i ≤ n. As {σn}n∈N is an X -
computable sequence satisfying (2), there must exist a com-
putable sequence {τn}n∈N with ⋃︀τn ⋃︀ = ⋃︀σn ⋃︀ such that for every
n, we have 1 − δ(σn ,τn) ≥ 1⇑q − ε . Let R be the concatena-
tion of the τn . Let H(n) = ∑n

i=0 ⋃︀σi ⋃︀. For every n we have
1 − δ(X ↾H(n),R ↾H(n)) ≥ 1⇑q − ε .

We shall now show that the above quantity does not drop
too much for prefixes of length H(n) + i for i < H(n + 1) −
H(n). By hypothesis, among the H(n) + i first bits (for n
large enough), there are at least H(n)(1⇑q − ε) bits which
are guessed correctly by R. Also the number of total bits
is at most H(n + 1), which is at most H(n) +H(n)⇑c . Thus
for each i < H(n + 1) −H(n) the fraction of bits which are
guessed correctly before H(n) + i is at least:

H(n)(1⇑q − ε)
H(n) +H(n)⇑c

Which equals:
1⇑q − ε
1 + 1⇑c

Thus γ (Y) ≥ 1⇑q−ε
1+1⇑c . We can repeat this operation for c

larger and larger, making lower bounds on the γ values of Y
closer and closer to 1⇑q − ε . If this happens for every Y ∈ qN
computable by X , we then have Γq(X) ≥ 1⇑q − ε . �

Note that the part (1) implies (2) in the previous theorem
is also true, and will follow from the proof of Theorem 4.3,
which answers the Γ question in base q: In the proof of
Theorem 4.3, we deduce from ¬(2) that X must have a Γq
value of 0, then making ¬(1) true.

The following corollary relies on the fact that for binary
sequences, if we know one value a bit does not take, we
actually know the value of the bit. We will need to elaborate
a bit more for q-ary sequences where q > 2.

Corollary 3.9. Let ε > 0. Let X ∈ 2N. We have (1) implies (2):

(1) Γ(X) < 1⇑2 − ε .
(2) There exists k ∈ N∗, and an X -computable sequence of

strings {σn}n∈N, which is 2⟨︀2
n⇑k

⧹︀-infinitely often (1⇑2 +
ε)-equal.

Proof. Suppose (1). By Theorem 3.8. There exists k ∈ N∗, and
an X -computable sequence of binary strings {σn}n∈N where
⋃︀σn ⋃︀ = ⟨︀2n⇑k ⧹︀, such that for any computable sequence of bi-
nary strings {τn}n∈N with ⋃︀τn ⋃︀ = ⋃︀σn ⋃︀, we have 1−δ(σn ,τn) <
1⇑2 − ε for infinitely many n.

Such a sequence must also be 2⟨︀2
n⇑k

⧹︀-infinitely often (1⇑2+
ε)-equal: For any computable sequence of strings {τn}n∈N
with ⋃︀τn ⋃︀ = ⋃︀σn ⋃︀, we can consider the computable sequence of
strings {τ ′n}n∈N where each τ ′n is the complement bitwise of
τn . There must be infinitely many n such that 1−δ(σn ,τ ′n) <
1⇑2 − ε and thus infinitely many n such that 1 − δ(σn ,τn) >
1⇑2 + ε . �

Again, in the previous corollary, the direction (2) implies
(1) is also true and is proved similarly, but using the direction
(1) implies (2) of Theorem 3.8. Using this last corollary, we
can now prove with the help of the list decoding theorem,
that if the Γ value of a sequence is strictly smaller than 1⇑2,
then it must actually be 0. Before we prove Theorem 3.11,
we need to introduce a simple technical tool:

Definition 3.10. Let {Tn}n∈ω be a sequence of finite sets
of integers, that is, for each n we have Tn ⊆ N and ⋃︀Tn ⋃︀ <∞.
Such a sequence {Tn}n∈ω is called a trace. We say that a trace
captures infinitely often a function д ∶ N → N, if there are
infinitely many n such that д(n) ∈ Tn .
Finally we say that a trace {Tn}n∈ω is computable (resp.

A-computable) if eachTn is computable (resp.A-computable)
uniformly in n, in a strong sense : An algorithm should tell
us at once all the integers which belong to Tn . Formally,
there must exist a computable (resp. A-computable) function
f ∶ N → N such that for every n, f (n) = 2x0 + ⋅ ⋅ ⋅ + 2xr and
Tn = {x0, . . . ,xr}.
Theorem 3.11. Let X ∈ 2N. The following are equivalent:

(1) Γ(X) < 1⇑2 − ε for some ε > 0.
(2) X is of 2(2n)-i.o.e. degree
(3) Γ(X) = 0.

Proof. (2) → (3) is given by Theorem 3.6. (3) → (1) is
trivial. We prove here (1)→ (2). Suppose Γ(X) < 1⇑2− ε for
some ε > 0. In particular from Corollary 3.9, X computes a
sequence of binary strings {σn}n∈N with ⋃︀σn ⋃︀ = ⟨︀2n⇑k ⧹︀ and
which is 2⟨︀2

n⇑k
⧹︀-i.o.(1⇑2 + ε)-e. for some k ∈ N∗. Let us pick

ε′ with 0 < ε′ < ε .
Using the list decoding theorem (Theorem 2.4 with the

special case q = 2), we pick L ∈ N and 0 < α < 1 such that
for any n, there exists a collection Cn of 2⟨︀α⟨︀2

n⇑k
⧹︀⧹︀ strings of

length ⟨︀2n⇑k ⧹︀, such that no string σ of length ⟨︀2n⇑k ⧹︀ has a
relative Hamming distance smaller than or equal to 1⇑2 − ε′
with more than L strings ofCn . Note that such a collection of
stringsCn is computable uniformly in n. Fix an enumeration
τn0 ,τ

n
1 , . . . of the elements of each Cn .

We define the following X -computable trace {Tn}n∈N: For
anyn,Tn is the collection of integers i such that theδ(σn ,τni ) ≤
1⇑2 − ε′. Note that each Tn is X -computable uniformly in n
and that ⋃︀Tn ⋃︀ ≤ L (possibly Tn is also empty). Note also that
the values of Tn are bounded by 2⟨︀α⟨︀2

n⇑k
⧹︀⧹︀.

We claim that every computable function д ∶ N→ N with
д(n) ≤ 2⟨︀α⟨︀2

n⇑k
⧹︀⧹︀, is captured infinitely often by {Tn}n∈N.
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Indeed, given such a computable function д bounded by
2⟨︀α⟨︀2

n⇑k
⧹︀⧹︀, let us consider the computable sequence of strings

{ρn}n∈N with ⋃︀ρn ⋃︀ = ⟨︀2n⇑k ⧹︀ defined by ρn = τni if д(n) = i .
As {σn}n∈N is 2⟨︀2

n⇑k
⧹︀-i.o.(1⇑2 + ε)-e. and as ε′ < ε , there

must exist infinitely many values n such that δ(σn , ρn) ≤
1 − (1⇑2 + ε′). But then by definition of {Tn}n∈N, for each of
these n, we must have д(n) ∈ Tn .

Thus for every computable functionдwhich is bounded by
2⟨︀α⟨︀2

n⇑k
⧹︀⧹︀, there exist infinitely many n such that д(n) ∈ Tn .

Now, by the same argument than the one of Proposition 3.4,
either {T2n}n∈N must capture infinitely often every com-
putable function bounded by 2⟨︀α⟨︀2

2n⇑k
⧹︀⧹︀, or {T2n+1}n∈N must

capture infinitely often every computable function bounded
by 2⟨︀α⟨︀2

(2n+1)⇑k
⧹︀⧹︀. In either case, {Tn}n∈N can compute a trace

that captures infinitely often every computable function
bounded by 2⟨︀α⟨︀2

2n⇑k
⧹︀⧹︀.

By iterating the same idea,X can compute a trace {T ′n}n∈N
with ⋃︀T ′n ⋃︀ ≤ L, which captures infinitely often every com-
putable function bounded by 2L2n . We can also without loss
of generality assume that each element of eachT ′n is bounded
by 2L2n , and thus assume that each element of each Tn is
coded on exactly L2n bits.

We now use the fact that ⋃︀T ′n ⋃︀ ≤ L for every n, to compute
using T ′n a function h ≤ 2(2n) which equals infinitely often
every computable function bounded by 2(2n). First for every
n, we add if necessary some elements inT ′n such that ⋃︀T ′n ⋃︀ = L.
Then we view each element ei ofT ′n as an L-tuple ∐︀e1

i , . . . ,e
L
i ̃︀.

Formally e ji is the j-th chunk of 2n consecutive bits coding ei .
Consider the L distinct X -computable functions h1, . . . ,hL
given by hi(n) = eii where ei = ∐︀e1

i , . . . ,e
i
i , . . . ,e

L
i ̃︀ is the i-th

element of T ′n . We claim that at least one hi is 2(2n)-i.o.e.
Suppose otherwise, and consider the L computable functions
p1, . . . ,pL witnessing that: for each i ≤ L, pi never equals hi .
Then the computable function p(n) = ∐︀p1(n), . . . ,pL(n)̃︀ is
never captured by {T ′n}n∈N, as for every n, the i-th compo-
nent of p(n) (seen as an L-tuple) is different from the i-th
component of the i-th element of T ′n (seen as an L-tuple).
This contradicts our hypothesis, and then at least one hi
must be 2(2n)-i.o.e. Note that hi is computable from X . This
concludes the proof. �

4 Related questions
4.1 The Γ question for bases other than 2
In this section we show how to deal with bases other than
2, using variants of the list decoding theorem. We start by
using list decoding to simplify the proof of the following
result from Monin and Nies [19]: If Γq(X) > 1⇑q + ε , then
X is computable. The case q = 2 was done by Hirschfeldt,
Jockusch, McNicholl and Schupp [13] using a majority vote
technique. Monin and Nies called on a quite unrelated and
difficult theorem from Kummer [18] to generalize to bases

other than 2. The use of list decoding gives a more direct
and simple proof:

Theorem 4.1 ([19]). Let q > 2. Let ε > 0. Let X ∈ qN. If
Γq(X) > 1⇑q + ε , then X is computable.

Proof. Suppose Γq(X) > 1⇑q + ε . Let F(n) = (3⇑ε)n . By the
sum of the geometric series, we have F(n) > (2⇑ε)∑i<n

i=0 F(i)
for every n. We let F ′(n) = ∑i≤n F(n).

Using the list decoding theorem, we pick L ∈ N and 0 < α <
1 such that for any n, there exist a collection Cn of q⟨︀α F(n)⧹︀
strings of length F(n), such that no string σ of length F(n)
has a relative Hamming distance smaller than 1 − 1⇑q − ε⇑2
with more than L strings of Cn .

Let the X -computable sequence of strings {σn}n∈N with
⋃︀σn ⋃︀ = F(n) be the encoding of X ↾

⟨︀α F ′(n)⧹︀ using the code
Cn . Let Y be the concatenation of the strings {σn}n∈N. As
γq(Y) > 1⇑q + ε , there must exist a computable sequence of
strings {τn}n∈N with ⋃︀τn ⋃︀ = ⋃︀σn ⋃︀ and such that δ(τn ,σn) <
1 − 1⇑q − ε⇑2 for every n. Suppose otherwise, then for every
computable sequence {τn}n∈N with ⋃︀τn ⋃︀ = ⋃︀σn ⋃︀, there exists
infinitely many n such that τn agrees on less than 1⇑q +
ε⇑2 bits with σn . As ⋃︀τn ⋃︀ is larger than 2⇑ε times ∑i<n

i=0 ⋃︀τi ⋃︀, a
simple computation shows that also the concatenation of
the strings τi for i ≤ n agrees with less than 1⇑q + ε bits with
the concatenation of the strings σi for i ≤ n. In particular it
would contradict that γq(Y) > 1⇑q + ε .

Now to compute X we proceed as follow: For every n,
there are at most L strings of Cn which agree with τn on
more than 1⇑q + ε⇑2 bits. Among them we know there must
be the correct image of X ↾

⟨︀α F ′(n)⧹︀ by the code Cn . Using
{τn}n∈N, we can compute for every n the sets Tn consisting
of all the preimages of the strings of Cn which agree with
τn on more than 1⇑q + ε⇑2 bits. We can then compute the
treeT ⊆ q<N such that σ ∈ T iff ∃n such that σ ∈ Tn and such
that ∀m ≤ n σ extends a string in Tm . For every n this tree
contains at most L strings of length n. Also we must have
X ∈ (︀T ⌋︀. In particular, there must be a prefix σ ofX such that
X is the only infinite path of T extending σ . This makes X
computable by a well known following argument : suppose
we have computed τ with σ ≺ τ ≺ X , to know if the next bit
is 0 or 1, we look for the smallest n such that there are either
no extensions of τ0 of length n inT , or no extensions of τ1 of
length n inT . By Koenig’s lemma, as X is the only extension
of σ , the algorithm will find such an n and therefore will
know the next bit of X . �

Monin and Nies [19] asked whether for any real r and
any q > 2, we must have Γq(r) = 1⇑q iff Γ(r) = 1⇑2. We now
answer the question by showing that if Γq(r) < 1⇑q, then r

Turing computes a 22n -i.o.e. function which implies Γ(r) = 0.
One can easily verify that Γb+1(r) ≤ Γb(r), which allows us
to conclude that Γq(r) = 0.

In base 2 we use Corollary 3.9 which comes with the sym-
metry of 2N : If σ is far from a string τ , then σ is close to
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τ̄ , the complement bitwise of τ . Of course, no such thing is
possible in base q > 2. But what is important is the use of
unlikely events: in base 2 it is unlikely to be far from a given
string τ , and symmetrically it is as unlikely to be close from
τ̄ . We actually do not need this symmetry. We can simply use
the fact that it is unlikely in base q to be far from a string τ .
This is why we need a variation of the list decoding the-

orem, which does not correspond anymore to a concrete
problem as it was the case with error-correcting codes : In-
stead of assuming that we never have too much error during
our transition, we now assume that we always have a lot.
Being wrong many times is as unlikely as being correct many
times. Thus list decoding is also possible when the number
of errors is always sufficiently big.

Theorem 4.2 (Variation on list decoding). Let q > 2. Let
ε > 0 and n ∈ N. For L ∈ N large enough and α ∈ R+ small
enough, there exists a set C of q⟨︀αn⧹︀ many q-ary strings of
length n such that for any q-ary string σ of length n, there are
at most L elements τ of C such that δ(σ ,τ) > 1 − 1⇑q + ε .
Proof. We prove that if we pick at random the strings in C ,
the theorem is true with positive probability. For a string
σ ∈ qn , let us define the somehow opposite of a Hamming
ball : D(σ , 1 − 1⇑q + ε) = {τ ∈ 2n ⋃︀ δ(σ ,τ) > 1 − 1⇑q + ε}.
By the second concentration inequality, we have λ(D(σ , 1 −
1⇑q + ε)) ≤ q−nβ with β = 2ε2 logq(e) (Note that a proof of
the list decoding theorem can be done like the present proof,
but using the bound of the Hamming ball B(σ , 1 − 1⇑q − ε))
given by the third concentration inequality).
Consider L large enough and α small enough, such that

α < β − 1⇑L. Let k = ⟨︀αn⧹︀ and let C be a collection of qk
strings picked at random. For any subset of L + 1 of these
strings, the probability that a given string σ has a relative
Hamming distance larger than 1 − 1⇑q + ε with each of them
is bounded by q−βn(L+1). Thus the probability that a given σ
has a relative Hamming distance larger than 1−1⇑q+ε with all
the strings in any possible subsets of size L+1 ofC is bounded
by ( qk

L+1)q
−βn(L+1). And the probability that this happens for

any string σ is bounded by qn( qk

L+1)q
−βn(L+1). The following

computation shows that this quantity is smaller than 1:

qn( qk

L+1)q
−βn(L+1) ≤ qnqαn(L+1)q−βn(L+1)

(using k ≤ αn)
≤ q−n(L+1)(−α−1⇑(L+1)+β)

≤ q−n(L+1)(−β+1⇑L−1⇑(L+1)+β)

(using α < β − 1⇑L)
≤ q−n(L+1)((L+1−L)⇑L(L+1))

≤ q−n⇑L

It follows that that for any n, if C is a collection of q⟨︀αn⧹︀
strings of length n that we pick at random, the probability
that no string σ of length n has a relative Hamming distance
bigger than 1−1⇑q+ε withmore than L strings ofC is positive

and goes to 1 as n goes to infinity. In particular, for any n,
there exists such a collection of strings. �

It is now clear how to call on this new list decoding theo-
rem, to solve the Γ question in any base:

Theorem 4.3. Let q > 2. Let ε > 0. Let X ∈ qN. Suppose
Γq(X) < 1⇑q − ε . Then X computes a 2(2n)-i.o.e. function.

Proof. From Theorem 3.8, there must exist k ∈ N∗ and an X -
computable sequence of q-ary strings {σn}n∈N where ⋃︀σn ⋃︀ =
⟨︀2n⇑k ⧹︀, such that for every computable sequence of q-ary
strings {τn}n∈N, we have 1−δ(σn ,τn) < 1⇑q−ε for infinitely
many n.
Using the variation of the list decoding theorem (Theo-

rem 4.2), we pick L ∈ N and 0 < α < 1 such that for any
n, there exists a collection Cn of q⟨︀α⟨︀2

n⇑k
⧹︀⧹︀ strings of length

⟨︀2n⇑k ⧹︀, such that no string σ of length ⟨︀2n⇑k ⧹︀ has a relative
Hamming distance bigger than 1 − 1⇑q + ε with more than L
strings of Cn . Fix an enumeration τn0 ,τn1 , . . . of the elements
of each Cn .

The proof continues similarly to the one in base 2, except
that it is now impossible to be far from more than L strings
of Cn instead of impossible to be close. We define similarly
as in the proof of Theorem 3.11, the following X -computable
trace {Tn}n∈N: For any n, Tn is the collection of integers i
such that the δ(σn ,τni ) > 1 − 1⇑q + ε . As in Theorem 3.11,
{Tn}n∈N is X -computable, the values of Tn are bounded by
q⟨︀α⟨︀2

n⇑k
⧹︀⧹︀ and from Theorem 4.2 we know that ⋃︀Tn ⋃︀ ≤ L.

As in the proof of Theorem 3.11, we show that every
computable function д ∶ N → N with д(n) ≤ q⟨︀α⟨︀2n⇑k ⧹︀⧹︀, is
captured infinitely often by {Tn}n∈N. Indeed, given such a
computable function д bounded by q⟨︀α⟨︀2

n⇑k
⧹︀⧹︀, consider the

computable sequence of q-ary strings {ρn}n∈N with ⋃︀ρn ⋃︀ =
⟨︀2n⇑k ⧹︀ defined by ρn = τni if д(n) = i . By hypothesis on the
sequence {σn}n∈N, there must exist infinitely many values n
such that δ(σn , ρn) > 1 − 1⇑q + ε . But then by definition of
{Tn}n∈N, for each of these n, we must have д(n) ∈ Tn .

Now, As in the proof of Theorem 3.11, one easily argue that
X computes a trace {T ′n}n∈N with ⋃︀T ′n ⋃︀ = L which captures
infinitely often every computable function bounded by qL2n .
We can also without loss of generality assume that each
element of each T ′n is bounded by qL2n , and thus coded on
exactly L2n bits. As in the proof of Theorem 3.11, one easily
shows that {T ′n}n∈N (and thus X ) computes a function h ≤
q(2n) which is equal infinitely often to every computable
function bounded by q(2n). Therefore as every q(2n)-i.o.e.
function is also a 2(2n)-i.o.e. function, X computes a 2(2n)-
i.o.e. function. �

4.2 The Gamma question in the tt-degrees
Awell understood and studied notion in the Turing degrees is
the one of being computably dominated. We say that X ∈ 2N
is computably dominated if every function from N to N that
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X computes is bounded by a computable one. One of the
first given examples of sequences with a Γ value of 0 are the
non-computably dominated sequences. This class is quite
large in several senses (it has measure 1 and it is co-meager).
Also for a given sequence X , we have the following well
known equivalence [16]:

1. X is computably dominated
2. the truth-table degrees containing X coincides with

the Turing degrees containing X .

We say that X ≥t t f if there exists a functional which is
total using any oracle, and which gives f when X is used as
an oracle. So (2) above means that whenever X is used as an
oracle to compute a function, then the functional usingX can
be made total on every oracle other than X . This property
was used for instance in [1] to show that the computably
dominated randoms have a Γ value of 1⇑2.

As the Γ question was solved already on the Turing degree
which are not computably dominated (their Γ value is 0), this
gave rise to an analogue of the Γ question in the tt-degrees.
The function Γt t (X) is defined like the function Γ(X), except
the infimum is now taken over all the binary sequences in
the tt degrees of X . Denis Hirschfeldt [11] asked about the
possible Γ values for the tt-degrees. Our proofs actually also
solves the Γ question in the tt-degrees:
The equivalent of Corollary 3.9 for the tt-degrees is the

following: If Γt t (X) < 1⇑2 − ε , then there exists k ∈ N∗, and
a 2⟨︀2

n⇑k
⧹︀-infinitely often (1⇑2 + ε)-equal sequence of strings

{σn}n∈N which is truth-table computable from X . Also in
the proof of Theorem 3.11, the computation of a trace of at
most L values which traces infinitely often every function
bounded by 2⟨︀α⟨︀2

n⇑k
⧹︀⧹︀ from a 2⟨︀2

n⇑k
⧹︀-infinitely often (1⇑2+ε)-

equal sequence of strings is clearly tt . Then the computation
(the extraction at a set of computable positions) of such a
trace with bound 2L2n instead of 2⟨︀α⟨︀2

n⇑k
⧹︀⧹︀ is also clearly tt .

Finally the extraction of a 2(2n)-i.o.e. function from such a
trace is also tt .
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