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Abstract. We give two new characterizations of K-triviality. We show that

if for all Y such that Ω is Y -random, Ω is (Y ⊕A)-random, then A is K-trivial.

The other direction was proved by Stephan and Yu, giving us the first titular
characterization of K-triviality and answering a question of Yu. We also prove

that if A is K-trivial, then for all Y such that Ω is Y -random, (Y ⊕A) ≡LR Y .

This answers a question of Merkle. The other direction is immediate, so we
have the second characterization of K-triviality.

The proof of the first characterization uses a new cupping result. We prove

that if A �LR B, then for every set X there is a B-random set Y such that X
is computable from Y ⊕A.

1. Preliminaries

We assume that the reader is familiar with basic notions from computability the-
ory and effective randomness. For more information on these topics, we recommend
either Nies [10] or Downey and Hirschfeldt [3].

The K-trivial sets have played an important role in the development of effective
randomness. A set A ∈ 2ω is K-trivial if K(A �n) ≤+ K(n), where K denotes
prefix-free Kolmogorov complexity. Chaitin [1] proved that such sets are always ∆0

2,
while Solovay [15] constructed a noncomputable K-trivial set. While these results
date back to the 1970s, the importance ofK-triviality did not become apparent until
the 2000s, when several nontrivial characterizations were discovered. In particular:

Theorem 1.1 (Nies [9]; Hirschfeldt, Nies, and Stephan [5]). The following are
equivalent for a set A ∈ 2ω :

(a) A is K-trivial,
(b) A is low for K: KA(n) ≥+ K(n),
(c) A is low for randomness: every random set is A-random,1

(d) A is a base for randomness: there is an A-random set X ≥T A.

Nies [9] generalized (c) to LR-reducibility : we write A ≤LR B to mean that
every B-random set is A-random. In particular, A ≤LR ∅ means that A is low for
randomness (hence K-trivial).

Much more has been proved about the K-trivial sets, including many other
characterizations. But we will only need one other fact. If X is random, then we
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say that Y is low for X if X is Y -random. This notion was introduced in [5], where
it is shown that a set is K-trivial if and only if it is ∆0

2 and low for Chaitin’s Ω.
However, many other sets are low for Ω; for example, every 2-random set. A more
recent result regarding K-triviality and lowness for Ω was used by Stephan and
Yu to prove one direction of our first characterization (see the discussion before
Proposition 3.2).

Theorem 1.2 (Simpson and Stephan [14, Theorem 3.11]). If S has PA degree and
is low for Ω, then S computes every K-trivial.

In addition to these facts about the K-trivial sets, we will use several fairly
well-known theorems from effective randomness. Van Lambalgen’s theorem [16]
says that X ⊕ Y is random if and only if X is random and Y is X-random. Two
applications allow us to show that if X is random and Y is X-random, then X is
Y -random. Every set is computable from some random set. Relativizing this to X:

Theorem 1.3 (Kučera [7]; Gács [4]). For any sets X and C, there is an X-random
set Y such that C ≤T Y ⊕X.

Any random set Turing below a Z-random set is also Z-random. Relativizing
this to Y :

Theorem 1.4 (Miller and Yu [8, Theorem 4.3]). Assume that X ≤T W ⊕ Y , X is
Y -random, and W is Z ⊕ Y -random. Then X is Z ⊕ Y -random.

Finally, we will use the relativized form of the “randomness preservation” basis
theorem:

Theorem 1.5 (Downey, Hirschfeldt, Miller, Nies [2]; Reimann and Slaman [13]).
If W is Y -random and P is a nonempty Π0

1[Y ] class, then there is a set S ∈ P that
is low for W .

2. Cupping with B-random sets

As promised in the abstract, we prove the following cupping result.

Theorem 2.1. Assume that A �LR B. Then for any set X, there is a B-random
set Y such that X ≤T Y ⊕A (in fact, we make Y weakly 2-random relative to B).

Our proof uses a result of Kjos-Hanssen. We state it here in a slightly stronger
form than he stated it, though without adding any essential content.

Theorem 2.2 (Kjos-Hanssen [6]). A �LR B if and only if there is a Σ0
1[A] class U

of measure less than one that intersects every positive measure Π0
1[B] class. Fur-

thermore, for any ε > 0, we can ensure that λ(U) < ε.

Kjos-Hanssen showed that A ≤LR B if and only if each Π0
1[A] class of positive

measure has a Π0
1[B] subclass of positive measure.2 Taking the contrapositive:

A �LR B if and only if there is a Π0
1[A] class T of positive measure that does not

have a positive measure Π0
1[B] subclass. So U = 2ω r T would be a Σ0

1[A] class of
measure less than one that intersects every positive measure Π0

1[B] class.
The fact that U can be taken to have arbitrarily small measure also follows from

the work in [6]. We use this fact below, so for completness, we sketch the argument.
Assume that A �LR B. So there is a B-random set X that is not A-random. Let

2This partial relativization of [6, Theorem 2.10] is stated in the proof of [6, Theorem 3.2].
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U be a Σ0
1[A] class containing every non-A-random set. We may assume, of course,

that the measure of U is as small as we like. Let P be a positive measure Π0
1[B]

class. Relativizing a result of Kučera [7], every B-random set has a tail in P , so
there is a tail Y of X in P . But Y is not A-random, so Y ∈ U .3

We need some basic notation for the proof of Theorem 2.1. If P ⊆ 2ω is mea-
surable and σ ∈ 2<ω, let λ(P | σ) denote the relative measure of P in [σ], i.e.,
λ(P ∩ [σ])/λ([σ]). If σ ∈ 2<ω and W ⊆ 2<ω, let σW = {στ : τ ∈W}.

Proof of Theorem 2.1. Suppose that A �LR B. By Theorem 2.2, there is a Σ0
1[A]

class U such that λ(U) < 0.1 and U intersects every positive measure Π0
1[B] class.

Let W be an A-c.e. prefix-free set of strings such that U = [W ]≺.
Let X be any set. We will construct Y = X(0)σ0X(1)σ1X(2)σ2 · · · such that

each σi ∈W . In this way, it is clear that X ≤T Y ⊕A. To ensure that Y is weakly
2-random relative to B, we build it inside a nested sequence of Π0

1[B] classes of
positive measure. The following claim will let us hit W and code the next bit of X
while staying inside the current Π0

1[B] class.

Claim. For any string σ ∈ 2<ω and any Π0
1[B] class P such that λ(P | σ) > 0.1,

there is a τ � σ such that τ ∈ σW and λ(P | τ) ≥ 0.8.

Proof. We first extend σ to a string ρ that has no prefix in σW and such that
λ(P | ρ) > 0.9. Let Q = 2ω r [σW ]≺. As λ(Q | σ) > 0.9 and λ(P | σ) > 0.1, we
have λ(Q ∩ P | σ) > 0. By the Lebesgue density theorem, there is a ρ � σ such
that λ(Q∩P | ρ) > 0.9. In particular, λ(P | ρ) > 0.9 and λ(Q | ρ) > 0.9; the latter
implies that ρ cannot have a prefix in σW .

We now extend ρ to a string τ satisfying the claim: τ ∈ σW and λ(P | τ) ≥ 0.8.

Consider the Π0
1(B) class P̃ = {X ∈ P ∩ [ρ] : (∀n ≥ |ρ|) λ(P | X �n) ≥ 0.8}. In

words, P̃ is the subclass of P ∩ [ρ] in which we remove every basic neighborhood
inside [ρ] where the relative measure of P drops below 0.8. It is not hard to
show that we remove at most 0.8 from the relative measure of P ∩ [ρ] inside [ρ]
(consider the antichain of maximal basic neighborhoods that are removed). But

λ(P | ρ) > 0.9, so λ(P̃ | ρ) > 0.1. In particular, P̃ is a positive measure subclass of

[σ], so by the choice of U = [W ]≺, it must be the case that [σW ]≺ intersects P̃ . Take

τ ∈ σW such that P̃ ∩ [τ ] 6= ∅. By the definition of P̃ , we have λ(P | τ) ≥ 0.8. ♦

We are ready to construct Y . We will construct it as the limit of a sequence
τ0 � τ1 � τ2 � · · · of strings, while staying inside a decreasing sequence P0 ⊇
P1 ⊇ P2 ⊇ · · · of Π0

1[B] classes. Let P0 = 2ω and let τ0 be the empty string.
We start stage n of the construction with a Π0

1[B] class Pn and a string τn =
X(0)σ0X(1) · · ·X(n− 1)σn−1 such that

(?) λ(Pn | τnX(n)) > 0.1.

(Note that this is true at stage 0.) First, we want to make progress towards Y being
weakly 2-random relative to B. Let

⋃
m∈ω Rm be the nth Σ0

2[B] class of measure

one, where R0 ⊆ R1 ⊆ R2 ⊆ · · · is a nested sequence of Π0
1[B] classes. Pick m large

enough that λ(Pn ∩Rm | τnX(n)) > 0.1 and let Pn+1 = Pn ∩Rm. So as long as we
ensure that Y ∈ Pn+1, we have ensured that Y is in the nth Σ0

2[B] class of measure

3In fact, U ∩ P has positive measure. Choose σ ∈ 2<ω such that Y ∈ [σ] ⊆ U . Then

P̃ = P ∩ [σ] ⊆ P ∩ U is a Π0
1[B] class. Since it contains Y , which is B-random, it cannot have

measure zero.
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one. Now apply the claim to get τn+1 � τnX(n) such that λ(Pn+1 | τn+1) ≥ 0.8 and
τn+1 ∈ τnX(n)W . Let σn be the string for which τn+1 = τnX(n)σn; in particular,
σn ∈W . Note that λ(Pn+1 | τn+1X(n+1)) ≥ 0.6 > 0.1, so (?) holds at stage n+1.

Let Y =
⋃

n∈ω τn = X(0)σ0X(1)σ1X(2)σ2 · · · . As promised, each σi is in W , so
X ≤T Y ⊕ A. By construction, P0 ⊇ P1 ⊇ P2 ⊇ · · · , and each τn can be extended
to an element of Pn. Therefore, Y ∈

⋂
n∈ω Pn. This ensures that Y is in every

Σ0
2[B] class of measure one, so Y is weakly 2-random relative to B. �

3. Low for X preserving

Definition 3.1. Let X be random. A set A is low for X preserving if for all Y ,

Y is low for X =⇒ Y ⊕A is low for X.

This notion was recently introduced by Yu Liang, who called it absolutely low
for X. Stephan and Yu proved that every K-trivial is low for Ω preserving (see
[11, Fact 1.8]). Yu asked if the converse is true: if a set is low for Ω preserving, is
it K-trivial? We show that, in fact, this holds in general.

Proposition 3.2. If X is random, then low for X preserving implies K-triviality.

Proof. Assume that A is low for X preserving.
First, we claim that A ≤LR X. If not, then Theorem 2.1 gives us an X-random

set Y such that X ≤T Y ⊕ A. By Van Lambalgen’s theorem, X is Y -random.
But X ≤T Y ⊕ A implies that X is not (Y ⊕ A)-random. This contradicts the
assumption that A is low for X preserving. Therefore, A ≤LR X.

By Theorem 1.3, there is an X-random set Y such that A ≤T Y ⊕X. Because A
is low for X preserving, we have that X is (Y ⊕A)-random. Furthermore, because
Y is X-random and A ≤LR X, we know that Y is A-random. Therefore, by Van
Lambalgen’s theorem, Y ⊕X is A-random. But Y ⊕X computes A, so A is a base
for randomness. Therefore, it is K-trivial (see Theorem 1.1). �

Together with the result of Stephan and Yu, we get a new characterization of
K-triviality:

Theorem 3.3. A set A is K-trivial if and only if it is low for Ω preserving.

We actually want a slight generalization of Stephan and Yu’s result.

Lemma 3.4. If A is K-trivial and Y is low for Ω, then Y ≡LR (Y ⊕A).

Proof. Let A be K-trivial and Y be low for Ω. Let X be any Y -random. By
Theorem 1.3, there is a Y -random set W such that both Ω and X are computable
from W ⊕ Y . There is a nonempty Π0

1[Y ] class containing only members with PA
degree relative to Y . So by Theorem 1.5, there is a low for W set S with PA degree
relative to Y . Thus W is S-random and Y ≤T S. By Theorem 1.4, both X and
Ω are also S-random. Since S is PA and low for Ω, by Theorem 1.2, S computes
every K-trivial. In particular, A ≤T S. Because Y ⊕ A ≤T S and X is S-random,
X is Y ⊕A-random. But X was any Y -random set, so Y ≡LR Y ⊕A. �

The property above is easily seen to imply K-triviality, giving us our second
characterization of K-triviality and answering a question of Merkle (see [11]).

Theorem 3.5. A set A is K-trivial if and only if for all Y

Y is low for Ω =⇒ Y ≡LR (Y ⊕A).
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Proof. One direction is Lemma 3.4. For the other direction, assume that A has the
given property. Note Ω is ∅-random, so ∅ ≡LR ∅ ⊕ A ≡LR A. In other words, A is
low for randomness, hence K-trivial (see Theorem 1.1). �

It is natural to ask if low for X preserving is equivalent to K-triviality for all
random X. As we shall see, this is not the case, though it is true for some X.

Proposition 3.6. If Ω ≤T X, then low for X preserving is equivalent to K-
triviality.

Proof. One direction is given by Proposition 3.2. For the other direction, let A be
K-trivial and take any Y such that X is Y -random. By (the unrelativized form of)
Theorem 1.4, Ω is also Y -random. By Lemma 3.4, Y ≡LR (Y ⊕ A). Therefore, X
is (Y ⊕A)-random. �

For other X, low for X preserving is equivalent to being computable.

Proposition 3.7. If X is Schnorr[∅′] random but not 2-random, then only the
computable sets are low for X preserving.

Proof. We prove the contrapositive. Assume that A is not computable. If A is not
∆0

2, then it is not K-trivial, hence by Proposition 3.2, it is not low for X preserving.
So assume that A is ∆0

2. By Posner–Robinson [12], there is a low set Y such that
Y ⊕ A ≡T ∅′. Because X is Schnorr[∅′], it is random relative to any low set,4 so it
is Y -random. But X is not 2-random, so it is not (Y ⊕ A)-random. Therefore, A
is not low for X preserving. �
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