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Abstract. The infinite pigeonhole principle for 2-partitions (RT1
2) asserts the existence, for

every set A, of an infinite subset of A or of its complement. In this paper, we study the infinite
pigeonhole principle from a computability-theoretic viewpoint. We prove in particular that
RT1

2 admits strong cone avoidance for arithmetical and hyperarithmetical reductions. We also
prove the existence, for every ∆0

n set, of an infinite lown subset of it or its complement. This
answers a question of Wang. For this, we design a new notion of forcing which generalizes the
first and second-jump control of Cholak, Jockusch and Slaman.

1. Introduction

In this paper, we study the infinite pigeonhole principle (RT1
k) from a computability-theoretic

viewpoint. The infinite pigeonhole principle asserts that every finite partition of ω admits an
infinite part. More formally, RT1

k is the problem whose instances are colorings f : ω → k. An
RT1

k-solution to f is an infinite set H ⊆ ω such that |f [H]| = 1. The general question we aim
to address is the following:

Question 1.1. Does every instance of RT1
k admit a “weak” solution?

We consider various notions of weakness, among which the inability to bound a fixed non-zero
degree for the Turing, arithmetical and hyperarithmetical reduction. This property is known
as strong cone avoidance. We also study restrictions of the infinite pigeonhole principle to ∆0

n

instances. Our main theorems are:

Theorem 1.2 (Main theorem 1) Let B be non (hyper)arithmetical. Every set A has an infinite
subset H ⊆ A or H ⊆ A such that B is not (hyper)arithmetical in H.

Theorem 1.3 (Main theorem 2) Fix n ≥ 1. Every ∆0
n set A has an infinite subset H ⊆ A or

H ⊆ A of lown degree.

Our motivation comes from reverse mathematics. Reverse mathematics is a foundational
program which aims to find the weakest axioms needed to prove ordinary theorems. The early
reverse mathematics showed the existence of an empirical structural phenomenon, in that most
theorems are provably equivalent to one among five main systems of axioms, linearly ordered
by the logical implication. See Simpson’s book [25] for a reference on reverse mathematics.
However, some natural statements escape this structural phenomenon, the most famous one
being Ramsey’s theorem for pairs (RT2

2). Given a set X, let [X]n denote the set of unordered
n-tuples over X. Ramsey’s theorem for n-tuples and k-colors (RTnk) asserts the existence, for
every coloring f : [ω]n → k, of an infinite set H ⊆ ω such that |f [ω]n| = 1. In particular, RT1

k

is the infinite pigeonhole principle.
Ramsey’s theorem for pairs and two colors received a lot of attention from the computability

community as it was historically the first example of statement escaping the structural phe-
nomenon of reverse mathematics. The study of RT2

k revealed a deep connection between the
computability-theoretic features of RT2

k and the combinatorial features of RT1
k. More precisely,

almost every proof of a statement of the form “Every computable instance of RT2
k admits a

weak solution” can be obtained by a proof of the statement “every (arbitrary) instance of
RT1

k admits a weak solution”, with the help of very weak computability-theoretic notion called
cohesiveness. This is in particular the case for cone avoidance [24, 6], PA avoidance [12],

1



2 BENOIT MONIN AND LUDOVIC PATEY

constant-bound trace avoidance [13], preservation of hyperimmunity [20], and preservation of
non-c.e. definitions [31, 19], among others. In many cases, the combinatorial features of RT1

k

and the computability-theoretic features of RT2
k can be proven to be equivalent. See Cholak

and Patey [3, Theorem 1.5] for an equivalence in the case of cone avoidance. It therefore seems
essential to obtain a good understanding of the infinite pigeonhole principle in order to bet-
ter understand why Ramsey’s theorem for pairs escapes the structural phenomenon of reverse
mathematics.

1.1. Strong cone avoidance

Given a partial order ≤r on 2ω and a set X, we let degr(X) = {Y : X ≡r Y } be the
degree of X, where X ≡r Y if X ≤r Y and Y ≤r X. We are in particular interested in the
case where ≤r is among the Turing reduction ≤T , the arithmetical reduction ≤arith and the
hyperarithmetical reduction ≤hyp. Given a mathematical problem P formulated in terms of
instances and solutions, it is natural to ask which sets are P-encodable. Here, we say that a set
X is P-encodable if there is an instance I of P such that for every P-solution Y to I, X ≤r Y .
Some problems are very weak with respect to the order ≤r, and satisfy the following property:

Definition 1.4 (Strong cone avoidance). A problem P admits strong cone avoidance for ≤r if
for every pair of sets Z and C such that C 6≤r Z, every instance X of P admits a solution Y
such that C 6≤r Z ⊕ Y .

Dzhafarov and Jockusch [6] proved that RT1
2 admits strong cone avoidance of the Turing

reduction. Their theorem has practical applications, and yield a simpler proof of Seetapun’s
theorem [24]. We prove a similar result for arithmetical and hyperarithmetical reductions.

Theorem 1.5 (Main theorem 1) RT1
2 admits strong cone avoidance for arithmetical and hy-

perarithmetical reductions.

This weakness also holds layer-wise in the arithmetical hierarchy, in the following sense.

Theorem 1.6 Fix n ≥ 1 and let B be a non-Σ0
n set. For every set A, there is an infinite set

H ⊆ A or H ⊆ A such that B is not Σ0,H
n .

These theorems show the combinatorial weakness of the pigeonhole principle with respect
RT1

2-encodability. To prove this, we designed a new notion of forcing with an iterated jump
control generalizing the first and second jump control of Cholak, Jockusch and Slaman [2].

1.2. Lowness and hierarchies

The computability-theoretic study of the pigeonhole principle is also motivated by questions
on the strictness of hierarchies in reverse mathematics. Some consequences of Ramsey’s theorem
form hierarchies of statements, parameterized by the size of the colored tuples. A first example
is Ramsey’s theorem itself. Indeed, RTn+1

k implies RTnk for every n, k ≥ 1. By the work of
Jockusch [9], this hierarchy collapses starting from the triples, and by Seetapun [24], Ramsey’s
theorem for pairs is strictly weaker than Ramsey’s theorem for triples. We therefore have

RT1
k < RT2

k < RT3
k = RT4

k = . . .

Some other hierarchies have been considered in reverse mathematics. Friedman [7] introduced
the free set (FSn) and thin set theorems (TSn), while Csima and Mileti [4] introduced and
studied the rainbow Ramsey theorem (RRTnk). These statements are all of the form Pn: “For
every coloring f : [ω]n → ω, there is an infinite set H ⊆ ω such that f�[H]n avoids some set
of forbidden patterns”. The reverse mathematics of these statements were extensively studied
in the literature [1, 4, 11, 16, 17, 19, 21, 28, 29, 30, 31, 32]. In particular, these theorems form
hierarchies which are not known to be strictly increasing.

Question 1.7. Are the hierarchies of the free set, thin set, and rainbow Ramsey theorem strictly
increasing?
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Partial results were however obtained. All these statements admit lower bounds of the form
“For every n ≥ 2, there is a computable instance of Pn with no Σ0

n solution”, where Pn denotes
any of RTnk (Jockusch [9]), RRTnk (Csima and Mileti [4]), FSn, or TSn (Cholak, Giusto, Hirst
and Jockusch [1]). From the upper bound viewpoint, all these statements follow from Ramsey’s
theorem. Therefore, by Cholak, Jockusch and Slaman [2], every computable instance of P1

admits a computable solution, and every computable instance of P2 admits a low2 solution.
These results are sufficient to show that P1 < P2 < P3 in reverse mathematics. This upper
bound becomes too coarse for triples. Wang [30] proved that every computable instance of
RRT3

k admits a low3 solution. The following question is still open. A positive answer would also
answer positively Question 1.7.

Question 1.8. Does every computable instance of FSn, TSn, and RRTnk admit a lown solution?

Upper bounds to FSn, TSn, and RRTnk , are usually proven inductively over n [32, 16, 20],
starting with the infinite pigeonhole principle for n = 1. In this paper, we therefore prove the
following theorem, which introduces the machinery that hopefully will serve to answer positively
Question 1.8.

Theorem 1.9 (Main theorem 2) Fix n ≥ 1. Every ∆0
n set A has an infinite subset H ⊆ A or

H ⊆ A of lown degree.

In particular, we fully answer two questions of Wang [30, Questions 6.1 and 6.2], also asked
by the second author [18, Question 5.4]. The cases n = 2 and n = 3 were proven by Cholak,
Jockusch and Slaman [2] and by the authors [15], respectively.

1.3. Definitions and notation

A binary string is an ordered tuple of bits a0, . . . , an−1 ∈ {0, 1}. The empty string is written
ε. A binary sequence (or a real) is an infinite listing of bits a0, a1, . . . . Given s ∈ ω, 2s is the set
of binary strings of length s and 2<s is the set of binary strings of length < s. As well, 2<ω is
the set of binary strings and 2ω is the set of binary sequences. Given a string σ ∈ 2<ω, we use
|σ| to denote its length. Given two strings σ, τ ∈ 2<ω, σ is a prefix of τ (written σ � τ) if there
exists a string ρ ∈ 2<ω such that σ_ρ = τ . Given a sequence X, we write σ ≺ X if σ = X�n
for some n ∈ ω. A binary string σ can be interpreted as a finite set Fσ = {x < |σ| : σ(x) = 1}.
We write σ ⊆ τ for Fσ ⊆ Fτ . We write #σ for the size of Fσ. Given two strings σ and τ , we let
σ ∪ τ be the unique string ρ of length max(|σ|, |τ |) such that Fρ = Fσ ∪ Fτ .

A binary tree is a set of binary strings T ⊆ 2<ω which is closed downward under the prefix
relation. A path through T is a binary sequence P ∈ 2ω such that every initial segment belongs
to T .

A Turing ideal I is a collection of sets which is closed downward under the Turing reduction
and closed under the effective join, that is, (∀X ∈ I)(∀Y ≤T X)Y ∈ I and (∀X,Y ∈ I)X⊕Y ∈
I, where X ⊕ Y = {2n : n ∈ X} ∪ {2n+ 1 : n ∈ Y }. A Scott set is a Turing ideal I such that
every infinite binary tree T ∈ I has a path in I. In other words, a Scott set is the second-
order part of an ω-model of RCA0 +WKL. A Turing ideal M is countable coded by a set X if
M = {Xn : n ∈ ω} with X =

⊕
nXn. A formula is Σ0

1(M) (resp. Π0
1(M)) if it is Σ0

1(X) (resp.
Π0

1(X)) for some X ∈M.
Given two sets A and B, we denote by A < B the formula (∀x ∈ A)(∀y ∈ B)[x < y]. We

write A ⊆∗ B to mean that A − B is finite, that is, (∃n)(∀a ∈ A)(a 6∈ B → a < n). A k-cover
of a set X is a sequence of sets Y0, . . . , Yk−1 such that X ⊆ Y0 ∪ · · · ∪ Yk−1.

2. Generalized Mathias forcing

The notion of forcing used to build solutions to the pigeonhole principle while controlling the
first jump is a variant of Mathias forcing. In this section, we extend Mathias forcing to a more
general notion of forcing while controlling iterated jumps. Then, in the next section, we will
design a variant of this generalized Mathias forcing to control iterated jumps of solutions to the
pigeonhole principle.
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Before defining the generalized Mathias forcing, we need to introduce some core machinery
which will be used all over the article.

2.1. Largeness classes

The following notion of largeness class was introduced by the authors in [15] to design a
notion of forcing controlling the second jump of solutions to the pigeonhole principle.

Definition 2.1. A largeness class is a collection of sets A ⊆ 2ω such that

(a) If X ∈ A and Y ⊇ X, then Y ∈ A
(b) For every k-cover Y0, . . . , Yk−1 of ω, there is some j < k such that Yj ∈ A.

For example, the collection of all the infinite sets is a largeness class. Moreover, any superclass
of a largeness class is again a largeness class.

Fix an effective enumeration UZ0 ,UZ1 , . . . of all the Σ0,Z
1 classes upward-closed under the

superset relation, that is, if X ∈ UZe and Y ⊇ X, then Y ∈ UZe .

Lemma 2.2 Suppose A0 ⊇ A1 ⊇ . . . is a decreasing sequence of largeness classes. Then
⋂
sAs

is a largeness class.

Proof. If X ∈
⋂
sAs and Y ⊇ X, then for every s, since As is a largeness class, Y ∈ As, so

Y ∈
⋂
sAs. Let Y0, . . . , Yk−1 be a k-cover of ω. For every s ∈ ω, there is some j < k such

that Yj ∈ As. By the infinite pigeonhole principle, there is some j < k such that Yj ∈ As for
infinitely many s. Since A0 ⊇ A1 ⊇ is a decreasing sequence, Yj ∈

⋂
sAs. �

Lemma 2.3 Let A be a Σ0
1 class. The sentence “A is a largeness class” is Π0

2.

Proof. Say A = {X : (∃σ � X)ϕ(σ)} where ϕ is a Σ0
1 formula. By compactness, A is a largeness

class iff for every σ and τ such that σ ⊆ τ and ϕ(σ) holds, ϕ(τ) holds, and for every k, there
is some n ∈ ω such that for every σ0 ∪ · · · ∪ σk−1 = {0, . . . , n}, there is some j < k such that
ϕ(σj) holds. �

Given an infinite set X, we let LX be the Π0
2(X) largeness class of all sets having an infinite

intersection with X. In what follows, fix a Scott set M = {X0, X1, . . . } countable coded by a
set M . Given a set C ⊆ ω2, we write

UMC =
⋂
〈e,i〉∈C

UXie

Definition 2.4. A class A is M-cohesive if for every X ∈M, either A ⊆ LX or A ⊆ LX .

Lemma 2.5 Let UMC be an M-cohesive class. Let UMD and VME be such that UMC ∩ UMD and
UMC ∩ UME are both largeness classes. Then UMC ∩ UMD ∩ UME is a largeness class.

Proof. Suppose for contradiction that UMC ∩ UMD ∩ UME is not a largeness class. Then by
Lemma 2.2, there is some finite C1 ⊆ C, D1 ⊆ D and E1 ⊆ E such that UMC1

∩ UMD1
∩ UME1

is not a largeness class. Since UMC1
∩UMD1

∩UME1
is Σ0

1(M) andM is a Scott set, there is a parti-

tion Y0t· · ·tYk−1 = ω inM such that for every i < k, Yi 6∈ UMC1
∩UMD1

∩UME1
⊇ UMC ∩UMD ∩UME .

Since UMC isM-cohesive, there must be some i < k such that UMC ⊆ LYi . In particular, Yi ∈ UMC ,
so Yi 6∈ UMD or Yi 6∈ UME . Suppose Yi 6∈ UMD , as the other case is symmetric. Since Yj ∩ Yi = ∅
for every j 6= i, then Yj 6∈ UMC ⊆ LYi for every j 6= i. It follows that Y0, . . . , Yk−1 witnesses that
UMC ∩ UMD is not a largeness class. Contradiction. �

Definition 2.6. A class A is M-minimal if for every X ∈ M and e ∈ ω, either A ⊆ UXe or
A ∩ UXe is not a largeness class.

The following is a corollary of the previous lemma.
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Lemma 2.7 Given an M-cohesive largeness class UMC , the collection of sets

〈UMC 〉 =
⋂

e∈ω,X∈M
{UXe : UMC ∩ UXe is a largeness class}

is an M-minimal largeness class contained in UMC .

Proof. We first prove that 〈UMC 〉 is a largeness class. Let e0, e1, . . . and X0, X1, . . . be an
enumeration of all pairs (e,X) ∈ ω ×M such that UMC ∩ UXe is a largeness class. By induction
on n using Lemma 2.5,

⋂
i<n UXiei is a largeness class for every n ∈ ω. Thus, by Lemma 2.2,

〈UMC 〉 =
⋂
i UXiei is a largeness class.

Next, we prove that 〈UMC 〉 ⊆ UMC . For every 〈e, i〉 ∈ C, UMC ∩ UXie is a largeness class, thus
〈UMC 〉 ⊆ UXie . Therefore 〈UMC 〉 ⊆ UMC . It follows that 〈UMC 〉 is M-minimal. �

Note that 〈UMC 〉 = UMD where D is the set of all 〈e, i〉 such that UMC ∩UXie is a largeness class.

Definition 2.8. A partition regular class is a collection of sets L ⊆ 2ω such that

(a) ω ∈ L
(b) For every X ∈ L and Y0 ∪ · · · ∪ Yk−1 ⊇ X, there is some j < k such that Yj ∈ L.

In particular, the class of all infinite sets is partition regular.

Definition 2.9. Let A be a largeness class. Define

L(A) = {X ∈ 2ω : ∀k∀X0 ∪ · · · ∪Xk−1 ⊇ X∃i < kXi ∈ A}

Lemma 2.10 Let A be a largeness class. Then L(A) is the largest partition regular subclass
of A.

Proof. We first prove that L(A) is a partition regular subclass of A. By definition of A being
a largeness class, ω ∈ L(A). Let X ∈ L(A) and X0 ∪ · · · ∪Xk−1 ⊇ X. Suppose for the sake of
absurd that Xi 6∈ L(A) for every i < k. Then for every i < k, there is some ki ∈ ω and some

Y 0
i ∪ · · · ∪Y

ki−1
i ⊇ Xi such that Y j

i 6∈ A for every j < ki. Then {Y j
i : i < k, j < ki} is a cover of

X contradicting X ∈ L(A). Therefore L(A) is a partition regular class. Moreover, L(A) ⊆ A
as witnessed by taking the trivial cover of X by X itself.

We now prove that L(A) is the largest partition regular subclass of A. Indeed, let B be a
partition regular subclass of A. Then for every X ∈ B, every X0 ∪ · · · ∪ Xk−1 ⊇ X, there is
some j < k such that Xj ∈ B ⊆ A. Thus X ∈ L(A), so B ⊆ L(A). �

Also note that L(UMC ) = UMD for some D ⊆ ω2.

Corollary 2.11 Suppose UMC is an M-minimal largeness class. Then UMC is partition regular.

Proof. Let D be such that UMD = L(UMC ). By Lemma 2.10, UMD ⊆ UMC . By M-minimality of
UMC , UMC ⊆ UMD . It follows that UMC = UMD . Since UMD is partition regular, then so is UMC . �

It follows that if UMC is anM-cohesive largeness class, then 〈UMC 〉 is anM-minimal partition
regular class.

Lemma 2.12 Every PA degree relative to M ′ computes a set C ⊆ ω2 such that UMC is an
M-cohesive largeness class.

Proof. Let {X0, X1, . . . } be an M -computable sequence of sets containing all the sets ofM (and
possibly more). Let T be the tree of all σ ∈ 2<ω such that

⋂
i∈σ LXi

⋂
i 6∈σ LXi

is non-empty. The

tree is M ′-computable, thus every PA degree relative to M ′ computes a path P ∈ [T ]. Let e0

and e1 be such that UXe1 = LX and UXe0 = LX , respectively. Then letting C = {〈eP (i), i〉 : i ∈ ω}
is such that UMC is an M-cohesive largeness class. �
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Corollary 2.13 There exists a set C ⊆ ω2 such that UMC is anM-cohesive largeness class and
(C ⊕M ′)′ ≤T M ′′.

Proof. By Lemma 2.12 and the relativized low basis theorem [10]. �

Lemma 2.14 For every set C ⊆ ω2, there is a set D ⊆ ω2 such that 〈UMC 〉 = UMD .

Proof. Let D be the set of all e, i ∈ ω such that UMC ∩ UXie is a largeness class. By Lemma 2.2,
UMC ∩ UXie is a largeness class if and only if for every finite set F ⊆ C, UMF ∩ UXie is a largeness
class. By Lemma 2.3, being a largeness class for a Σ0

1(M) class is Π0
2(M), hence Π0

1(M ′). Thus
D is Π0

1(C ⊕M ′). �

Corollary 2.15 For every set C ⊆ ω2, and Z ⊆ ω, the relation “Z ∈ 〈UMC 〉” is Π0
1((C⊕Z⊕M ′)′).

Proof. By Lemma 2.14, there is a Π0
1(C ⊕ M ′) set D ⊆ ω2 such that 〈UMC 〉 = UMD . Then

Y ∈ 〈UMC 〉 if and only if for every e, i ∈ ω, either 〈e, i〉 6∈ D or Y ∈ UXie . Thus the relation
“Z ∈ 〈UMC 〉” is Π0

1((C ⊕ Z ⊕M ′)′). �

2.2. Notion of forcing

Let M0,M1, . . . ,Mn be countable Scott sets coded by sets M0,M1, . . . ,Mn, respectively.
Furthermore, by the relativized low basis theorem [10], assume that Mi is low over ∅(i) and

∅(i+1) ∈ Mi+1 for every i < n. Let C0, . . . , Cn−1 be such that Ci ∈ Mi+1 and UMi
Ci

is an
Mi-cohesive largeness class for every i < n. The existence of a Ci ∈ Mi+1 is ensured by

Lemma 2.12. Furthermore, we require that UMi+1

Ci+1
⊆ 〈UMi

Ci
〉. This last property can be satisfied

by Lemma 2.14.

Definition 2.16. Fix n ≥ 0; Let Qn be the set of pairs (σ,X) such that

(a) X ∩ {0, . . . , |σ|} = ∅ ; X ∈Mn

(b) X is infinite if n = 0 and X ∈ 〈UMn−1

Cn−1
〉 if n ≥ 1

Note that X is infinite even in the case n ≥ 1 since UMn−1

Cn−1
contains only infinite sets.

Mathias forcing builds a single object G by approximations (conditions) which consist in an
initial segment σ of G, and an infinite reservoir of integers. The purpose of the reservoir is to
restrict the set of elements we are allowed to add to the initial segment. The reservoir therefore
enriches the standard Cohen forcing by adding an infinitary negative restrain.

Definition 2.17. The partial order on Qn is defined by (τ, Y ) ≤ (σ,X) if σ � τ , Y ⊆ X and
τ − σ ⊆ X.

Given a collection F ⊆ Qn, we let GF =
⋃
{σ : (σ,X) ∈ F}.

Definition 2.18. Let Φe(G, x) be a ∆0 formula with free variable x. Let p = (σ,X) ∈ Qn.

(a) p 
 (∃x)Φe(G, x) if (∃x)Φe(σ, x)
(b) p 
 (∀x)Φe(G, x) if (∀τ ⊆ X)(∀x)Φe(σ ∪ τ, x)

Having defined the forcing relation for Σ0
1 and Π0

1 formulas, we extend the forcing relation
to arbitrary arithmetical formulas by induction on the level in the hierarchy. A Σ0

n+1 formula

(∃x)ϕ(G, x) is forced, where ϕ(G, x) is Π0
n, if there is some x ∈ ω such that the Π0

n formula
ϕ(G, x) is forced. The case of Π0

n+1 formulas is more subtle. Intuitively, a Π0
n+1 formula

(∀x)ϕ(G, x) is forced, where ϕ(G, x) is Σ0
n, if for every extension of the condition and every

x ∈ ω, the Π0
n formula ¬ϕ(G, x) is never forced. The forcing relation is defined by a mutual

induction through the following two definitions.

Definition 2.19. Fix n ≥ 0. Let ζn : ω × 2<ω × ω → ω be the computable function that takes
as a parameter a code for a ∆0 formula Φe(G, xn+1, . . . , x0), a string σ and an integer xn+1 ∈ ω,
and which gives a code for the Σ0

n+1(Mn) set

{X : (σ,X) 6
 (∀xn)(∃xn−1) . . . (Qx0)Φe(G, xn+1, . . . , x0)}
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Definition 2.20. Fix n ≥ m ≥ 1. Let Φe(G, xm, . . . , x0) be a ∆0 formula with free variables
x0, . . . , xm. Let p = (σ,X) ∈ Qn.

(a) p 
 (∃xm)(∀xm−1) . . . (Qx0)Φe(G, xm, . . . , x0) if there is some xm ∈ ω such that

p 
 (∀xm−1) . . . (Qx0)Φe(G, xm, . . . , x0)

(b) p 
 (∀xm)(∃xm−1) . . . (Qx0)¬Φe(G, xm, . . . , x0) if for every ρ ⊆ X and every xm ∈ ω,

UMm−1

Cm−1
∩ UMm−1

ζm−1(e,σ∪ρ,xm) is a largeness class.

Lemma 2.21 Fix n ≥ m ≥ 0. Let Φe(G, xm, . . . , x0) be a ∆0 formula with free variables
x0, . . . , xm. Let p, q ∈ Qn be such that q ≤ p.

(a) If p 
 (∃xm)(∀xm−1) . . . (Qx0)Φe(G, xm, . . . , x0) then so does q.
(b) If p 
 (∀xm)(∃xm−1) . . . (Qx0)¬Φe(G, xm, . . . , x0) then so does q.

Proof. We prove (a) and (b) by induction over m. Say p = (σ,X) and q = (τ, Y ). The base
case m = 0 is immediate. Suppose m ≥ 1.

(a) Since p 
 (∃xm)(∀xm−1) . . . (Qx0)Φe(G, xm, . . . , x0), then there is some xm ∈ ω such
that p 
 (∀xm−1) . . . (Qx0)Φe(G, xm, . . . , x0). By item (b) of this lemma and induction
hypothesis, q 
 (∀xm−1) . . . (Qx0)Φe(G, xm, . . . , x0) hence q 
 (∃xm)(∀xm−1) . . . (Qx0)
Φe(G, xm, . . . , x0).

(b) Let ρ = τ − σ. By definition of q ≤ p, ρ ⊆ X. Let ρ1 ⊆ Y and xm ∈ ω. In
particular, ρ∪ρ1 ⊆ X. By definition of p 
 (∀xm)(∃xm−1) . . . (Qx0)¬Φe(G, xm, . . . , x0),

UMm−1

Cm−1
∩UMm−1

ζm−1(e,σ∪ρ∪ρ1,xm) is a largeness class. So UMm−1

Cm−1
∩UMm−1

ζm−1(e,τ∪ρ1,xm) is a largeness

class, and q 
 (∀xm)(∃xm−1) . . . (Qx0)¬Φe(G, xm, . . . , x0)

�

Lemma 2.22 Fix n ≥ 0. Let F be a Qn-filter, let Φe(G, x) be a ∆0 formula with free variable
x, and let p ∈ F .

(a) If p 
 (∃x)Φe(G, x), then (∃x)Φe(GF , x) holds.
(b) If p 
 (∀x)¬Φe(G, x), then (∀x)¬Φe(GF , x) holds.

Proof. Say p = (σ,X). (a) By definition of p 
 (∃x)Φe(G, x), there is some x ∈ ω such that
Φe(σ, x) holds. Since σ ⊆ GF ⊆ σ ∪ X, then by continuity of Φe, Φe(GF , x) holds. (b) By
definition of p 
 (∀x)¬Φe(G, x), for every x ∈ ω and ρ ⊆ X, Φe(σ ∪ ρ, x) does not hold. Since
σ ⊆ GF ⊆ σ ∪X, by the finite use property, since Φe(GF , x) holds for every x ∈ ω. �

Whenever a Σ0
1 or a Π0

1 formula is forced, then it holds over GF for every Qn-filter F .
However, the situation is more complex for higher formulas. We need to consider sufficiently
generic filters.

2.3. Generic filters

Generic filters are usually defined in terms of intersection of dense sets of conditions. However,
given the complexity of the set of conditions, we define n-genericity in terms of deciding every
Σ0
n+1 property.

Definition 2.23. Fix n ≥ m ≥ 0. A Qn-filter F is (m+ 1)-generic if for every Σ0
m+1 formula

ϕ(G), there is some p ∈ F such that p 
 ϕ(G) or p 
 ¬ϕ(G).

Lemma 2.24 Let F be a 1-generic Qn-filter. Then GF is infinite.

Proof. Suppose for the contradiction that GF ⊆ {0, . . . , k}. Let Φe(G, x) ≡ x ∈ G∧x > k. Since
F is 1-generic, there is some p = (σ,X) ∈ F such that p 
 (∃x)Φe(G, x) or p 
 (∀x)¬Φe(G, x).
If p 
 (∃x)Φe(G, x), then there is some x ∈ ω such that Φe(σ, x) holds, then x > k and
x ∈ σ ⊆ GF . Contradiction. If p 
 (∀x)¬Φe(G, x), then for every x ∈ ω and every ρ ⊆ X,
Φe(σ ∪ ρ, x) does not hold. However, since X is infinite, let ρ ⊆ X be such that min ρ > k.
Then letting x ∈ ρ, Φe(σ ∪ ρ, x) holds. Again, contradiction. �
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In general, an (n + 1)-generic Qn-filter is not necessarily n-generic. However, in the case
n = 1, we are able to prove this property.

Lemma 2.25 Let F be a 2-generic Qn-filter, then F is 1-generic.

Proof. Let Φe(G, r) be a ∆0
0 formula with free variable r. We want to show that there is some

(σ,X) ∈ F such that (σ,X) 
 (∃u)Φe(G, r) or (σ,X) 
 (∀r)¬Φe(G, r). Let Φu(G, r, s) =
Φe(G, r) and Φv(G, a, b) = ¬Φe(G, b) Since F is 2-generic, there is some p = (σ,X) ∈ F such
that

p 
 (∃r)(∀s)Φu(G, r, s) or p 
 (∀r)(∃s)¬Φu(G, r, s)

and

p 
 (∃a)(∀b)Φv(G, a, b) or p 
 (∀a)(∃b)¬Φv(G, a, b)

We have three cases.
Case 1: p 
 (∃r)(∀s)Φu(r, s). Unfolding the definition, there is some r such that p 


(∀s)Φu(G, r, s). In particular, Φu(σ, r, 0) holds, so Φe(σ, r) holds, hence p 
 (∃r)Φe(G, r), and
we are done.

Case 2: p 
 (∃a)(∀b)Φv(a, b). Unfolding the definition, there is some a ∈ ω such that
p 
 (∀b)Φv(a, b), hence p 
 (∀s)¬Φe(G, s), and we are done.

Case 3: p 
 (∀r)(∃s)¬Φu(G, r, s) and p 
 (∀a)(∃b)¬Φv(a, b). Then in particular, letting

a = 0, UM0
C0
∩ UM0

ζ0(v,σ,0) is a largeness class. Then 〈UM0
C0
〉 ⊆ Uζ0(v,σ,0). Since X ∈ 〈UM0

C0
〉, then

X ∈ Uζ0(v,σ,0). Unfolding the definition of ζ0, p 6
 (∀n)Φv(G, 0, n). Thus, there is some r ∈ ω
and some ρ ⊆ X such that Φe(σ∪ρ, r) holds. Since p 
 (∀r)(∃s)¬Φu(G, r, s), UM0

C0
∩Uζ0(u,σ∪ρ,r)

is a largeness class. Then 〈UM0
C0
〉 ⊆ Uζ0(u,σ∪ρ,r). Since X ∈ 〈UM0

C0
〉, X ∈ Uζ0(u,σ∪ρ,r), (σ∪ρ,X) 6


(∀s)Φu(G, r, s), so (σ ∪ ρ,X) 6
 Φe(G, r). Contradiction. �

As explained, the definition of the forcing relation for Π0
m+1 formulas (∀x)ϕ(G, x) asserts

that for every extension d of the condition c and every x ∈ ω, d will not force ¬ϕ(G, x).
This is however not sufficient to ensure that (∀x)ϕ(G, x) will hold, since the filter may not be
sufficiently generic to force either ϕ(G, x) or ¬ϕ(G, x). Contrary to Π0

1 formulas, we therefore
need to require that the filter F is (s + 1)-generic for every s < m to ensure that whenever a
formula is forced, it holds over GF .

Lemma 2.26 Fix n ≥ m ≥ 1. Let F be an m-generic Qn-filter and Φe(G, xm, . . . , x0) be a ∆0

formula with free variables xm, . . . , x0. If p 
 (∀xm)(∃xm−1) . . . (Qx0)¬Φe(G, xm, . . . , x0) for
some p ∈ F , then for every xm ∈ ω, there is some q ∈ F such that q 
 (∃xm−1) . . . (Qx0)¬Φe(G,
xm, . . . , x0).

Proof. Fix xm ∈ ω. Since F is m-generic, there is some q = (τ, Y ) ∈ F such that

q 
 (∃xm−1) . . . (Qx0)¬Φe(G,mn, . . . , x0) or q 
 (∀xm−1) . . . (Qx0)Φe(G, xm, . . . , x0)

Since F is a filter, we can assume that q ≤ p. By Lemma 2.21,

q 
 (∀xm)(∃xm−1) . . . (Qx0)¬Φe(G, xm, . . . , x0)

so UMm−1

Cm−1
∩ UMm−1

ζm−1(e,τ,xm) is a largeness class. Thus 〈UMn−1

Cn−1
〉 ⊆ 〈UMm−1

Cm−1
〉 ⊆ UMm−1

ζm−1(e,τ,xm). Since

Y ∈ 〈UMn−1

Cn−1
〉, then Y ∈ UMm−1

ζm−1(e,τ,xm). Therefore q 6
 (∀xm−1) . . . (Qx0)Φe(G, xm, . . . , x0), hence

q 
 (∃xm−1) . . . (Qx0)¬Φe(G, xm, . . . , x0). �

Lemma 2.27 Fix n ≥ m ≥ 1. Let F be a Qn-filter which is is (s+ 1)-generic for every s < m.
Let Φe(G, xm, . . . , x0) be a ∆0 formula with free variables xm, . . . , x0, and let p ∈ F .

(a) If p 
 (∃xm)(∀xm−1) . . . (Qx0)Φe(G, xm, . . . , x0), then the formula holds for GF .
(b) If p 
 (∀xm)(∃xm−1) . . . (Qx0)¬Φe(G, xm, . . . , x0), then the formula holds for GF .

Proof. By induction over m ≥ 1. Say p = (σ,X).
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(a) By definition, there is some xm ∈ ω such that p 
 (∀xm−1) . . . (Qx0)Φe(G, xm, . . . , x0).
By induction hypothesis and by Lemma 2.22(b), (∀xm−1) . . . (Qx0)Φe(GF , xm, . . . , x0)
holds.

(b) Fix some xm. By Lemma 2.26, there is some q ∈ F such that

q 
 (∃xm−1) . . . (Qx0)¬Φe(G, xm, . . . , x0)

By induction hypothesis and by Lemma 2.22(a), (∃xm−1) . . . (Qx0)¬Φe(GF , xm, . . . , x0)
holds.

�

3. Generalized Pigeonhole forcing

In this section, we adapt the generalized notion of Mathias of forcing to design a notion of
forcing producing solutions to the infinite pigeonhole principle while controlling iterated jumps
of the solutions. In what follows, we fix 2-partition A0 tA1 = ω representing an instance of the
infinite pigeonhole principle.

3.1. Notion of forcing

Here again, we assume fix a countable Scott setsM0,M1, . . . ,Mn coded by setsM0,M1, . . . ,Mn,
respectively, such that Mi is low over ∅(i) and ∅(i+1) ∈Mi+1 for every i < n. We also have fixed

sets C0, . . . , Cn−1 such that Ci ∈ Mi+1 and UMi
Ci

is an Mi-cohesive largeness class for every

i < n. We also require that UMi+1

Ci+1
⊆ 〈UMi

Ci
〉.

In order to obtain lown solutions to ∆0
n instances of the pigeonhole principle, we need to

provide a careful analysis of the effectiveness of the dense sets considered. For this, we need to
fix a set P of PA degree relative to M ′n. This set will basically enable us to pick, given a cover

Y0 ∪ · · · ∪ Yk−1 of a set X ∈ 〈UMn−1

Cn−1
〉, some j < k such that Yj ∈ 〈UMn−1

Cn−1
〉.

Definition 3.1. Fix n ≥ 0. Let Pn denote the set of conditions (σ0, σ1, X) such that

(a) σi ⊆ Ai for every i < 2
(b) X ∩ {0, . . . ,maxi |σi|} = ∅ ; X ∈Mn

(c) X is infinite if n = 0 and X ∈ 〈UMn−1

Cn−1
〉 if n ≥ 1.

By definition of a Turing ideal M countable coded by a set M , then M can be written as
{Z0, Z1, . . . } with M =

⊕
i Zi. We then say that i is an M -index of Zi. Thanks to the notion

of index, any Pn-condition can be finitely presented as follows. An index of a Pn-condition
c = (σ0, σ1, X) is a tuple (σ0, σ1, a) where a is an Mn-index for X.

Definition 3.2. The partial order on Pn is defined by

(τ0, τ1, Y ) ≤ (σ0, σ1, X)

if for every i < 2, (τ i, Y ) ≤ (σi, X).

Given a condition c = (σ0, σ1, X) and i < 2, we write c[i] = (σi, X). Each Pn-condition c

represents two Qn-conditions c[0] and c[1].

Definition 3.3. Let F ⊆ Pn be a collection. We write F [i] = {c[i] : c ∈ F}.

3.2. Forcing question for P0

We now design a disjunctive forcing question which is an abstraction of the first jump control
of Cholak, Jocksuch and Slaman [2].

Definition 3.4. Let c = (σ0, σ1, X) ∈ P0 and let Φe0(G, x) and Φe1(G, x) be two ∆0 formulas.
Define the relation

c ?`(∃x)Φe0(G0, x) ∨ (∃x)Φe1(G1, x)

to hold if for every 2-cover Z0 ∪ Z1 = X, there is some side i < 2, some finite set ρ ⊆ Zi and
some x ∈ ω such that Φei(σ

i ∪ ρ, x) holds.
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This forcing relation satisfies the following disjunctive property.

Lemma 3.5 (Cholak, Jockusch and Slaman [2]) Let c ∈ P0 and let Φe0(G, x) and Φe1(G, x) be
two ∆0 formulas.

(a) If c ?`(∃x)Φe0(G0, x) ∨ (∃x)Φe1(G1, x), then there is some d ≤ c and some i < 2 such

that d[i] 
 (∃x)Φei(G, x).
(b) If c ?0(∃x)Φe0(G0, x) ∨ (∃x)Φe1(G1, x), then there is some d ≤ c and some i < 2 such

that d[i] 
 (∀x)¬Φei(G, x).

Proof. Suppose c ?`(∃x)Φe0(G0, x) ∨ (∃x)Φe1(G1, x) holds. Then letting Z0 = X ∩ A0 and
Z1 = X ∩ A1, there is some side i < 2, some finite set ρ ⊆ X ∩ Ai and some x ∈ ω such that
Φei(σ

i ∪ ρ, x) holds. The condition d = (σi ∪ ρ, σ1−i, X ∩ (max ρ,∞)) is an extension of c such

that d[i] 
 (∃x)Φei(G, x).
Suppose now that c ?0(∃x)Φe0(G0, x)∨ (∃x)Φe1(G1, x). Let P be the collection of all the sets

Z0⊕Z1 such that Z0 ∪Z1 = X and such that for every i < 2, every finite set ρ ⊆ Zi and every

x ∈ ω, Φei(σ
i ∪ ρ, x) does not hold. P is a non-empty Π0,X

1 class, so since X ∈ M0 |= WKL,
there is some 2-cover Z0 ⊕ Z1 ∈ P ∩ M0. Let i < 2 be such that Zi is infinite. Then the
condition d = (σ0, σ1, Zi) is an extension of c such that d[i] 
 (∀x)¬Φei(G, x). �

By a pairing argument (if for every pair m,n ∈ ω, m ∈ A or n ∈ B, then A = ω or B = ω), if
a filter F is sufficiently generic, there is some side i such that for every Σ0

1 formula ϕ(G), there

is some c ∈ F such that c[i] 
 ϕ(G) or c[i] 
 ¬ϕ(G). We therefore get the following lemma.

Lemma 3.6 For every sufficiently generic P1-filter F , there is a side i < 2 such that F [i] is a
1-generic Q0-filter.

3.3. Forcing question for Pn
We now generalize the first jump control of Cholak, Jocksuch and Slaman [2] to iterated

jumps with a disjunctive forcing question for Σ0
n+1 formulas.

Definition 3.7. Let c = (σ0, σ1, X) ∈ Pn and let Φe0(G, xn, . . . , x0) and Φe1(G, xn, . . . , x0) be
two ∆0 formulas. Define the relation

c ?`(∃xn)(∀xn−1) . . . (Qx0)Φe0(G0, xn, . . . , x0) ∨ (∃xn)(∀xn−1) . . . (Qx0)Φe1(G1, xn, . . . , x0)

to hold if for every Z0 ∪ Z1 = X, there is some i < 2, some ρ ⊆ Zi and xn ∈ ω such that

UMn−1

Cn−1
∩ UMn−1

ζn−1(ei,σi∪ρ,xn)

is not a largeness class.

Lemma 3.8 Let c ∈ Pn and let Φe0(G, xn, . . . , x0) and Φe1(G, xn, . . . , x0) be two ∆0 formulas.
The relation

c ?`(∃xn)(∀xn−1) . . . (Qx0)Φe0(G0, xn, . . . , x0) ∨ (∃xn)(∀xn−1) . . . (Qx0)Φe1(G1, xn, . . . , x0)

is Σ0
1(Mn).

Proof. By compactness, the relation holds if there is a finite set E ⊆ X such that for every
E0 ∪ E1 = E, there is some i < 2, some finite set F ⊆ Cn−1, some ρ ⊆ Ei and xn ∈ ω such

that UMn−1

F ∩ UMn−1

ζn−1(ei,σi∪ρ,xn)
is not a largeness class. By Lemma 2.3, given a finite set F , the

statement “UXF is not a largeness class” is Σ0,X
2 , thus Σ0,X′

1 . As M ′n−1 ∈Mn where Mn−1 codes

for Mn−1 thus the overall relation is Σ0
1(Mn). �

Lemma 3.9 Let c ∈ Pn and let Φe0(G, xn, . . . , x0) and Φe1(G, xn, . . . , x0) be two ∆0 formulas.

(a) If c ?`(∃xn) . . . (Qx0)Φe0(G0, xn, . . . , x0)∨(∃xn) . . . (Qx0)Φe1(G1, xn, . . . , x0), then there
is some d ≤ c and some i < 2 such that

d[i] 
 (∃xn)(∀xn−1) . . . (Qx0)Φei(G
i, xn, . . . , x0)
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(b) If c ?0(∃xn) . . . (Qx0)Φe0(G0, xn, . . . , x0)∨(∃xn) . . . (Qx0)Φe1(G1, xn, . . . , x0), then there
is some d ≤ c and some i < 2 such that

d[i] 
 (∀xn)(∃xn−1) . . . (Qx0)¬Φei(G
i, xn, . . . , x0)

Moreover, an index of d can be found A⊕ P -uniformly in an index of c, e0 and e1.

Proof. Say c = (σ0, σ1, X).
(a) Let Z0 = X ∩ A0 and Z1 = X ∩ A1. Unfolding the definition of the forcing question,

there is some i < 2, some finite set F ⊆ Cn−1, some ρ ⊆ Zi and xn ∈ ω such that

UMn−1

F ∩ UMn−1

ζn−1(ei,σi∪ρ,xn)

is not a largeness class. Since Mn−1 |= WKL, there is a cover R0 ∪ · · · ∪ R`−1 ⊇ ω in Mn−1

such that for every t < `, Rt 6∈ UMn−1

F ∩ UMn−1

ζn−1(ei,σi∪ρ,xn)
.

Since 〈UMn−1

Cn−1
〉 is a partition regular class containing X, there is some t < ` such that

X∩Rt ∈ 〈UMn−1

Cn−1
〉. Moreover, since {0, . . . ,max ρ} is finite, the set Y = (X∩Rt)−{0, . . . ,max ρ}

belongs to 〈UMn−1

Cn−1
〉. Define the Pn-condition d = (σi ∪ ρ, σ1−i, Y ). In particular,

d[i] 
 (∃xn)(∀xn−1) . . . (Qx0)Φei(G, xn, . . . , x0)

(b) Let D be the Π0
1(Mn) class of all Z0 ⊕ Z1 with Z0 ∪ Z1 = X, such that for every i < 2,

every ρ ⊆ Zi, and every xn ∈ ω,

UMn−1

Cn−1
∩ UMn−1

ζn−1(ei,σi∪ρ,xn)

is a largeness class. Since Mn |= WKL, there is some Z0 ⊕ Z1 ∈ D ∩Mn.

Since 〈UMn−1

Cn−1
〉 is a partition regular class containing X, there is some i < 2 such that

Zi ∈ 〈UMn−1

Cn−1
〉.

Define the Pn-condition d = (σ0, σ1, Zi). Then

d[i] 
 (∀xn)(∃xn−1) . . . (Qx0)¬Φei(G, xn, . . . , x0)

This completes the proof of the lemma. �

3.4. Validity and genericity

By Lemma 3.9, the disjunctive forcing question ensures that for every sufficiently generic
Pn-filter F , there is some i < 2 such that F [i] is (n+1)-generic. This is however not sufficient to

ensure that the forced formulas will hold. Lemma 2.27 uses the fact that F [i] is (s+ 1)-generic
for every s < n. This genericity constraint holds for the side i whenever for every condition

c = (σ0, σ1, X) ∈ Pn, X ∩Ai ∈ 〈UMn−1

Cn−1
〉. This motivates the following definition.

Definition 3.10. The side i < 2 of a condition c = (σ0, σ1, X) ∈ Pn is valid ifX∩Ai ∈ 〈UMn−1

Cn−1
〉.

Otherwise, there is some UMn−1
e ⊇ 〈UMn−1

Cn−1
〉 such that X ∩ Ai 6∈ UMn−1

e , in which case we say

that the side i of c is e-invalid.

Given a condition c = (σ0, σ1, X) ∈ Pn, since 〈UMn−1

Cn−1
〉 is a partition regular class containing

X, then either X ∩ A0 or X ∩ A1 belongs to 〈UMn−1

Cn−1
〉. Therefore every condition must have

a valid side. However, it is not immediate to see that the (n + 1)-generic side ensured by the
disjunctive forcing question and the valid side of a condition will coincide. It is not very hard to
show that if A is Kurtz random relative to Mn−1, both sides are valid, and therefore it suffices
to choose the generic side. It is however not necessarily the case in general, and the following
asymmetric forcing question handles the “degenerate” case where one side is not valid.

In the following definition, the class UMn−1
e1−i corresponds to a witness that the side 1− i is not

valid in the condition c. Necessarily, the side i must be valid in c. Thanks to this asymmetric
forcing question, there will be able to do some progress in (n+ 1)-genericity on the side i of c.
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Definition 3.11. Let c = (σ0, σ1, X) ∈ Pn, i < 2, UMn−1
e1−i be an upward-closed class and

Φei(G, xn, . . . , x0) be a ∆0 formula. Define the relation

c ?`(∃xn)(∀xn−1) . . . (Qx0)Φei(G
i, xn, . . . , x0) ∨G1−i ∈ UMn−1

e1−i

to hold if for every Z0 ∪ Z1 = X, such that Z1−i 6∈ UMn−1
e1−i , there is some ρ ⊆ Zi and xn ∈ ω

such that

UMn−1

Cn−1
∩ UMn−1

ζn−1(ei,σi∪ρ,xn)

is not a largeness class.

Lemma 3.12 Let c ∈ Pn and let Φe0(G, xn, . . . , x0) and Φe1(G, xn, . . . , x0) be two ∆0 formulas.
The relation

c ?`(∃xn)(∀xn−1) . . . (Qx0)Φei(G
i, xn, . . . , x0) ∨G1−i ∈ UMn−1

e1−i

is Σ0
1(Mn).

Proof. By compactness, the relation holds if there is a finite set E ⊆ X such that for every

E0 ∪ E1 = E, either E1−i ∈ UMn−1
e1−i or there is some finite set F ⊆ Cn−1, some ρ ⊆ Zi and

xn ∈ ω such that UMn−1

F ∩ UMn−1

ζn−1(ei,σi∪ρ,xn)
is not a largeness class. By Lemma 2.3, given a

finite set F , the statement “UXF is not a largeness class” is Σ0,X
2 , thus the overall relation is

Σ0
1(Mn). �

Lemma 3.13 Let c = (σ0, σ1, X) ∈ Pn and i < 2 be such that the side 1− i of c is e1−i-invalid.
Let Φei(G, xn, . . . , x0) be a ∆0 formula.

(a) If c ?`(∃xn)(∀xn−1) . . . (Qx0)Φei(G
i, xn, . . . , x0)∨G1−i ∈ UMn−1

e1−i , then there some d ≤ c
such that

d[i] 
 (∃xn)(∀xn−1) . . . (Qx0)Φei(G
i, xn, . . . , x0)

(b) If c ?0(∃xn)(∀xn−1) . . . (Qx0)Φei(G
i, xn, . . . , x0) ∨ G1−i ∈ UMn−1

e1−i , then there is some
d ≤ c such that

d[i] 
 (∀xn)(∃xn−1) . . . (Qx0)¬Φei(G
i, xn, . . . , x0)

Moreover, an index of d can be found A⊕ P -uniformly in an index of c, e0 and e1.

Proof. Say c = (σ0, σ1, X).
(a) Let Z0 = X ∩ A0 and Z1 = X ∩ A1. Since the side 1 − i of c is e1−i-invalid, then

Z1−i 6∈ UMn−1
e1−i , so unfolding the definition of the forcing question, there is some finite set

F ⊆ Cn−1, some ρ ⊆ Zi and xn ∈ ω such that

UMn−1

F ∩ UMn−1

ζn−1(ei,σi∪ρ,xn)

is not a largeness class. Since Mn−1 |= WKL, there is a cover R0 ∪ · · · ∪ R`−1 ⊇ ω in Mn−1

such that for every t < `, Rt 6∈ UMn−1

F ∩ UMn−1

ζn−1(ei,σi∪ρ,xn)
.

Since 〈UMn−1

Cn−1
〉 is a partition regular class containing X, there is some t < ` such that

X∩Rt ∈ 〈UMn−1

Cn−1
〉. Moreover, since {0, . . . ,max ρ} is finite, the set Y = (X∩Rt)−{0, . . . ,max ρ}

belongs to 〈UMn−1

Cn−1
〉. Define the Pn-condition d = (σi ∪ ρ, σ1−i, Y ). In particular,

d[i] 
 (∃xn)(∀xn−1) . . . (Qx0)Φei(G, xn, . . . , x0)

(b) Let D be the Π0
1(Mn) class of all Z0 ⊕ Z1 with Z0 ∪ Z1 = X, such that Z1−i 6∈ UMn−1

e1−i

and for every ρ ⊆ Zi, and every xn ∈ ω,

UMn−1

Cn−1
∩ UMn−1

ζn−1(ei,σi∪ρ,xn)

is a largeness class. Since Mn |= WKL, there is some Z0 ⊕ Z1 ∈ D ∩Mn.
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Since 〈UMn−1

Cn−1
〉 is a partition regular class containing X and Z1−i 6∈ 〈UMn−1

Cn−1
〉, then Zi ∈

〈UMn−1

Cn−1
〉.

Define the Pn-condition d = (σ0, σ1, Zi). Then

d[i] 
 (∀xn)(∃xn−1) . . . (Qx0)¬Φei(G, xn, . . . , x0)

This completes the proof of the lemma. �

Contrary to the fact that every 2-generic Qn-filter is 1-generic, it is not clear that every
3-generic Qn-filter is 2-generic. The following lemma states that whenever F is a sufficiently
generic Pn-filter, then if a side i < 2 is valid, the Qn-filter F [i] is (s+ 1)-generic for every s < n.
By Lemma 2.25, it would be sufficient to prove the following lemma for s ∈ {1, . . . , n− 1}, but
the proof also holds for the case s = 0.

Lemma 3.14 Let c = (σ0, σ1, X) ∈ Pn and i < 2 be such that the side i of c is valid. Fix
s ∈ {0, . . . , n−1} and let Φe(G, xs, . . . , x0) be a ∆0 formula with free variables xs, . . . , x0. Then
there is an extension d ≤ c such that either

d[i] 
 (∃xs)(∀xs−1) . . . (Qx0)Φe(G, xs, . . . , x0)

or

d[i] 
 (∀xs)(∃xs−1) . . . (Qx0)¬Φe(G, xs, . . . , x0)

Moreover, an index for d can be found A⊕ P -uniformly from an index for c and e.

Proof. Let UMs
a be the upward closed Σ0

1(Ms) class of all X such that

(σi, X) 1 (∀xs)(∃xs−1) . . . (Qx0)¬Φe(G, xs, . . . , x0)

We have two cases.
Case 1: UMs

Cs
∩ UMs

a is a largeness class. Then 〈UMs
Cs
〉 ⊆ UMs

a . Since X ∩ Ai ∈ 〈UMn−1

Cn−1
〉 ⊆

〈UMs
Cs
〉 ⊆ UMs

a , then in particular X ∩Ai ∈ UMs
a . Unfolding the definition, in case s = 0, there

is some ρ ⊆ X ∩ Ai and some x0 ∈ ω such that Φe(σ ∪ ρ, x0) holds. Since ρ is finite, the set

Y = X − {0, . . . , |ρ|} belongs to 〈UMn−1

Cn−1
〉. Thus d = (σi ∪ ρ, σ1−i, Y ) is an extension of c such

that d[i] 
 (∃x0)Φe(G, x0). In case s > 0, there is some ρ ⊆ X ∩Ai and some xs ∈ ω such that

UMs−1

Cs−1
∩Uζs−1(e,σi∪ρ,xs) is not a largeness class. Let R0, . . . , R`−1 be a cover of ω inMs−1 such

that for every t < `, Rt 6∈ UMs−1

Cs−1
∩ Uζs−1(e,σi∪ρ,xs). Since X ∈ 〈UMn−1

Cn−1
〉, which is a partition

regular class, there is some t < ` such that X ∩ Rt ∈ 〈UMn−1

Cn−1
〉. Let Y = X ∩ Rt − {0, . . . , |ρ|}.

Since ρ is finite, Y ∈ 〈UMn−1

Cn−1
〉. Then d = (σi ∪ ρ, σ1−i, Y ) is an extension of c such that

d[i] 
 (∃xs)(∀xs−1) . . . (Qx0)Φe(G, xs, . . . , x0).

Case 2: UMs
Cs
∩ UMs

a is not a largeness class. Let R0, . . . , R`−1 be a cover of ω in Ms such

that for every t < `, Rt 6∈ UMs
Cs
∩ UMs

a . Since X ∈ 〈UMn−1

Cn−1
〉, which is a partition regular class,

there is some t < ` such that X ∩ Rt ∈ 〈UMn−1

Cn−1
〉. Then d = (σ0, σ1, X ∩ Rt) is an extension of

c such that d[i] 
 (∀xs)(∃xs−1) . . . (Qx0)¬Φe(G, xs, . . . , x0). �

The following lemma states that whenever F is a sufficiently generic Pn-filter, then if a side

i < 2 is valid, letting G = F [i], the set GG belongs to 〈UMn−1

Cn−1
〉.

Lemma 3.15 Let c = (σ0, σ1, X) ∈ Pn and i < 2 be such that the side i of c is valid. Let D be

such that UMn−1

D = 〈UMn−1

Cn−1
〉 and fix 〈e, i〉 ∈ D. Then there is an extension d = (τ0, τ1, Y ) ≤ c

such that τ i ∈ UXie . Moreover, an index for d can be found A⊕ P -uniformly from an index for
c, e and i.

Proof. Since the side i of c is valid, then X ∩ Ai ∈ 〈UMn−1

Cn−1
〉 ⊆ UXie . Thus there is a finite set

ρ ⊆ X ∩ Ai such that ρ ∈ UXie . By upward closure of UXie , σi ∪ ρ ∈ UXie . By Corollary 2.11,
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〈UMn−1

Cn−1
〉 is a partition regular class, so X − {0, . . . ,max ρ} ∈ 〈UMn−1

Cn−1
〉. The condition d =

(σi ∪ ρ, σ1−i, X − {0, . . . ,max ρ}) is the desired extension. �

4. Applications

In this section, we apply the framework developed in section 3 to derive our main theorems.

4.1. Preservation of non-Σ0
n definitions

Our first application shows the existence, for every instance of the pigeonhole principle, of a
solution which does not collapse the definition of a non-Σ0

n set into a Σ0
n one. This corresponds

to preservation of one non-Σ0
n definition, following the terminology of Wang [31].

Theorem 4.1 Fix n ≥ 1 and let B be a non-Σ0
n set. For every set A, there is an infinite set

H ⊆ A or H ⊆ A such that B is not Σ0,H
n .

Fix B and A, and let A0 = A and A1 = A. As in Section 3, letM0,M1, . . . ,Mn be countable
Scott sets coded by sets M0,M1, . . . ,Mn, respectively. Again, assume that Mi is low over ∅(i)
and ∅(i+1) ∈ Mi+1 for every i < n. Let C0, . . . , Cn−1 be such that Ci ∈ Mi+1 and UMi

Ci
is an

Mi-cohesive largeness class for every i < n. Furthermore, we require that UMi+1

Ci+1
⊆ 〈UMi

Ci
〉. By

Wang [31, Theorem 3.6.], we can also assume that B is not Σ0
1(Mn). We build our infinite set

by the notion of forcing Pn.
Fix an enumeration ϕ0(G, u), ϕ1(G, u) of all Σ0

2 formulas with one set parameter G and one
integer parameter u.

Lemma 4.2 Let c ∈ Pn. For every pair of Σ0
n formulas ϕ0(G, u) and ϕ1(G, u), there is some

i < 2 and some d ≤ c such that

(∃u 6∈ B)d[i] 
 ϕi(G, u) or (∃u ∈ B)d[i] 
 ¬ϕi(G, u)

Proof. Let W = {u : c ?`ϕ0(G0, u) ∨ ϕ1(G1, u)}. By Lemma 3.8, the set W is Σ0
1(Mn) but B

is not, therefore W 6= B. Let u ∈W∆B = (W −B) ∪ (B −W ). We have two cases.
Case 1: u ∈ W − B, then c ?`ϕ0(G, u) ∨ ϕ1(G, u). By Lemma 3.9(a), there is an extension

d of c such that d[i] 
 ϕi(G, u) for some i < 2.
Case 2: u ∈ B −W , then c ?0s ϕ0(G, u) ∨ ϕ1(G, u). By Lemma 3.9(b), there is an extension

d of c such that d[i] 
 ¬ϕi(G, u) for some i < 2. �

Lemma 4.3 Let c ∈ Pn and i < 2 be such that the side 1 − i of c is e-invalid. For every Σ0
n

formula ϕ(G, u), there is some d ≤ c such that

(∃u 6∈ B)d[i] 
 ϕ(G, u) or (∃u ∈ B)d[i] 
 ¬ϕ(G, u)

Proof. Let W = {u : c ?`ϕ(Gi, u) ∨ G1−i 6∈ UMn−1
e }. By Lemma 3.12, the set W is Σ0

1(Mn)
but B is not, therefore W 6= B. Let u ∈W∆B = (W −B) ∪ (B −W ). We have two cases.

Case 1: u ∈ W − B, then c ?`ϕ(Gi, u) ∨ G1−i 6∈ UMn−1
e . By Lemma 3.13(a), there is an

extension d of c such that d[i] 
 ϕ(G, u) .

Case 2: u ∈ B −W , then c ?0s ϕ(Gi, u) ∨ G1−i 6∈ UMn−1
e . By Lemma 3.13(b), there is an

extension d of c such that d[i] 
 ¬ϕ(G, u). �

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Let F be a sufficiently generic Pn-filter. By Lemma 4.2 and Lemma 4.3,
there is some i < 2 such that

(a) The side i of c is valid for every c ∈ F ;
(b) For every Σ0

n formula ϕ(G, u), there is some d ∈ F such that

(∃u 6∈ B)d[i] 
 ϕ(G, u) or (∃u ∈ B)d[i] 
 ¬ϕ(G, u)
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Let G = F [i]; In particular, G is an (n + 1)-generic Qn-filter. By Lemma 3.14, G is (s + 1)-
generic for every s ∈ {0, . . . , n − 1} and by Lemma 2.25. By Lemma 2.24, GG is infinite, and

by Lemma 2.27, B is not Σ0,H
n . By definition of Pn, GG ⊆ Ai. This completes the proof of

Theorem 4.1. �

The following corollary would correspond to strong iterated jump cone avoidance of RT1
2,

following the terminology of Wang [32].

Corollary 4.4 Fix a non-∆0
n set B. For every set A, there is an infinite set H ⊆ A or H ⊆ A

such that B is not ∆0,H
n .

Proof. Given a non-∆0
n set B, either B or B is not Σ0

n. By Theorem 4.1, for every set A, there

is an infinite set H ⊆ A or H ⊆ A such that either B or B is not Σ0,H
n , hence such that B is

not ∆0,H
n . �

4.2. Preservation of ∆0
n hyperimmunities

Our second application concerns the ability to prevent solutions from computing fast-growing
functions. Recall the definition of hyperimmunity.

Definition 4.5. A function f dominates a function g if f(x) ≥ g(x) for every x. A function f
is X-hyperimmune if it is not dominated by any X-computable function.

The following lemma is proven by Downey et al. [5, Lemma 3.3].

Lemma 4.6 ([5]) For every k ≤ ω and every Z, for any nondecreasing functions (fi)i<k which
are Z-hyperimmune, there is a G and sets (Ai)i<k such that none of the Ai is Σ0

1(Z ⊕G), but
for any i and any function h dominating fi, Ai is Σ0

1(Z ⊕G⊕ h).

Theorem 4.7 Fix a ∅(n)-hyperimmune function f . For every set A, there is an infinite set
H ⊆ A or H ⊆ A such that f is H(n)-hyperimmune.

Proof. By Lemma 4.6, letting Z = ∅(n), there is a set G and a set B such that B is not
Σ0

1(∅(n)⊕G) but for any function h dominating f , B is Σ0
1(∅(n)⊕G⊕h). By the jump inversion

theorem, there is a set Q such that Q(n) ≡T ∅(n) ⊕ G. In particular, B is not Σ0
1(Q(n)), so

it is not Σ0
n+1(Q). By Theorem 4.1, there is an infinite set H ⊆ H or H ⊆ A such that B

is not Σ0
n+1(H ⊕ Q). In particular B is not Σ0

1((H ⊕ Q)(n) and therefore not Σ0
1(H(n) ⊕ G).

Suppose for the contradiction that f is dominated by an H(n)-computable function h. Then B
is Σ0

1(∅(n) ⊕G⊕ h), hence B is Σ0
1(H(n) ⊕⊕G). Contradiction. �

4.3. Lown solutions

An effectivization of the forcing construction enables us to obtain lowness results for the
infinite pigeonhole principle. The existence of low2 solutions for ∆0

2 sets, and of low2 cohesive
sets for computable sequences of sets, was proven by Cholak, Jockusch and Slaman [2, sections
4.1 and 4.2]. The existence of low3 cohesive sets for ∆0

2 sequences of sets was proven by Wang [30,
Theorem 3.4]. Wang [30, Questions 6.1 and 6.2] and the second author [18, Question 5.4] asked
whether such results can be generalized for every ∆0

n+1 instances of the pigeonhole and every

∆0
n instances of cohesiveness. We answer positively both questions.

Theorem 4.8 For every ∆0
n+2 set A and every P � ∅(n+1), there is an infinite set H ⊆ A or

H ⊆ A such that H(n+1) ≤T P .

Proof. The case n = 0 is proven by Cholak, Jockusch and Slaman [2, sections 4.1 and 4.2].
Suppose n > 0. Fix P and A, and let A0 = A and A1 = A. As in Section 3, letM0,M1, . . . ,Mn

be countable Scott sets coded by sets M0,M1, . . . ,Mn, respectively. Again, assume that Mi is
low over ∅(i) and ∅(i+1) ∈ Mi+1 for every i < n. We also require Mn to be low over ∅(n). Let
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C0, . . . , Cn−1 be such that Ci ∈ Mi+1 and UMi
Ci

is an Mi-cohesive largeness class for every

i < n. Furthermore, we require that UMi+1

Ci+1
⊆ 〈UMi

Ci
〉.

Note that by Corollary 2.15, the class 〈UMn−1

Cn−1
〉 is Π0

2(Cn−1⊕M ′n−1). Since Cn−1⊕M ′n−1 ≤T
Mn, 〈UMn−1

Cn−1
〉 is Π0

2(Mn). If X ∈ Mn, the relation “X ∈ 〈UMn−1

Cn−1
〉” is Π0

1((Mn)′), hence

Π0
1(∅(n+1)). Therefore, P computes a total function h : ω2 → 2 such that if e0 and e1 are

Mn-indices of Xe0 and Xe1 such that Xe0 ∪Xe1 ∈ 〈U
Mn−1

Cn−1
〉, then h(e0, e1) is some i < 2 such

that Xei ∈ 〈U
Mn−1

Cn−1
〉. We have two constructions, based on whether every condition have both

valid sides or not.
Symmetric case. Suppose that for every Pn-condition c = (σ0, σ1, X) both sides are valid,

that is, for every i < 2, X ∩Ai ∈ 〈UMn−1

Cn−1
〉.

Define an infinite decreasing sequence of Pn-conditions c0 ≥ c1 ≥ . . . such that for every s,
there is some i < 2 such that

c[i]
s 
 (∃xt)(∀xt−1) . . . (Qx0)Φs(G, xn, . . . , x0) or c[i]

s 
 (∀xn)(∃xn−1) . . . (Qx0)¬Φs(G, xn, . . . , x0)

By Lemma 3.9, this sequence can be A ⊕ P -computable, hence P -computable. Moreover, we
require that for every t ∈ {1, . . . , n} and every i < 2,

c[i]
s 
 (∃xt)(∀xt−1) . . . (Qx0)Φe(G, xt, . . . , x0) or c[i]

s 
 (∀xt)(∃xt−1) . . . (Qx0)¬Φe(G, xt, . . . , x0)

This can be ensured by Lemma 3.14 and the assumption that both sides of every Pn-condition
are valid. By a pairing argument, there is some i < 2 such that the upward-closure G of the

collection {c[i]
s : s ∈ ω} is an (n+1)-generic Qn-filter. Moreover, G�Qt is (t+1)-generic for every

t < n. By Lemma 2.24, GG is infinite, and by definition of a Pn-condition, GG ⊆ Ai. Moreover,
by Lemma 2.27, ϕ(GG) holds for a Σ0

n+1 (Π0
n+1) formula ϕ if and only if there is some stage s

such that c
[i]
s 
 ϕ(G). Therefore, to decide ϕ(GG), one can search P -effectively for some s such

that c
[i]
s 
 ϕ(G) or c

[i]
s 
 ¬ϕ(G) and decide in which case we are. It follows that G

(n+1)
G ≤ P .

This completes the symmetric construction.
Asymmetric case. Suppose that there is a Pn-condition c0 = (σ0, σ1, X) and a side i < 2

such that the side 1 − i is e-invalid for some e ∈ ω, that is, X ∩ A1−i 6∈ UMn−1
e ⊇ 〈UMn−1

Cn−1
〉.

The construction is very similar to the symmetric case. However, we can already fix the side
i by using the asymmetric forcing question. Thanks to Lemma 3.13, we can define an infinite
decreasing sequence of Pn-conditions c0 ≥ c1 ≥ . . . such that letting G be the upward-closure

of the collection {c[i]
s : s ∈ ω}, G is an (n+ 1)-generic Pn-filter which is (t+ 1)-generic for every

t < n. The verification is the same as in the symmetric case. This completes the proof of
Theorem 4.8. �

Corollary 4.9 Fix n ≥ 1. For every ∆0
n set A, there is an infinite set H ⊆ A or H ⊆ A of lown

degree.

Proof. This is trivially true for n = 1. We prove it in the case n ≥ 2. By the relativized low
basis theorem [10], there is some P � ∅(n−1) such that P ′ ≤T ∅(n). By Theorem 4.8, there is an

infinite set H ⊆ A or H ⊆ A such that H(n−1) ≤T P . In particular, H(n) ≤T P ′ ≤T ∅(n). �

4.4. Arithmetical reductions

We now prove that the infinite pigeonhole principle admits strong cone avoidance for arith-
metical reductions.

Theorem 4.10 Let B be a non-arithmetical set. For every set A, there is an infinite set H ⊆ A
or H ⊆ A such that B is not arithmetical in H.

Fix B and A, and let A0 = A and A1 = A. Let M0,M1, . . . be a countable sequence of
countable Scott sets coded by sets M0,M1, . . . , respectively. Assume that Mi is low over ∅(i)
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and ∅(i+1) ∈ Mi+1 for every i ∈ ω. Let C0, C1, . . . be such that Ci ∈ Mi+1 and UMi
Ci

is an

Mi-cohesive largeness class for every i ∈ ω. Furthermore, we require that UMi+1

Ci+1
⊆ 〈UMi

Ci
〉.

Let A =
⋂
n U
Mn
Cn

. Note that A is a largeness class by Lemma 2.2 and that L(A) is the largest
partition regular subclass of A by Lemma 2.10. Consider the following notion of forcing:

Definition 4.11. Let Pω denote the set of conditions (σ0, σ1, X) such that

(a) σi ⊆ Ai for every i < 2
(b) X ∩ {0, . . . ,maxi |σi|} = ∅
(c) X ∈ L(A).
(d) X ∈

⋃
nMn

Note that Pω ⊆
⋃
n Pn. The partial order on Pω is the standard Mathias extension. All the

proofs remain the same, except the replacement of 〈UMn−1

Cn−1
〉 by L(A) whenever one has pick a

part of a cover of a set belonging to 〈UMn−1

Cn−1
〉.

We define Qω similarly, and let c[i] = (σi, X) ∈ Qω.

Proof of Theorem 4.10. Let F be a sufficiently generic Pω-filter. Note that for every c ∈ Pω,
there is some n ∈ ω such that c ∈ Pn. In particular, B is not Σ0

1(Mn), so we can apply
Lemma 4.2 and Lemma 4.3. Moreover, every Σ0

n formula can be seen as a Σ0
m formula with

m ≥ n by adding dummy quantifiers. Therefore there is some i < 2 such that

(a) The side i of c is valid for every c ∈ F ;
(b) For every n ∈ ω and every Σ0

n formula ψ(G, u), there is some m ≥ n, some Σ0
m+1 formula

ϕ(G, u) logically equivalent to ψ(G, u) and some d ∈ F ∩ Pm such that

(∃u 6∈ B)d[i] 
 ϕ(G, u) ∨ (∃u ∈ B)d[i] 
 ¬ϕ(G, u)

Let G = F [i]. In particular, G is an (n+1)-generic Qω-filter. By Lemma 3.14, G is (s+1)-generic
for every s ∈ {1, . . . , n− 1} and by Lemma 2.25, G is 1-generic. By Lemma 2.24, GG is infinite,

and by Lemma 2.27, B is not Σ0,H
n for any n ∈ ω. By definition of Pω, GG ⊆ Ai. This completes

the proof of Theorem 4.10. �

5. Hyperarithmetical reductions

In this section, we extend the jump control of solutions to the pigeonhole principle to ordinal
iterations of the jump. We then derive a proof of strong cone avoidance for hyperarithmetical
reductions.

5.1. Background

5.1.1. Computable ordinals. We let ωck1 denote the first non-computable ordinal. There is a Π1
1

set O1 ⊆ ω such that each o ∈ O1 codes for an ordinal α < ωck1 and each ordinal α < ωck1 has
a unique code in O1. Furthermore given that o ∈ O1, one can computably recognize if o codes
for 0, if o codes for a successor ordinal α+ 1, in which case we can uniformly and computably
produce a code in O1 for α, and if o codes for a limit ordinal supn βn, in which case we can
uniformly and computably produce for each n codes in O1 for βn. See [23] for more details
about O1. In this section, we manipulate each ordinal α < ωck1 via its respective code in O1.
To simplify the reading, we use the notation α instead of the code for α.

5.1.2. The effective Borel sets. We also use codes for effective Borel subsets of ω or of 2ω : For
α < ωck1 a code for a Σ0

α+1 set B =
⋃
n<ω Bn is the code of a function that effectively enumerate

codes for each Π0
α set Bn. A code for a Π0

α+1 set B =
⋂
n<ω Bn is the code of a function that

effectively enumerate codes for each Σ0
α set Bn. For α = supn βn limit a code of a Σ0

α set
B =

⋃
n<ω Bβn is the code of a function that effectively enumerate codes for each Π0

βn
set Bβn

with supn βn = α. The code of a Π0
α set B =

⋂
n<ω Bβn is the code of a function that effectively

enumerate codes for each Σ0
βn

set Bβn with supn βn = α. We also assume the codes for effective

Borel sets include some information so that we can computably distinguish Π0
α from Σ0

α codes
as well as distinguish if α = 1, if α is successor or if it is limit.
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5.1.3. The iterated jumps. We use such codes to iterate the jump through the ordinals:

(1) ∅(0)
= ∅

(2) ∅(α+1)
= (∅(α)

)′

(3) ∅(supn αn)
= ⊕n∈ω∅(αn)

Note that for n < ω the set ∅(n)
is Σ0

n and complete for Σ0
n questions. Above the first limit

ordinal the situation is slightly different : ∅(ω)
is ∆0

ω and not Σ0
ω. Also given α ≥ ω we have

that ∅(α+1)
is Σ0

α and complete for Σ0
α questions.

Proposition 5.1 Let n ∈ ω.

(1) Let m > 0. The set {X : n ∈ X(m)} is a Σ0
m class.

(2) Let α be limit. The set {X : n ∈ X(α)} is a ∆0
β class for some β < α.

(3) Let α = β + 1 with β ≥ ω. The set {X : n ∈ X(α)} is a Σ0
β class.

Proof. The set {X : n ∈ X ′} is clearly Σ0
1. Let m > 1. the set {X : n ∈ X(m)} equals⋃

{σ : Φn(σ,n)↓}

⋂
{i : σ(i)=0}

{X : i /∈ X(m−1)} ∩
⋂

{i : σ(i)=1}

{X : i ∈ X(m−1)}

This is by induction a Σ0
m set.

Let α be limit. Let p1, p2 be projections of the pairing function, that is, x = 〈p1(x), p2(x)〉.
Then {X : n ∈ X(α)} equals {X : p1(n) ∈ X(p2(n))}, which is a ∆0

β set for β < α.

Let α = β + 1. The set {X : n ∈ X(β+1)} equals⋃
{σ : Φn(σ,n)↓}

⋂
{i : σ(i)=0}

{X : i /∈ X(β)} ∩
⋂

{i : σ(i)=1}

{X : i ∈ X(β)}

This is by induction a Σ0
β class. �

Proposition 5.2 Let Φ be a functional. Let n, i ∈ ω.

(1) Let m > 0. The set {X : ∃t Φ(X(m), n)[t] ↓= i} is a Σ0
m+1 class.

(2) Let α ≥ ω. The set {X : ∃t Φ(X(α), n)[t] ↓= i} is a Σ0
α class.

Proof. Trivial using Proposition 5.1 �

5.1.4. Π1
1 and Σ1

1 sets of integers. We previously mentioned a Π1
1 set O1 of unique notations

for ordinals. This set is included in Kleene’s O, the set of all the constructible codes for the
computable ordinals. Given an ordinal α < ωck1 , let O<α denote the elements of O which code
for an ordinal strictly smaller than α. Each O<α is ∆1

1 uniformly in α (it actually is always
a Σ0

α+1 set [14]). It is well-known that O is a Π1
1-complete set [23], that is, for any Π1

1 set
B ⊆ ω there is a computable function f : ω → ω such that n ∈ B ↔ f(n) ∈ O. Let us define
Bα = {n : f(n) ∈ O<α}. In particular, each Bα is ∆1

1 uniformly in α and B =
⋃
α<ωck1

Bα. In

particular B is a Σ0
ωck1

set. Note that contrary to Σ0
α sets for α < ωck1 , the Σ0

ωck1
are not described

with a computable code, but rather with a Π1
1 set of codes for all the Π0

α that constitutes the
Σ0
ωck1

set B. With a little hack, we can even make sure that at most one new element appears

in each Bα. For this reason, we often see Π1
1 sets as enumerable along the computable ordinals.

By complementation a Σ1
1 set B ⊆ ω can be seen as co-enumerable along the computable

ordinals and we have B =
⋂
α<ωck1

Bα where each Bα is ∆1
1 uniformly in α. We also say in this

case that B is Π0
ωck1

.

5.1.5. Σ1
1-boundedness. A central theorem when working with Σ1

1 and Π1
1 sets is Σ1

1-boundedness:

Theorem 5.3 (Σ1
1-boundedness [26]) Let B be a Σ1

1 set of codes for ordinals, then the supremum
of the ordinals coded by elements of B is strictly smaller than ωck1 .
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We mostly here use the following corollary:

Corollary 5.4 Let f : ω → ωck1 be a total Π1
1 function. Then supn f(n) = α < ωck1 .

Note that f : ω → ωck1 means the range of f is a subset of O1. The corollary comes from the
fact that if f is total, then it becomes ∆1

1 and its range is then a Σ1
1 set of codes for ordinals.

As an example we apply here Σ1
1-boundedness to show a simple fact that will be needed later :

adding an ω-bounded quantifier to a Σ0
ωck1

or a Π0
ωck1

set does not change its complexity.

Lemma 5.5 Every Σ0
ωck1 +1

set of integers is Π0
ωck1

.

Proof. Let B be Σ0
ωck1 +1

, that is, B =
⋃
n∈ω

⋂
α∈ωck1

Bn,α where each Bn,α is Σ0
α uniformly in α.

Then B is Π0
ωck1

via the following equality :
⋃
n∈ω

⋂
α∈ωck1

Bn,α =
⋂
α∈ωck1

⋃
n∈ω

⋂
β∈αBn,β. �

It is clear that if m is in the leftmost set it is also in the rightmost set. The reader should
have no trouble to apply Σ1

1-boundedness to show that if m is not in the leftmost set, then it is
not in the rightmost one.

5.1.6. Π1
1 and Σ1

1 sets of reals. Given X ∈ 2ω we let OX be the set of X-constructible codes
for X-computable ordinals. We let ωX1 ≥ ωck1 be the smallest non X-computable ordinal. For
α < ωX1 , we let OX<α be the elements of OX coding for an ordinal strictly smaller than α.

One can show that a set B ⊆ 2ω is Π1
1 iff there exists some e ∈ ω such that B = {X : e ∈ OX},

that is, B is the set of elements relative to which e codes for an X-computable ordinal. In
particular, B =

⋃
α<ω1

{X : e ∈ OX<α}. Note that the union may go up to ω1, indeed, Π1
1 sets

of reals are not necessarily Borel.
A Π1

1 set of particular interest is the set of element X such that ωX1 > ωck1 . The set is Borel,
but not effectively. One can even prove that it contains no non-empty Σ1

1 subset : this is known
as the Gandy Basis theorem (see Sacks [23, III.1.5]):

Theorem 5.6 (Gandy Basis theorem) Let B ⊆ 2ω be a non-empty Σ1
1 set. Then there exists

X ∈ B such that ωX1 = ωck1 .

5.1.7. The general strategy to show hyperarithmetic cone avoidance. Let Z be non ∆1
1. Our goal

is to build a generic G ⊆ A or G ⊆ ω −A such that Z is not ∆1
1(G). This is done in two steps:

first show that Z is not G(α)-computable for any α < ωck1 and second show that ωG1 = ωck1 , so

in particular we cannot have that Z is G(α)-computable for ωck1 ≤ α < ωG1 .
The first part is simply an iteration of the forcing through the computable ordinals, and

raises no particular issue. This is done in Section 5.2.
The second part is a little bit trickier but still follows a canonical technic, which has often

been used, up to some cosmetic changes in its presentation, to show this kind of preservation
theorem (see for instance [8], [22] or [27]) : Suppose ωG1 > ωck1 , in particular there is an element
e ∈ OG which codes for ωck1 , that is e is the code of a functional with ∀n Φe(G,n) ↓∈ OG

<ωck1

with supn |Φe(G,n)| = ωck1 where |Φe(G,n)| is the ordinal coded by Φe(G,n). All we have to do
is to show that such a code e does not exist. Given e we show that one of the following holds:

(1) ∃n ∀α < ωck1 Φe(G,n) /∈ OG<α
(2) ∃α < ωck1 ∀n Φe(G,n) ∈ OG<α

Each set {X : Φe(X,n) /∈ OX<α} is ∆1
1 uniformly in α. It follows that the set {X : ∃n ∀α <

ωck1 Φe(X,n) /∈ OX<α} is a Σ0
ωck1 +1

set of reals. Contrary to Σ0
ωck1 +1

sets of integers, such sets

cannot be simplified. We are then required to extend our forcing questions in order to control
the truth of Σ0

ωck1 +1
-statements. This is what will be done in Section 5.3.
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5.2. The forcing

We now design a notion of forcing for controlling the α-jump of solutions to the pigeonhole
principle. Unlike the notion of forcing for controlling finite iterations of the jump, this notion
is non-disjunctive and initially fixes the side of the instance A from which we will construct a
solution. This is at the cost of a forcing question whose definitional complexity is higher than
the question it asks.

Proposition 5.7 There is a sequence of sets {Mα}α<ωck1 such that:

(1) Mα codes for a countable Scott set Mα

(2) ∅(α)
is uniformly coded by an element of Mα

(3) Each M ′α is uniformly computable in ∅(α+1)

Proof. Let us show the following: there is a functional Φ : 2ω → 2ω such that for any oracle X,
we have that M ′ = Φ(X ′) is such that M = ⊕n∈ωXn codes for a Scott set M with X0 = X.

Fix a uniformly computable enumeration CY0 , CY1 , . . . of all non-empty Π0
1(Y ) classes. Let DX

be the Π0
1(X) class of all

⊕
n Yn such that Y0 = X and for every n = 〈a, b〉 ∈ ω, Yn+1 ∈ C

⊕
j≤b Yj

a .
Note that this Π0

1(X) class is uniform in X and any member of DX is a code of a Scott set
whose first element is X. Using the Low basis theorem [10], there is a Turing functional Φ such
that for any X, Φ(X ′) is the jump of a member of DX .

Using this function Φ, it is clear that uniformly in ∅(α+1)
one can compute the jump of a set

Mα coding for a Scott set Mα and containing ∅(α)
as its first element. �

Note ∅(β)
is computable in ∅(α)

for β < α in a uniform way : there is a unique computable

function f(∅(α)
, α, β) which outputs ∅(β)

for every β < α. Also Proposition 5.7 implies that Mβ

is computable in ∅(α)
for β < α and similarly, the computation is uniform in β, α.

Proposition 5.8 There is a sequence of sets {Cα}α<ωck1 such that:

(1) UMα
Cα

is an Mα-cohesive largeness class

(2) β < α implies UMα
Cα
⊆ 〈UMβ

Cβ
〉

(3) Each Cα is coded by an element of Mα+1 uniformly in α and Mα+1.

In order to prove Proposition 5.8 we use the two following uniformity lemmas:

Lemma 5.9 There is a functional Φ : 2ω × ω → 2ω such that for any set M coding for a Scott
set M, for any e such that C = Φe(M

′′) is such that UMC is a largeness class, D = Φ(M ′′, e) is
such that C ⊆ D and UMD = 〈UMC 〉.

Proof. Say M = {X0, X1, . . . } with M =
⊕

iXi. Let 〈et, it〉 be an enumeration of ω × ω.
Suppose that at stage t a finite set Dt ⊆ {〈e0, i0〉, . . . , 〈et, it〉} has been defined such that UMDt ∩
UMC is a largeness class and such that for any s ≤ t, 〈es, is〉 /∈ Dt implies that UXises ∩UMDt ∩U

M
C

is not a largeness class.

Then at stage t + 1, we ask M ′′ if U
Xit+1
et+1 ∩ UMDt ∩ U

M
C is a largeness class. If so we define

Dt+1 = Dt ∪ {〈et+1, it+1〉}. Otherwise we define Dt+1 = Dt. Then D = C ∪
⋃
tD

t is uniformly
M ′′-computable and UMD is a largeness class. �

Lemma 5.10 There is a functional Φ : 2ω × ω × ω → ω such that for any set M coding for a
Scott setM, for any set N coding for a Scott set N such that M ′ ∈ N with N -index iM , for any
C ∈ N with N -index iC , such that UMC is a largeness and partition regular class, Φ(N, iM , iC)
is an M -index for D ⊇ C such that UMD is a M-cohesive largeness class.

Proof. The functional Φ does the following : It looks for M ′ at index iM inside N . From M ′ it
computes M = ⊕nXn. It then computes with M ′ the tree T containing all the elements σ such
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that  ⋂
σ(i)=0

2ω −Xi

 ∩
 ⋂
σ(i)=1

Xi

 ∈ ⋂
〈e,j〉∈C�|σ|

UXje

Clearly [T ] is not empty. The functional Φ then finds an N -index for an element Y ∈ [T ].
For σ ≺ Y let Xσ = (

⋂
σ(i)=0(2ω − Xi) ∩ (

⋂
σ(i)=0Xi). We must have for every σ ≺ Y that

Xσ ∈ UMC . It follows as UMC is partition regular, that for every σ ≺ Y , LXσ ∩UMC is a largeness
class. Thus

⋂
σ≺Y LXσ ∩ UMC is an M-cohesive largeness class. Also M ⊕ Y ⊕ C uniformly

compute a set D such that UMD =
⋂
σ≺Y LXσ ∩ UMC . The function Φ then returns an N -index

for D. �

Proof of Proposition 5.8. Let Xα
i be the element of Mα of code i, so that each Mα = ⊕iXα

i .
Let us argue that there is a computable function f : ωck1 × ωck1 × ω such that whenever β < α,

then Xβ
i = Xα

f(α,β,i): Given an ordinal α the function f considers the Mα-code of ∅(α)
(which is

uniformly coded inMα) and uses it produce an Mα-code of Mβ = ⊕iXβ
i (as Mβ is computable

in ∅(α)
, uniformly in β, α) and then returns an Mα-code of Xβ

i . Given α < β and C ⊆ ω2, we

then let g(α, β, C) = {〈e, f(α, β, i)〉 : 〈e, i〉 ∈ C}. In particular, UMα

g(α,β,C) = UMβ

C .

Suppose that stage α we have defined by induction sets Cβ for each β < α, verifying (1)(2)
and (3). Let us proceed and define Cα.

Suppose first that α = β + 1 is successor. Note that the set Cβ is coded by an element of

Mβ+1 uniformly in β, and thus that Cβ is uniformly computable in ∅(β+2)
and then uniformly

computable in M ′′β . Using Lemma 5.9 we define Dβ ⊇ Cβ to be such that UMβ

Dβ
= 〈UMβ

Cβ
〉 and

such that Dβ is uniformly M ′′β -computable. We define Eα to be g(α, β,Dβ), so that UMα
Eα

=

UMβ

Dβ
. Note that as Eα is uniformly computable in M ′′β and thus in ∅(α+1)

, it is uniformly

coded by an element of Mα+1. Note also that UMα
Eα

is partition regular as it equals 〈UMβ

Cβ
〉.

Using Lemma 5.10 we uniformly find an Mα+1-index of Cα ⊇ Eα to be such that UMα
Cα

is an
Mα-cohesive largeness class.

At limit stage α = supn βn, each set Cβn is coded by an element ofMβn+1 uniformly in βn and

that Mβn+1 is uniformly computable in ∅(α)
. It follows that

⋃
nCβn is uniformly computable

in ∅(α)
. We define Dα to be

⋃
n g(α, βn, Cβn). Note that Dα is uniformly computable in ∅(α)

and thus coded by an element of Mα uniformly in α. Note also that UMα
Dα

=
⋂
n∈ω U

Mβn
Cβn

=⋂
n∈ω〈U

Mβn
Cβn
〉. As an intersection of partition regular class, UMα

Dα
is partition regular. Using

Lemma 5.10 there is a set Cα ⊇ Dα such that UMα
Cα

is Mα-cohesive and such that Cα is
uniformly coded by an element of Mα+1. �

From now on, fix sequences {Mα}α<ωck1 and {Cα}α<ωck1 which verify Proposition 5.7 and

Proposition 5.8, respectively. Assume also that we have a class S ⊆
⋂
β<ωck1

UMβ

Cβ
which is

partition regular and that will be detailed later.
Let A0 ∪A1 = ω. Note that there must be i < 2 such that Ai ∈ S. Let then A = Ai for some

i such that Ai ∈ S.

Definition 5.11. Let Pωck1 be the set of conditions (σ,X) such that:

(1) σ ⊆ A
(2) X ⊆ A
(3) X ∩ {0, . . . , |σ|} = ∅.
(4) X ∈ S

Given two conditions (σ,X), (τ, Y ) ∈ Pωck1 we let (σ,X) ≤ (τ, Y ) be the usual Mathias extension,

that is, σ � τ , X ⊆ Y and σ − τ ⊆ Y .
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We now define an abstract forcing question for Σ0
α sets, and deciding whether there is an

extension forcing the generic set G to belong or not to belong to the set. Contrary to the
forcing question for arithmetical sets where the question was disjunctive, asking whether for
every 2-cover of ω, there is a side i < 2 and an extension of the stem forcing the generic set Gi

to belong to the Σ0
α set Bi, we ask whether the collection of sets such that there is an extension

forcing G to belong to B is a large class. The cost is a forcing question of higher definitional
complexity.

Definition 5.12. Let σ ∈ 2<ω. Given a Σ0
1 class U , let σ ?`U hold if

{Y : ∃τ ⊆ Y − {0, . . . , |σ|} [σ ∪ τ ] ⊆ U} ∩ UM0
C0

is a largeness class. Then inductively, given a Σ0
m class B =

⋃
n<ω Bn with 1 < m < ω, we let

σ ?`B hold if

{Y : ∃τ ⊆ Y − {0, . . . , |σ|} ∃n σ ∪ τ ?0 2ω − Bn} ∩ UMm−1

Cm−1

is a largeness class. Then inductively, given a Σ0
α class B =

⋃
n<ω Bβn with ω ≤ α < ωck1 , we

define σ ?`B if

{Y : ∃τ ⊆ Y − {0, . . . , |σ|} ∃n σ ∪ τ ?0 2ω − Bβn} ∩ U
Mα
Cα

is a largeness class.
For a condition p = (σ,X) ∈ Pωck1 and an effectively Borel set B, we write p ?`B if σ ?`B.

We shall now study the effectivity of the relation ?`. To do so we introduce the following
notation.

Definition 5.13. Let σ ∈ 2<ω. Given a Σ0
1 class B, we write U(B, σ) for the open set:

{Y : ∃τ ⊆ Y − {0, . . . , |σ|} [σ ∪ τ ] ⊆ B}

Given a Σ0
α class B =

⋃
n<ω Bβn for 1 < α < ωck1 we write U(B, σ) for the open set:

{Y : ∃τ ⊆ Y − {0, . . . , |σ|} ∃n σ ∪ τ ?0 2ω − Bβn}

Let us now study the complexity of the relation ?` together with the complexity of the sets
U(B, σ). Note that the difference between (1b) and (2b) in the following proposition may give
the wrong impression that the complexity of the relation grows by one additional jump beyond

Σ0
ω classes. This is due to the fact that for α ≥ ω, the complete set for Σ0

α questions is ∅(α+1)

and not ∅(α)
.

Proposition 5.14 Let σ ∈ 2<ω.

(1) Let B be a Σ0
m class for 0 < m < ω

(a) The set U(B, σ) is an upward-closed Σ0
1(Cm−2 ⊕ ∅(m−1)

) open set if m > 1 and an
upward-closed Σ0

1 open set if m = 1.

(b) The relation σ ?`B is Π0
1(Cm−1 ⊕ ∅(m)

).
(2) Let B be a Σ0

α class for α ≥ ω.

(a) The set U(B, σ) is an upward closed Σ0
1(Cα−1⊕ ∅(α)

) open set if α is successor and

an upward closed Σ0
1(∅(α)

) open set if α is limit.

(b) The relation σ ?`B is Π0
1(Cα ⊕ ∅(α+1)

).

This is uniform in σ and a code for the class B.

Proof. This is done by induction on the effective Borel codes. We start with α = 0. Let V be a
Σ0

1 class and σ ∈ 2<ω. It is clear that

U(V, σ) = {Y : ∃τ ⊆ Y − {0, . . . , |σ|} [σ ∪ τ ] ⊆ V}

is an upward closed Σ0
1 class. Then σ ?`V iff U(V, σ) ∩ UM0

C0
is a largeness class, that is, by

Lemma 2.2, iff for every finite set F ⊆ C0, the class U(V, σ) ∩ UM0
F is a largeness class. By



THE WEAKNESS OF THE PIGEONHOLE PRINCIPLE UNDER HYPERARITHMETICAL REDUCTIONS 23

Lemma 2.3, for each F ⊆ C0, the statement is Π0
2(M0) uniformly in F , and thus Π0

1(M ′0)

uniformly in F . It is then Π0
1(∅′) uniformly in F . Thus the whole statement is Π0

1(C0 ⊕ ∅′).
Let 1 < α < ωck1 . Suppose (1a)(1b) and (2a)(2b) are true for every σ and every β < α. Let

σ ∈ 2<ω and let B =
⋃
n<ω Bβn be a Σ0

α class. Let

U(B, σ) = {Y : ∃τ ⊆ Y − {0, . . . , |σ|} ∃n σ ∪ τ ?0 2ω − Bβn}
Suppose first α = m with 1 < m < ω. Let us show (1a). For each n ∈ ω, the class

2ω − Bβn is a Σ0
m−1 class uniformly in σ ∪ τ and in a code for Bβn . By induction hypothesis,

the relation σ∪ τ ?0 2ω−Bβn is Σ0
1(Cm−2⊕∅(m−1)

). It follows that U(B, σ) is an upward closed

Σ0
1(Cm−2 ⊕ ∅(m−1)

) class.

Let us now show (1b). By Lemma 2.2, U(B, σ)∩UMm−1

Cm−1
is a largeness class if for all F ⊆ Cm−1,

the class U(B, σ) ∩ UMm−1

F is a largeness class. By Lemma 2.3, it is a Π0
2(Mm−1) statement

uniformly in F and then a Π0
1(M ′m−1) statement uniformly in F and then a Π0

1(∅(m)
) statement

uniformly in F . It follows that the statement “U(B, σ)∩UMm−1

Cm−1
is a largeness class” is Π0

1(Cm−1⊕
∅(m)

).
Suppose now α is limit. Let us show (2a). For each n ∈ ω, the class 2ω − Bβn is a Σ0

βn
class

uniformly in σ∪τ and in a code for Bβn . By induction hypothesis, the relation σ∪τ ?0 2ω−Bβn
is, in any case, Σ0

1(∅(βn+2)
) and thus Σ0

1(∅(α)
). It follows that U(B, σ) is an upward-closed

Σ0
1(∅(α)

) open set.
Suppose now α ≥ ω with α = β + 1. Let us show (2a). For each n we have that 2ω − Bβn

is a Σ0
β class uniformly in σ ∪ τ and in a code for Bβn . By induction hypothesis, the relation

σ∪τ ?0 2ω−Bβn is Σ0
1(Cβ⊕∅(β+1)

). It follows that U(B, σ) is an upward closed Σ0
1(Cα−1⊕∅(α)

)
class.

Suppose α ≥ ω successor or limit. Let us show (2b). Then U(B, σ)∩UMα
Cα

is a largeness class if

for all F ⊆ Cα, the class U(B, σ)∩UMα
F is a largeness class. It is a Π0

2(Mα) statement uniformly

in F and then a Π0
1(M ′α) statement uniformly in F and then a Π0

1(∅(α+1)
) statement uniformly

in F . It follows that the statement U(B, σ) ∩ UMα
Cα

is a largeness class is Π0
1(Cα ⊕ ∅(α+1)

). �

Definition 5.15. Let (σ,X) ∈ Pωck1 . Let U be a Σ0
1 class. We define

(σ,X) 
 U ↔ [σ] ⊆ U
(σ,X) 
 2ω − U ↔ ∀τ ⊆ X [σ ∪ τ ] * U

Then inductively for Σ0
α classes B =

⋃
n<ω Bβn , we define:

(σ,X) 
 B ↔ ∃n (σ,X) 
 Bβn
(σ,X) 
 2ω − B ↔ ∀n ∀τ ⊆ X σ ∪ τ ?` 2ω − Bβn

Lemma 5.16 Let p ∈ Pωck1 . Let B =
⋂
n<ω Bβn be a Π0

α class. Then p 

⋂
n<ω Bβn iff for every

n ∈ ω and every q ≤ p, q ?`Bβn .

Proof. Trivial. �

Proposition 5.17 Let p ∈ Pωck1 . Let B be an effectively Borel set. If p 
 B and q ≤ p then

q 
 B.

Proof. It is clear for Σ0
1 and Π0

1 classes. We proceed by induction for α > 1 and suppose
B =

⋃
n<ω Bβn is a Σ0

α class. By definition, there is some n ∈ ω such that p 
 Bβn . As Bβn is a

Π0
βn

and βn < α, by induction hypothesis, q 
 Bβn and thus q 
 B.

Suppose now B =
⋂
n<ω Bβn is a Π0

α class. By Lemma 5.16, for all n ∈ ω and all r ≤ p,
r ?`Bβn . Then if q ≤ p, then for all n and all r ≤ q, r ?`Bβn . It follows that q 


⋂
n<ω Bβn . �

Proposition 5.18 Let p ∈ Pωck1 . Let B =
⋃
n<ω Bβn be a Σ0

α class for 0 < α < ωck1 .
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(1) Suppose p ?`B. Then there exists q ≤ p such that q 
 B.
(2) Suppose p ?0B. Then there exists q ≤ p such that q 
 2ω − B.

Proof. Let p ∈ Pωck1 . We start with α = 1. Let V be a Σ0
1 class and suppose p ?`V. Let

U(V, σ) = {Y : ∃τ ⊆ Y − {0, . . . , |σ|} [σ ∪ τ ] ⊆ V}

The class U(V, σ) ∩ UM0
C0

is a largeness class. As UM0
C0

is M0-cohesive, then 〈UM0
C0
〉 ⊆ U(V, σ).

As X ∈ S ⊆ 〈UM0
C0
〉 ⊆ U(V, σ), there is τ ⊆ X − {0, . . . , |σ|} such that [σ ∪ τ ] ⊆ V. As S

contains only infinite sets, X − {0, . . . , σ ∪ τ} ∈ S. Then (σ ∪ τ,X − {0, . . . , σ ∪ τ}) is a valid
extension of (σ,X) such that (σ ∪ τ,X − {0, . . . , σ ∪ τ}) 
 U .

Suppose now that σ ?0U . The class U(V, σ) ∩ UM0
C0

is not a largeness class. It follows that

there is a k-cover Y0 ∪ · · · ∪ Yk−1 ⊇ ω such that Yi /∈ U(V, σ) ∩ UM0
C0

for each i < k. As S
is partition regular and as X ∈ S we have some i < k such that Yi ∩ X ∈ S ⊆ UM0

C0
. It

follows that Yi ∩ X /∈ U(V, σ). Note that (σ, Yi ∩ X) is a valid extension of (σ,X) for which
(σ, Yi ∩X) 
 2ω − V.

Suppose now B =
⋃
n<ω Bβn be a Σ0

α class for 1 < α < ωck1 . Suppose σ ?`
⋃
n<ω Bβn . Let

U(B, σ) = {Y : ∃τ ⊆ Y − {0, . . . , |σ|} ∃n σ ∪ τ ?0 2ω − Bβn}

If α < ω let β = α − 1, otherwise let β = α. By definition, the class U(B, σ) ∩ UMβ

Cβ
is a

largeness class. As UMβ

Cβ
isMβ-cohesive and as, by Proposition 5.14, U(B, σ) is a Σ0

1(Z) for some

Z ∈ Mβ, then 〈UMβ

Cβ
〉 ⊆ U(B, σ). As X ∈ S ⊆ 〈UMβ

Cβ
〉 ⊆ U(B, σ), there is τ ⊆ X − {0, . . . , |σ|}

such that σ ∪ τ ?0 2ω − Bβn for some n. Note that as S contains only infinite sets we have
X − {0, . . . , |σ ∪ τ |} ∈ S. Also (σ ∪ τ,X − {0, . . . , |σ ∪ τ |}) is a valid extension of (σ,X)
such that (σ ∪ τ,X − {0, . . . , |σ ∪ τ |}) ?0 2ω − Bβn . By induction hypothesis we have some
q ≤ (σ ∪ τ,X − {0, . . . , |σ ∪ τ |}) such that q 
 Bβn . It follows that q 
 B.

Suppose now σ ?0
⋃
n<ω Bβn . It follows that U(B, σ)∩UMβ

Cβ
is not a largeness class. It follows

that there is a k-cover Y0 ∪ · · · ∪ Yk−1 ⊇ ω such that Yi /∈ U(B, σ) ∩ UMβ

Cβ
for each i < k. As S

is partition regular and as X ∈ S, there is some i < k such that Yi ∩X ∈ S ⊆ U
Mβ

Cβ
. It follows

that Yi ∩X /∈ U(B, σ). It means that for every τ ⊆ Yi ∩X and every n ∈ ω, σ ∪ τ ?` 2ω − Bβn .
It follows that (σ, Yi ∩X) 


⋂
n<ω 2ω − Bβn . �

Definition 5.19. Let F ⊆ Pωck1 be a sufficiently generic filter. Then there is a unique set

GF ∈ 2ω such that for every (σ,X) ∈ F we have σ ≺ GF .

Theorem 5.20 Let F ⊆ Pωck1 be a generic enough filter. Let p ∈ F . Let Bα =
⋃
n<ω Bβn be

a Σ0
α class for 0 < α < ωck1 . Suppose p 
 Bα. Then GF ∈ Bα. Suppose p 
 2ω − Bα. Then

GF ∈ 2ω − Bα.

Proof. We show the following by induction on α. Let p ∈ Pωck1 with p = (σ,X). We start with

α = 1. Let U be a Σ0
1 class. Suppose p 
 U , that is [σ] ⊆ U . Then clearly GF ∈ U . Suppose

now p 
 2ω − U , that is, [σ ∪ τ ] * U for all τ ⊆ X. Then also GF ∈ 2ω − U .
Let now B be a Σ0

α class. Suppose p 

⋃
n<ω Bβn . Then there exists n such that p 
 Bβn . By

induction hypothesis we have if F is sufficiently generic, then GF ∈ Bβn ⊆
⋃
n<ω Bβn .

Let now B be a Π0
α class. Suppose p 


⋂
n<ω Bβn . Then by Lemma 5.16 for every n and

every q ≤ p, q ?`Bβn . From Proposition 5.18, for every n ∈ ω and every q ≤ p, there is some
r ≤ q such that r 
 Bβn . It follows that for every n, the set {r : r 
 Bβn} is dense below
p. If F is sufficiently generic, for every n ∈ ω, there is some r ∈ F such that r 
 Bβn . By
induction hypothesis, if F is sufficiently generic, then for every n ∈ ω, GF ∈ Bβn . It follows
that GF ∈

⋂
n<ω Bβn . �
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5.3. Preservation of hyperarithmetic reductions

We now prove that the infinite pigeonhole principle admits strong cone avoidance for hyper-
arithmetic reductions.

Theorem 5.21 Let α ≤ ωck1 be a limit ordinal. Suppose Z is not ∆0
1(∅(β)

) for every β < α.

Let F be a sufficiently generic filter. Then for every β < α, Z is not ∆0
1(G

(β)
F ).

Proof. Let Φ be a functional and β < α. Let Bn = {X : Φ(X(β), n) ↓}. We want to show that

Z 6= {n : G
(β)
F ∈ Bn}. From Proposition 5.2, Bn is a Σ0

β+1 set for each n ∈ ω (Σ0
β if β ≥ ω and

Σ0
β+1 if β < ω).

Let p ∈ Pωck1 be a condition. From Proposition 5.14, the set {n : p ?`Bn} is Π0
1(∅(β+3)

).

As Z is not Π0
1(∅(β+3)

), then there is some n ∈ Z such that p ?0Bn or some n /∈ Z such that
p ?`Bn. In the first case, there is an extension q ≤ p such that q 
 2ω −Bn for some n ∈ Z. In
the second case, there is an extension q ≤ p such that q 
 Bn for some n /∈ Z. By Theorem 5.20,

in the first case Φ(G
(β)
F , n) ↑ holds for some n ∈ Z, and in the second case, Φ(G

(β)
F , n) ↓ holds

for some n /∈ Z.
If F is sufficiently generic, this is true for any β < α and any functional Φ. It follows that

for any ordinal β the set Z is not Σ0
1(G

(β)
F ) and thus not ∆0

1(G
(β)
F ). �

This shows in particular cone avoidance for arithmetic degrees. In order to show cone avoid-
ance for hyperarithmetic degrees, one should additionally argue that if F is sufficiently generic,

then ωGF1 = ωck1 . The remainder of this section is devoted to the proof of this fact.

Definition 5.22. A largeness class A is Γ-minimal, where Γ is a class of complexity, if for every
Γ-open set U we have A ∩ U large implies A ⊆ U .

Proposition 5.23 The class
⋂
α<ωck1

UMα
Cα

is ∆1
1-minimal.

Proof. For every α < ωck1 we have that ∅(α) ∈ Mα and
⋂
α<ωck1

UMα
Cα
⊆ 〈Mα〉 where 〈Mα〉 is

Mα-minimal. As ∅(α) ∈ Mα we also have that 〈Mα〉 is minimal for Σ0
1(∅(α)

) open sets. It

follows that
⋂
α<ωck1

UMα
Cα

is ∆1
1-minimal. �

Proposition 5.24 There is a set C ∈
⋂
α<ωck1

UMα
Cα

such that C is ∆1
1-cohesive and ωC1 = ωck1

Proof. Let us argue that for any upward closed partition regular class
⋂
n<ω Un where each Un

is open, not necessarily effectively of uniformly, there is a ∆1
1-cohesive C in

⋂
n<ω Un. This is

done by Mathias forcing with conditions (σ,X) such that X ∩{0, . . . , |σ|} = ∅ and such that X
is ∆1

1 with X ∈
⋂
n<ω Un. Given a condition (σ,X) and n we can force the generic to be in Un

as follows : As X ∈ Un we must have that σ ∪X ∈ Un because Un is upward closed. Thus there
must be τ ⊆ X ∩ {0, . . . , |σ|} such that [σ ∪ τ ] ⊆ Un. As

⋂
n<ω Un contains only infinite set we

must have X − {0, . . . , σ ∪ τ} ∈
⋂
n<ω Un. Thus (σ ∪ τ,X − {0, . . . , σ ∪ τ}) is a valid extension.

Let now Y be ∆1
1. We can force the generic to be included in Y or ω − Y up to finitely many

elements as follow : We have X ∩ Y ∈
⋂
n<ω Un or X ∩ (ω − Y ) ∈

⋂
n<ω Un. Then (σ,X ∩ Y )

or (σ,X ∩ (ω − Y )) is a valid extension.

We have that the set
⋂
α<ωck1

UMα
Cα

is a Σ1
1 class which is also upward closed and partition

regular. We also have that the class of ∆1
1-cohesive sets is a Σ1

1 class. By the previous argument
their intersection is non-empty. By the Σ1

1-basis theorem it must contains C with ωC1 = ωck1 . �

Lemma 5.25 Suppose C is ∆1
1-cohesive with C ∈

⋂
α<ωck1

UMα
Cα

. Let U be a ∆1
1 open set. If

LC ∩ U is a largeness class, then
⋂
α<ωck1

UMα
Cα
⊆ U
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Proof. Suppose LC ∩ U is a largeness class. Let us show that U ∩
⋂
α<ωck1

UMα
Cα

is a largeness

class. Suppose first for contradiction that it is not. Then there is a ∆1
1 cover Y0∪· · ·∪Yk−1 ⊇ ω

together with a ∆1
1 open largeness class V ⊇

⋂
α<ωck1

UMα
Cα

such that Yi /∈ U ∩V for every i < k.

As each Yi is ∆1
1, there is some i < k such that C ⊆∗ Yi. Note also that since C ∈

⋂
α<ωck1

UMα
Cα

,

then C ∈ L(V) and thus LC ∩V is a largeness class. It follows that Yj ∈ LC ∩V for some j < k.
As j 6= i implies |Yj ∩ C| < ∞, then Yi ∈ LC ∩ V and thus Yi ∈ V. As LC ∩ U is a largeness
class then by a similar argument, Yi ∈ LC ∩ U and thus Yi ∈ U . It follows that Yi ∈ U ∩ V,
contradicting our hypothesis. Thus U ∩

⋂
α<ωck1

UMα
Cα

is a largeness class.

Now from Proposition 5.23 we have that
⋂
α<ωck1

UMα
Cα

is minimal for ∆1
1 open sets, then⋂

α<ωck1
UMα
Cα
⊆ U . �

Definition 5.26. Let B =
⋃
α<ωck1

Bα be a Σ0
ωck1

class. Let p = (σ,X) ∈ Pωck1 . We define p ?`B
if the set

{Y : ∃τ ⊆ Y − {0, . . . , |σ|} ∃α < ωck1 σ ∪ τ ?0 2ω − Bα} ∩ LC
is a largeness class.

Given a Σ0
ωck1

class B =
⋃
α<ωck1

Bα the following set

{Y : ∃τ ⊆ Y − {0, . . . , |σ|} ∃α < ωck1 σ ∪ τ ?0 2ω − Bα}
is a Π1

1 open set, that is an open set
⋃
σ∈B[σ] where B =

⋃
α<ωck1

Bα is a Π1
1 set of strings. We

also suppose that each Bα is ∅(α)
-computable and that {Bα}α<ωck1 is increasing. Given such

sets we write Uα for the ∆1
1 open set

⋃
σ∈Bα [σ].

Proposition 5.27 Let U be an upward-closed Π1
1 open set. The class U ∩ LC is a largeness

class iff there exists some α < ωck1 such that Uα ∩ LC is a largeness class.

Proof. Suppose Uα ∩ LC is a largeness class. Then clearly U ∩ LC is a largeness class. Suppose
now that U ∩ LC is a largeness class. For each n let UCn be the Σ0

1(C) open set such that
LC =

⋂
n UCn . We have

∀n ∀k ∃α ∀Y0 ∪ · · · ∪ Yk−1 ∃i < k ∃σ ⊆ Yi [σ] ⊆ Uα ∩ UCn
Note that given k and α the predicate Pn,kα ≡ ∀Y0∪· · ·∪Yk−1 ∃i < k ∃σ ⊆ Yi [σ] ⊆ Uα∩UCn is

Σ0
1(C⊕∅(α+1)

) uniformly in n, k and α. Thus the function f : ω2 → ωck1 which to n, k associates

the smallest α such that Pn,kα is true is a total Π1
1(C) function. By Σ1

1-boundedness we have
β = supn,k f(n, k) < ωC1 = ωck1 . It follows that

∀n ∀k ∀Y0 ∪ · · · ∪ Yk−1 ∃i < k ∃σ ⊆ Yi [σ] ⊆ Uβ ∩ UCn
Also Uβ ⊆ U is such that Uβ ∩ LC is a largeness class. �

Corollary 5.28 Let B =
⋃
α<ωck1

Bα be a Σ0
ωck1

class. Let (σ,X) ∈ Pωck1 . The relation p ?`B is

Σ0
ωck1

(C)

Proof. The relation p ?`B is equivalent to

∃α < ωck1 {Y : ∃τ ⊆ Y − {0, . . . , |σ|} σ ∪ τ ?0 2ω − Bα} ∩ LC
is a largeness class �

Corollary 5.29 The class
⋂
α<ωck1

UMα
Cα

is minimal for Π1
1 open sets U such that U ∩ LC is a

largeness class.

Proof. Given a Π1
1-open set U such that U ∩LC , there must be α < ωck1 such that Uα ∩LC is a

largeness class. By Lemma 5.25 it must be that
⋂
α<ωck1

UMα
Cα
⊆ Uα. �
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Definition 5.30. Let B =
⋂
α<ωck1

Bα be a Π0
ωck1

class. Let p = (σ,X) ∈ Pωck1 . We define p 
 B
if for every τ ⊆ X − {0, . . . , |σ|} and for every α < ωck1 we have σ ∪ τ ?`Bα

Proposition 5.31 Let B =
⋂
α<ωck1

Bα be a Π0
ωck1

class. Let F be sufficiently generic with

p ∈ F . If p 
 B, then GF ∈ B.

Proof. Using Proposition 5.18, for every α and every q ≤ p, there is some r ≤ q such that
r 
 Bα. Thus for every α the set {r : r 
 Bα} is dense below p. It follows from Theorem 5.20
that if F is sufficiently generic, GF ∈ B. �

Definition 5.32. Let B =
⋃
n∈ω Bn be a Σ0

ωck1 +1
class where each Π0

ωck1
set Bn =

⋂
α<ωck1

Bn,α.

We define p ?`B if the set

{Y : ∃τ ⊆ Y − {0, . . . , |σ|} ∃n σ ∪ τ ?0 2ω − Bn} ∩ LC
is a largeness class.

Given a Σ0
ωck1 +1

class B =
⋃
n∈ω Bn with Bn =

⋂
α<ωck1

Bn,α, the following set

U = {Y : ∃τ ⊆ Y − {0, . . . , |σ|} ∃n σ ∪ τ ?0 2ω − Bn}

is a Σ1
1(C) open set, that is an open set U =

⋃
σ∈B[σ] where B =

⋂
α<ωck1

Bα is a Σ1
1(C) set

of strings. We furthermore assume that {Bα}α<ωck1 is decreasing. We then write Uα for the

∆1
1(C)-open set

⋃
σ∈Bα [σ].

Computability theorists have a strong habits of working with enumerable open sets. With that
respect, Σ1

1-open sets, that is, co-enumerable along the computable ordinals, are strange objects
to consider. Note that given such an open set we have U ⊆

⋂
α<ωck1

Uα, but not necessarily

equality. However the elements X of
⋂
α<ωck1

Uα − U are all such that ωX1 > ωck1 . It is in

particular a meager and nullset.
Let us detail a little bit the set B =

⋂
α<ωck1

Bα that we can consider so that U =
⋃
σ∈B[σ].

To ease the notation we introduce the following definition, in the same spirit as U(B, σ) defined
above:

Definition 5.33. Let B be a Σ0
α class. We define V(B, σ) to be the set

{Y : ∃τ ⊆ Y − {0, . . . , |σ|} σ ∪ τ ?0B}

Given a Σ0
ωck1 +1

class B =
⋃
n∈ω Bn with Bn =

⋂
α<ωck1

Bn,α, given

U = {Y : ∃τ ⊆ Y − {0, . . . , |σ|} ∃n σ ∪ τ ?0 2ω − Bn}

we have by Corollary 5.28 that U equals:

{Y : ∃τ ⊆ Y − {0, . . . , |σ|} ∃n ∀α < ωck1 V(2ω − Bn,α, σ ∪ τ) ∩ LC is not a largeness class}

Let

B = {τ : ∃n ∀α < ωck1 V(2ω − Bn,α, σ ∪ τ) ∩ LC is not a largeness class}
Let

Bα = {τ : ∃n ∀β < α V(2ω − Bn,β, σ ∪ τ) ∩ LC is not a largeness class}
By Σ1

1-boundedness we have that B =
⋂
αBα. We also have U =

⋃
σ∈B[σ].

We now show the core lemma that will be used to show ωGF1 = ωck1 for F a sufficiently generic
filter:

Lemma 5.34 Let B =
⋂
α<ωck1

Bα be a Σ1
1(C) set of strings where each Bα is ∆1

1(C) uniformly in

α and where β < α implies Bα ⊆ Bβ. Let U =
⋃
σ∈B[σ] be a Σ1

1(C) upward closed open set with

Uα =
⋃
σ∈Bα [σ] be a ∆1

1(C) upward closed open set. We have U ⊆
⋂
α<ωck1

Uα. Furthermore,

U ∩ LC is a largeness class iff for every α < ωck1 , Uα ∩ LC is a largeness class.
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Proof. It is clear that U ⊆
⋂
α<ωck1

Uα. Also it is clear that if U ∩ LC is a largeness class, then

also
⋂
α<ωck1

Uα ∩ LC is a largeness class.

Suppose U ∩ LC is not a largeness class. Then there is a cover Y0 ∪ · · · ∪ Yk−1 ⊇ ω with
Yi /∈ U ∩LC for every i < k. There must be a Σ0

1(C) open set V such that Yi /∈ U ∩ V for every
i ≤ k.

Let f : ω → ωck1 be the function which on n finds a cover σ0 ∪ · · · ∪ σk ⊇ {0, . . . , n} and
α such that for i < k and every τ � σi we have [τ ] ⊆ V implies τ /∈ Bα. As U ∩ V is not a
largeness class, f is a total Π1

1(C) function. By Σ1
1-boundedness, β = supn f(n) < ωC1 = ωck1 .

By compactness, there is a cover Y0 ∪ · · · ∪ Yk−1 such that for every i < k if Yi ∈ V then for
every τ ≺ Yi, τ /∈ Bβ and thus Yi /∈ Uβ.

It follows that Uβ ∩ LC is not a largeness class. �

Corollary 5.35 LC contains a unique largeness subclass, which is minimal for both Π1
1 and

Σ1
1(C)-open sets U .

Proof. Suppose U0,U1 are two Σ1
1(C) open sets with Ui =

⋃
σ∈Bi [σ] and Ui,α =

⋃
σ∈Bi,α [σ]. for

i < 2. Suppose also U0 ∩ LC and U1 ∩ LC are largeness classes. By Lemma 5.34 it follows that⋂
α<ωck1

U0,α ∩ LC and
⋂
α<ωck1

U1,α ∩ LC are largeness classes. By Lemma 5.25 it follows that⋂
α<ωck1

UMα
Cα
⊆

⋂
α<ωck1

U0,α and
⋂
α<ωck1

UMα
Cα
⊆

⋂
α<ωck1

U1,α.

Thus
⋂
α<ωck1

U0,α ∩
⋂
α<ωck1

U1,α =
⋂
α<ωck1

(U0,α ∩ U1,α) is a largeness class and thus by

Lemma 5.34 we have that U0 ∩ U1 is a largeness class.
It follow that the intersection I of every Σ1

1(C) open set U such that U ∩ LC is a largeness

class, is a largeness class. Furthermore as UMα
Cα
∩LC is a largeness class for every α, the class I

must be included in
⋂
α<ωck1

UMα
Cα

. Also from Corollary 5.29 the class
⋂
α<ωck1

UMα
Cα

is minimal

for Π1
1-open sets U such that U ∩ LC is a largeness class. It follows that the class I ∩ LC is

minimal for Σ1
1(C) and Π1

1 open sets. �

We can now detail the class S involved in the definition of Pωck1 : Let S be the unique

largeness class included in LC which is minimal for Σ1
1(C) and Π1

1 open sets. Note that S must
be partition regular.

Lemma 5.36 Consider a Σ0
ωck1 +1

class B =
⋃
n∈ω Bn with Π0

ωck1
set Bn =

⋂
α∈ωck1

Bn,α. Let

p = (σ,X) ∈ Pωck1 . Suppose σ ?`B. Then there is a condition q ≤ p together with some n such

that q 

⋂
α<ωck1

Bn,α

Proof. Let

U = {Y : ∃τ ⊆ Y − {0, . . . , |σ|} ∃n σ ∪ τ ?0 2ω − Bn}
The class U is a Σ1

1(C)-open set and U ∩LC is a largeness class. As S is minimal for Σ1
1(C)-open

sets, S ⊆ U . As X ∈ S ⊆ U . Then there is some τ ⊆ X − {0, . . . , |σ|} and some n such that
σ ∪ τ ?0 2ω − Bn. Let now

V = {Y : ∃ρ ⊆ Y − {0, . . . , |σ ∪ τ |} ∃α σ ∪ τ ∪ ρ ?0Bn,α}
As σ ∪ τ ?0

⋃
α∈ωck1

2ω − Bn,α then V ∩ LC is not a largeness class. Thus there is a cover

Y0 ∪ · · · ∪ Yk−1 = ω such that Yi /∈ V ∩ LC for every i < k. As V ∩ LC is upward-closed,
X ∩ Yi /∈ V ∩ LC for every i < k. As S ⊆ LC is partition regular, there is some i < k such that
X ∩ Yi ∈ S ⊆ LC . Therefore we must have X ∩ Yi /∈ V and thus

∀ρ ⊆ X ∩ Yi − {0, . . . , |σ ∪ τ |} ∀α σ ∪ τ ∪ ρ ?`Bn,α
Thus (σ ∪ τ,X ∩ Yi) is an extension of (σ,X) such that:

(σ ∪ τ,X ∩ Yi) 

⋂

α<ωck1

Bn,α

�
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Lemma 5.37 Consider a Σ0
ωck1 +1

class B =
⋃
n∈ω Bn with Π0

ωck1
set Bn =

⋂
α<ωck1

Bn,α. Let

p = (σ,X) ∈ Pωck1 . Suppose σ ?0B. Then there is a condition q ≤ p together with some β < ωck1
such that q 


⋂
n∈ω

⋃
α<β 2ω − Bn,α

Proof. Let

U = {Y : ∃τ ⊆ Y − {0, . . . , |σ|} ∃n σ ∪ τ ?0 2ω − Bn}
The class U is a Σ1

1(C)-open set and U ∩LC is not a largeness class. Let us recall Definition 5.33
together with the notation coming after it: V(B, σ) is the set

{Y : ∃τ ⊆ Y − {0, . . . , |σ|} σ ∪ τ ?0B}

Together with

B = {τ : ∃n ∀α < ωck1 V(Bn,α, σ ∪ τ) ∩ LC is not a largeness class}

with B =
⋂
α<ωck1

Bα such that

Bα = {τ : ∃n ∀β < α V(Bn,β, σ ∪ τ) ∩ LC is not a largeness class}

and with U =
⋃
σ∈B[σ].

Using Lemma 5.34, there is some α < ωck1 such that the set

Uα = {Y : ∃τ ⊆ Y − {0, . . . , |σ|} ∃n ∀β < α V(Bn,β, σ ∪ τ) ∩ LC is not a largeness class}

is such that Uα ∩ LC is not a largeness class. Thus there is a cover Y0 ∪ · · · ∪ Yk−1 ⊇ ω such
that Yi /∈ Uα ∩ LC for every i < k. As Uα ∩ LC is upward-closed, then also X ∩ Yi /∈ Uα ∩ LC
for every i < k. As X ∈ S ⊆ LC and as S is partition regular, there is some i < k such that
X ∩ Yi ∈ S ⊆ LC . It follows that X ∩ Yi /∈ Uα and thus that:

∀τ ⊆ X ∩ Yi − {0, . . . , |σ|} ∀n ∃β < α V(Bn,β, σ ∪ τ) ∩ LC is a largeness class

Let {βm}m∈ω be such that supm βm = α. Let τ ⊆ Y − {0, . . . , |σ|} and n ∈ ω. We have for
some m that V(Bn,βm , σ ∪ τ) ∩ LC is a largeness class. Then the set

{Y : ∃ρ ⊆ Y − {0, . . . , |σ|} ∃m σ ∪ τ ∪ ρ ?0Bn,βm} ∩ LC

is a largeness class and then

{Y : ∃ρ ⊆ Y − {0, . . . , |σ|} ∃m σ ∪ τ ∪ ρ ?0Bn,βm} ∩ U
Mα
Cα

is a largeness class and thus that σ ∪ τ ?`
⋃
m 2ω −Bn,βm . As this is true for every n and every

τ ⊆ Y − {0, . . . , |σ|} it follows that (σ,X ∩ Yi) is an extension of (σ,X) such that

(σ,X ∩ Yi) 

⋂
n∈ω

⋃
β<α

2ω − Bn,β

�

We now show that if F ⊆ Pωck1 is sufficiently generic, then ωGF1 = ωck1 . We use the following

fact : If ωG1 > ωck1 , then in particular some G-computable ordinal must code for ωck1 , that is,
there must be a G-computable function Φ such that for every n, Φ(G,n) codes, relative to G,
for an ordinal smaller than ωck1 and with supn |Φ(G,n)| = ωck1 . We show that this never happens
by forcing that for every functional Φ either for some n, Φ(G,n) does not code for an ordinal
smaller than ωck1 , or there is an ordinal α < ωck1 such that Φ(G,n) always codes for some ordinal
smaller than α.

Given G and α let OGα be the set of G-codes for ordinals smaller than α. For α < ωck1 , the
class {G : n ∈ OGα } is ∆1

1 uniformly in α and n.

Theorem 5.38 Suppose F ⊆ Pωck1 is sufficiently generic. Then ωGF1 = ωck1
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Proof. Let p ∈ Pωck1 be a condition. Given a functional Φ : 2ω × ω → ω, let

B = {X : ∃n ∀α < ωck1 Φ(X,n) /∈ OXα }

Suppose p ?`B. Then from Lemma 5.36, there is an extension q ≤ p and some n such that

q 
 {X : ∀α < ωck1 Φ(X,n) /∈ OXα }

It follows from Proposition 5.31 that if F is sufficiently generic for every α < ωck1 , Φ(GF , n) /∈
OGFα . Suppose now p ?0B. Then from Lemma 5.37, there is an extension q ≤ p and some
α < ωck1 such that

q 
 {X : ∀n Φ(X,n) ∈ OXα }
It follows from Theorem 5.20 that if F is sufficiently generic, supn Φ(GF , n) ≤ α. �

5.4. Tight α-jump cone avoidance

In this section, we use a restriction of the forcing Pωck1 to give another proof of Turing cone

avoidance. For a ∅(α)
-computable set B, we will find a generic G ∈ [A]ω such that B is not G(α)-

computable. The difficulty is that the forcing question for Pωck1 (Definition 5.12) is more complex

than the one of Definition 3.7. The proof of cone avoidance will then be more complicated. The
advantage is that we do not need disjunctive requirements and we have a sufficient condition on
any set A so that B is not G(α)-computable for some G ∈ [A]ω : we simply need A ∈ 〈UMα

Cα
〉,

which we know happens for at least A or A.
Let us first slightly modify the sets {Mγ}γ≤α of our forcing conditions : In addition to the

requirements of Proposition 5.7 we also make sure using the relative cone avoidance theorem
for Π0

1 classes that for any γ ≤ α, the set Mγ does not compute B. Let Pα be the same forcing

as Pωck1 , except that for (σ,X) ∈ Pα we only require X ∈ 〈UMα
Cα
〉 instead of X ∈ S.

Theorem 5.39 Suppose that B is not ∆0
1(∅(α)

) for 1 ≤ α < ωck1 . Let F ⊆ Pα be a sufficiently

generic filter. Then B is not ∆0
1(G

(α)
F ).

Proof. Let Φ be a functional. Let B0,n = {X : Φ(X(α), n) ↓= 0} and let B1,n = {X :

Φ(X(α), n) ↓= 1}. We want to show that B 6= {n : G
(α)
F ∈ B0,n} or ω−B 6= {n : G

(α)
F ∈ B1,n}.

From Proposition 5.2, for each n, B0,n and B1,n are Σ0
α classes whenever α ≥ ω and Σ0

m+1

classes whenever α = m < ω.
Let p = (σ,X) be a forcing condition. For each n ∈ ω, let B0,n =

⋃
a∈ω B

0,n
βa

and B1,n =⋃
b∈ω B

1,n
βb

. Suppose first that A ∩ UMα
Cα

is a largeness class, where

A = {Y : ∃τ0, τ1 ⊆ Y − {0, . . . , |σ|} ∃〈n, a, b〉 σ ∪ τ0 ?0 2ω − B0,n
βa
∧ σ ∪ τ1 ?0 2ω − B1,n

βa
}

As UMα
Cα

is Mα-cohesive we must have A ⊆ 〈UMα
Cα
〉 and thus X ∈ A ⊆ 〈UMα

Cα
〉. Then there is

τ0, τ1 ⊆ X and n, a, b such that σ ∪ τ0 ?0 2ω − B0,n
βa

and σ ∪ τ1 ?0 2ω − B1,n
βb

. If n ∈ B we let

q = (σ ∪ τ1, X − {0, . . . , |σ ∪ τ1|}) and if n /∈ B we let q = (σ ∪ τ0, X − {0, . . . , |σ ∪ τ0|}). We
have q ≤ p. In the first case we have q 
 B1,n and in the second case we have q 
 B0,n. In the
first case we have GF ∈ B1,n and then GF /∈ B0,n for n ∈ B. Then B 6= {n : GF ∈ B0,n}.
Symmetrically in the second case we have ω −B 6= {n : GF ∈ B1,n}.

Suppose now that A ∩ UMα
Cα

is not a largeness class. For any q ≤ p let

Bq
0 = {n : ∃r ≤ q r 
 B0,n} and Bq

1 = {n : ∃r ≤ q r 
 B1,n}

Suppose first that for some q ≤ p we have Bq
0 6= B or Bq

1 6= ω − B. Suppose first Bq
0 6= B.

If there is n such that n /∈ B and n ∈ Bq
0, then r 
 B0,n for some r ≤ q and we have

B 6= {n : GF ∈ B0,n}. If there is n such that n ∈ B and n /∈ Bq
0, then for all r ≤ q

we have r 1 B0,n. Thus there must be r ≤ q such that r 
 2ω − B0,n. It follows that
B 6= {n : GF ∈ B0,n}.
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Suppose now Bq
1 6= ω−B. Symmetrically if there is n such that n /∈ ω−B and n ∈ Bq

1, then
ω − B 6= {n : GF ∈ B1,n}. Still symmetrically if there is n such that n ∈ ω − B and n /∈ Bq

1,
we have ω −B 6= {n : GF ∈ B1,n}. Suppose now for contradiction that:

(1) For all q ≤ p we have Bq
0 = B and Bq

1 = ω −B
As A ∩ UMα

Cα
is not a largeness class, there must be a cover Y0 ∪ · · · ∪ Yk−1 ∈ Mα such that

Yi /∈ A∩UMα
Cα

for every i < k. Note that either α = m in which case B0,n is a Σ0
m+1 class which

implies that Y ∈ Mm = Mα, or α ≥ ω in which case B0,n is a Σ0
α class which implies that

Y ∈Mα.
As 〈UMα

Cα
〉 is partition regular there must be i < k such that X ∩ Yi ∈ 〈UMα

Cα
〉. We also have

Yi ∈ 〈UMα
Cα
〉 ⊆ UMα

Cα
and then Yi /∈ A. Thus

(2) for all n, a, b, for all τ0, τ1 ⊆ Y − {0, |σ|} the following holds:

σ ∪ τ0 ?` 2ω − B0,n
βa

or σ ∪ τ1 ?` 2ω − B1,n
βb

We shall now argue that for all n ∈ B there exists τ ⊆ Y − {0, . . . , |σ|} together with a such

that σ ∪ τ ?0 2ω − B0,n
βa

. Let n ∈ B. Suppose for contradiction that σ ?0
⋃
a∈ω B

0,n
βa

. Then there

is some q ≤ p such that q 
 2ω − B0,n which contradicts (1). Thus σ ?`
⋃
a∈ω B

0,n
βa

. It follows

that there exists τ ⊆ Y − {0, . . . , |σ|} together with a such that σ ∪ τ ?0 2ω − B0,n
βa

.

Symmetrically, we show that for all n ∈ ω−B there exists τ ⊆ Y −{0, . . . , |σ|} together with

b such that σ ∪ τ ?0 2ω − B1,n
βb

. Therefore, for every n ∈ B we have using (2) that:

(1) There exists some τ ⊆ Y − {0, . . . , |σ|} and a ∈ ω such that σ ∪ τ ?0 2ω − B0,n
βa

(2) For all τ ⊆ Y − {0, . . . , |σ|} and for all b ∈ ω, σ ∪ τ ?` 2ω − B1,n
βb

Symmetrically, for every n /∈ B we prove, using (2), that:

(1) There exists some τ ⊆ Y − {0, . . . , |σ|} and b ∈ ω such that σ ∪ τ ?0 2ω − B1,n
βb

(2) For all τ ⊆ Y − {0, . . . , |σ|} and for all a ∈ ω, σ ∪ τ ?` 2ω − B0,n
βa

We can now compute B as follows : For each n ∈ ω, look for some τ ⊆ Y −{0, |σ|} and some

c ∈ ω such that either σ ∪ τ ?0 2ω − B1,n
βc

or σ ∪ τ ?0 2ω − B0,n
βc

. This is a Σ0
1(Mα) event. Thus

B is ∆0
1(Mα), which is a contradiction.

�
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