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Abstract. We study genericity and randomness with respect to ITTMs, continuing

the work initiated by Carl and Schlicht. To do so, we develop a framework to study

randomness in the constructible hierarchy. We then answer several of Carl and Schlicht’s

question. We also ask a new question one the equality of two classes of randoms. Although

the natural intuition would dictate that the two classes are distinct, we show that things

are not as simple as they seem. In particular we show that the categorical analogues of

these two classes coincide, in contradiction with the natural intuition. Even though we are

not able to answer the question for randomness in this paper, we delineate and sharpen

its contour and outline.

§1. Introduction.

1.1. Background. The study of Infinite-Time Turing machines, ITTMs for
short, goes back to a paper by Hamkins and Lewis [14]. Informally these ma-
chines work like regular Turing machines, with the addition that the time of
computation can be any ordinal. Special rules are then defined to specify what
happens at a limit step of computation.

This simple computational model yields several new non-trivial classes of ob-
jects, the first one being the class of objects which are computable using some
ITTM. These classes have been later well understood and characterized by Welch
[24]. ITTMs are not the first attempt of extending computability notions. This
was done previously for instance with α-recursion theory, an extension of recur-
sion theory to Σ1-definability of subsets of ordinals, within initial segments of
the Gödel constructible hierarchy. Even though α-recursion theory is defined in
a rather abstract way, the specialists have a good intuition of what “compute”
means in this setting, and this intuition relies on the rough idea of “some” infor-
mal machine carrying computation times through the ordinal. ITTMs appeared
all the more interesting, as they consist of a precise machine model that cor-
responds to part of α-recursion theory. It is worthy to note that there is now
an exact characterization of α-recursion via machine models due to Koepke and
Seyfferth, using variants of ITTMs with an ordinal tape, in [17].

Recently Carl and Schlicht used the ITTM model to extend algorithmic ran-
domness [6] and effective genericity notions [5] in this setting. Genericity and
randomness are two different approaches to study typical objects, that is, objects
having “all the typical properties” for some notion of typicality. For randomness,
a property is typical if the class of reals sharing it is of measure 1, whereas for
genericity, a property is typical if the class of reals sharing it is co-meager. In
both cases, for any countable collection of typical properties, it is still a typical
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property to share all of them: the intersection of countably many measure-one
sets is still a measure-one set, and the intersection of countably many co-meager
sets is still a co-meager set. Depending on the countably many properties we
consider, the reals that share all of them may be of great interest, in forcing
constructions or to study various notions of degrees, from Turing to α-degrees.

Algorithmic randomness has known an impressive development during the past
twenty years. A very rich theory emerged, as a complex and beautiful answer
to the original philosophical question of what are random objects. Just like
recursion theory had been extended to higher recursion theory, to α-recursion
theory and to the theory of ITTMs, algorithmic randomness is meant to know a
similar development. This has been started with Higher randomness by Hjorth
and Nies [16], Chong and Yu [7] [8] and Bienvenu, Greenberg and Monin [13] [3]
[21]. Recently this was extended to ITTMs by Carl and Schlicht [6]. The goal
of this paper is first to pursue their work.

1.2. About this paper. We answer in this paper several open questions of
Carl and Schlicht, and we ask new ones. This paper also aims at developing
a framework that can be used in general to study randomness and genericity
within Gödel’s constructible hierarchy. For this reason, the first half of the
paper focuses on recalling the main results (in Section 2) and on developing this
framework (in Section 3). We include these rather long sections to the paper,
in order to make it as self-contained as possible: it is meant to be readable
by the trained logician, not necessarily familiar with ITTMs or constructibility.
However some formal details of Section 2 and Section 3 may be a bit tedious
to read, and there is no way around that. Any recursion theorist may have
struggled in its early days to read all the technical details on the equivalence
between various models of computations, and developed after that a very solid
intuition of what is computable, without the necessity of coming back every time
to the formal definitions. Also the reader who is not familiar with constructibility
will certainly need to furnish a similar effort with some proof of Section 3 and
maybe also Section 2, whereas the reader who is used to it will certainly have
no problem admitting these theorems without reading the proofs. Despite the
difficulties inherent to the material presented here, we tried as much as possible
never to confuse rigor and formalism, by ensuring the former without getting
trapped in the latter.

In Section 4, even though we answer several questions of [6], we feel that
this section’s main achievement is not there, but more in a new question (Ques-
tion 4.9) that we ask on the separation of two randomness notions defined by
Carl and Schlicht. It seems so clear at first that the two notions should be dif-
ferent, that the question was not asked so far. The reason is certainly that the
analogues of this two notions in Higher randomness actually differ for simple rea-
sons. We emphasize here that things are not so simple in the settings of ITTMs,
and we show that the two notions are much closer than we think, even though
we are not able to settle the question.

This question was the original motivation for Section 5: In order to argue
that it is not absurd to think that these two randomness notions may actually
coincide, we show that it is the case for their categorical analogues. Note that
the versions of these analogues with Higher genericity are also known to differ for
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simple reasons, like it is the case with randomness. In some sense, Theorem 5.13
that shows equality of these notions, may actually be the most important of
this paper: it uses the new phenomenons that occur within some levels of the
constructible hierarchy to show that two classes collapse in a very unexpected
way. Despite that, we decided to leave this section at the end, so that the paper
follows the logic exposed so far, that we now sum up:

In Section 2 we expose the background (with a few original results such as
Theorem 2.29 to Theorem 2.31), in Section 3 we develop a general framework to
study randomness in any limit level of the constructible hierarchy, in Section 4 we
study randomness notions with respect to ITTMs, focusing first on the question
we mentioned above and proving several results meant to delineate and sharpen
the contour and outline of this question. In this same section we then answer
several questions of [6], the most interesting theorem about that being maybe
Theorem 4.22. In Section 5 we then define and study, in the setting of ITTMs,
the categorical analogues of the studied randomness notions. The section focuses
on answering for categoricity the question that is still too hard in the randomness
case.

§2. Background. Ordinals will be denoted by letters α, β, γ, δ. Ordinals
will sometimes be seen as computation times, in which case they might also
be denoted by letters r, s, t. Reals will be denoted by letters x, y, z, which will
also denotes sometimes constructible sets. Integers will be denoted by letters
n,m, k, i, j, e.

2.1. Infinite-Time Turing machines. We first briefly recall the three-
tapes ITTM model as it was introduced in [14]. We then argue that this model
is essentially equivalent, to a one-tape machine model that is the one we are
going to use in this paper.

2.1.1. The three-tape machine model. In the three-tapes ITTM model, ma-
chines have an input tape, a working tape and an output tape. The input tape
is meant to contain an oracle the machine can use during its computation, the
working tape is where the machine is meant to perform its computation, and the
output tape is where the machine is meant to write the result of its computation.
Each tape is a sequence of cells indexed by ω.

The head of the machine reads simultaneously the n-th value of the three tapes
altogether. At a successor step of computation, the behavior is as the one of a
standard Turing machine: Given the current state of the machine and given the
values read by the head, it may write something where it is, then goes left or
right, and the machine may change state, all according to a finite set of transition
rules fixed in advance and which determines the machine.

At a limit step of computation, the machine enters a special “limit” state,
the head goes back to the first cell, and the value of each cell is the lim inf
of its previous values: if the value of a cell converges, it is set to its value of
convergence, otherwise it is set to 0. Every machine also has a halting state.
Whenever a machine enters this state, it stops.

2.1.2. The one-tape machine model. It will be convenient here to consider
a one tape infinite-time Turing machine instead of a three-tapes infinite-time
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Turing machine: it is not very hard to see that any three-tape ITTM M can
be simulated by a one-tape ITTM N , where the n-th cell of M ’s input tape
corresponds to 3n-th cell of N , the n-th cell of M ’s working tape corresponds to
the (3n + 1)-th cell of N , and the n-th cell of M ’s output tape corresponds to
(3n+ 2)-th cell of N .

This is done formally in [15, Lemma 1.1]. Note that if one starts with the tape
fully filled with the oracle, instead of filled only the part corresponding to the
input tape of the three-tapes model, the equivalence between the one-tape model
and the three-tapes model breaks. This is studied in [15]. Here this is not the
case, and we work with the one-tape machine model as if it was the three-tape
one, but with all the tapes condensed in one.

2.1.3. Notations. Given an ITTM M , we write M(x) ↓ [α] if the machine M
starts with the real x on its input tape, and if M enters its halting state at stage
α + 1. Furthermore if at stage α the real y is written on the output tape, we
write M(x) ↓ [α] = y. We also write M(x)[α] = y if at stage α the real y is
written on M ’s output tape (and the machine does not necessarily halt). If the
machine M starts with its input tape empty, we simply write M ↓ [α] = y and
M [α] = y.

Given an ITTM M , we denote by CM (n)[α] the value (0 or 1) of the cell
number n of M at stage α (when M starts with the empty set on its input tape).
We denote by CM [α] the sequence of values of all the cells at stage α. The value
CM [α], together with the state of the machine and the position of its head, at
stage α, is called the configuration of the ITTM at stage α. Note that at a limit
stage α, the configuration of an ITTM depends only of CM [α] (the head always
being at the first cell and the state always being the limit state).

Finally it is straightforward, though tedious, to show that there is a universal
ITTM, that simulates in parallel all the ITTMs (see [14] or [24]). This universal
ITTM will be denoted by U .

2.1.4. Main theorems.

Definition 2.1 (Hamkins, Lewis [14]). Let y ∈ 2ω.

• The real y is writable if there is an ITTM M such that M ↓ [α] = y.
• The real y is eventually writable if there is an ITTM M and an ordinal α

such that ∀β ≥ α we have M [β] = y.
• The real y is accidentally writable if there is an ITTM M and a stage α

such that M [α] = y.

For x ∈ 2ω we define the notions of x-writable, x-eventually writable and x-
accidentally writable similarly, but with the ITTMs starting with x on their
input tape.

Hamkins and Lewis introduced the three previous analogues of being com-
putable by an ITTM. They used these notions to study the ordinals that are
computable by an ITTM, with respect to these definitions. In what follows, we
use the following coding system of countable ordinals by reals: x ∈ 2ω codes for
α if the order type of <x is the order-type of α, where n <x m iff 〈n,m〉 ∈ x,
where 〈, 〉 : ω2 → ω is fixed a computable bijection. We say that such a real x is
a code for α.
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Definition 2.2 (Hamkins, Lewis [14]). An ordinal α is writable, resp. even-
tually writable, resp. accidentally writable, if it has a writable code, resp. an even-
tually writable code, resp. an accidentally writable code. For x ∈ 2ω we define
analogously the notion of x-writable, x-eventually writable and x-accidentally
writable.

It is clear that the writable, eventually writable, and accidentally writable
ordinals, are all initial segments of the ordinals. Hamkins and Lewis showed
that the supremum of the writable ordinals was eventually writable and that the
supremum of the eventually writable ordinals was accidentally writable.

Definition 2.3 (Hamkins, Lewis [14]). We define the following ordinals:

• λ is the supremum of the writable ordinals.
• ζ is the supremum of the eventually writable ordinals.
• Σ is the supremum of the accidentally writable ordinals.

λx, ζx, Σx are defined the same way but relative to x.

Hamkins and Lewis also defined the clockable ordinals: an ordinal α is clock-
able if it is the halting time of some ITTM M , that is, M ↓ [α]. It is clear that
the supremum of the clockable ordinals is at least λ: if an ordinal α is writable,
one can design the machine that writes α and then “counts down α” in at least α
steps 1. The question of equality between λ and the supremum of the clockable
ordinals was one of the main question in Hamkins and Lewis [14]. It was later
solved by Welch:

Theorem 2.4 (Welch [24]). Let M be an ITTM.

1. If {CM (n)[α]}α<λ converges to i ∈ {0, 1}, then CM (n)[α] = i for every
α ≥ λ.

2. If {CM (n)[α]}α<ζ converges to i ∈ {0, 1}, then CM (n)[α] = i for every
α ≥ ζ.

3. If {CM (n)[α]}α<ζ diverges iff {CM (n)[α]}α<Σ diverges.

We have in particular CM [ζ] = CM [Σ]. Also ζ,Σ is the lexicographically smallest
pair of ordinals such that CU [ζ] = CU [Σ] for the universal machine U .

Note that, while it is standard to state the theorem in this way, we could also
have said that each entry is minimal:

Corollary 2.5 (Welch [24]). The ordinal λ is also the supremum of ITTMs’
halting time.

Proof. By Theorem 2.4, we have that if an ITTM M has not halted before
stage Σ, then it will never halt, because the configuration of an ITTM at stage Σ
is the same as the configuration of an ITTM at stage ζ, and every 1 in the tape
at stage ζ will stay a 1 at every stage between ζ and Σ. Thus the computation
will loop forever, and if an ITTM halts it must halt before stage Σ. We can
then run an ITTM which looks for all the accidentally writable ordinals α (using
some universal ITTM) and for each of them, which runs M for α steps. When

1For instance one can search for the smallest element of the order written on the tape,
remove it and repeat that until the order is empty, then halts. This takes at least α steps of

computation.
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the machine finds an accidentally writable ordinal α such that M [α] ↓, then it
writes α and halts. By hypothesis on M our ITTM will write α and halt at some
point. Thus α is a writable ordinal, which implies that M halts at a writable
step. a

Welch’s theorem and proof provided a clear understanding of ITTMs allowing
us, as we will see it soon, to cut ourselves off the machine model, and to reason
within the constructible hierarchy.

2.2. The constructibles.

2.2.1. Notations. We denote by tc(x) the transitive closure of x. We recall
that a formula of set theory is said to be ∆0 if it has only bounded quantifiers,
that is, of the form ∃x ∈ y or ∀x ∈ y. The Σn and Πn formulas are then built like
their analogue in the language of arithmetic, but with the quantification done
over all the sets of the model we consider.

Definition 2.6. Let M be an L-structure for some language L, and p ∈ M .
We say that P ⊆Mk is ΣMn definable (or Σn definable in M) with parameter p
if there is a Σn formula Φ such that M |= Φ(x1, . . . , xk, p) iff (x1, . . . , xk) ∈ P .
The ΠM

n definable subsets of M are defined similarly, but with Πn formulas.
We say that P ⊆Mk is ∆M

n definable (or ∆n definable in M) with parameter
p if it is both ΣMn and ΠM

n definable with parameter p.
We sometimes write ΣMn (p) (resp. ΠM

n (p)) to mean ΣMn -definable with param-
eter p (resp. ΠM

n -definable with parameter p).

2.2.2. The constructible universe. The study of ITTM is closely related to
the study of α-recursion theory, restricted to the three special ordinals λ, ζ and
Σ. One difference is that whereas in α-recursion theory, we study subsets of or-
dinals, with ITTMs, we study subsets of integers. It involves a manipulation of
initial segments of the constructible universe. We recall here the main definitions
and theorems that will be used in the paper. This section is mainly for the com-
putability theorist not yet comfortable with extending notions of computations
to Σ1-definability within initial segments of the constructible hierarchy. We will
also focus on Σ1-definability inside Lα even when α is not admissible (we will
see that we need to do so because the smallest non-accidentally writable ordinal,
Σ, is not admissible).

The constructible universe is usually defined starting with L∅ = ∅. When
using some oracle x ∈ 2ω, it starts with L∅(x) = tc(x) (which equals {x} ∪ ω
when x is infinite). In order to keep some consistency between the constructible
universe defined with and without oracle, we start with L∅ = ω.

Definition 2.7. The constructible universe is defined by induction over the
ordinals as follow:

• L∅ = ω
• Lα+1 = {X ⊆ Lα : X is first order definable in Lα with parameters in Lα}
• Lα =

⋃
γ<α Lγ when α is limit.

Let x ∈ 2ω. The constructible universe starting with x as an oracle is defined by
induction over the ordinals as follow:

• L∅(x) = {x} ∪ ω
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• Lα+1(x) = {X ⊆ Lα(x) : X is first order definable in Lα(x) with parame-
ters in Lα(x)}

• Lα(x) =
⋃
γ<α Lγ(x) when α is limit.

For a ∈ L, the rank (or L-rank when confusion is possible) of a, denoted by
rk(a), is the smallest α such that a ∈ Lα+1.

2.2.3. Admissibility and definition by induction. In order to safely conduct Σ1

inductions, we normally need to be in a model of KP: a weakening of set theory
in which we have extensionality, pairing, union, Cartesian product, induction
over the ∈ relation (suppose for all a we have [∀b ∈ a Φ(b)]→ Φ(a), then for all
a we have Φ(a)), ∆0-comprehension and Σ1-collection.

For any α limit, we have that Lα is a model of all these axioms, except Σ1-
collection.

Definition 2.8. Let A = (A, ε) be an L-structure for the language of set
theory. We say that A is a Σn-admissible structure if A is a model of ex-
tensionality, pairing, union, Cartesian product, induction over the ∈ relation,
∆n-comprehension and Σn-collection.

Definition 2.9. We say that α is admissible if Lα is a model of KP, that is,
if α is limit and Lα is a model of Σ1-collection and ∆1-comprehension.

More generally we say that α is Σn-admissible if Lα is a Σn admissible struc-
ture.

Dealing with ITTMs, we will have to work with ordinals which are not neces-
sarily admissible. We will see for instance that Σ, the smallest non-accidentally
writable ordinal, is not admissible.

Fortunately, we can already define a lot of things in models Lα for α simply
limit (and not necessarily admissible). Working with the constructibles involves
constantly working with Σ1-inductive definitions. Whereas these are perfectly
safe in Lα for α admissible, some additional care needs to be taken when α is
not admissible. Let us determine what we need:

Let E ∈ Lα and < ∈ Lα be a well-founded order on elements of E. We
define by induction the <-rank of elements a ∈ E, denoted by rk<(a), to be the
smallest ordinal β such that for every b < a, b has <-rank less than β. Let Eβ be
the elements of E of <-rank strictly smaller than or equal to β, let E<β be the
elements of E of <-rank smaller than β and E=β the elements of E of <-rank
exactly β. Let γ be the supremum of the <-rank of elements of E and suppose
γ ≤ α.

Suppose we have a ∆0 formula F (a, f, r) such that for any a ∈ E, with
rk<(a) = β whenever f ∈ Lα is defined on E<β , then there is a unique r ∈ Lα
such that Lα |= F (a, f, r). The classical theorem of set theory, that justifies
definition by induction, says that we then have a unique function f defined on
E and such that the ∆1 formula Φ(γ, f) is true, where:

Φ(γ, f) ≡ For every β < γ, for every a ∈ E=β , we have F (a, f �E<β , f(a))

Indeed the function f , if it exists, must be unique and ∆1-recognizable by the
formula Φ(γ, f) (using parameter γ). Also by induction one show that whenever
f �E<β exists, then f �E<β+1

must exists as it is ∆1-definable by F with f �E<β as
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a parameter (see Proposition 2.10 below). This uses the axiom of Σ1 collection:
if for all a ∈ E=β there exists a unique r ∈ Lα such that F (a, f �E<β , r), then
the corresponding function f ′ defined on E=β must exists. However if the ranks
of the r’s are unbounded in Lα, the function f ′ will not exist in Lα. Fortunately
most of the time, for simple tasks, the rank will be bounded in Lα by something
independent of a ∈ E=β , but dependent only on β.

The axiom of Σ1-collection also needs to be used at a limit step: If for any γ <
β, there exists a unique function fγ defined on Eγ and such that Φ(γ, fγ), then
by Σ1-collection there exists a unique function fβ such that Φ(β, fβ) (and the
function fβ is simply the union of the functions fγ). Here again, this argument
works within Lα as long as the rank of each function fγ is bounded in Lα. We
sum up in the following proposition conditions in which definitions by induction
can be conducted in Lα for α limit:

Proposition 2.10 (∆0 Induction with bounded rank replacement). Let E be
a class well-ordered by <. Let f : E 7→ L be ∆0-definable by induction on <,
such that for any β there exists k < ω for which:

1. Eβ is ∆
Lβ+k

1 -definable uniformly in β, in particular E<α ⊆ Lα for α limit.

2. For any a ∈ Eβ, rk<(a) is ∆
Lβ+k

1 -definable uniformly in β.
3. For any a ∈ Eβ we have rk(f(a)) < β + k.

Then f is ∆Lα
1 -definable uniformly in any limit ordinal α. By this we mean that

there are single Π1 and ∆1 formulas that define f �E<α when interpreted in Lα.

Proof. Let Φ(β, f) be the ∆1 formula defined in the discussion above. We
shall show that for any α limit we have:

(a) For any β < α, the function f �Eβ belongs, as a set, to Lβ+m for some
m < ω.

(b) The function f �E<α is ∆Lα
1 -definable by the formulas:

f �E<α (a) = r ≡ ∃f Φ(rk<(a), f) ∧ f(a) = r
≡ ∀f Φ(rk<(a), f)→ f(a) = r

It is clear that for any α limit we have (a) implies (b). Suppose now α = 0
or α limit and (b) is true for α, and let us show that (a) is true for α + ω. If
α = 0 we clearly have f �E<α∈ Lα+1. If α is limit and (b) is true for α, thus
also it is clear by definition of L that f �E<α∈ Lα+1. Now from f �E<α∈ Lα+1

together with (1) (2) and (3), by iterating inductively the same argument for

n ∈ ω, we easily obtain that f �Eα+n
is ∆

Lα+(n+1)k

1 -definable and thus belongs to
Lα+(n+1)k+1 ⊆ Lα+ω. Thus (b) is true for α+ ω.

Suppose now that α is limit of limit and that for any β < α limit we have that
(a) is true. Thus clearly (a) is true for α, and therefore also (b). This concludes
the proposition. a

We end by one last thing one needs to be careful about when working in Lα for
α not admissible. In case α is admissible, formulas of the form ∀n ∈ ω ∃β Φ(n, β)
where Φ(n, β) is ∆0, can be considered to be Σ1-formulas, precisely because if the
formula is true in Lα, there must exists B ∈ Lα such that ∀n ∈ ω ∃β ∈ B Φ(n, β).
This is of course not the case for α not admissible, and one has to be careful
about keeping Σn formulas truly Σn.
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2.2.4. Theorems on definability. Using induction with bounded rank replace-
ment, it is possible to show that the function β 7→ Lβ is absolute already in Lα
for α limit. This is done formally in [10].

In order to show that the function β 7→ Lβ is absolute in any model Lα for
α limit, the author of [10] uses a bounded rank argument as sketched above.
In this case, this requires to be a bit careful with the encoding one uses for ZF
formulas by sets (hereditary finite sets in case the formula has no parameter). In
particular, it is worth noting that one uses partial function from n to {p1, . . . , pn}
to encode finite sequences. This way, as long as P ∈ Lα, for any n, a function
from n into P has its rank bounded by some α + k, where k is an integer
independent of n (even in Lω: recall that we start with L∅ = ω).

Using such an encoding of formulas, we write pΦq for the code of Φ. We have
the following:

Theorem 2.11 (Lemma I.9.10 of [10]). The predicate M |= Φ(p1, . . . , pn) is

∆Lα
1 uniformly in any α limit, in M , in pΦq and in the sequence 〈p1, . . . , pn〉.

By the above, we formally mean the following: there is a Σ1 formula Φ(M, e, p),
and a Π1 formula Ψ(M, e, p), such that for any α limit, as long as we take
M, 〈p1, . . . , pn〉 in Lα, we have:

M |= φ(p1, . . . , pn)
↔ Lα |= Φ(M, pφq, 〈p1, . . . , pn〉)
↔ Lα |= Ψ(M, pφq, 〈p1, . . . , pn〉)

We will also sometimes use the following version of the above: in case Φ is a
∆0 formula, then Φ is true in Lα iff Φ is true in the model being the transitive
closure of all the parameters involved in the formula. Using that such a model
can be obtained uniformly and that satisfaction is absolute in any Lα for α limit,
we also have:

Corollary 2.12. The predicate Lα |= Φ(p1, . . . , pn) is ∆Lα
1 uniformly in any

α limit and in the code of any ∆0 formula pΦq.

Using that satisfaction is absolute in any Lα for α limit, we also have:

Theorem 2.13 (Lemma II.2.8 of [10]). The function β 7→ Lβ is ∆Lα
1 uni-

formly in any α limit.

It is also well-known that L is well-ordered in L, that is, there is a well order
<L on elements of L, which is definable in L. Again, one can show that this
order is absolute in any Lα for α limit.

Theorem 2.14 (Lemma II.3.5 of [10]). The relation <L and the function a 7→
{b : b <L a}, are ∆Lα

1 , uniformly in any α limit.

We end this section by showing that in the special case of Σn-admissibility in
the constructible hierarchy, only the axiom of Σn-collection is needed when α is
limit.

Proposition 2.15. Suppose Lα is a model of Σn-collection for α limit. Then,
Lα is a model of ∆n-comprehension.
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Proof. The proof goes by induction on n. For n = 0 as α is limit we always
have that Lα is a model of ∆0-comprehension. Suppose the result is true for n
and let us show it is true for n + 1. Let Lα be model of Σn+1-collection. Let
Φ(a, b) and Ψ(a, b) be Π0

n formulas with parameters in Lα. Let A ∈ Lα and
E ⊆ A be such that:

a ∈ E ↔ Lα |= ∃b Φ(a, b)
a /∈ E ↔ Lα |= ∃b Ψ(a, b)

We have in particular that Lα |= ∀a ∈ A ∃β ∃b ∈ Lβ Φ(a, b) ∨Ψ(a, b)
By Σn+1-collection there exists β < α such that we have:

Lα |= ∀a ∈ A ∃b ∈ Lβ Φ(a, b) ∨Ψ(a, b)

Note that we then have

a ∈ E ↔ Lα |= ∃b ∈ Lβ Φ(a, b)
a /∈ E ↔ Lα |= ∃b ∈ Lβ Ψ(a, b)

It follows that we have :

a /∈ E ↔ Lα |= ∀b ∈ Lβ ¬Φ(a, b)
a ∈ E ↔ Lα |= ∀b ∈ Lβ ¬Ψ(a, b)

As Lα is a model of Σn-collection, formulas ∀b ∈ Lβ ¬Φ(a, b) and ∀b ∈ Lβ ¬Ψ(a, b)
are both equivalent in Lα to Σn formulas. Therefore E is in fact defined by a
∆n formula. By induction hypothesis we have that E ∈ Lα.

a
2.2.5. Theorems on stability. When lifting up notions of computability to

various ordinals, new phenomenons start to appear, one of them central to the
study of ITTMs is the notion of stability.

Definition 2.16. For α ≤ β we say that Lα is Σn-stable in Lβ , and we write
Lα ≺n Lβ if for every Σn formula Φ with parameters in Lα we have Lα |= Φ iff
Lβ |= Φ. Without confusion, we will also write α ≺n β for Lα ≺n Lβ .

The notion of n-stability is the same as the notion of elementary substructure
for Σn formulas in model theory. The following proposition is easy and will be
used in various places of the paper:

Proposition 2.17. Suppose Lα ≺n Lβ. Let Φ(a1, . . . , an) be a Πn+1 formula
and let p1, . . . , pn ∈ Lα. If Lβ |= Φ(p1, . . . , pn) then Lα |= Φ(p1, . . . , pn).

Proof. The formula Φ(a1, . . . , an) is of the form ∀x Ψ(x, a1, . . . , an) for Ψ a
Σn formula. Also for every x ∈ Lα we have Lβ |= Ψ(x, a1, . . . , an) and thus Lα |=
Ψ(x, a1, . . . , an) by Σn stability. It follows that Lα |= ∀x Ψ(x, a1, . . . , an). a

Proposition 2.18. For β limit and α < β, the predicate Lα ≺n Lβ is Π
Lβ
n

uniformly in β and α.

Proof. We start with Σ1-stability. We have Lα ≺1 Lβ iff

Lβ |= For all ∆0 formulas pΦ(b, a1, . . . , ak)q ∀p1, . . . , pk ∈ Lα[
∀x ¬Φ(x, p1, . . . , pk) or Lα |= ∃y Φ(y, p1, . . . , pk)

]
which is Π

Lβ
1 by Proposition 2.11 and 2.12. Suppose now that the predicate

Lα ≺n Lβ is Π
Lβ
n . To show that Lα ≺n+1 Lβ is Π

Lβ
n+1, we write first the formula
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which says Lα ≺n Lβ , in order to express that if Lα satisfies a Σn+1 formula,

then also Lβ satisfies this formula (see Proposition 2.17). This formula is Π
Lβ
n .

We then combine it with the following Π
Lβ
n+1 formula, which expresses that if Lβ

satisfies a Σn+1 formula, then also Lα satisfies this formula:

Lβ |= For all ∆0 formulas pΦ(b1, . . . , bn+1, a1, . . . , ak)q, ∀p1, . . . , pk ∈ Lα,{
∀x1 ∃x2 · · ·Qxn+1, ¬Φ(x1, . . . , xn+1, p1, . . . , pk)

or Lα |= ∃y1 ∀y2 · · ·Qyn+1 Φ(y1, . . . , yn+1, p1, . . . , pk)

where Q ∈ {∃;∀} depends on the parity of n. This concludes the proof. a
When dealing with the constructibles, stability presents additional features to

the notion of elementary substructures in model theory. For instance, given that
α is limit, the set of elements which are Σ1-definable in Lα with no parameters is
necessarily of the form Lβ , and β is the smallest such that Lβ ≺1 Lα [2, Theorem
7.8]. We also have the following:

Theorem 2.19. Suppose α < β for β limit, and Lα ≺n Lβ. Then α is Σn-
admissible.

Proof. The proof is easy for Σ1-admissibility, but does not lift straightfor-
wardly to Σn-admissibility.

We first show the theorem for Σ1-admissibility. Suppose α is not Σ1-admissible.
Then there exists a ∈ Lα and a Σ1 formula Φ(x, y) = ∃z Φ0(x, y, z) with param-
eters in Lα witnessing the failure of Σ1-admissibility, that is:

Lα |= ∀p ∈ a ∃r ∃z Φ0(p, r, z)
and Lα 2 ∃γ ∀p ∈ a ∃r ∈ Lγ ∃z ∈ Lγ Φ0(p, r, z)

As α < β it is however clear that we have:

Lβ |= ∃α ∀p ∈ a ∃r ∈ Lα ∃z ∈ Lα Φ0(p, r, z)

In particular the above Σ1 formula is satisfied in Lβ but not in Lα, so we do not
have Lα ≺1 Lβ .

We continue by induction: suppose α is not Σn+1-admissible. Then if Lα is not
Σn-stable in Lβ , it is in particular not Σn+1-stable in Lβ and the proposition is
verified. Otherwise we have Lα ≺n Lβ . Let a ∈ Lα and let Φ0(x, y, z1, . . . , zn+1)
be a ∆0 formula (where Q ∈ {∃;∀} depends on the parity of n) such that:

Lα |= ∀p ∈ a ∃r ∃z1∀z2 · · ·Qzn+1 Φ0(p, r, z1, . . . , zn+1)
and Lα 6|= ∃γ ∀p ∈ a ∃r ∈ Lγ ∃z1∀z2 · · ·Qzn+1 Φ0(p, r, z1, . . . , zn+1)

Note that unlike with the Σ1-case, we cannot necessarily bound the variables
z1, . . . , zn+1 by Lγ . Indeed, it might be the case for every p in a there exists
some r in Lγ which is Σn+1-definable in Lγ , even though it is not Σn+1-definable
in Lα. We need to use that Lα ≺n Lβ . In particular we have:

Lβ |= ∃α ≺n β ∀p ∈ a ∃r ∈ Lα s.t. Lα |= ∃z1 ∀z2 . . . zn+1 Φ0(p, r, z1, . . . , zn+1)

First let us note that by Proposition 2.18 the above formula is Σn+1. It is also
clear that Lα cannot be a model of this formula, because then, using Proposi-
tion 2.17, it would also be a model of:

∃γ ∀p ∈ a ∃r ∈ Lγ ∃z1 ∀z2 . . . zn+1 Φ0(p, r, z1, . . . , zn+1)
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a
2.2.6. Theorems on projectibles. Another central notion in α-recursion theory

is the notion of projectible ordinal. We are in particular able to lift most of the
work done in algorithmic randomness and genericity, in the case α is projectible
into ω.

Definition 2.20 (Projectum). We say that α is projectible in β ≤ α if there
is a one-one function Σ1-definable (with parameters) in Lα, from α into β. We
call projectum and write α∗ for the smallest ordinal such that α is projectible
into α∗. If α∗ < α we say that α is projectible. Otherwise we say that α is not
projectible.

This notion of projectibility is very useful to lift proofs from lower to higher
recursion. This has been done in particular in the hyperarithmetic setting, for
instance in [3], using the fact that ωCK1 is projectible into ω. We will later see
what is the projectum of the three ordinals λ, ζ and Σ, associated with ITTMs.
To do so, we give a general theorem on projectums. This theorem can be found
in a similar form in [2], but we still include the proof for completeness.

Theorem 2.21. Let α be admissible. We have that α∗ is the smallest ordinal
such that Lα is not a model of Σ1-comprehension for subsets of α∗. If the Σ1

formula Φ is a witness of this failure, then the projectum is definable with the
same parameters as the ones used in Φ.

Proof. We first show that Lα satisfies Σ1-comprehension for subsets of or-
dinals smaller than α∗. Let δ < α∗ be an ordinal, and A ⊆ δ be such that
x ∈ A ⇔ Lα |= ∃y Φ(x, y) where Φ is ∆0. Let f be the function defined
on A, such that f(a) = δ × γ + a where γ is the smallest ordinal such that
Lγ |= ∃y Φ(a, y). Obviously f is 1-1. We then collapse f [A] by defining g(γ) to
be the first β ∈ f [A] that we find which is not in {g(γ′) : γ′ < γ}. Formally,
let ∃y Ψ(a, β, y) with Ψ ∆0 be the Σ1 formula defining f . Then we define the
function g by g(γ) = β if there exists η for which 〈β, η〉 is the smallest pair such
that Lη |= ∃y ∃a Ψ(a, β, y) and β 6∈ {g(γ′) : γ′ < γ}. We have that f−1 ◦ g is a
Σ1-definable bijection from an initial segment of α, onto A. Also the domain of
f−1 ◦ g cannot be α otherwise α would be projectible into δ < α∗. Therefore the
domain of f−1 ◦ g is a strict initial segment of α and thus the range of f−1 ◦ g,
which is A, is an element of Lα.

We now exhibit a Σ1-definable subset of α∗ which is not in Lα. If p is a
projection into α∗, we have that p[α] = A ⊆ α∗ is a subset of α∗ which is Σ1

definable in Lα. This subset is not in Lα, as otherwise the function g : α∗ → α
defined by g(β) = supx∈A∧x≤β(p−1(x)) would contradict the admissibility of
α. a

2.3. The ordinals λ, ζ,Σ. We state in this section results regarding the three
ordinals λ, ζ,Σ, and their relative versions λx, ζx and Σx. These ordinals first
allow to establish a clear connection between ITTMs and constructibles, summed
up in the two following theorems. We introduce the following coding of hereditary
countable sets before we mention the first one: Let 0 ∈ 2ω be a code for the empty
set. Suppose that A = {an : n ∈ ω} where an is coded by xn ∈ 2ω for each n.
Then ⊕nxn is a code for A.
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Theorem 2.22 (Welch [24]). The set Lλ (resp. Lζ , resp.LΣ) is the set of all
sets with a writable (resp. eventually writable, resp. accidentally writable) code.

The following theorem is similar to Theorem 2.4, but with the constructible
hierarchy in place of ITTM’s tapes.

Theorem 2.23 (Welch [24]). The triplet of ordinals (λ, ζ,Σ) is the lexico-
graphically smallest triplet such that

Lλ ≺1 Lζ ≺2 LΣ

By relativization, (λx, ζx,Σx) is the lexicographically smallest triplet such that

Lλx [x] ≺1 Lζx [x] ≺2 LΣx [x]

Corollary 2.24. The ordinal ζ is Σ2-admissible, and there are cofinally in
ζ many eventually writable Σ2-admissible ordinals.

Proof. As Lζ ≺2 LΣ, we deduce from Theorem 2.19 that ζ is Σ2-admissible.
In particular for any eventually writable α we have that LΣ is a model of “there
exists β > α which is Σ2-admissible”. It follows that Lζ is also a model of that
and thus that there are cofinally many writable Σ2-admissible ordinals. a

Corollary 2.25 (Hamkins, Lewis [14]). The ordinal λ is Σ1-admissible, and
in λ there are cofinally many writable Σ1-admissible ordinals.

An important question of [14] was to determine whether Σ was admissible or
not. Welch’s proof that ITTMs halt only at ordinals smaller than λ provides
insight on the way ITTMs work, and helped to solve the question. The proof
can also be found in [25].

Theorem 2.26 (Welch). There is a function f : ω 7→ Σ which is Σ1-definable
in LΣ with ζ as a parameter and such that supn f(n) = Σ.

Proof. Let U be the universal ITTM, which simulates every other ITTM.
In particular we have by Theorem 2.4 that Σ is the smallest ordinal greater
than ζ such that CU [ζ] = CU [Σ]. For every n let us define the function fn such
that fn(0) = ζ and fn(m + 1) is the smallest ordinal bigger than fn(m) such
that ∀i ≤ n for which {CU (i)[β]}β<ζ does not converge, we have that CU (i) has
changed at least once in the interval [fn(m), fn(m+ 1)].

If there was some n such that supm fn(m) = Σ, this would prove the theorem
already. It is actually possible to show, by combining Σ2-stability of Lζ in LΣ,
together with admissibility of Lζ , that this cannot happen for any n. Let us
then define the function f as follow: f(n) is the smallest ordinal α greater than
ζ such that CU [ζ]� n = CU [α]� n. As for every m we have supm fn(m) < Σ, then
f(n) < Σ and thus f is Σ1-definable in LΣ with ζ as a parameter. It is clear that
f(n) ≤ f(n + 1). It is also clear that f(n) < supn f(n) as otherwise we would
have CU [ζ] = CU [α] for some α < Σ.

Let α = supn f(n) and let us show α = Σ. Let n ∈ ω. If {CU (n)[β]}β<ζ
converges then by (2) of Theorem 2.4 we have CU (n)[ζ] = CU (n)[α]. If we have
that {CU (n)[β]}β<ζ diverges then CU (n)[ζ] = 0. Then either {CU (n)[β]}β<α
converges to CU (n)[ζ] = 0 or {CU (n)[β]}β<α diverges and then CU (n)[α] = 0.
In both cases we have CU (n)[α] = CU (n)[ζ]. This implies that CU [α] = CU [ζ]
which implies α = Σ. a
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Corollary 2.27 (Welch). The ordinal Σ is not admissible.

The function of Theorem 2.26 will be used in various places of this paper. We
however have the following:

Theorem 2.28 (Welch). The ordinal Σ is a limit of admissible ordinals.

Proof. By Lemma 2.24, ζ is a limit of admissible ordinals. By Σ2-stability,
Σ must also be a limit of admissible ordinals.

a
We now study what effect the increase of one of the three main ordinals has

on the others.

Theorem 2.29. The following are equivalent:

1. ζx > ζ
2. Σx > Σ
3. λx > Σ

Proof. Suppose ζx > ζ. In particular ζ is eventually writable in x. Let {ζs}s
be the successive approximations of ζ using an ITTM that eventually writes ζ
using x. We can run an ITTM M(x) which does the following: at step s, it uses
ζs as a parameter in the function f : ω 7→ Σ of Theorem 2.26, and whenever it
has found values for every f(n) (and no new version of ζs has arrived so far), it
writes Σs = supn f(n) on the output tape. At some stage s we will have ζs = ζ
and thus Σs = Σ will be on the output tape. It follows that Σx > Σ.

Suppose now that we have Σx > Σ. We can run the ITTM M(x) which
searches for two x-accidentally writable ordinals α < β such that Lα ≺2 Lβ ,
then writes β and halts. As ζ < Σ is the smallest such pair of ordinals and as
Σx > Σ, the ITTM will write an ordinal equal to or bigger than Σ at some point
and halt. We then have λx > Σ.

Finally if λx > Σ it is clear that ζx > ζ. a

Theorem 2.30. For every λ ≤ α < ζ, there exists x ∈ 2ω such that α ≤ λx,
such that ζx = ζ and Σx = Σ.

Proof. Let α be such that λ ≤ α < ζ. Let x ∈ 2ω be an eventually writable
code for α. It is clear that α ≤ λx. Let us show ζx = ζ. Let α be any x-
eventually writable ordinal, via some ITTM M . Let N be the ITTM which starts
to eventually write x and in the same time uses the current version xs of x to run
M(xs) and copy at every time the output tape of M on the output tape of N .
There is some stage s such that for every stage t ≥ s we will have xs = xt = x
together with M(x)[s] = M(x)[t] = α. This implies also N [s] = N [t] = α.
Thus α is eventually writable. Here, we essentially used the fact from [23] that
eventually writable reals are closed under eventually writability.

From Theorem 2.29 we have Σx = Σ, as ζx = ζ. a
We now study the projectibility of the three ordinals λ, ζ and Σ. Intuitively λ

is projectible into ω, by the function which to α < λ associates the code of the
first ITTM which is witnessed to write α. Such a thing is of course not possible
to achieve with ζ, which indeed is not projectible.

Theorem 2.31. .
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1. λ is projectible into ω without parameters.
2. ζ is not projectible.

Proof. A direct proof of (1) would be possible. It is also a direct consequence
of Theorem 2.21: it is well known that the set {e ∈ ω : the e-th ITTM halts} is
not writable (by a standard diagonalization, see for instance [14]) and thus does
not belong to Lλ. It is however Σ1-definable in Lλ and thus Lλ is not a model of
Σ1-comprehension for subsets of ω. It follows that λ∗ = ω, with no parameters.

To prove (2), we will show that Lζ satisfies Σ1-comprehension for any set in Lζ .
We shall first argue that for every α < ζ, there exists β ≥ α such that Lβ ≺1 Lζ .
For every α < ζ, there exists by Theorem 2.30 some x ∈ 2ω such that λx > α
and such that ζx = ζ and Σx = Σ. In particular we have Lλx ≺1 Lζx = Lζ .
Now suppose that for α < ζ we have that A ⊆ Lα is Σ1-definable in Lζ with
parameters in Lα. Let β ≥ α be such that Lβ ≺1 Lζ . In particular A ⊆ Lα is
Σ1-definable in Lβ . It follows that A ∈ Lζ . a

We now study the projectibility of LΣ. We will show that it is projectible into
ω with parameter ζ, in a strong sense, that is, with a bijection. To do so we
first need to argue that LΣ is a model of “everything is countable”. It is clear
intuitively: if x belongs to LΣ then it has an accidentally writable code, and this
code gives the bijection between x and ω. Friedman showed a bit more:

Lemma 2.32 (Friedman and Welch, [12]). Let α be limit. Suppose there exists
x ∈ Lα such that Lα |= “x is uncountable”. Then there exists γ < δ < α such
that Lγ ≺ Lδ (that is, Lγ ≺n Lδ for every n).

Proof. Let us first argue that there must be a limit ordinal δ < α such that
Lα |= “Lδ is uncountable”. If α is limit of limits this is clear, because there
must be a limit ordinal δ such that Lδ contains an x which is uncountable in
Lα. As Lδ is transitive, it must be itself uncountable in Lα. If α is not limit of
limits, let δ be limit such that α = δ + ω. Suppose that Lδ is countable in Lα.
Thus also by definition of L, every element of Lδ+1 must be countable in Lα.
We can continue inductively to show that every element of Lδ+ω = Lα must be
countable in Lα, contradicting our hypothesis.

Thus there must be a limit ordinal δ < α such that Lα |= “Lδ is uncountable”.
We then conduct within Lα the Löwenheim-Skolem proof to find a countable set
A ⊆ Lδ such that A ≺ Lδ. The Mostowski collapse A′ of A is transitive, as
A′ ≺ Lδ and as Lδ is a model of “everything is constructible” together with “for
all β the set Lβ exists” 2, then A′ must be of the form Lγ for some γ ≤ δ. As
Lγ is countable in Lα we must have γ < δ. a

Corollary 2.33. For any limit ordinal α ≤ Σ, we have that Lα |= “every-
thing is countable”.

Proof. It is immediate using that Σ is the smallest ordinal such that Lα ≺2

LΣ for some α < Σ. a

Theorem 2.34. Suppose Lα |= “everything is countable” and α is not admis-
sible. Then there is a bijection b : ω → Lα which is Σ1-definable in Lα with the

2Note that this is where we use that δ is limit, using Theorem 2.13
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same parameters than the ones used in a witness of non-admissibility of α. In
particular α is projectible into ω, with these parameters (using b−1 restricted to
ordinals).

Proof. We first show that there is a Σ1-definable surjection from ω onto Lα.
As α is not admissible, there is a set a ∈ Lα and a function g : a 7→ α which is Σ1-
definable over Lα with some parameter p ∈ Lα, and such that supx∈a g(x) = α.
Note that as Lα |= “everything is countable”, there is a bijection in Lα between
a and ω. Using this bijection there is then a function f : ω → α which is Σ1-
definable over Lα with parameters p, a, and such that supn∈ω f(n) = α (the
bijection does not need to be a parameter, as the smallest such can be Σ1-
defined). Let Ψ(n, β) be the Σ1 functional formula with parameters p, a, which
defines f .

We now define a Σ1 formula (with parameter p, a) Φ(n,m, z) such that for
every n,m there is a unique z ∈ Lα for which Lα |= Φ(n,m, z), and such that
for every z ∈ Lα, there exists n,m such that Lα |= Φ(n,m, z). We define:

Φ(n,m, z) ≡ ∃g ∃β s.t.
Ψ(n, β) and
g is a bijection between ω and Lβ s.t. g(m) = z and
every g′ <L g is not a bijection between ω and Lβ

Note that Φ is Σ1. It is clear that for every n,m, there is at most one z such
that Φ(n,m, z). The fact that every z ∈ Lα is defined by Φ for some n,m is
clear because Lα |=“everything is countable”.

It follows that there is a surjection f from ω onto Lα, which is Σ1-definable in
Lα with parameters p, a. To obtain a bijection, we define the function h : ω → ω
such that h(0) = 0 and h(n + 1) = min{m ∈ ω : ∀n′ ≤ n f(h(n′)) 6= f(m)}.
Note that h is defined by Σ1-induction. As α is not admissible, we should make
sure we can do so. This relies on the fact that h is defined only on integers: we
can then essentially rely on the admissibility of ω. Indeed, to decide h(n+1) = m,
we only need the finite function h �n and the finite function f �m. In particular
only finitely many witnesses for values of f are needed and they then all belongs
to some Lβ for β < α. Formally we can define h in Lα as follow:

h(n) = m ≡ ∃β ∃h′ �n ∀k < n
h′(k + 1) > h′(k) ∧ Lβ |= ∀i < k f(h′(k)) 6= f(i)∧
∀j with h′(k) < j < h′(k + 1) Lβ |= ∃i < j f(h′(j)) = f(i)
and h′(n) = m

The bijection is then given by b(n) = f(h(n)). a

Corollary 2.35. There is a bijection b : ω → LΣ which is Σ1-definable in
LΣ with ζ as a parameter. In particular Σ is projectible into ω, with parameter
ζ.

Proof. From Theorem 2.26 there is a function f : ω 7→ Σ which is Σ1-
definable over LΣ with parameter ζ and such that supn f(n) = Σ. From Corol-
lary 2.33: we have that LΣ |=“everything is countable”. The result follows. a
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§3. Forcing in the constructibles. Algorithmic randomness normally deals
with Borel sets of positive measure. Working in the constructibles will make this
task a little bit harder, and requires to go into usual naming and forcing in L.

We will however not formally define a forcing relation. Instead we go around
the need of defining one, by directly dealing with Borel sets. The reason we do
so is to stick with what is traditionally done with algorithmic randomness: the
manipulation of Borel sets. We believe that for the purpose of this paper, it is a
bit more clear to use Borel sets rather than a formal forcing relation.

3.1. Borel codes. In order to be able to speak about sets of reals in Lα,
we need to code them into elements of Lα. We do that with the notion of ∞-
Borel codes and Borel codes. In this paper, due to technical reasons that will
be made clear later, we need to be careful about the L-rank of our Borel codes.
In particular, if {cn}n∈ω are Borel codes for Σ0

α+k sets Bn such that each cn has
L-rank, say β, we need a code of

⋂
n∈ω Bn also to have L-rank β. In particular

we cannot for instance define a code of
⋂
n∈ω Bn to be a set containing the codes

cn.
In what follows the coding trick is achieved with (3) and (4), by coding se-

quences of sequences of codes to be a partial function defined in F ⊆ ω, using
the usual bijection between ω and ω2. This way the L-rank of a sequence of code
stay at the same level.

Definition 3.1 (∞-Borel codes and Borel codes). We define, by induction,
∞-Borel codes together with their rank r, type t = Σr or Πr and interpreta-
tion ι:

1. The set c = 〈2, {σi}i<k〉, for any finite sequence {σi}i<k with each σi ∈
2<ω, is an ∞-Borel code, with rank r(c) = 0, type Σ0 = Π0 = ∆0 and
interpretation ι(c) =

⋃
i<k[σi]

2. Suppose that for some set I, there exists a function f : i ∈ I 7→ ci such
that ci is an∞-Borel code for every i ∈ I. Then d0 = 〈0, f〉 and d1 = 〈1, f〉
are ∞-Borel codes, with rank r(d0) = r(d1) = supi∈I(r(ci) + 1), type
respectively Σ0

r and Π0
r and interpretation ι(d0) =

⋃
i∈I ι(ci) and ι(d1) =⋂

i∈I ι(ci).
3. Suppose for some set I, there is k ∈ ω and a function i ∈ I 7→ ci where

for every i ∈ I, the set ci = 〈0, fi : Ik → L〉 is an ∞-Borel code. Then we
define f : Ik+1 → L by f(i, a1 . . . , ak) = fi(a1 . . . , ak). The set c = 〈1, f :
Ik+1 → L〉 is an ∞-Borel code, with rank r(c) = supi∈I(r(ci) + 1), type Πr

and interpretation ι(c) =
⋂
i∈I ι(ci).

4. Suppose for some set I, there is k ∈ ω and a function i ∈ I 7→ ci where
for every i ∈ I, the set ci = 〈1, fi : Ik → L〉 is an ∞-Borel code. Then we
define f : Ik+1 → L by f(i, a1 . . . , ak) = fi(a1 . . . , ak). The set c = 〈0, f :
Ik+1 → L〉 is an ∞-Borel code, with rank r(c) = supi∈I(r(ci) + 1), type Σr
and interpretation ι(c) =

⋃
i∈I ι(ci).

A Borel code is an ∞-Borel code where each set I involved equals ω. Note that
a Borel code can be encoded by a real.

In order to lighten the notations, we will write b =
∨
i∈I bi if b is the ∞-Borel

code of
⋃
i∈I ι(bi) and b =

∧
i∈I bi if b is the ∞-Borel code of

⋂
i∈I ι(bi). Note
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that given a Borel code b =
∨
i∈I bi or b =

∧
i∈I bi, one can uniformly find I

(using the domain of the function involved in the code), and find the code bi
uniformly in i ∈ I:

Proposition 3.2. We have:

1. The function which on an ∞-Borel code b =
∨
i∈I bi and some i ∈ I,

associates the ∞-Borel code bi, is ∆Lα
1 -definable uniformly in α limit. The

same holds for b =
∧
i∈I bi.

2. The function which on an∞-Borel code b ∈ Lγ associates the∞-Borel code

d of 2ω − ι(b) with d ∈ Lγ and r(b) = r(d), is ∆Lα
1 -definable uniformly in

α limit.
3. The function which on ∞-Borel codes b0, . . . , bk ∈ Lγ associates the ∞-

Borel code d ∈ Lγ with r(d) = maxi≤k(r(bi)) and ι(d) =
⋃
i<k ι(bi), is

∆Lα
1 -definable uniformly in α limit.

Proof. (1) is rather obvious: A code b =
∨
i∈I bi is of the form 〈0, f : Ik+1 →

L〉 for some k ≥ 0. If k = 0 then bi is given by f(i). If k > 0 then bi is given
by 〈1, fi : Ik → L〉 where fi is defined by fi(a1 . . . , ak) = f(i, a1 . . . , ak). This is
easily uniformly definable in Lα for any α limit. The same holds for b =

∧
i∈I bi.

(2) goes by propagating the complement into the ∞-Borel code, and (3) by
propagating the finite union in the∞-Borel code. Both (2) and (3) are straight-
forward by induction on γ, using bounded rank replacement of Proposition 2.10.

a

Proposition 3.3. The set of ∞-Borel codes and of Borel codes of Lα, are
∆Lα

1 -definable uniformly in any α limit.

Proof. We define by ∆0-induction on the rank of sets of Lα, a total function
f : Lα → {0, 1}. The function returns 1 iff its parameter is a Borel code. It is
defined as follow:

f(c) = 1 if c is of the form 〈2, {σi}i<k〉 for a sequence of strings {σi}i<k
= 1 if c is of the form

∨
i∈ω ci or

∧
i∈ω ci

and if for every i ∈ ω we have that f(ci) = 1
= 0 otherwise

Note that we are in the conditions of Proposition 2.10, with sets Lβ in place of
sets Eβ . One easily see that (1) (2) and (3) of Proposition 2.10 are verified, which
implies that f is well-defined in Lα for α limit, using bounded rank replacement.

The proof is similar for ∞-Borel codes. a
3.2. The naming system. We use the naming system presented by Cohen

in [9]: a name for a set a ∈ Lα(x) is given by the successive construction steps
that lead to the construction of a, starting from an oracle x that we do not know.

We define P0 as the set of names for elements of L0(x), that is, for {x} ∪ ω.
The integer 0 is a name for x and the integer n+ 1 is a name for n ∈ ω.

Suppose now by induction that for an ordinal α, the set of names Pα for
elements of Lα(x) has been defined. We define the set of names Pα+1 for elements
of Lα+1(x). Let b ∈ Lα+1(x) be such that b = {a ∈ Lα(x) : Lα(x) |=
Φ(a, p1, . . . , pn)}, for p1, . . . , pn ∈ Lα(x). A name for b is given by the following

ḃ = 〈Pα, pΦq, ṗ1, . . . , ṗn〉, where ṗ1, . . . , ṗn ∈ Pα are names for p1, . . . , pn.
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Suppose now that the set of names Pβ have been defined for β < α. Then we
define Pα =

⋃
β<α Pβ .

In general if a ∈ Lα(x), its corresponding name is written ȧ. Note that
the naming system allows us to speak about elements of Lα(x) without any
requirement on x.

Proposition 3.4. The function β 7→ Pβ is ∆Lα
1 -definable uniformly in α is

limit.

Proof. We only sketch the proof here. It is straightforward by ∆0-induction
on ordinals, using bounded rank replacement of Proposition 2.10, where E<β is
simply β. One should show that for any β, the set Pβ belongs to Lβ+k for some
k ∈ ω. This ensures (3) of Proposition 2.10, whereas (1) and (2) are obvious. a

We shall now argue that given a name p ∈ Pα and given x ∈ 2ω, we can,
uniformly in p and x, define the set of Lα(x) that is coded by the name. Such
a set will be denoted by p[x], and is defined by induction on the rank of p as
follows:

• If p = 0 then p[x] = x. If p = n ∈ ω − {0} then p[x] = n− 1.
• Suppose p[x] has been defined for every name p ∈ Pα. We define

Pα[x] = {p[x] : p ∈ Pα}

Note that Pα[x] is intended to equal Lα(x). Let p = 〈Pα, pΦq, ṗ1, . . . , ṗn〉
be a name of Pα+1. Then p[x] is defined as:

p[x] = {q[x] : q ∈ Pα s.t. Pα[x] |= Φ(q[x], ṗ1[x], . . . , ṗn[x])}

It is clear by induction that for any ordinal α, for any x ∈ 2ω and any
p ∈ Lα(x), we have ṗ[x] = p.

Note that with the definition we gave, we do not have Pα ⊆ Pα+1. However
for β < α and p ∈ Pβ , one can uniformly obtain a name q ∈ Pα such that
p[x] = q[x].

Proposition 3.5. The function which to ordinals γ < β and names ṗγ ∈ Pγ
of elements p ∈ Lγ(x), associates names ṗβ ∈ Pβ for the same element p, is ∆Lα

1

uniformly in α limit.

Proof. This is again ∆0-induction on ordinals, using bounded rank replace-
ment of Proposition 2.10. If β = 1, given ṗ0 ∈ P0, a name for some p ∈ L0(x),
we let ṗβ = 〈P0, pa ∈ zq, ṗ0〉 ∈ P1. Note that z is a free variable in the formula,
meant to be replaced by ṗ0. It is clear that ṗβ ∈ Lk for some k < ω and that ṗβ
is also a name for p.

Let β and let f be the function of the theorem defined on any γ′ < β′ ≤ β
and names of Pγ′ . Let us show that we can extend f on any γ < β + 1 and any
name of Pγ . Let γ < β+ 1 and ṗγ ∈ Pγ be a name for some p ∈ Lγ(x). If γ < β,
using f we can find ṗβ ∈ Pβ , a name for p. Thus we can work as in the case
γ = β and consider that we always have a name ṗβ ∈ Pβ . In particular we have
that ṗβ equals 〈Pγ , pΦ(a, zi)q, pi〉 for some pΦ(a, zi)q, some pi ∈ Pγ , and some
γ < β (with γ = β − 1 if β is successor).
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Using f one can find names qi ∈ Pβ corresponding to the names pi ∈ Pγ . Note
that a name for Lγ is given by 〈Pγ , pa = aq〉. Let Ψ(a, r, pi) be the conjunction
of the formula a ∈ r, together with the formula Φ(a, pi) where every instance of
∃x (resp. ∀x) is replaced by ∃x ∈ r (resp. ∀x ∈ r). The name ˙pβ+1 ∈ Pβ+1 is
then given by:

〈Pβ , pΨ(a, r, qi)q, 〈Pγ , pa = aq〉, qi〉
If is clear that ˙pβ+1 ∈ Lβ+k for some k. Therefore we are in the conditions of

Proposition 2.10 and the function of the proposition is ∆Lα
1 uniformly in α limit.

Also for the limit case the induction is clear as for β limit we have Pβ =⋃
γ<β Pγ . a
3.3. The canonical Borel sets. We develop here the notations and the

main theorem to deal with the canonical sets with ∞-Borel codes, that will be
used in this paper. Let β be an ordinal. Let p1, . . . , pn ∈ Pβ . Let Φ(p1, . . . , pn)
be a formula. Then we write:

BβΦ(p1, . . . , pn) for the set {x ∈ 2ω : Lβ(x) |= Φ(p1[x], . . . , pn[x])}

The upcoming theorem makes sure that BβΦ(p1, . . . , pn) truly has an ∞-Borel
code, definable uniformly in pΦq, β and p1, . . . , pn.

We will sometimes write BΦ or BβΦ when the ordinal β and/or parameters
p1, . . . , pn are not specified. Also given an ∞-Borel set BΦ for a Σn formula Φ,

we say that BβΦ is a Σβn ∞-Borel set. Note that a fixed formula Φ gives rise to
many possible ∞-Borel sets depending on the model Lβ that we consider.

The second part of the following theorem says that for α limit, if Φ is ∆0, then
an ∞-Borel code for BαΦ(p1, . . . , pn) belongs to Lα, and can be found uniformly.
It follows that one can picture a Σαn Borel set with similar intuitions one has with
the usual Σn Borel sets used in the realm of computable objects and algorithmic
randomness : The Σα1 Borel sets can be seen as increasing uniform unions of ∆α

0

Borel sets over the names of elements of Lα. Note that if α is limit we have
Pα ⊆ Lα and:

{x ∈ 2ω : Lα(x) |= ∃z Φ(z, p1[x], . . . , pn[x])}
=

⋃
ż∈Pα{x ∈ 2ω : Lα(x) |= Φ(ż[x], p1[x], . . . , pn[x])}

Similarly, Σα2 Borel sets are unions of intersections of ∆α
0 Borel sets. Indeed we

have for α limit that:

{x ∈ 2ω : Lα(x) |= ∃z1 ∀z2 Φ(z1, z2, p1[x], . . . , pn[x])}
=

⋃
ż1∈Pα

⋂
ż2∈Pα{x ∈ 2ω : Lα(x) |= Φ(ż1[x], ż2[x], p1[x], . . . , pn[x])}

One easily sees how to continue for Σαn Borel sets in general.

Theorem 3.6. Let α be limit. Then, we have the following:

1. A function which on β, pΦ(x1, . . . , xn)q and p1, . . . , pn ∈ Pβ, associates an

∞-Borel code for BβΦ(p1, . . . , pn) is ∆Lα
1 uniformly in α.

2. A function which on ∆0 formulas pΦ(x1, . . . , xn)q and p1, . . . , pn ∈ Pα,

associates an ∞-Borel code for BαΦ(p1, . . . , pn) is ∆Lα
1 uniformly in α.

Proof. (1) is proved by a ∆0-induction, using bounded rank replacement of
Proposition 2.10, with the class of elements of the form (β, pΦ(x)q, p) in place of
E: an ordinal β, a formula with n free variables, and n parameters of Pβ . The
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induction is done only on the ordinal β. For a set F of formulas (for instance
the atomic formulas) let Hβ(F ) be the induction hypothesis:

(Hβ(F ))
The function f which on β, formulas pΦ(x)q ∈ F and p ∈ Pβ
associates an ∞-Borel code for BβΦ(p), belongs to Lβ+k for some k

Let F0 be the set of atomic formulas and F∞ be the set of all formulas. We will
show H0(F0). Then we will show Hβ(F0) implies Hβ(F∞), then we will show
Hβ(F∞) implies Hβ+1(F0). Finally we will show

∧
γ<βHγ(F∞) → Hβ(F0),

together with (2) of the Theorem.
Let us begin with H0(F0), Let p1, p2 ∈ P0. Consider B= = {x ∈ 2ω : L0(x) |=

p1[x] = p2[x]} and B∈ = {x ∈ 2ω : L0(x) |= p1[x] ∈ p2[x]}. Recall that p1, p2

must be integers, with 0 coding for x and n+ 1 coding for n. Therefore we have
B= = 2ω if p1 = p2 and B= = ∅ otherwise. We also have B∈ = 2ω if p1, p2 > 0
and p1 ∈ p2 or if p1 6= 0, p2 = 0 and p1−1 ∈ x. Otherwise we have B∈ = ∅. It is
clear that the two possible Borel codes (2ω or ∅) belongs to Lk for some k ∈ ω
and that the computable function which assign the right Borel code depending
on the atomic formulas and parameters, also belongs to Lk for some k ∈ ω (recall
that we start with L0 = ω).

Now we prove Hβ(F0) ⇒ Hβ(F∞). We proceed in 5 stages, first showing
Hβ(F0) ⇒ Hβ(F1), for F1 the set of atomic formulas and their negations, then
showing Hβ(F1)⇒ Hβ(F2), for F2 the set of finite disjunctions of formulas of F1,
then showing Hβ(F2)⇒ Hβ(F3), for F3 the set of finite conjunctions of formulas
of F2, then showing Hβ(F3)⇒ Hβ(F4) for F4 the set of all formulas of F3 closed
by finitely many quantifications, and finally showing Hβ(F4)⇒ Hβ(F∞).

The step Hβ(F0) implies Hβ(F1) simply follows from (2) of Proposition 3.2.
The stepHβ(F1) impliesHβ(F2) then follows from (3) of Proposition 3.2, whereas
the step Hβ(F2) implies Hβ(F3) follows from both (2) and (3) of Proposi-
tion 3.2. Let us now show the step Hβ(F3) implies Hβ(F4). Let p ∈ Pβ and let
Φ(a) = ∃a1 ∀a2 . . .Ψ(a1, a2, . . . , a) be any formula of F4 (that is in prenex nor-
mal form with its quantifier-free part in disjunctive normal form, in particular
with Ψ in F3). We then have:

BβΦ(p) = {x ∈ 2ω : Lβ(x) |= ∃x1 ∀x2 . . .Ψ(x1, x2, . . . , p[x])}
=

⋃
q1∈Pβ

⋂
q2∈Pβ . . . {x ∈ 2ω : Lβ(x) |= Ψ(q1[x], q2[x], . . . , p[x])}

Using (3) and (4) of Definition 3.1, and assuming we have the function given

by Hβ(F3), it is easy to build the Borel code for BβΦ(p) whose rank does not
increase with the number of quantification, and furthermore, to uniformly do
so. In particular we obtain Hβ(F4). In order to obtain Hβ(F∞), one simply has
to use the computable function which transforms any formula into a formula in
prenex normal form with its quantifier-free part in disjunctive normal form.

We continue by assuming Hβ(F∞) and proving Hβ+1,0. We let p1, p2 ∈ Pβ+1

with p1 = 〈Pβ , pΦ1q, a1, . . . , an〉 and p2 = 〈Pβ , pΦ2q, b1, . . . , bm〉. For q ∈ Pβ ,
let:

BΦ1
(q) = {x ∈ 2ω : Lβ(x) |= Φ1(q[x], a1[x], . . . , an[x])}

BΦ2
(q) = {x ∈ 2ω : Lβ(x) |= Φ2(q[x], b1[x], . . . , bm[x])}
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Note that q[x] ∈ p1[x] iff x ∈ BΦ1
(q) and q[x] ∈ p2[x] iff x ∈ BΦ2

(q). Also
by induction hypothesis, the function which on q ∈ Pβ and on any formula Ψ
associates the code of BΨ(q) belongs to Lβ+k for some k ∈ ω. We have:

Lβ+1(x) |= p1[x] ∈ p2[x] iff ∃q ∈ Pβ , x ∈ BΦ2(q) ∧ Lβ+1(x) |= p1[x] = q[x]

Lβ+1(x) |= p1[x] = p2[x] iff ∀q ∈ Pβ we have x ∈ BΦ1
(q)↔ x ∈ BΦ2

(q)

Thus we have:

Bβ+1
= (p1, p2) = {x ∈ 2ω : Lβ+1(x) |= p1[x] = p2[x]}

=
⋂
q∈Pβ [BΦ1

(q) ∩BΦ2
(q)] ∪ [(2ω −BΦ1

(q)) ∩ (2ω −BΦ2
(q))]

It is clear that a code for Bβ+1
= (p1, p2) can be obtained uniformly and belongs

to Lβ+1+k for some k which is independent from p1, p2. It follows that we have
Hβ+1,0 for equality. Also the set

Bβ+1
∈ (p1, p2) = {x ∈ 2ω : Lβ+1(x) |= p1[x] ∈ p2[x]}

=
⋃
q∈Pβ [BΦ2

(q) ∩ {x ∈ 2ω : Lβ+1(x) |= p1[x] = q[x]}]

Using Proposition 3.5 one can uniformly transform q ∈ Pβ into a name that
belongs to Pβ+1 and thus perform the induction given by the = case just above.
We thus have Hβ+1(F∞).

We now deal with the limit case, together with (2) of the theorem. We shall
show

∧
γ<βHγ(F∞)→ Hβ(F0). We will actually show more in order to also show

(2): We show
∧
γ<βHγ(F∞)→ Hβ(F∆0

) where F∆0
is the set of ∆0 formulas.

For a ∆0 formula Φ(p1, . . . , pn), let γ be the smallest such that p1, . . . , pn ∈ Pγ .

Note that γ is ∆
Lβ
1 -definable uniformly in p1, . . . , pn. We have that the Borel

BβΦ(p1, . . . , pn) also equals the Borel BγΦ(p1, . . . , pn) = {x ∈ 2ω : Lγ(x) |=
Φ(p1[x], . . . , pn[x])}. By induction hypothesis the function which on Φ and
p1, . . . , pn ∈ Pγ gives the Borel code of BγΦ(p1, . . . , pn) belongs to Lγ+k for some
k. As this function can be recognized with a ∆0 formula uniformly in γ, this
gives us (2). Note that the union of all these functions belongs to Lβ+k for some
k, which gives us Hβ(F0). This concludes the proof. a

Note that for the study of ITTMs, we can always assume that we work with
Borel codes and not ∞-Borel codes. Indeed by Corollary 2.33, for every α ≤ Σ
limit the sets Lα is a model of “everything is countable”. We can then uniformly
transform any ∞-Borel codes into a Borel code, working in Lα for α limit, by
searching inductively for the smallest (in the sense of <L) bijection between
elements of a Borel code, and ω.

§4. Randomness. The main idea of algorithmic randomness is to define as
random the elements of 2ω which are in no set that is both of measure 0 and
simple to define. Martin-Löf defined its eponymous randomness notion [20] using
computability. Higher randomness has then been studied by working in Lωck1
(see [13] [3] [7] [8] [16] [21] [1]). Recently Carl and Schlicht initiated the study
of randomness with infinite-time Turing machines [6]. In this section, we pursue
their work, solving some of their open questions.
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We start with a lemma extending computable measure theory to levels of the
constructible hierarchy. In what follows, µ denotes the Lebesgue measure on 2ω.

Lemma 4.1. We have:

1. The function b 7→ µ(ι(b)), defined on ∞-Borel codes b, is ∆Lα
1 uniformly in

any α limit.
2. We have the following, where b range over Borel codes and q over rationnals:

• The function b, q 7→ u such that u is the Borel code of an open set with
ι(b) ⊆ ι(u) and µ(ι(u)− ι(b)) ≤ q
• The function b, q 7→ c such that c is the Borel code of a closed set with
ι(c) ⊆ ι(b) and µ(ι(b)− ι(c)) ≤ q

are ∆Lα
1 definable uniformly in any α limit.

Proof. Both (1) and (2) are proved by a ∆0-induction on ranks of Borel
sets (their rank as elements of L). This uses the bounded rank replacement of
Proposition 2.10.

Proof of (1). For a Borel code b of rank 0, the measure is easily computable,
as the measure of a clopen set. Let now b =

∨
n∈I bn and γ the smallest such

that b ∈ Lγ+1. Note that each bi belongs to Lγ . Let Pf (I) be the set of finite
subsets of I. We have:

µ(ι(b)) = sup
F∈Pf (I)

(
λ

( ⋃
bi∈F

ι(bi)

))
(1)

Using (3) of Proposition 3.2 we can obtain an∞-Borel code dF such that ι(dF ) =⋃
bi∈F ι(bi) and such that dF ∈ Lγ . It is also clear that the function which to I

associates Pf (I) is ∆Lα
1 -definable uniformly in α limit. The function can then be

defined by the ∆0-induction with bounded rank replacement of Proposition 2.10.
To compute µ(

∧
n∈ω bn), we can use (2) of Proposition 3.2 to take the com-

plement to 1 of the measure of 2ω − ι(c).

Proof of (2). The function is also defined by ∆0-induction over γ, using
bounded rank replacement of Proposition 2.10. In this first point, we could
use ∞-Borel codes (and not Borel codes) but still compute the measure by con-
sidering all finite unions of codes of smaller complexity. In the second point,
we do need to use Borel codes in order to associate a quantity 2−n to each
component of a Borel set.

For a Borel code b of rank 0, both the open and the clopen sets are given by
b itself. Let now b =

∨
n∈ω bn with γ+ the smallest such that b ∈ Lγ+ . Note

that each bn belongs to Lγ . By induction, for each bn we find codes un and
cn of respectively open and closed sets, such that µ(ι(un) − ι(bn)) < 2−nq and
µ(ι(bn) − ι(cn)) ≤ 2−nq. The code for the desired open set is then

∨
n∈ω un.

For the closed set, note that we have µ(ι(
∨
n bn) − ι(

∨
n cn)) ≤ q. It follows

that there must be some m such that µ(ι(
∨
n bn) − ι(

∨
n<m cn)) ≤ q. The code

for the closed set is then given by a code d equivalent to
∨
n<m ι(cn), where we

propagate the finite union using Proposition 3.2.
a
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4.1. Main definitions. We give the first definition, which in full generality
extends algorithmic randomness to every level of the constructible hierarchy.

Definition 4.2. Let α be a countable ordinal. A set x is random over Lα if
x is in no null set with a Borel code in Lα.

This can be seen as an extension, to any level of the constructible hierarchy,
of ∆1

1-randomness, which corresponds to randomness over Lωck1 in the above

definition.
The most famous and studied randomness notion is undoubtedly Martin-Löf

randomness [20], whose counterpart for Lωck1 was defined in [16]. We also ex-

tend the definition of Martin-Löf randomness to any level of the constructible
hierarchy:

Definition 4.3 (Carl, Schlicht [6]). An α-recursively enumerable open set Un
is an open set with a code Σ1-definable in Lα (with parameters). A set x is α-
ML-random if x is in no intersection

⋂
n Un where each set Un is an α-recursively

enumerable open set, uniformly in n, such that µ(Un) ≤ 2−n.

We now turn to randomness notions which are specific to ITTMs. In order to
do so, we first need the following definition:

Definition 4.4 (Hamkins, Lewis [14]). A set P ⊆ 2ω or P ⊆ ω is ITTM-
semi-decidable if there is an ITTM M such that x ∈ P ⇔ M(x) ↓. A set
P ⊆ 2ω or P ⊆ ω is ITTM-decidable if it is both semi-decidable and co-semi-
decidable, equivalently, there is an ITTM M such that M(x) ↓= 1↔ x ∈ P and
M(x) ↓= 0↔ x ∈ P .

If x ⊆ ω, it is clear by admissibility of Lλ that x is ITTM-decidable iff x ∈ Lλ,
and that x is ITTM-semi-decidable iff x is Σ1-definable over Lλ.

Definition 4.5 (Carl, Schlicht [6]). An ITTM-semi-decidable open set is an
open set U with an ITTM-semi-decidable description W ⊆ 2<ω such that we
have

⋃
σ∈W [σ] = U . A set X is ITTM-ML-random if X is in no intersection⋂

n Un where each set Un is an ITTM-semi-decidable open set, uniformly in n,
such that µ(Un) ≤ 2−n.

Before we continue, we would like to make a small digression about the defi-
nition of ITTM-semi-decidable open sets. In the case of Turing machines, given
an open set U , it is equivalent to have a recursively enumerable set W ⊆ 2<ω

such that U =
⋃
σ∈W [σ] and to have a functional Φ such that Φ(X) ↓↔ X ∈ U .

In the case of computability over Lωck1 , the same holds: given an open set U ,

it is equivalent to have a Π1
1 set W ⊆ 2<ω such that U =

⋃
σ∈W [σ] and for the

open set U to be Π1
1 as a set of reals.

The corresponding fact with ITTMs does not hold:

Proposition 4.6. Every ITTM semi-decidable open set U ⊆ 2ω is also ITTM
semi-decidable as a set of reals, but there is an open set that is ITTM-decidable
as a set of reals and which is not ITTM-semi-decidable as a set of strings.

Proof. Suppose U has an ITTM semi-decidable code W ⊆ 2<ω. We can
design another ITTM which on input x looks for some n such that x�n ∈ W .
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Whenever it find such an n it halts. It is clear that this other ITTM semi-decide
U as a set of reals.

Let us now exhibit an open set U that is ITTM-decidable as a set of reals,
but does not have an ITTM-semi-decidable code. Let c be given by the “Lost
melody lemma” [14], that is {c} is ITTM-decidable but c is not writable. Then,
A = 2ω − {c} is ITTM-decidable. However, no ITTM-semi-decidable set W ⊆
2<ω can be such that U =

⋃
σ∈W [σ], as otherwise c would be writable by the

following algorithm: if we know that σ ≺ c, we compute a longer prefix of c
by waiting for W to cover either σ∧i (for i = 0 or 1), which will happen by
compactness, and then extend our prefix to σ∧(1− i) ≺ c. a

We now turn to the most interesting randomness notions defined with ITTM.

Definition 4.7 (Carl, Schlicht [6]). A real x is ITTM-random if it is in no
semi-decidable null set of reals. A real x is ITTM-decidable random if it is in no
decidable null set of reals.

ITTM-decidable randomness can be seen as a counterpart of ∆1
1-randomness,

and indeed Carl and Schlicht showed that ITTM-decidable randomness coincides
with randomness over LΣ.

The notion of ITTM-randomness is more interesting and is in many regards
an equivalent for the notion of Π1

1-randomness. We try in this paper to provide
a better understanding of this notion.

4.2. ITTM-randomness. It is not immediately clear that every ITTM semi-
decidable set is measurable. A semi-decidable set has the form {x ∈ 2ω :
LΣx(x) |= Φ} for some Σ1-formula Φ. Such sets need not to be Borel, but
we can separate them into a Borel part and a non-Borel part always included
in a Borel set of measure 0. In particular any such set is included in the set
{x ∈ 2ω : LΣ(x) |= Φ} ∪ {x ∈ 2ω : Σx > Σ}. The fact that every ITTM semi-
decidable set is measurable follows from the fact that the set {x ∈ 2ω : Σx > Σ}
is included in a Borel set of measure 0. This will be a consequence of Corol-
lary 4.10 together with Theorem 2.23.

ITTM-randomness is by many aspects the ITTM counterpart of Π1
1-random-

ness. For instance, there is a greatest Π1
1 null set, and Carl and Schlicht showed

that there is a greatest ITTM-semi-decidable null set. We also have that x is
Π1

1-random iff x is ∆1
1-random and ωx1 = ωck1 . Carl and Schlicht proved the

analogous statement for ITTM-randomness:

Theorem 4.8 (Carl, Schlicht [6]). A real x is ITTM-random if and only if it
is random over LΣ and Σx = Σ.

There are of course differences between ITTM-randomness and Π1
1-random-

ness. It is for instance straightforward to build a sequence that is ∆1
1-random but

not Π1
1-random: to do so one can show that the set of Π1

1-randoms is included
in the set of Π1

1-ML-randoms, which is included in the set of ∆1
1-randoms. One

can then build a sequence which is ∆1
1-random but not Π1

1-ML-random, with
a construction similar to the one given in the proof of (1) implies (3) in Theo-
rem 4.22. The same thing is not possible with ITTM-randomness. We will see in
particular that the Σ-ML-randoms are strictly included in the ITTM-randoms.
Also, it is not clear that there are reals x which are randoms over LΣ and such
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that Σx > Σ. We will for instance show later in Section 5 that the equivalent
notions for genericity collapse: a real x is ITTM-generic iff x is generic over LΣ

iff x is generic over LΣ and Σx = Σ. The question for ITTM-randomness remains
open:

Question 4.9. Does ITTM-randomness coincide with randomness over LΣ ?

Although we are not able to answer the question here, we still can say mean-
ingful things about ITTM-randomness. In [6] Carl and Schlicht proved the fol-
lowing:

Theorem 4.10 (Carl, Schlicht [6]). Suppose that α is countable and admissi-
ble or a limit of admissibles ordinals. Then:

1. If Lβ ≺1 Lα and z is random over Lα, then Lβ(z) ≺1 Lα(z)
2. If Lβ ≺n Lα and z is random over Lγ where Lγ |=“α is countable”, then
Lβ(z) ≺n Lα(z) for n ≥ 2.

In order to understand better Σ-randomness, we introduce a stronger notion
that will be enough to obtain (2) in the previous theorem.

Definition 4.11. A weak α-ML test is given by a set
⋂
q∈Lα Bq such that

the function which to q associates a Borel code of Bq is ∆Lα
1 and such that

µ(
⋂
q∈Lα Bq) = 0.

A real x is captured by a weak α-ML test if x ∈
⋂
q∈Lα Bq. Otherwise we say

that x passes the test. A real x which passes all the weak α-ML tests is weakly
α-ML-random.

Proposition 4.12. Let α be admissible and Lα |=“everything is countable”.
Then weak α-ML-randomness coincides with randomness over Lα.

Proof. It is clear that weak α-ML-randomness implies randomness over Lα
for any α. Suppose now α admissible and let

⋂
q∈Lα Bq be a weak α-ML test.

Let f : ω → Lα be defined with f(n) to be the smallest r ∈ Lα, in the sense of
<L, such that µ(

⋂
q<Lr

Bq) < 2−n. By admissibility of α there exists β < α such

that ∀n f(n) ∈ Lβ . We then have µ(
⋂
q∈Lβ Bq) = 0 and

⋂
q∈Lα Bq ⊆

⋂
q∈Lβ Bq.

As
⋂
q∈Lβ Bq has a Borel code in Lα we have that every element in

⋂
q∈Lα Bq

belongs to a null set of Lα. a

Proposition 4.13. Weak Σ-ML randomness is strictly stronger than random-
ness over LΣ.

Proof. It is clear that weak Σ-ML randomness is stronger than randomness
over LΣ. Let us build x ∈ 2ω that is random over LΣ but not weakly Σ-ML
random.

From Corollary 2.35, let b : ω → LΣ be a bijection which is Σ1-definable in
LΣ with parameter ζ. One can then simply diagonalize against every measure
1 set with a Borel code in LΣ. We define σ0 to be the empty string and F0 to
be 2ω. Suppose for some n and every i ≤ n we have defined a string σi and
a closed set Fi uniformly in i such that µ(σi ∩ Fi) > 0, such that σi � σi+1,
such that Fi+1 ⊆ Fi and such that if b(i) is the Borel code of a co-null set, then
Fi ⊆ Bi. Let us define Fn+1 and σn+1. If b(n + 1) is the Borel code of a set
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of measure less than 1, we define σn+1 = σn and Fn+1 = Fn. If b(n + 1) is the
Borel code of a set B of measure 1, we uniformly find a closed set F ⊆ B with
a Borel code in LΣ and with a measure sufficiently close to 1, so that we have
µ(σn ∩ Fn ∩ F) > 0, using Lemma 4.1. We define Fn+1 = Fn ∩ F . We then
define σn+1 = σni for i ∈ {0, 1} such that µ(σn+1 ∩ Fn+1) > 0.

Let x = σ0 � σ1 � σ2 � . . . . It is clear that x is random over LΣ. The
weak Σ-ML test

⋂
q∈LΣ

Bq is as follow: for q ∈ LΣ, let n = b−1(q). Then define

Bq = σn. It is clear that x ∈
⋂
q∈LΣ

Bq and that µ(
⋂
q∈LΣ

Bq) = 0. a
We then need two lemmas. The first is the same as (1) in [6], but we believe

that this paper’s proof is a bit simpler.

Lemma 4.14. Let β < α with α countable and limit and Lα |=“everything is
countable” and Lβ ≺1 Lα. Let z be random over α. Then we have Lβ(z) ≺1

Lα(z).

Proof. Let Φ(p, q) be a ∆0 formula with p ∈ Pβ . Suppose z is random over
Lα such that Lα(z) |= ∃q Φ(p[z], q). Consider the set BαΦ = {x : Lα(x) |=
∃q Φ(p[x], q)}. We have BαΦ =

⋃
q̇∈Pα Aq̇ where:

Aq̇ = {x : Lα(x) |= Φ(p[x], q̇[x])}

Let µ(BαΦ) = m. Note that as z is random over Lα we must have m > 0. For
every ε with 0 < ε < m we have Lα |= ∃ṙ µ(

⋃
q̇<Lṙ

Aq̇) > ε. As Lβ ≺1 Lα we

then have Lβ |= ∃ṙ µ(
⋃
q̇<Lṙ

Aq̇) > ε. As this is true for every ε we then have

µ(
⋃
q̇∈Pβ Aq̇) = m.

Suppose for a contradiction that z /∈
⋃
q̇∈Pβ Aq̇. There exists ṙ ∈ Pα such

that z ∈ Aṙ. Note that we have
⋃
q̇∈Pβ Aq̇ ⊆

⋃
q̇∈Pα Aq̇ and µ(

⋃
q̇∈Pβ Aq̇) =

µ(
⋃
q̇∈Pα Aq̇). Therefore we have µ(Aṙ −

⋃
q̇∈Pβ Aq̇) = 0. It follows that z

belongs to a set of measure 0 with a Borel code in Lα, which is a contradiction.
Therefore we have z ∈

⋃
q̇∈Pβ Aq̇ which implies Lβ(z) |= ∃q Φ(p[z], q). a

For the following lemma, we write =∗,⊆∗ for equality and inclusion, up to a
set of measure 0.

Lemma 4.15. Let β < α with α countable and limit, such that Lβ ≺2 Lα. Let
BαΦ =

⋃
q̇1<Pα

⋂
q̇2<Pα

Aq̇1,q̇2 be a Σα2 set with parameters in Lβ. Then we have

BαΦ =∗ BβΦ.

Proof. By Lemma 4.14 and Proposition 2.17 we have that if z if random
over Lα, then z ∈

⋃
q̇1<Pβ

⋂
q̇2<Pβ

Aq̇1,q̇2 implies that z ∈
⋃
q̇1<Pα

⋂
q̇2<Pα

Aq̇1,q̇2 .

It follows that ⋃
q̇1<Pβ

⋂
q̇2<Pβ

Aq̇1,q̇2 ⊆∗
⋃

q̇1<Pα

⋂
q̇2<Pα

Aq̇1,q̇2

In particular if µ(
⋃
q̇1<Pα

⋂
q̇2<Pα

Aq̇1,q̇2) = 0 then we are done. Suppose then

that we have µ(
⋃
q̇1<Pα

⋂
q̇2<Pα

Aq̇1,q̇2) = m > 0. For every ε with 0 < ε < m we
have:

Lα |= ∃〈q̇1,0, . . . , q̇1,k〉 ∀ṙ2 µ

 ⋃
0≤i≤k

⋂
q̇2<Lṙ2

Aq̇1,i,q̇2

 > ε
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Using Lβ ≺2 Lα we deduce:

Lβ |= ∃〈q̇1,0, . . . , q̇1,k〉 ∀ṙ2 µ

 ⋃
0≤i≤k

⋂
q̇2<Lṙ2

Aq̇1,q̇2

 > ε

We deduce that:

µ

 ⋃
q̇1<Pβ

⋂
q̇2<Pβ

Aq̇1,q̇2

 ≥ ε
As this is true for every ε with 0 < ε < m, we must have the inequality

µ(
⋃
q̇1<Pβ

⋂
q̇2<Pβ

Aq̇1,q̇2) ≥ m.

Together with the fact that
⋃
q̇1<Pβ

⋂
q̇2<Pβ

Aq̇1,q̇2 ⊆∗
⋃
q̇1<Pα

⋂
q̇2<Pα

Aq̇1,q̇2 ,

we have the proposition. a

Theorem 4.16. Let β < α with α limit, be such that Lβ ≺2 Lα. Let z be
weakly α-ML random. Then Lβ(x) ≺2 Lα(x).

Proof. Let p ∈ Pβ . Let Φ(x1, x2, x3) be a ∆0 formula.
Suppose Lβ(z) |= ∃a ∀b Φ(a, b, p[z]). In particular there exists ȧ ∈ Pβ such

that Lβ(z) |= ∀b Φ(ȧ[z], b, p[z]). From Lemma 4.14, Lα(z) |= ∀b Φ(ȧ[z], b, p[z]).
Thus we have Lα(z) |= ∃a ∀b Φ(a, b, p[z]).

Suppose Lα(z) |= ∃a ∀b Φ(a, b, p). Then, let BαΦ = {x ∈ 2ω : Lα(x) |=
∃a ∀b Φ(a, b, p[x])}. We have BαΦ is the Σα2 set given by

⋃
q̇1<Pα

⋂
q̇2<Pα

Aq̇1,q̇2 ,
where

Aq̇1,q̇2 = {x ∈ 2ω : Lα(x) |= Φ(q̇1[x], q̇2[x], p[x])}
From Lemma 4.15 we have that BαΦ =∗ BβΦ. Let ṙ be such that z ∈

⋂
q̇2∈Pα Aṙ,q̇2 .

Then we have

λ

 ⋂
q̇2∈Pα

(
Aṙ,q̇2 − B

β
Φ

) = 0

It follows that
⋂
q̇2∈Pα(Aṙ,q̇2 − B

β
Φ) is a weak α-ML test. As z is not weakly

α-ML random it does not belong to the test and then it must belong to BβΦ.
Thus z ∈

⋃
q̇1∈Pβ

⋂
q̇2∈Pβ Aq̇1,q̇2 . It follows that Lβ(z) |= ∃a ∀b Φ(a, b, p[z]). a

Corollary 4.17. Let β < α such that Lα |=“everything is countable” and
Lβ ≺2 Lα. Suppose α is admissible. Let z be random over Lα. Then Lβ(z) ≺2

Lα(z).

Proof. If α is admissible we have that weak α-ML-randomness coincides with
randomness over Lα by Proposition 4.12. Thus if z is random over Lα we must
have Lβ(z) ≺2 Lα(z). a

Corollary 4.18. Let z be weakly Σ-ML random. Then z is ITTM-random.

Proof. We have Lζ ≺2 LΣ. We also have that z is ITTM-random iff z is
random over LΣ and Σz = Σ. If z is weakly Σ-ML random we have Lζ(z) ≺2

LΣ(z). In particular (ζz,Σz) is the lexicographically smallest pair of ordinal such
that Lζz (z) ≺2 LΣz (z), which implies Σz = Σ and ζz = ζ. Also if z is weakly
Σ-ML random, then it is random over LΣ. It follows that z is ITTM-random. a
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We now give a more combinatorial equivalent characterization the notion of
ITTM-randomness: a characterization in terms of being captured by sets of
measure 0 having a specific complexity. For the following proposition, by ∆Σ

3

set, we mean a set which is also ∆ζ
3, that is, a set BΣ

1 = BΣ
2 with BΣ

1 which is ΣΣ
3

and BΣ
2 which is ΠΣ

3 , such that for the versions Bζ1 and Bζ2 we also have Bζ1 = Bζ2 .

Theorem 4.19. The following are equivalent:

1. z is ITTM-random.
2. z belongs to no ∆Σ

3 set of measure 0, with parameters in Lζ .

Proof. Let us show (2) implies (1). Suppose that z is not ITTM-random.
If it is not random over LΣ then clearly (2) is false with the ΣΣ

1 set of measure
0 which is the union of all the Borel sets of LΣ of measure 0. Otherwise z
is random over LΣ and there is a parameter p ∈ Lζ(z) with a ∆0 formula
Φ(x1, x2, x3) such that LΣ(z) |= ∃a ∀b Φ(a, b, p) but Lζ(z) |= ∀a ∃b ¬Φ(a, b, p).
Let Ψ(p) ≡ ∃a ∀b Φ(a, b, p).

We have z ∈ BΣ
Ψ ∩ B

ζ
¬Ψ. Also from Lemma 4.15 we have BΣ

Ψ =∗ BζΨ and thus

µ(BΣ
Ψ ∩ B

ζ
¬Ψ) = 0. We now have to transform the Πζ

2 set Bζ¬Ψ into a ΠΣ
2 set BΣ

φ

such that BΣ
φ =∗ Bζ¬Ψ and BΣ

φ still contains z. Let β < ζ be such that p ∈ Lβ(z).

We define BΣ
φ to be

⋂
β≤α≺1Σ Bα¬Ψ. Formally, the corresponding formula φ is

given by φ(β, p) ≡ ∀α ≥ β [Lα is not Σ1 stable or Lα(x) |= ¬Ψ(p)].
Using Proposition 2.18 it is clear that BΣ

φ is ΠΣ
2 . We shall now show that as

long as z is random over Lζ we have z ∈ BΣ
φ iff z ∈ Bζ¬Ψ. As Lζ ≺1 LΣ we have

BΣ
φ ⊆ B

ζ
¬Ψ. Let us show that if z is random over Lζ and z ∈ Bζ¬Ψ, then z ∈ BΣ

φ .
To do so let us first show that for every α with ζ < α < Σ we have that
¬Lα ≺1 LΣ. Fix such an ordinal α. By Theorem 2.29, every accidentally writable
ordinal becomes writable with parameter ζ. In particular {α} is Σ1-definable
in LΣ with some Σ1 formula Φ(ζ, α) (intuitively the program that writes α and
halts). It follows that LΣ |= ∃α Φ(ζ, α) but ¬Lα |= ∃α Φ(ζ, α). Thus we do not
have Lα ≺1 LΣ.

Suppose now z is random over Lζ and z ∈ Bζ¬Ψ. Let α ≥ β be such that
Lα ≺1 LΣ. Then we must have α ≤ ζ. Also if LΣ |= Φ(p) for some Σ1 formula
Φ with parameter p ∈ Lα, we must have Lα |= Φ(p) and then Lζ |= Φ(p).

Therefore Lα ≺1 Lζ . Now as z is random over Lζ and z ∈ Bζ¬Ψ, we must
have by Lemma 4.14 and Proposition 2.17 that z ∈ Bα¬Ψ. It follows that z ∈⋂
β≤α≺1Σ Bα¬Ψ.

We then have that z ∈ BΣ
Ψ ∩ BΣ

φ , with µ(BΣ
Ψ ∩ BΣ

φ ) = 0, and with BΣ
Ψ ∩ BΣ

φ a

∆Σ
3 set with parameters in Lζ . Note that BζΨ ∩ B

ζ
φ is also a ∆ζ

3 set.

Let us show (1) implies (2). Suppose now that there is a ΠΣ
3 set BΣ

Φ and a ΣΣ
3

set BΣ
Ψ, with parameters in Lζ , such that z ∈ BΣ

Φ = BΣ
Ψ and µ(BΣ

Φ) = µ(BΣ
Ψ) = 0,

with also BζΦ = BζΨ.

If z /∈ BζΦ then LΣ(z) |= Φ and ¬Lζ(z) |= Φ for the Π3-formula Φ. By
Proposition 2.17 we then have ¬Lζ(x) ≺2 LΣ(x) and thus z is not ITTM-random.

Otherwise z ∈ BζΦ and thus z ∈ BζΨ. We also have that µ(BΣ
Ψ) = 0. Also

BΣ
Ψ =

⋃
q̇1∈PΣ

⋂
q̇2∈PΣ

⋃
q̇3∈PΣ

Aq̇1,q̇2,q̇3 . For any name q̇1 ∈ Pζ we have that
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µ(
⋂
q̇2∈PΣ

⋃
q̇3∈PΣ

Aq̇1,q̇2,q̇3) = 0 and from Lemma 4.15 we then must have that

µ(
⋂
q̇2∈Pζ

⋃
q̇3∈Pζ Aq̇1,q̇2,q̇3) = 0. In particular there is q̇1 ∈ Pζ such that z ∈⋂

q̇2∈Pζ
⋃
q̇3∈Pζ Aq̇1,q̇2,q̇3 . It follows that z is not random over LΣ and thus not

ITTM-random. a
So ITTM-randomness is equivalent to ∆Σ

3 -randomness for sets with parameters
which are at most eventually writable, but not accidentally writable. We shall
now see that it is actually very close to randomness over LΣ, which can be shown
to be equivalent to a similar test notion:

Theorem 4.20. The following are equivalent:

1. z is random over LΣ.
2. z is in no ΣΣ

2 set of measure 0, with parameters in Lζ .
3. z is in no ΠΣ

2 set of measure 0, with parameters in Lζ .

Proof. It is clear that both (2) and (3) imply (1), using the ΣΣ
1 set of mea-

sure 0 which is the union of all the Borel sets of LΣ of measure 0.

Let us show (1) implies (2). Let BΣ
Φ be a ΣΣ

2 set equal to
⋃
q̇1∈Pα

⋂
q̇2∈Pα Aq̇1,q̇2

with µ(BΣ
Φ) = 0. The following argument is a combination of the Σ2-stability of

Lζ in LΣ, together with the admissibility of Lζ .

By Lemma 4.15 we have µ(BζΦ) = 0. Then, ∀q̇1 ∈ Pζ µ(
⋂
q̇2∈Pζ Aq̇1,q̇2) =

0. Fix q̇1 ∈ Pζ . By admissibility of ζ, there must exists ṙ ∈ Pζ such that
µ(
⋂
q̇2<Lṙ

Aq̇1,q̇2) = 0. It follows that Lζ |= ∀q̇1 ∃ṙ µ(
⋂
q̇2<Lṙ

Aq̇1,q̇2) = 0. As

Lζ ≺2 LΣ we also have LΣ |= ∀q̇1 ∃ṙ µ(
⋂
q̇2<Lṙ

Aq̇1,q̇2) = 0. In particular every

real in BΣ
Φ is in a set of measure 0 with a Borel code in LΣ.

Let us show (1) implies (3). Let BΣ
Φ be the ΠΣ

2 set of measure 0. By Lemma 4.15

we must have BζΦ =∗ BΣ
Φ. Let z ∈ BΣ

Φ. Suppose z /∈ BζΦ. Then we have LΣ(z) |= Φ
and ¬Lζ(z) |= Φ for a Π2 formula Φ with parameters in Lζ . By Lemma 4.14
together with Proposition 2.17 we then have that z is not random over LΣ.

Suppose now z ∈ BζΦ. Then z is in a set of measure 0 with a Borel code in LΣ

which implies that z is not random over LΣ. a
4.3. Martin-Löf randomness in the constructibles. It was shown in [6]

that randomness over Lλ is the counterpart of ∆1
1-randomness for ITTMs, and

λ-ML-randomness the counterpart of Π1
1-ML-randomness. Carl and Schlicht

asked if as in the hyperarithmetic case these two notions really differ. We give
a general answer to this question by characterizing the ordinals α for which the
two notions are different.

4.3.1. Separation of randomness over Lα and α-ML-randomness. We first
give the easy relation between randomness over Lα and α-ML-randomness:

Proposition 4.21. Let α be limit. Then α-ML-randomness is stronger than
randomness over Lα

Proof. Let B be a Borel set with code in Lα. By Lemma 4.1, we define an
α-ML-test

⋂
n Un such that for all n, we have B ⊆ Un, and µ(Un) ≤ µ(B)+2−n =

2−n. Then B ⊆
⋂
n Un, this proves the property. a
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The following theorem characterizes exactly when randomness over Lα and
α-ML-randomness coincide, for α admissible or α limit and Lα |=“everything is
countable”.

Theorem 4.22. Let α be admissible or α limit such that Lα |=“everything is
countable”. The following are equivalent:

1. α is projectible into ω.
2. There is a universal α-ML-test.
3. α-ML-randomness is strictly stronger than randomness over Lα.

Proof. Note first that if α is limit, non-admissible and Lα |=“everything is
countable”, then by Theorem 2.34 α is projectible into ω. Therefore for (3)
implies (1) and (2) implies (1), we can suppose α admissible.

The proof that (3) implies (1) is done by contraposition and Theorem 2.21: if
α is not projectible into ω, then Lα satisfies Σ1-comprehension for subsets of ω
and then every α-ML-test is in Lα, which implies that randomness over Lα is
stronger than α-ML-randomness. Together with Proposition 4.21 we have that
the two notions of randomness coincide.

To prove (2) implies (1), suppose we have (2) and α is not projectible into ω,
in order to get a contradiction. Then by Theorem 2.21, the universal α-ML-test⋂
n Un would be in some Lβ with β < α. We have that 2ω − U0 is a closed

set whose leftmost path is definable in Lβ and then belongs to Lβ+1. As this
leftmost path is definable in Lα, it is not random over Lα, which contradicts the
universality of the test.

Let us now prove (1) implies (2). Assuming that α is projectible into ω, it is
then possible to α-recursively assign an integer to all the parameters in Lα, we
will use this to assign an integer to every α-ML-test. We have an enumeration
{Φm(x, k, p, σ)}m∈ω of every ∆0 formula with four free variables and without
parameters. We see any such formula as defining a uniform intersection of α-
recursively enumerable open sets when given a parameter p: for some m the for-
mula Φm together with a parameter p defines an intersection of open sets

⋂
k Uk,

each Uk being the union of all the cylinders [σ] such that Lα |= ∃x Φm(x, k, p, σ).
Let π be a Σ1-definable injection of Lα into ω. Note that if α is admissible we

use the projection together with the bijection between α and Lα. Otherwise we
use the bijection given by Theorem 2.34. Let p be a parameter and n an integer
such that π(p) = n. If

⋂
k Uk is defined in Lα by the Σ1 formula Φm(x, k, p, σ)

with parameter p, then
⋂
k Uk is also defined by the following parameter-free

Σ1 formula Ψn,m(k, σ) ≡ ∃p ∃x π(p) = n ∧ Φm(x, k, p, σ). Consequently, every
uniform intersection of α-recursively enumerable open set

⋂
k Uk is defined by a

formula in the enumeration {Ψm,n(k, σ)}〈m,n〉∈ω.
Now for integers m,n, the formula Ψm,n(k, σ) might not define an α-ML-test,

due to the measure requirement. For any n,m let ψ̃m,n(z, k, σ) be a ∆0 formula

such that Lα |= ∃z ψ̃m,n(z, k, σ) iff Lα |= Ψn,m(k, σ). We define the computable
function g which to n,m associates the code g(n,m) of the ∆0 formula φ(z, k, σ)

φ(z, k, σ) ≡ ψ̃m,n(z, k, σ) ∧ λ
(⋃
{[τ ] : ∃z′ ≤L z ψ̃n,m(z′, k, τ)}

)
≤ 2−k
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The formula ∃z φ(z, k, σ) always defines a Martin-Löf test. Furthermore, if
Ψn,m(k, σ) defines an α-ML-test, then the formula ∃z φ(z, k, σ) defines the same
test. It follows that {g(n,m)}n,m∈ω is an enumeration of codes for α-ML-tests
that contains all the α-ML-tests. This can then be used to define a universal
α-ML test as in the lower settings: given an enumeration {

⋂
k Unk }n∈ω of all

the Martin-Löf tests, we define Vm =
⋃
i U ii+m+1. We clearly have

⋃
n

⋂
k Unk ⊆⋂

m Vm, and as µ(U ii+m+1) ≤ 2−m−i−1 we have µ(Vm) ≤ 2−m which implies that⋂
m Vm is a Martin-Löf test. Thus (1) implies (2).
To prove (1) implies (3), we will build an α-ML test U capturing a real x which

is random over Lα. Let π be a Σ1-definable injection of Lα into ω. We proceed
by stages where the stages are ordinals s < α. The stages will approximate a set
x random over Lα in a ∆0

2 way, together with an α-ML test that capture x. To
do so, for every integer n and every stage s, we will define a closed set Fns and
a string σns with |σns | = 2n and σns ≺ σn+1

s , such that:

λ

⋂
i≤n

F is ∩ [σns ]

 > 0(Rsn)

If π(a) = n for a ∈ Ls such that a is the code

of a Borel set Ba of measure 1, then Fns ⊆ Ba
(Ssn)

Also the definition of σns and Fns will be independent from the definition of
σnt and Fnt for t <L s. At stage s, we define F0

s to be 2ω and σ0
s be the empty

string. It is clear that Rs0 and Ss0 are satisfied. Suppose F is and σis have been
defined for every i ≤ n such that Rsi and Ssi are satisfied. Let us define Fn+1

s and
σn+1
s . If π(a) = n+ 1 for some a ∈ Ls such that a is the Borel code of a set Ba

of measure 1, then let
⋃
m Sm ⊆ Ba be a conull union of closed sets with a Borel

code in Lα. Note that by Lemma 4.1 we can obtain such a union uniformly. Let
then k be the smallest such that:

λ

⋃
i≤k

Si ∩
⋂
i≤n

F is ∩ [σns ]

 > 0

Let Fn+1
s =

⋃
i≤k Si. Let σsn+1 be the first extension of σsn by two bits such that

Rsn+1 is satisfied.
Let xs be the sequence σs1 ≺ σs2 ≺ σs3 ≺ . . . . Note that for each n, the

sequences {σns }s<α and {Fns }s<α change at most once per integer i ≤ n such
that π(a) = i for some Borel set Ba of measure 1 with a ∈ Ls. Thus these
sequences change at most n times. In particular the whole process converges
and the sequence xs converges to some sequence x.

This can also be used to define the α-ML-test that contains x. We define
Un =

⋃
s<α[σns ]. This is an α-ML-test as there are at most n distinct versions of

σns and for each of them we have |σns | = 2n. The measure of Un is then bounded
by n × 2−2n ≤ 2−n. This shows that x is not α-ML-random. Also by Ssn we
have that x is in every Borel set Bs, so it is random over Lα. We then have (1)
implies (3). a
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Corollary 4.23. We have:

• λ-ML-randomness is strictly stronger than randomness over Lλ.
• ζ-ML-randomness is equal to randomness over Lζ .
• Σ-ML-randomness is strictly stronger than randomness over LΣ.

Proof. By Corollary 2.31, we have that λ is projectible over ω with no pa-
rameter, and ζ is not projectible into ω. By Corollary 2.35, we have that Σ is
projectible into ω with parameter ζ. a

We shall now improve Corollary 4.23 for Σ-ML-randomness, by showing that
it is strictly stronger than weak Σ-ML randomness and thus than ITTM-ran-
domness.

Theorem 4.24. Σ-ML-randomness is strictly stronger than weak Σ-ML ran-
domness and than ITTM-randomness.

Proof. We shall construct a real z such that for any ΣΣ
1 set

⋃
p∈LΣ

Bp of

measure 1, we have z ∈
⋃
p∈LΣ

Bp, together with a Σ-ML test
⋂
n∈ω Un contain-

ing z, and with µ(Un) ≤ 2−n. The proof is very similar to (1) implies (3) in
Theorem 4.22.

Let b be Σ1-definable bijection of Corollary 2.35 from ω to LΣ. Using this
bijection, let {

⋃
p∈LΣ

Bn,p}n∈ω be an enumeration of all the union of Borel sets
of LΣ.

We will define a computation, stage by stage, of a set z, that will be approx-
imated in a ∆0

2 way, together with a Σ-ML test that will capture z. To do so,
for every integer n and every stage s, we will define a closed set Fns and a string
σns with |σns | = 2n and σns ≺ σn+1

s , such that for every n, s we have

λ

⋂
i≤n

F is ∩ [σns ]

 > 0

and for every n, if µ(
⋃
p∈LΣ

Bn,p) = 1 there exists t such that for all s ≥ t we

have Fns ⊆
⋃
p∈LΣ

Bn,p. Note also that the definition of Fns and σns will not
depend on Fmt or σmt for m ∈ ω and t < s.

At stage s, we define F0
s to be 2ω and σ0

s to be the empty string. Suppose F is
and σis have been defined for every i ≤ n. Let us define Fn+1

s and σn+1
s :

Suppose µ(
⋃
p∈Ls Bn+1,p ∩

⋂
i≤n F is ∩ (σns )) > 0. Then let us find some closed

set Fn+1
s ⊆

⋃
p∈Ls Bn+1,p such that µ(

⋂
i≤n+1 F is ∩ [σns ]) > 0. Let then σsn+1 be

the first extension of σsn by two bits such that µ(
⋂
i≤n+1 F is ∩ [σn+1

s ]) > 0.
Let zs be the sequence σs1 ≺ σs2 ≺ σs3 ≺ . . . . Note that for each n, the

sequences {σns }s<Σ and {Fns }s<Σ change at most once per integer i smaller than
n. Thus these sequences change at most n times. In particular the whole process
converges and the sequence zs converges to some sequence z.

This can then be used to define the α-ML-test that contains z. We define
Un =

⋃
s<Σ[σns ]. This is a Σ-ML-test as there are at most n distinct versions of

σns and for each of them we have |σns | = 2n. The measure of Un is then bounded
by n× 2−2n ≤ 2−n. This shows that z is not Σ-ML-random. It is also clear that
z is in every set

⋃
p∈LΣ

Bp such that µ(
⋃
p∈LΣ

Bp) = 1. a
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4.3.2. Summary. The following picture summarizes the relations between all
the randomness notions we have seen:

randomness over Lλ

ITTM-decidable
randomness

λ-ML-randomness

randomness over Lζ

ζ-ML-randomness

randomness over LΣ

ITTM-randomness

weak
Σ-ML-randomness

Σ-ML-randomness

?

?

Figure 1. Higher randomness

We recall here the two remaining open questions:

Question 4.25. Is ITTM-randomness strictly stronger than randomness over
LΣ ?

Question 4.26. Is weak Σ-ML randomness strictly stronger than ITTM-ran-
domness ?

Note that by Proposition 4.13 a negative answer to one of the two questions
would provide a positive answer to the other one.

4.3.3. Mutual λ-ML randoms computing common reals. When two sets are
mutually random, we expect them to compute no common non-computable sets.
However, depending on the randomness level we ask for, this is sometimes not
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the case. Carl and Schlicht asked in Question 5.5 from [6] if two mutually λ-ML-
randoms could compute a common non-writable set. It is the case with Martin-
Löf randomness, and sets which can be computed by two mutually Martin-Löf
random must be K-trivials. We show that the same happens with ITTMs: some
non-writable sets can be ITTM-computed by two mutually λ-ML-randoms. We
do not study here however the notion of K-triviality for ITTMs, even though
we conjecture that most of the work done about K-trivials and about higher
K-trivials (K-trivials defined over Lωck1 ) lifts to the world of computability inside

Lλ, using the fact that λ is projectible into ω.
First, we need to expand, in a straightforward way, some definitions from ML-

randomness to the ITTM settings. In the following, we focus on ITTMs but the
proofs also work for α such that there exists a universal α-ML-test, in other word
by Theorem 4.22 when α is projectible in ω and such that either α is admissible
or both α is limit and Lα |=“everything is countable”.

Definition 4.27. An ITTM-Solovay test is a sequence of uniformly ITTM-
semi-decidable open sets (Ss)s<λ such that Σs<λµ(Ss) <∞. We say that Z ∈ 2ω

passes the test if Z belongs to only finitely many Ss.
Proposition 4.28. Let z ∈ 2ω. The following are equivalent:

1. z passes every ITTM-Solovay tests.
2. z is λ-ML-random.

The proof of this characterization of λ-ML test via ITTM-Solovay tests is
exactly the same as the one from the lower case, that can be found in [11]. Our
witness for answering the question will be the even and odd parts of a specific
λ-ML-random, an approximable one.

Definition 4.29 (Chaitin’s Ω for ITTMs). Let
⋂
n Un be a universal λ-ML-

test. We define Ω as being the leftmost path of 2ω − U0. In particular Ω is
λ-ML-random and has a left-c.e. approximation in Lλ.

In [6] Carl and Schlicht discuss the van Lambalgen theorem for λ-ML random-
ness. It holds using the fact that λ is projectible into ω. The proof is the same
as the one for ωck1 -ML randomness (called Π1

1-ML randomness in the literature)
and works for any α limit such that α is projectible into ω. In particular for
Ω = Ω1 ⊕ Ω2 we have that Ω1 and Ω2 are mutually λ-ML random.

Theorem 4.30. There exists a non ITTM-writable set A which is ITTM-
writable from both Ω0 and Ω1, the two halves of Chaitin’s Ω for ITTMs.

Proof. Let us first show the following version of the Hirschfeldt and Miller
theorem for ITTMs (see for example [22, Theorem 5.3.15]): let

⋂
n Un be a

uniform intersection of λ-recursively enumerable open sets, with µ(
⋂
n Un) = 0.

Then there exists a non-writable set A such that A is x-writable in every λ-ML
random x ∈

⋂
n Un. The set A will be a λ-recursively enumerable simple set,

that is, it will be co-infinite and intersect any infinite λ-recursively enumerable
set of integers. Let

⋂
n Un be a uniform intersection of λ-recursively enumerable

open sets of measure 0. Note that we can suppose without loss of generality that
Un+1 ⊆ Un. Let {We}e∈ω be an enumeration of the λ-recursively enumerable
sets.
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The enumeration of A is defined by stages. At ordinal stage s = ω×α+ 〈n, e〉,
if we have:

1. n > 2e,
2. A[< s] ∩We[s] = ∅,
3. n ∈We[α]
4. µ(Un[α]) ≤ 2−e

Then we add n to A at stage s.
First, let’s show that A is simple. It is obviously co-infinite, as |A∩ [0, 2n]| ≤ n

by requirements (1) and (2). Let e be such that We is infinite, and towards a
contradiction, suppose that We ∩ A = ∅. Then, let m > 2e such that µ(Um) <
2−e, together with n ≥ m and α such that n ∈ We[α]. Note that we have
µ(Un) ≤ µ(Um) < 2−e. At stage s = ω × α + 〈n, e〉 if A[s] ∩We[s] = ∅ then (1)
(2) (3) and (4) will be met and n ∈We will be added to A at stage s.

Now, let’s show that A is x-writable from every λ-ML-random element of⋂
n Un. We build the following ITTM-Solovay test: each time we add n into A

at stage s = ω × α + 〈n, e〉, we put Un[α] in the Solovay test. Note that by (4)
we have µ(Un[α]) < 2−e, in particular the measure requirement of the Solovay
test is satisfied. Now if x ∈

⋂
n Un is λ-ML-random it belongs to only finitely

many such sets Un[α]. In particular, there exists k such that for every m ≥ k,
if m ∈ A, then m ∈ A[s] for s = ω × (α + 1) where α is the smallest such that
x ∈ Um[α]. We can then use x to write A.

Finally, it remains only to prove that Ω0 and Ω1 are both in a common uniform
intersection

⋂
n Un of λ-open sets, with µ(

⋂
n Un) = 0. Each set Un is given by

Un =
⋃
α<λ

[Ω0[α] � n] ∪
⋃
α<λ

[Ω1[α] � n]

It is clear that each set Un is a λ-recursively enumerable open set which contains
both Ω0 and Ω1. Let S0 = {Ω0[α] : α < λ} ∪ {Ω0} and S1 = {Ω1[α] : α <
λ} ∪ {Ω1}. To show that

⋂
n Un has measure 0, we use the following argument

from [3, Proposition 5.1]: if x ∈
⋂
n Un, then x is at a distance of 0 from the set

S0∪S1. Also it is clear that both S0 and S1 are closed sets, and thus that S0∪S1

is a closed set (in particular because for every i the sequences {Ω0(i)[α]}α<λ and
{Ω1(i)[α]}α<λ change only finitely often). As x is at a distance 0 from a closed
set, it is a member of the closed set. As the closed set is countable it has measure
0. It follows that µ(

⋂
n Un) = 0. a

§5. Genericity. Just like we define as random the sequences which are in
every measure 1 set, among countably many sets, we define as generic the se-
quences which are in every co-meager set, among countably many sets. Both
notions are obtained by considering a notion of largeness (measure 1 sets for
randomness and co-meager sets for genericity), together with a countable class
of large sets. For this reason both notions present many similar properties, and
of course also many differences, as they are somehow opposite notions: whereas
the random sets have no atypical property, the generic sets have them all.

The notion of genericity was designed by Cohen, as a canonical forcing no-
tion. He considered as generic, the sets that belongs to no meager set, with
a Borel code, in a countable model of ZFC. Various weakenings of this notion
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have then been considered in the literature. This has been done in computabil-
ity by Jockush and Kurtz [18] [19], in higher computability by Greenberg and
Monin [13], and for ITTMs by Carl and Schlicht [5]. In the later paper, the
authors mostly focus on sets that are computable from every oracle in a large
set, for various notions of largeness, including co-meagerness. We focus here
on various genericity notions, defined from ITTM. We define in particular the
categorical analogue of ITTM-randomness, and we show that it is equivalent to
ITTM-genericity over LΣ, whereas the equivalent question remains open for the
randomness case.

5.1. Genericity over the constructibles. Again, we do not work with the
forcing relation, traditionally defined to deal with generic sets, but we instead
directly deal with Borel sets. The following proposition is the constructible
version of the fact that every Borel set has the Baire property, and is the core
tool behind Cohen forcing:

Theorem 5.1 (Effective Baire property theorem). There is a function b 7→
(o,m), which to any ∞-Borel code b, associates the ∞-Borel code o of an open
set, and the ∞-Borel code m of a union of closed meager sets, such that for any
x /∈ ι(m) we have x ∈ ι(b) iff x ∈ ι(o). Moreover this function is uniformly ∆Lα

1

for α limit.

Proof. The function is defined by ∆0 induction on the rank of sets of Lα
with the bounded rank replacement of Proposition 2.10. If b is the∞-code of an
open set then o = b and m is the ∞-code of the empty set. If b is the ∞-code of
a closed set then o is the interior of b and m is the boundary of b. We leave to
the reader the proof that the function which to an ∞-Borel code of a closed set
associates the ∞-Borel code of its interior and boundary, is uniformly ∆Lα

1 for
α limit.

Consider now an ∞-Borel code b =
∨
i∈I ci. Note that the rank of each ci in

Lα is smaller than the rank of b. By induction we uniformly find ∞-Borel codes
oi and mi such that for any i and any x /∈ ι(mi) we have x ∈ ι(bi) iff x ∈ ι(oi).
We have that o is given by a code of

⋃
i∈I ι(oi) and m is given by a code of⋃

i∈I ι(mi). It is clear that for any x /∈ ι(m) we have x ∈ ι(b) iff x ∈ ι(o).
Consider now an ∞-Borel code b =

∧
i∈I ci. Note that the rank of each ci in

Lα is smaller than the rank of b. By induction we uniformly find ∞-Borel codes
oi and mi such that for any n and any x /∈ ι(mi) we have x ∈ ι(bi) iff x ∈ ι(oi).
We have that o is given by a code of the open set generated by all the strings σ
such that each open set ι(oi) is dense in [σ]. For each such string σ we find mσ,i,
the ∞-Borel code of the closed set of empty interior [σ] − ι(oi). Let ms be a
code of the meager set given by the union of each such ι(mσ,i). The meager set
ι(ms)∪

⋃
i∈I ι(mi) ensures that if x ∈ ι(o), then x ∈ ι(

∧
i∈I ci). We now need to

ensure that if x ∈ ι(
∧
i∈I ci) then x ∈ ι(o). For that we add the following meager

set: for each oi we consider an ∞-Borel code ui of 2ω − ι(oi). We then let mt be
the boundary of the closure of

⋃
i ι(ui). A code m of our full meager set is then

given by a code of ι(mt) ∪ ι(ms) ∪
⋃
i∈ω ι(mi). Suppose now that for x /∈ ι(m)

we have x ∈
∧
i∈I ci, and suppose that for no prefix σ ≺ x we have [σ] ⊆ ι(o).

In particular for every prefix σ ≺ x, there is an extension τ � σ and some i such
that [τ ] ⊆ ι(ui). Also because x /∈

⋃
i∈I ι(mi) we must have x ∈ ι(oi) for every i
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and then τ ⊀ x. It follows that x is in the boundary of the closure of
⋃
i ι(ui),

which contradicts that x /∈ ι(m). a
We now use the previous proposition to define the forcing relation in Lα for α

limit, as follows:

Definition 5.2. Let α be limit. Let Φ(p) be a formula and p ∈ Lα a param-
eter. Let Bα(p) = {x : Lα(x) |= Φ(p)}. Let o and m be the Borel codes of
Theorem 5.1, such that for x /∈ ι(m) we have x ∈ ι(un) iff x ∈ Bα(p). Then we
define σ α Φ(ṗ) if [σ] ⊆ ι(o).

It is clear that for z � σ generic enough, that is, which does not belong to
sufficiently many meager sets, we have Lα(z) |= Φ(p) iff σ α Φ(ṗ).

Proposition 5.3. Let α be countable and limit. Let Φ(p) be a formula with
parameter p ∈ Lα. For any σ, there exists τ � σ such that τ α Φ(ṗ) or
τ α ¬Φ(ṗ).

Proof. Let o1 be the open set which equals {x ∈ 2ω : Lα(x) |= Φ(ṗ)} and o2

be the open set which equals {x ∈ 2ω : Lα(x) |= ¬Φ(ṗ)}, both up to a union of
closed meager sets of Borel code m. Suppose we have [σ]∩ (ι(o1)∪ ι(o2)) = ∅ for
some σ. In particular there is z � σ with z /∈ ι(m) (because a countable union
of meager closed set is nowhere dense, here we use that α is countable). Either
Lα(z) |= Φ(p) or Lα(z) |= ¬Φ(p). In the first case we must have z ∈ ι(o1) and in
the second case we must have z ∈ ι(o2), which contradicts [σ]∩ (ι(o1)∪ ι(o2)) =
∅. a

We now see that the predicate σ α Φ(ṗ) for ∆0 formulas with parameters ṗ
is uniformly ∆α

1 . We in fact need a bit more, in order to show that the forcing
relation for more complex formulas is still not too complex, even when α is not
admissible (see Corollary 5.6):

Proposition 5.4. The function which to a string σ and a ∆0 formula Φ(ṗ)

returns 1 iff σ α Φ(ṗ) (and 0 otherwise) is ∆Lα
1 uniformly in α limit, and more

so, the function which on a ∆0 formula Φ(ṗ) returns the function f : 2<ω →
{0, 1} such that f(σ) = 1 iff σ α Φ(ṗ), is ∆Lα

1 uniformly in α limit.

Proof. By Theorem 3.6 one can uniformly find the Borel code of Bα(p) =
{x : Lα(x) |= Φ(p)}. Then by Theorem 5.1 one can uniformly find the Borel
code o of the open set such that Bα(p) equals ι(o) up to a meager set, and let
f(pΦ(ṗ)q) = o. The function f is simply given by f(σ) = 1 iff [σ] ⊆ ι(o). a

In the previous proposition, note that the forcing relation is uniform in α: for
α1 < α2 both limit, the same formula defines the forcing relation, interpreted as
α1 when working in Lα1 and interpreted as α2 when working in Lα2 .

Proposition 5.5. Let α be limit. Let Φ(a, p) be some formula with parameter
p ∈ Lα. We have:

σ α ∃a Φ(a, ṗ) iff ∃ȧ σ α Φ(ȧ, ṗ)
σ α ∀a Φ(a, ṗ) iff ∀ȧ ∀τ � σ ∃ρ � τ ρ α Φ(ȧ, ṗ)

Proof. This follows from the construction of the Borel code o of Theorem 5.1
together with the definition of the forcing relation: for each a ∈ Lα, let Aȧ =
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{x ∈ 2ω : Lα |= Φ(ȧ, ṗ)} and let oȧ be Borel codes of open sets such that ι(oȧ)
equals Aȧ up to a union of closed meager set.

Then we have that the Borel code of the open set o of Theorem 5.1 cor-
responding to

⋃
ȧ∈Pα Aȧ is given by

⋃
ȧ∈Pα ι(oi). This gives us exactly σ α

∃a Φ(a, ṗ) iff ∃ȧ σ α Φ(ȧ, ṗ).
Now the Borel code of the open set o of Theorem 5.1 corresponding to the set⋂
ȧ∈Pα Aȧ is given by Borel code of the open set generated by all the strings σ

such that each ι(oȧ) is dense in [σ]. This gives us exactly σ α ∀a Φ(a, ṗ) iff
∀ȧ ∀τ � σ ∃ρ � τ ρ α Φ(ȧ, ṗ). a

Corollary 5.6. Let α be limit and n ≥ 1. The function which to a string
σ and a Σn formula Φ(ṗ) returns 1 iff σ α Φ(ṗ) (and 0 otherwise) is ΣLαn
uniformly in α.

Proof. By induction on the complexity of formula, starting with the function
f of Proposition 5.4. For the induction, note the the quantifiers ∀τ � σ and
∃τ � σ are bounded, and that for the Π case, we have to use each time the
function f : 2<ω → {0, 1} given by Proposition 5.4. a

5.2. Main definitions. We now formally define the notions of genericity
that will be used in this paper.

Definition 5.7. If α is an ordinal, a sequence z is generic over Lα if z is in
every dense open set U with a Borel code in Lα.

This previous definition applied to ITTM give that z is generic over λ (resp.
generic over ζ, resp. generic over Σ) if z is in every dense open set with a
writable Borel code (resp. an eventually writable Borel code, resp. an acci-
dentally writable Borel code). These notions are somehow analogues of ∆1

1-
genericity, in the sense that ∆1

1-genericity corresponds to genericity over Lωck1 as

defined above.

Proposition 5.8. Let α be limit. Let Φ(ṗ) be a ∆0 formula. Let z be generic
over Lα. Then Lα(z) |= Φ(ṗ[z]) iff ∃σ ≺ z σ α Φ(ṗ).

Proof. By Theorem 3.6 one can uniformly find the Borel code of Bα(p) =
{x : Lα(x) |= Φ(p)}. Then by Theorem 5.1 one uniformly find the Borel code m
of the union of meager closed sets such that for any x /∈ ι(m) we have x ∈ Bα(p)
iff ∃σ ≺ x σ α Φ(ṗ). As z is generic over Lα it does not belong to ι(m) and the
result follows. a

We now define the categorical analogues of ITTM-randomness and ITTM-
decidable randomness. A first idea would be to define as ITTM-generic reals
those which are in every ITTM-semi-decidable open sets (open sets generated
by semi-decidable set of strings). However it is clear that such open sets cannot
be enumerated beyond stage λ, and the notion we get is not so interesting (it is
in fact equivalent to genericity over Lλ). Instead we need to use reals as oracle
and the following definition seems to be the correct one:

Definition 5.9. Let z ∈ 2ω. We say that z is:

• ITTM-generic if it is in no meager ITTM-semi-decidable set.
• coITTM-generic if it is no meager ITTM-co-semi-decidable set.
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• ITTM-decidable generic if it is in no meager ITTM-decidable set.

The counterparts of these notions for Infinite Time Register Machines have
already been studied in [4].

5.3. ITTM-genericity and ITTM-decidable genericity. In this section,
we will fully characterize genericity over ITTM-decidable, semidecidable and
cosemidecidable sets in terms of genericity over a level of the L-hierarchy. We
will see in particular that ITTM-genericity coincides with genericity over LΣ,
whereas the analogue question remains open for randomness.

5.3.1. ITTM-genericity. We first see why ITTM-genericity is the categorical
analogue of ITTM-randomness.

Theorem 5.10. Let α < β limit with Lα ≺1 Lβ. Suppose z ∈ 2ω is generic
over Lβ. Then Lα(z) ≺1 Lβ(z).

Proof. Suppose Lβ(z) |= ∃q Φ(q, p) for a ∆0 formula Φ and p ∈ Lα. Let q
be such that Lβ(z) |= Φ(q, p). As z is generic over Lβ and as Φ is ∆0, there must
exist by Proposition 5.8 a string σ ≺ z such that σ β Φ(q̇, ṗ). In particular as
∃q̇ σ β Φ(q̇, ṗ) we have σ β ∃q Φ(q, ṗ). By Σ1-stability of Lα in Lβ we have
σ α ∃q Φ(q, ṗ) and then we have Lα(z) |= ∃q Φ(q, p). a

Theorem 5.11. Let z ∈ 2ω. Then the following are equivalent

1. z is ITTM-generic
2. z is generic over LΣ and Σz = Σ.
3. z is generic over Lζ and ζz = ζ.

Proof. We first prove (1) implies (2). Suppose z is ITTM-generic. Note
first that the set A = {x ∈ 2ω : Σx > Σ} is ITTM-semi-decidable: given
z, one simply has to look for two z-accidentally writable ordinals α < β such
that Lα ≺2 Lβ and then halt. Such a machine halts exactly on oracles x such
that Σx > Σ. Carl and Schlicht showed [5] that if x is generic over LΣ+1, then
Σx = Σ (we will improve this result with Corollary 5.14). Thus the set A is a
meager semi-decidable set, which implies that Σz = Σ. We now have to show
that z is generic over LΣ. Suppose not for contradiction. We can then design the
machine which given x on its input tape, look for all the accidentally writable
Borel codes of unions of closed set of empty interior, and halt whenever it finds
one such that x is in it. It is clear that such a machine semi-decides a meager
set, and in particular halts on z, which contradicts that z is ITTM-generic.

Let us now show that (2) implies (1). Suppose z is generic over LΣ and Σz = Σ.
Let M be an ITTM that semi-decides a meager set M . Suppose for contradiction
that M(z) ↓. As we have Σz = Σ we must also have ζz = ζ, by Theorem 2.29. By
Theorem 5.10 we have Lλ(z) ≺1 Lζ(z) = Lζz (z). As λz is the smallest ordinal α
such that Lα(z) ≺1 Lζz (z) and as λ ≤ λz we then have λ = λz. It follows that
M(z) ↓ [α] for some α < λ. Thus the set B = {x ∈ 2ω : Lλ(x) |= M(x) ↓ [α]}
is a Borel set with a code in Lλ. As M halts on a meager set, the set B must be
meager. As z ∈ B it is not generic over Lλ, which is a contradiction.

It is clear that (2) implies (3). Let us now show (3) implies (2). Suppose z is
generic over Lζ and ζz = ζ. By Theorem 2.29 we have that Σz = Σ. Suppose for
contradiction that z is not generic over LΣ. Then we can design the machine M
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that looks for the smallest accidentally writable ordinal α such that Lα contains
the Borel code of a meager set containing z, and when it finds it, writes α and
halts. As z is not generic over LΣ the machine M with input z will write some
accidentally writable ordinal α and halt. As z is generic over Lζ it must be the
case that α > ζ. It follows that λz > ζ and thus ζz > ζ, a contradiction. a

Corollary 5.12. There is a largest ITTM semi-decidable meager set.

Proof. Such a set is given in the proof of (1) implies (2), in the previous
theorem: let M be the ITTM which halt on x such that Σx > Σ, or on x such
that x belongs to a meager set with an accidentally writable Borel code. It is
clear that M semi-decides a meager set. Also this meager set contains all the
elements x which are not generic over LΣ, or such that Σx > Σ. a

We now show our main theorem for this section, that is, genericity over LΣ

coincides with ITTM-genericity.

Theorem 5.13. Let α < β with β limit, such that Lα ≺2 Lβ. Let z be generic
over Lβ. Then Lα(z) ≺2 Lβ(z).

Proof. Let Φ(a, b, p) be a ∆0 formula with parameter p ∈ Lα. By Theo-
rem 5.10 and Proposition 2.17 we have that if Lα(z) |= ∃a ∀b Φ(a, b, p), then
Lβ(z) |= ∃a ∀b Φ(a, b, p). Suppose now that Lβ(z) |= ∃a ∀b Φ(a, b, p). Let
us show that Lα(z) |= ∃a ∀b Φ(a, b, p). We shall prove that ∃σ ≺ z σ β
∃a ∀b Φ(a, b, ṗ). Note that this is not obvious because z is only generic over Lβ
and the equivalence of Proposition 5.8 works only for ∆0 formulas.

For any γ limit such that p ∈ Lγ , let us define

Aγ1 = {σ ∈ 2<ω : σ γ ∃a ∀b Φ(a, b, ṗ)}
Aγ2 = {σ ∈ 2<ω : σ γ ∀a ∃b ¬Φ(a, b, ṗ)}

Suppose for a contradiction that for no prefix σ ≺ z we have σ ∈ Aβ1 . Suppose

first that also for no prefix σ ≺ z we have σ ∈ Aβ2 . By Proposition 5.3 it must

be the case that either Aβ1 is dense along z, or that Aβ2 is dense along z (without
containing z). Also by the fact that Lα ≺2 Lβ and by Corollary 5.6, we must

have Aα1 = Aβ1 and Aα2 = Aβ2 . By considering the boundary of the closure of the
open set generated by whichever set among Aα1 of Aα2 is dense along z, we obtain
a meager closed set containing z, with a Borel code in Lα, which contradicts
that z is generic over Lβ .

Thus if for no σ ≺ z we have σ /∈ Aβ1 , it must be the case that σ ∈ Aβ2
for some σ ≺ z. Let us fix such a string σ. In particular we must have σ β
∀a ∃b ¬Φ(a, b, ṗ). By the fact that Lα ≺2 Lβ and by Corollary 5.6 we must have
σ α ∀a ∃b ¬Φ(a, b, ṗ). By Proposition 5.5 we have:

Lα |= ∀ȧ ∀τ � σ ∃ρ � τ ∃γ ∃ḃ ∈ Pγ ρ α ¬Φ(ȧ, ḃ, ṗ)

By Theorem 2.19 we must have that Lα is admissible. Using admissibility of Lα
we must have:

Lα |= ∀ȧ ∃γ ∀τ � σ ∃ρ � τ ∃ḃ ∈ Pγ ρ α ¬Φ(ȧ, ḃ, ṗ)

Now coming back to the definition of forcing we easily see that we have:

Lα |= ∀ȧ ∃γ ∀τ � σ ∃ρ � τ ρ α ∃b ∈ Lγ ¬Φ(ȧ, b, ṗ)
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Which by the fact that Lα ≺2 Lβ gives us:

Lβ |= ∀ȧ ∃γ ∀τ � σ ∃ρ � τ ρ β ∃b ∈ Lγ ¬Φ(ȧ, b, ṗ)

It follows that for every ȧ ∈ Pβ , there exists γ < β such that the open set
generated by the strings ρ for which ρ β ∃b ∈ Lγ ¬Φ(ȧ, b, ṗ), is dense in
[σ]. Also this open set is clearly a set of Lβ , and its complement in [σ] is a
meager closet set of Lβ . It follows that we must have a prefix ρ ≺ z such that
ρ β ∃b ∈ Lγ ¬Φ(ȧ, b, ṗ), which implies Lβ(z) |= ∃b ∈ Lγ ¬Φ(a, b, p). As this
is true for every ȧ ∈ Pβ , we must have that Lβ(z) |= ∀a ∃b ¬Φ(a, b, p), which
contradicts that Lβ(z) |= ∃a ∀b Φ(a, b, p).

Thus it must be in the first place that σ β ∃a ∀b Φ(a, b, ṗ) for some prefix
σ ≺ z. Then we also must have σ α ∃a ∀b Φ(a, b, ṗ) which implies Lα(z) |=
∃a ∀b Φ(a, b, ṗ). This concludes the proof. a

Corollary 5.14. If z is generic over LΣ then Σz = Σ. In particular the set

{z ∈ 2ω : Σz > Σ}
is meager.

Proof. This is because Lζ ≺2 LΣ, and because Σz is the smallest ordinal
such that Lα(z) ≺2 LΣz (z) for some α. By the previous theorem we must have
Σz = Σ. a

Corollary 5.15. Let z ∈ 2ω. The following are equivalent:

1. z is generic over LΣ.
2. z is ITTM-generic.

Proof. The equivalence is given by the conjunction of Theorem 5.13 and 5.11.
a

5.3.2. ITTM-decidable genericity.

Theorem 5.16. Let z ∈ 2ω. The following are equivalent:

1. z is generic over Lλ,
2. z is ITTM-decidable generic,
3. z is co-ITTM generic.

Proof. The implications (3)⇒ (2) and (2)⇒ (1) are trivial. Thus, it remains
only to prove (1) ⇒ (3). Let z be a real generic over Lλ. Let M be a machine
that halts on a co-meager set. By Corollary 5.14 we have that the set {x ∈ 2ω :
Σx > Σ} is meager. Note also that if z is generic over LΣ we have Lλ(x) ≺1 Lζ(x)
together with Lζ(x) ≺2 LΣ(x). Thus the set {x ∈ 2ω : λx > λ} is actually
also meager. It follows that the set {x ∈ 2ω : ∃α < λ M(x) ↓ [α]} is already
co-meager.

In particular the set {σ : σ λ ∃α M(x) ↓ [α]} must be a dense set of strings.
By admissibility of λ, there must exists β < λ such that the set {σ : σ λ ∃α <
β M(x) ↓ [α]} is already a dense set of strings.

It follows that {x ∈ 2ω : M(x) ↓ [β]} is co-meager in a dense open set and
thus comeager. Furthermore its complement is a union of nowhere dense closed
sets with Borel code in Lλ. In particular as z is generic over Lλ, it must be that
M(z) ↓ [β]. Thus z also is co-ITTM generic. a
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