
ON THE BORELNESS OF UPPER CONES OF HYPERDEGREES

BENOIT MONIN AND LIANG YU

Abstract. We show that for any x, Uh(x) = {y | y ≥h x} is Borel if and only if
x ∈ L. Moreover, the Borel rank of Uh(x) when it exists is less than (ω1)L. We
also show using Steel forcing with tagged trees that Borel ranks of these sets range
unboundedly below (ω1)L.

1. Introduction

We assume the reader is familiar with descriptive set theory, Gödel’s constructible
hierarchy and higher recursion theory. The reader can refer to [2] and [6] for more
details about these topics.

We use ≤h to denote hyperarithmetic reduction partial order.

Definition 1.1. For any real x, let

Uh(x) = {y | y ≥h x}.

The goal of this paper is to show the two following theorems:

Theorem 1.2. Let x ∈ 2ω. Then Uh(x) is Borel iff x ∈ L. Moreover when x ∈ L the
Borel rank of Uh(x) is less than (ω1)

L.

Theorem 1.3. For any γ < (ω1)
L there is x ∈ L such that the Borel rank of Uh(x)

is greater than γ.

The heart of Theorem 1.3 lies in the following result from Steel:

Theorem 1.4 (Steel [8]). For any countable admissible ordinal α, the set

{x ∈ 2ω | ωx1 = α}
is properly Π0

α+2.

Steel has developped in [8] a new forcing notion - forcing with tagged trees -
in order to study countable ∆1

1 subsets of ωω, as well as independence results for
subsystems of analysis. Steel mentions in his paper that his forcing can be used to
show Theorem 1.4, without formally writting the proof, which is why we think it is
of interest to have it fully exposed here. It is also an opportunity for the reader to
read the details about Steel forcing itself, which we think is a very nice and intriging
notion, the heart of its possibilities lying in the rettaging tool (Lemma 2.5) and the
rettaging lemma (Lemma 2.6).
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In the next section we give a detailed explanation of the forcing. In the section
after that we show Theorem 1.4 and Theorem 1.3. Finally we show Theorem 1.2 in
the last section.

2. Steel forcing

2.1. The trees. Let T be the set of trees of the Baire space, both finite and infinite.
Let us fix a computable bijection b : ω → ω<ω − {ε} (where ε is the empty word).
We say that an element x ∈ 2ω represents a tree T if n ∈ x iff b(n) ∈ T . We easily
observes that the set of sequences representing elements of T is a closed subset of 2ω.
Indeed, the condition for x to represent a tree is Π0

1: “For every n, if x(n) = 1 then
for every prefix τ of b(n) we should have x(b−1(τ)) = 1”.

It is clear that any tree is uniquely represented by a sequence this way. Also
sometimes we will blur the distinction between an element of T and its representation
in the Cantor space. We use on T the topology of the Cantor space induced on the set
of representations of elements of T . We easily verify that the set of representations of
elements in T has no isolated point, therefore its elements are the paths of a perfect
subtree of 2<ω. It follows that T is topologically the same space as the Cantor space1.

We will denote by F the set of ‘finite trees’ corresponding to a cylinder in the
set of representation of elements of T . In particular an element p ∈ F specifies a
set of nodes that are in the tree, and also a set of nodes that are not in the tree.
Given an element p ∈ F , we denote by [p] the set of all trees of T that extend
p. If T ∈ T extends p we write p ≺ T , and if another finite tree q extends p we
write p � q. It is clear that for any cylinder [p], there are two finite sets of strings
{σ1, . . . ,σn, τ1 . . . , τm} such that any tree T is in [p] iff for i ≤ n we have σi ∈ T and
for i ≤ m we have τi /∈ T .

For a well-founded tree T , we write |T | to denote the ordinal coded by T : for every
node σ ∈ T we inductively define |σ| = supi(|σ̂ni|+ 1)) where 〈σ̂ni〉i∈ω are all the
children of σ. We then have |T | = |σ| where σ is the root of T . For an ill-founded
tree T we write |T | =∞. If σ ∈ T is such that the tree of nodes compatible with σ
is ill-founded we write |σ| =∞. For every countable ordinal α, we denote by Tα the
set of trees T in T such that for every node σ ∈ T of length 1 (direct child of the
root), either |σ| < α or |σ| = ∞. In particular for any tree T ∈ Tα we have either
|T | =∞ or |T | ≤ α.

2.2. The tagging. We now define P to be the set of elements p ∈ F , paired with a
valid tagging function h which assigns to each node of p a countable ordinal, or the
value∞. A tagging is said to be valid if for any σ1 ≺ σ2 ∈ p, we have h(σ1) > h(σ2).
By convention, ∞ is considered greater than any countable ordinal, and also greater
than itself.

So an element of P is given by a pair (p, h) where p ∈ F and where h is a valid
tagging of p. Given (p, h) ∈ P we write [(p, h)] to denote the set of trees T ∈ [p] such
that for every node σ ∈ p, we have |σ| = h(σ) (where |σ| is performed within T ). For

1One can easily prove it directly by constructing the homeomorphism, or use Brouwer’s theorem,
saying that any compact, metrisable, perfect, 0-dimensional space is homeomorphic to the Cantor
space, see [4] for details.
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(p, h) ∈ P and (q, g) ∈ P , we say that (p, h) � (q, g) if p � q and h � g (the taggings
g and h coincide on elements of p).

For any countable α, we then let Pα denotes the set of elements (p, h) ∈ P such
that for nodes σ ∈ p of length 1 we have h(σ) < α or h(σ) =∞. Given (p, h) ∈ Pα,
we write [(p, h)]α to denote the set

{T ∈ [(p, h)] ∩ Tα : ∀σ ∈ T ∩ p |σ| = h(σ)}
In particular if T ∈ [(p, h)]α then for every node σ ∈ T distinct from the root, we
have either |σ| < α or |σ| =∞.

2.3. The forcing relation. For any countable α, β, we now define the forcing rela-
tion between Σ0

α or Π0
α subsets of T and elements of Pβ.

For (p, h) ∈ Pβ and (q, g) ∈ P , we say that (p, h) �β (q, g) if (p, h) � (q, g) and if
in addition we have (q, g) ∈ Pβ. Let (p, h) ∈ Pβ and let us define the relation 
β by
induction on the Borel complexity of sets.

• If A is ∆0
1 (a finite union of cylinders) we say that (p, h) 
β A iff [p] ⊆ A.

• If A is Σ0
α with A =

⋃
nAn, we say that (p, h) 
β A iff ∃n (p, h) 
β An.

• If A is Π0
α, we say that (p, h) 
β A iff ∀(q, g) �β (p, h) (q, g) 1β Ac.

Note that the forcing relation that we gave might depend on the presentation of
a given Borel set. Also for two different ways to write A =

⋃
nAn or A =

⋃
nA′n,

we might have that some (p, h) 
β

⋃
nAn but (p, h) 1β

⋃
nA′n. We can show

however that if (p, h) 
β

⋃
nAn then there must be some (q, g) �β (p, h) such that

(q, g) 
β

⋃
nA′n, which will be good enough for us. Furthermore one can prove by

induction that as long as our unions are increasing, the forcing relation then does not
depend anymore on the presentation of a given Borel set.

To simplify the reading, instead of writing (p, h) for elements of P , we sometimes
simply write p, the tagging function being implicit. When we do so, we will always
precise it, so that there is no ambiguity. This slight abuse of notation starts with the
next lemma, for which the tagging function is implicit:

Lemma 2.1. For a Π0
α set A =

⋂
nAn, any countable β and any (p, h) ∈ Pβ, we

have
p 
β A iff ∀n ∀q �β p ∃r �β q r 
β An

Proof. Suppose p 
β A, then by definition, ∀q �β p q 1β

⋃
nAcn. Still following the

definition of forcing we then have ∀q �β p ∀n q 1β Acn with Acn a Π0
γ set for some

γ < α, and then ∀n ∀q �β p ∃r �β q r 
β An.
Suppose p 1β A, then by definition, ∃q �β p q 
β

⋃
nAcn. Still following the

definition of forcing we have ∃q �β p ∃n q 
β Acn with Acn a Π0
γ set for some γ < α,

and then ∃n ∃q �β p ∀r �β q r 1β An. �

2.4. The β-topology. For any ordinal β, we call β-topology, the topology on Tβ
generated by the basis [(p, h)]β for any (p, h) ∈ Pβ. Recall that the topology on T
is such that for any (p1, h1), (p2, h2) ∈ Pβ we must have [(p1, h1)] ∩ [(p2, h2)] = ∅
or (p1, h1) � (p2, h2) or (p2, h2) � (p1, h1). We would like to study genericity with
respect to the β-topology, that is, elements of Tβ which are in ‘sufficiently many’
dense open sets of this topological space.
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This study can make sense only after we prove that generic elements actually exist,
that is, we should make sure that Tβ endowed with the β-topology is a Baire space:

Proposition 2.2. For any β, the set Tβ, together with the β-topology is a Baire
space.

Proof. Recall that T is homeomorphic to the Cantor space.
Suppose that we have a sequence {Un}n∈ω of subsets of Tβ which are open in

the β-topology. Each of them is a union of cylinders, so that for any n and any
(p, h) ∈ Pβ, there is some cylinder [(q, g)]β ⊆ Un so that [(q, g)]β ⊆ [(p, h)]β. Consider
any condition (p, h) ∈ Pβ. Let us show that

⋂
n Un∩ [(p, h)]β is not empty by building

an element inside it.
There must exist some [(p0, h0)]

β ⊆ U0 which is such that [(p0, h0)]
β ⊆ [(p, h)]β.

Then inductively for any n, assuming (pn, qn) is defined, we define (pn+1, qn+1). We
first define a pair (q, g) extending (pn, qn) the following way: we start by putting in
(q, g) all tagged nodes of (pn, qn). Then for any leaf σ in pn with tagging α + 1, we
add (σ̂k, α) in (q, g) for some σ̂k so that no string τ � σ̂k is mentioned in pn or
in q so far.

For any node σ in pn with tagging α limit, if no sequence {αm}m∈ω is assigned to
σ yet, we assign one so that α = supm αm. If a sequence {αm}m∈ω is assigned to σ,
we put (σ̂k, αn) in (q, g) for some σ̂k so that no string τ � σ̂k is mentioned in
pn or in q so far.

Finally for every node σ in pn with tagging ∞, we add (σ̂k,∞) in (q, g) for some
σ̂k so that no string τ � σ̂k is mentioned in pn or in q so far. Then as q should
correspond to a cylinder in the set of representations of trees, we might need to
actively specify that some nodes are not in q (and then not in any extension of q). If
needed we do so.

Now (q, g) is a valid extension of (pn, hn) and then there must exists a cylinder
[(pn+1, hn+1)]

β ⊆ Un+1 such that [(pn+1, hn+1)]
β ⊆ [(q, g)]β.

It is clear by construction that
⋂
n[(pn, qn)]β ⊆

⋂
n Un. We should now prove that⋂

n[(pn, qn)]β is not empty. Because p0 � p1 � p2 � . . . and h0 � h1 � h2 � . . . we
have that

⋂
n[pn] contains a unique element T and

⋂
n[hn] contains a unique element

H tagging every node in T (and saying nothing on nodes which are not in T ). One
easily show by induction on α that for any node σ ∈ T such that H(σ) = α we have
H(σ) = |σ| = α. One also easily show that H(σ) =∞ iff |σ| =∞. �

We shall now prove that if (p, h) 
β A ⊆ T , then A ∩ Tβ is co-meager in [(p, h)]β

for the β-topology (we will simply say that A is co-meager in [(p, h)]β). In particular,
whenhever (p, h) 
β A, any generic enough element of [p, h]β belongs to A.

Lemma 2.3. Let A be any Σ0
α or Π0

α set and let (p, h) ∈ Pβ. If (p, h) 
β A then
A ∩ Tβ is co-meager in [(p, h)]β for the β-topology.

Proof. Consider A a ∆0
1 set and suppose that for some β and (p, h) ∈ Pβ we have

(p, h) 
β A. Then [p] ⊆ A and then also [(p, h)]β ⊆ A, so clearly A is co-meager in
[(p, h)]β.

The tagging function is now implicit. Consider A =
⋂
nAn a Π0

α set and suppose
that for some β and p ∈ Pβ we have p 
β A =

⋂
nAn. Then ∀n ∀q ≥β p ∃r ≥β
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q r 
β An. Therefore, for all n, by induction hypothesis, the set An is co-meager in
a dense open subset of [p]β. Therefore it is also co-meager in [p]β. Also as every An
is co-meager in [p]β, then

⋂
nAn is co-meager in [p]β.

Consider A =
⋃
nAn a Σ0

α set and suppose that for some β and p ∈ Pβ we have
p 
β A. Then p 
β An for some n. By induction hypothesis we have that An is
co-meager in [p]β and then that

⋃
nAn is co-meager in [p]β. �

Just a small step now remains to prove the Baire property of any Borel A, for the
β-topology, that is, any Borel set A is equal to an open set, up to a meager set. The
tagging function is implicit in the following lemma.

Lemma 2.4. For any Σ0
α or Π0

α set A and any β, the set {[p]β : p ∈ Pβ ∧ (p 
β

A ∨ p 
β Ac)} is dense in Tβ, for the β-topology.

Proof. Let A be Σ0
α. Consider any p ∈ Pβ. Then either p 
β Ac or p 1β Ac, in which

case by definition ∃q �β p q 
β A. �

For a fixed β, the more dense open sets (for the β-topology) T belongs to, the more
generic it is. We argue that for any β and any countably many Borel sets {An}n∈ω,
if a tree T ∈ Tβ is generic enough, we have for any n that T ∈ An iff there is a prefix
p of T such that (p, |T |�p) 
β An. In what follows, the tagging function |T |�p is
implicit.

Pick some n and suppose that for some prefix p of T we have p 
β An. Then using
Lemma 2.3 we have that An is co-meager in [p]β and then if T is generic enough it
belongs to An. Suppose now that T ∈ An. In particular if T is generic enough, it
is in the dense open set {[p]β : p ∈ Pβ ∧ p 
β An ∨ p 
β Acn}. Also we cannot
have that p 
β Ac for some p ≺ T , as we just proved that in this case T ∈ Ac for T
generic enough. Therefore, for some prefix p of T we have p 
β An.

2.5. The retagging lemma. We now prove the main lemma of Steel forcing. For
any ordinal α, any two ordinals β1, β2 ≥ ωα, and (p, h1) ∈ Pβ1 , (p, h2) ∈ Pβ2 , we
write (p, h1) ∼ωα (p, h2) if for every node σ in p we have h1(σ) < ωα iff h2(σ) < ωα
iff h1(σ) = h2(σ).

Lemma 2.5 (The retagging tool). Let β, α be countable ordinals with β < α. Let
β1, β2 ≥ ωα and p ∈ F with (p, h1) ∈ Pβ1, (p, h2) ∈ Pβ2 and suppose (p, h1) ∼ωα
(p, h2). Then for any (q, g1) �β1 (p, h1), there exists a retagging g2 of q such that
(q, g2) �β2 (p, h2) and with (q, g1) ∼ωβ (q, g2).

Proof. We simply build g2. On nodes σ of p we set g2(σ) = h2(σ), so the tagging g2
will extend the tagging h2. As (p, h1) ∼ωα (p, h2) then also (p, g1�p) ∼ωα (p, g2�p).

Also because (p, h1) ∼ωα (p, h2) and because ωβ + ω ≤ ωα, for every other node
σ of q that is not in p and such that g1(σ) < ωβ + ω, we can set g2(σ) = g1(σ) and
have that g2 is still a valid tagging so far.

Let M be the largest integer such that every node σ ∈ q tagged by something
strictly smaller than ωβ+ω is tagged by something strictly smaller than ωβ+M . So
every node tagged in q so far by g2 is such that g2(σ) < ωβ +M or g2(σ) ≥ ωβ + ω.
We have infinitely many values between ωβ + M and ωβ + ω that we can use to
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extend g2 in a valid tagging. It is then easy to check that (q, g1) ∼ωβ (q, g2) and that
(q, g2) �β2 (p, h2). �

Lemma 2.6 (The retagging lemma). For any Π0
α or Σ0

α set A, any countable ordinal
β1, β2 ≥ ωα and any p ∈ F with (p, h1) ∈ Pβ1 and (p, h2) ∈ Pβ2, if (p, h1) ∼ωα (p, h2),
then (p, h1) 
β1 A iff (p, h2) 
β2 A.

Proof. Let α = 1. Let β1, β2 ≥ ω. Let p ∈ F with (p, h1) ∈ Pβ1 and (p, h2) ∈
Pβ2 . Suppose A is a Π0

1. Let us suppose that (p, h1) 1β1 A. Then ∃(q, g1) �β1
(p, h1) (q, g1) 
β1 Ac. Also Ac is given by a union of clopen set

⋃
nAn and we have

by definition that [q] ⊆ An for some n. By the retagging tool there is a tagging g2 of
q such that (q, g2) �β2 (p, h2). We also have (q, g2) 
β2 Ac and then (p, h2) 1β2 A.
Similarly one shows that (p, h2) 1β2 A implies (p, h1) 1β1 A.

Suppose now that A is a Π0
α set. Let us suppose that (p, h1) 1β1 A. Then we

have an extension (q, g1) �β1 (p, h1) such that (q, g1) 
β1 Ac. Let
⋃
nAn be the

complement of A. Then for some n we have (q, g1) 
β1 An. Let β < α be such that
An is Π0

β. By the retagging tool we have a tagging g2 with (q, g2) ∼ωβ (q, g1) and
such that (q, g2) �β2 (p, h2). By induction hypothesis we have (q, g2) 
β2 An. As
(q, g2) �β2 (p, h2), it follows that (p, h2) 1β2 A. Similarly one shows that (p, h1) 1β1 A
implies (p, h2) 1β2 A.

Suppose now that the lemma is true for any Π0
α set (for α countable). For any

Σ0
α set A =

⋃
nAn where each An is Π0

β for some β < α. Let β1, β2 ≥ ωα. Let

(p, h1) ∈ Pβ1 and (p, h2) ∈ Pβ2 . We have (p, h1) 
β1 A iff (p, h1) 
β1 An for some n
iff (p, h2) 
β2 An iff (p, h2) 
β2 A. �

3. On the Borel rank of Uh(x)

The goal of this section is to show Theorem 1.3:

Theorem (1.3). For any γ < (ω1)
L there is x ∈ L such that the Borel rank of Uh(x)

is greater than γ.

To do so we show using Steel’s forcing that for any countable admissible α, the set
{x ∈ 2ω | ωx1 = α} is properly Π0

α+2 and in particular not Σ0
α+2. Let us first show

that the set {x ∈ 2ω | ωx1 = α} is Π0
α+2.

In what follows, given Lα admissible with α countable, we allow Borel codes of Lα
to have their unions and/or intersetions to be indexed by ordinals β < α and not
necessarily indexed by ω. This is less restrictive when in particular Lα is not a model
of “everything is countable” or when α is countable but not constructibly countable.

Definition 3.1. For x ∈ 2ω let Rx
e be the c.e. subset of ω × ω of code e. We write

Wx for the set of codes e such that Rx
e ⊆ ω×ω enumerates a well-order. For e ∈ Wx

we write |e|x for the order-type of the order enumerated by Rx
e . We write Wx

<α for
the elements e ∈ Wx

<α such that |e|x < α.

In this document, given Lα admissible with α countable, we allow Borel codes of
Lα to have their unions and/or intersetions to be indexed by ordinals β < α and not
necessarily indexed by ω. This is less restrictive when in particular Lα is not a model
of “everything is countable” or if α is countable but not constructibly countable.
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Proposition 3.2. Let α be admissible. Let e ∈ ω. Let ω ≤ β < α. The set
{x ∈ 2ω : e ∈ Wx

<β} has a Σ0
β Borel code in Lα. A function which to e, β assigns a

Σ0
β Borel code for {x ∈ 2ω : e ∈ Wx

<β} is ∆Lα
1 -definable uniformly in α admissible.

Proof. We have e ∈ Wx
<ω iff Rx

e describe a linear order (a Π0
2(x) statement), with a

finite support (a Σ0
2(x) statement). The set {x ∈ 2ω : e ∈ Wx

<ω} is then Σ0
ω.

Then inductively we have e ∈ Wx
<β+1 if Rx

e enumerates a linear order (a Π0
2 state-

ment), if there exists m such that m is maximal in Rx
e and such that f(e,m) ∈ Wx

<β

where Rx
f(e,m) is Rx

e restricted to elements strictly smaller than m. By induction

{x ∈ 2ω : e ∈ Wx
<β+1} is Σ0

β and then Σ0
β+1. Finally for β limit we have

{x ∈ 2ω : e ∈ Wx
<β} =

⋃
γ<β{x : e ∈ Wx

<γ}. It is then a Σ0
β set.

The construction of each Σ0
β Borel code for the set {x ∈ 2ω : e ∈ Wx

<β} is clearly
absolute within any admissible Lα. �

Proposition 3.3. Let α be limit. The set {x ∈ 2ω : ωx1 = α} is Π0
α+2.

Proof. Let us first show that the set {x ∈ 2ω : ωx1 ≤ α} is Π0
α+2. For a given e and

a given n, the set:

Ae,n = {x ∈ 2ω : ∀β < α Φe(x, n) /∈ Wx
<β}

is Π0
α. Also for a given e the set:

Be = {x ∈ 2ω : ∃β < α ∀n Φe(x, n) ∈ Wx
<β}

is Σ0
α. Then the set {x ∈ 2ω : ωx1 ≤ α} is equal to

⋂
e((

⋃
nAe,n) ∪ Be)) which

is clearly a Π0
α+2 set. Now the set {x ∈ 2ω : ωx1 = α} is the intersection of

{x ∈ 2ω : ωx1 ≤ α} together with the set
⋂
β<α with β limit {x ∈ 2ω : ωx1 > β}. By

induction this set is Π0
α and thus the set {x ∈ 2ω : ωx1 = α} is Π0

α+2. �

We shall now show that the set {x ∈ 2ω | ωx1 = α} is not Σ0
α+2. To do so, we need

to use Steel’s proof of Sacks’ result saying that α is admissible and countable iff it
equals ωy1 for some y ∈ 2ω. Sacks showed something even stronger : for any countable
admissible α and any x /∈ Lα we can find y ∈ 2ω such that x /∈ Lωy1 [y] with ωy1 = α.
This full version of Sack’s theorem will be needed for the last section of this paper,
which is why we start by proving it here.

3.1. Sacks’s theorem. It is clear that for α admissible and β < α we have Pβ ∈ Lα
and Pβ is uniformly ∆1-definable over Lα. Furthermore

Lemma 3.4. The relation p 
β A is ∆1-definable over Lα uniformly in any admis-
sible α and in any set A with a Borel code in Lα.

Proof. It is clear by definition of the forcing. �

There are many different proofs of the following theorem. The first one by Sacks
uses Sacks forcing. We present here the proof of Steel, using Steel’s forcing. It can
also be proved using the Friedman-Jensen’s application of Barwise compactness (see
[3]) together with omitting type theorem [1].
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Theorem 3.5. Let α be admissible. Let T ∈ Tα be generic enough, then ωT1 = α.
Furthermore if x /∈ Lα then for T generic enough we have x /∈ LωT1 [T ].

Proof. We start by showing that if T ∈ Tα is generic enough then ωT1 = α. We will
then show that if T ∈ Tα is generic enough then for any β < α we have x /∈ Lβ[T ].
Consider a functional Φ : T × ω → ω and the set

A = {T : ∀n ∃β < α Φ(T, n) ∈ WT
<β}

Let An = {T : ∃β < α Φ(T, n) ∈ WT
<β} and An,β = {T : Φ(T, n) ∈ WT

<β}. Note

that from Proposition 3.2, for each β < α and each n the set An,β is Σ0
β uniformly

in n and β, with a Borel code in Lα.
Suppose that for some T ∈ Tα we have T ∈ A. Suppose also that T is generic

enough, so that T belongs to some [(p, h)]α such that (p, h) 
α A. In particular there
is a smallest β0 < α such that (p, h) ∈ Pβ0 . In what follows the tagging is implicit.

Consider the ΣLα
1 function f : α → α which to each β associates the smallest

ordinal γ ≥ ωβ such that:

∀n ∀q �ωβ p ∃r �γ q r 
γ

⋃
ζ<γ

An,ζ

The fact that f is Σ1-definable over Lα follows from Lemma 3.4. Let us show that
f is defined on every ordinal β ≥ β0. As we have p 
α

⋂
n

⋃
ζ<αAn,ζ , then also we

have:

∀n ∀q �α p ∃r �α q r 
α

⋃
ζ<α

An,ζ .

So consider any n and any q �ωβ p. In particular there must exist some r �α q such
that r 
α

⋃
ζ<αAn,ζ . Therefore, by the definition of the forcing relation we must

have r 
α An,ζ already for some ζ < α. Also let γ be the smallest ordinal bigger
than max(ωζ, ωβ) such that r ∈ Pγ. Then by the retagging lemma, as An,ζ is a Σ0

ζ

set, we must have r 
γ An,ζ and then r 
γ

⋃
ζ<γ An,ζ . As we can find such a γ for

any n and any q �ωβ p, then by admissibility of Lα, the supremum of all those γ is
still smaller than α. So the function is f is defined everywhere.

It is straightforward to check that the function f is continuous, that is, f(supn βn) =
supn f(βn). Therefore if we define βn+1 = f(βn) for each n, we then have that
βω = supn βn is a fixed point of f . Note also that as βn+1 ≥ ωβn we have ωβω = βω.
It follows that:

∀n ∀q �βω p ∃r �βω q r 
βω

⋃
ζ<βω

An,ζ

Then we have p 
βω

⋂
n

⋃
ζ<βω
An,ζ . We now have to prove that p 
α

⋂
n

⋃
ζ<βω
An,ζ .

Note that we cannot apply the tagging lemma directly because
⋂
n

⋃
ζ<βω
An,ζ is only

a Π0
βω+1 set. This is here that we exploit the possibility for a tagging to be∞. Using

this, we shall argue that we actually already have:

(*) ∀n ∀q �α p ∃r �α q r 
α

⋃
ζ<βω

An,ζ
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Consider any n and any q �α p, and let q∗ be a retagging of q, so that every node
in q that is tagged by something bigger than or equal to βω is retagged by ∞ in q∗.
Then we have some r∗ �βω q∗ with r∗ 
βω

⋃
ζ<βω
An,ζ . In particular for some γ < βω

we have r∗ 
βω An,γ. Also by the retagging tool, as q ∼ωβω q∗, we have some r �α q
with r ∼ωγ r∗ and then, by the retagging lemma, we have r 
α An,γ, as An,γ is a
Σ0

γ set. It follows that r 
α

⋃
ζ<βω
An,ζ and then that (*) is actually true. Then we

have p 
α

⋂
n

⋃
ζ<βω
An,ζ .

It follows that supn |Φ(T, n)|T ≤ βω < α. As we have this for every functional Φ
for T generic enough, we then have ωT1 = α.

Let us now show that if T ∈ Tα is generic enough then for any β < α we have
x /∈ Lβ[T ]. Consider a name ẋ for x ∈ 2ω. Then for any n ∈ ω and any β the sets
Aβ,n = {T : Lβ[T ] |= n ∈ ẋ} have a Borel code in Lα uniformly in n and β. Let
us show that the set {p ∈ Pα : p 
α Aβ,n for n /∈ x or p 
α 2ω − Aβ,n for n ∈ x}
is dense. For β < α let β∗ < α be such that each Aβ,n is Σ0

β∗ . Consider a forcing
condition p ∈ Pα. Let p∗ be a rettaging of p where all the nodes tagged by something
greater than ω(β∗ + 1) is rettaged by ∞. Note that we have p ∼ω(β∗+1) p

∗.
Let A = {n ∈ ω : ∃q∗ �ω(β∗+1) p

∗ : q∗ 
ω(β∗+1) Aβ,n} Note that by Lemma 3.4
A ∈ Lα. Suppose x * A. Then there is q∗ �ω(β∗+1) p

∗ and n /∈ x such that
q∗ 
ω(β∗+1) Aβ,n. By the rettaging tool there is a rettaging q �α p such that q ∼ωβ∗ q∗.
By the rettaging lemma we have q 
α Aβ,n. Suppose now x ⊆ A. As x /∈ Lα and
A ∈ Lα there must be n ∈ x and n /∈ A. By Lemma 2.4 there must be q∗ �ω(β∗+1) p

∗

such that q∗ 
ω(β∗+1) 2ω − Aβ,n. By the rettaging tool there is a rettaging q �α p
such that q ∼ωβ∗ q∗. By the rettaging lemma we have q 
α 2ω − Aβ,n.

In any case the set {p ∈ Pα : p 
α Aβ,n for n /∈ x or p 
α 2ω − Aβ,n for n ∈ x} is
dense. It follows that if T ∈ Tα is generic enough then x /∈ Lβ[T ] for any β < α. �

3.2. The Borel complexity of {X ∈ 2ω : ωX1 = α}.

Theorem 3.6. The set {X ∈ 2ω : ωX1 = α} is not Σ0
α+2.

Proof. We shall prove that the set of representations of elements of T which preserve
α is not Σ0

α+2. As this set is a closed subset of the Cantor space, it follows that also

the set {X ∈ 2ω : ωX1 = α} is not Σ0
α+2. In what follows, the tagging functions are

implicit.
Suppose that {T ∈ T : ωT1 = α} =

⋃
m

⋂
nAn,m where each An,m is a Σ0

α set.
Then using Theorem 3.5, there must be some m such that the set

⋂
nAn,m contains

some tree T which is generic enough for Steel forcing over Pα, so that ωT1 = α. In
particular we have p 
α

⋂
nAn,m for some p ≺ T with (p, |T |�p) ∈ Pα.

So also we have ∀n ∀q �α p ∃r �α q r 
α An,m. Let α+ be the smallest admissible
ordinal bigger than α. We should now prove that we actually have:

(*) ∀n ∀q �α+ p ∃r �α+ q r 
α+ An,m
Consider now any n and any q �α+ p and let q∗ be a retagged version of q where
each ordinal bigger than or equal to α in q is retagged by∞ in q∗. Then q∗ �α p and
in particular we have some r∗ �α q∗ such that r∗ 
α An,m. Let An,m =

⋃
k∈ωAn,m,k
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with each An,m,k is Π0
β set for some β < α. In particular for some β < α we have

r∗ 
α An,m,k where An,m,k is a Π0
β set. Also by the retagging tool, as q ∼ωα q∗,

we have some r �α+ q with r ∼ωβ r∗ and then, by the retagging lemma, we have
r 
α+ An,m,k, as An,m,k is a Π0

β set. It follows that r 
α+ An,m and then that (*)

is actually true. Then we have p 
α+

⋂
nAn,m.

It follows that any q �α+ p also forces
⋂
nAn,m. Take such an extension q with a

node tagged by the ordinal α. For any T ∈ [q]α
+

we have some node of T starting
a well-founded tree coding for α. Thus α is computable in T and ωT1 > α. Also as
q 
α+

⋂
nAn,m, the set

⋂
nAn,m contains some generic tree that is in [q]α

+
. Then⋃

m

⋂
nAn,m contains an element making α computable, which is a contradiction. �

We are now ready to show Theorem 1.3.

Theorem (1.3). For any γ < (ω1)
L there is x ∈ L such that the Borel rank of Uh(x)

is greater than γ.

Proof. We show that for any γ < (ω1)
L there is x ∈ L such that the Borel rank of

Uh(x) is not Σ0
γ. Fix an ordinal γ < (ω1)

L. Let ν < α0 < α1 < (ω1)
L be three

contiguous admissible ordinals greater than γ+ω so that there is a real in Lα1 \Lα0 .
So we may assume that there is a real x ∈ Lα1 \ Lα0 which is a master code. Thus
ωx1 = α1. Then

Uh(x) = {y | ωy1 ≥ ωx1} = {y | ωy1 ≥ α1} = {y | ωy1 > α0} = 2ω \
⋃
β≤α0

{y | ωy1 = β}.

Suppose for contradiction that Uh(x) is Σ0
γ. Then {y | ωy1 = α0} = (2ω \ Uh(x)) \⋃

β≤ν{y | ω
y
1 = β} would be Π0

ν+3. Since α0 > ν + ω, we have a contradiction to
Theorem 1.4. �

4. On the Borelness of Uh(x)

The goal of this section is to show Theorem 1.2:

Theorem (1.2). Let x ∈ 2ω. Then Uh(x) is Borel iff x ∈ L. Moreover when x ∈ L
the Borel rank of Uh(x) is less than (ω1)

L.

We start with the following lemma:

Lemma 4.1. If x ∈ L, then the set Uh(x) is a ∆1
1(z) set for some real z ∈ L. In

particular the rank of z must be smaller than (ω1)
L and so must be the rank of the

Borel code of Uh(x).

Proof. For any x we have y ≥h x if and only if there is an ordinal β computable in y
such that x ∈ Lβ[y]. Suppose now x ∈ L, then there is an ordinal α < (ω1)

L so that
x ∈ Lα. Suppose y ≥h x. If ωy1 ≤ α then we must have x ∈ Lβ[y] for some β ≤ α
which is computable in y. If ωy1 > α, as x ∈ Lα then we must have x ∈ Lβ[y] for
some β ≤ α which is computable in y. In any case the set {y ∈ 2ω : y ≥h x} equals
the set {y ∈ 2ω : x ∈ Lβ[y] for some ordinal β ≤ α computable in y}.

Now fix a real z ∈ L coding a well order of ω with order type α. Then Uh(x) is
∆1

1(z). �
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To show the last theorem we use the two following results :

Theorem 4.2 (Simpson [7]). Let r ∈ 2ω. There is an uncountable Σ1
1(r) closed set

A so that for any reals y0 6= y1 ∈ A, Lωr1 [y0 ⊕ r] ∩ Lωr1 [y1 ⊕ r] = Lωr1 [r].

Theorem 4.3 (Martin [5]). Let r ∈ 2ω. If A is an uncountable Σ1
1(r)-closed set, then

for any y, there is a real x ∈ A so that y ∈ Lωx⊕r1
[x⊕ r].

We use 〈∗, ∗〉 to denote the Gödel paring function.

Lemma 4.4. Suppose that x 6∈ L, then Uh(x) is not Borel.

Proof. For a contradiction, suppose that Uh(x) is Borel. So there is a real z ≥T x so
that Uh(x) is ∆1

1(z). We claim that there is a countable ordinal α so that

∀y(y ≥h x→ x ∈ Lα[y]).

Since Uh(x) is ∆1
1(z), by Spector-Gandy’s theorem (see [2]), there is a Σ1-formula ϕ

so that
∀y(y 6≥h x↔ Lωy⊕z1

[y ⊕ z] |= ϕ).

So there is a total Π1
1(z)-function f : 2ω → ω uniformizing the following Π1

1-relation

R(y,m) =

{
m = 〈0, n〉, y ≥h x ∧ n ∈ Wy ∧ x ∈ L|n|y [y];

m = 〈1, n〉, y 6≥h x ∧ n ∈ Wy⊕z ∧ L|n|y⊕z [y ⊕ z] |= ϕ.

So f is also a ∆1
1(z)-function. Thus the range of f on Uh(x) is a Σ1

1(z) set and so
there must be an ordinal α < ωz1 so that for any y ≥h x and ordinal notation n ∈ Wy

with f(y) = 〈0, n〉, we have that |n|y ≤ α. The α is exactly what we want.
We may let α be an admissible ordinal. By Lemma 3.4, there is a real r so that

ωr1 = α and x 6≤h r. Now by Theorem 4.2, there is an uncountable Σ1
1(r) closed set A

so that for any reals y0 6= y1 ∈ A, Lωr1 [y0⊕ r]∩Lωr1 [y1⊕ r] = Lωr1 [r]. By Theorem 4.3,
there must be a two reals y1 6= y2 ∈ A so that x ∈ L

ω
y1⊕r
1

[y1⊕r] and x ∈ L
ω
y2⊕r
1

[y2⊕r].
By the choice of A we must have x /∈ Lωr1 [yi⊕ r] for some i ∈ {0, 1}. This contradicts
the above claim saying that as x ∈ L

ω
yi⊕r
1

[yi ⊕ r] we must have x ∈ Lα[yi ⊕ r] where

ωr1 = α. Thus Uh(x) is not Borel. �
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