
Algorithmic identification of probabilities is hard

Laurent Bienvenua,∗, Santiago Figueirab, Benoit Moninc, Alexander Shena

aLIRMM, CNRS & Université de Montpellier, 161 rue Ada, 34095 Montpellier Cedex 5,
France

bUniversidad de Buenos Aires and CONICET, Pabellón I - Ciudad Universitaria,
Buenos Aires, Argentina

cLACL, Université Paris 12, 61 avenue du Général de Gaulle 94010 Créteil Cedex,
France

Abstract

Suppose that we are given an infinite binary sequence which is random for a
Bernoulli measure of parameter p. By the law of large numbers, the frequency
of zeros in the sequence tends to p, and thus we can get better and better
approximations of p as we read the sequence. We study in this paper a
similar question, but from the viewpoint of inductive inference. We suppose
now that p is a computable real, and one asks for more: as we are reading
more and more bits of our random sequence, we have to eventually guess
the exact parameter p (in the form of its Turing code). Can one do such a
thing uniformly for all sequences that are random for computable Bernoulli
measures, or even for a ‘large enough’ fraction of them? In this paper, we
give a negative answer to this question. In fact, we prove a very general
negative result which extends far beyond the class of Bernoulli measures.
We do however provide a weak positive result, by showing that looking at
a sequence X generated according to some computable probability measure,
we can eventually guess a sequence of measures with respect to which X is
random in Martin-Löf’s sense.

Keywords: Algorithmic learning theory, algorithmic randomness.
2010 MSC: 03D32, 68Q30, 68Q32

∗Corresponding author

Preprint submitted to Journal of Computer and System Sciences April 8, 2017



1. Introduction

The study of learnability of computable sequences is concerned with the
following problem. Suppose we have a black box that generates some infinite
computable sequence of bits X = X(0)X(1)X(2), . . . We do not know the
program running in the box, and want to guess it by looking at finite prefixes

X�n = X(0) . . . X(n− 1)

for increasing n. There could be different programs that produce the same
sequence, and it is enough to guess one of them (since there is no way to
distinguish between them by just looking at the output bits). The more bits
we see, the more information we have about the sequence. For example, it is
hard to say something about a sequence seeing only that its first bit is a 1,
but looking at the prefix

110010010000111111011010101000

one may observe that this is a prefix of the binary expansion of π, and guess
that the machine inside the box does exactly that (though the machine may
as well produce the binary expansion of, say, 47627751/15160384).

The hope is that, as we gain access to more and more bits, we will even-
tually figure out how the sequence X is generated. More precisely, we hope
to have a computable function A such that for every computable X, the
sequence

A(X�1), A(X�2), A(X�3), . . .

converges to a program (= Turing machine) that computes X. This is re-
ferred to as identification in the limit, and can be understood in two ways:

• Strong success: for every computable X, the above sequence converges
to a single program that produces X.

• Weak success: for every computable X, all but finitely many terms of
the above sequence are programs that produce X (but these programs
may be different).

The first type of success is often referred to as explanatory (EX) and the
second type as behaviorally correct (BC). Either way, such an algorithm A
does not exist in general. The main obstacle is that certain machines are not
total (produce only finitely many bits), and distinguishing total machines

2



from non-total ones cannot be done computably. (If we restrict ourselves
to some decidable class of total machines, e.g., primitive recursive functions,
then exact learning is possible: let A(u) be the first machine in the class that
is compatible with u.) We refer the reader to [11] for a detailed survey of
learnability of computable functions.

Recently, Vitányi and Chater [9] proposed to study a related problem.
Suppose that instead of a total deterministic machine, the black box con-
tains an almost total probabilistic machine M . By “almost total” machine
we mean a randomized algorithm that produces an infinite sequence with
probability 1. The output distribution of such a machine is a computable
probability measure µM over the space 2ω of infinite binary sequences. Again,
our ultimate goal is to guess what machine is in the box, i.e., to give a rea-
sonable explanation for the observed sequence X. For example, observing
the sequence

000111111110000110000000001111111111111

one could guess that M is a probabilistic machine that starts with 0 and then
chooses each output bit to be equal to the previous one with probability
4/5 (so the change happens with probability 1/5), making all the choices
independently.

What should count as a good guess for some observed sequence? Again
there is no hope to distinguish between some machine M and another ma-
chineM ′ that has the same output distribution µM ′ = µM . So our goal should
be to reconstruct the output distribution and not the specific machine.

But even this is too much to ask for. Assume that we have agreed that
some machine M is a plausible explanation for some sequence X. Consider
another machine M ′ that starts by tossing a coin and then (depending on
the outcome) either generates an infinite sequence of zeros or simulates M ′.
If X is a plausible output of M , then X is also a plausible output for M ′,
because it may happen (with probability 1/2) that M ′ simulates M .

A reasonable formalization of ‘good guess’ is provided by the theory of
algorithmic randomness. As Chater and Vitányi recall, there is a widely
accepted formalization of “plausible outputs” for an almost total probabilis-
tic machine with output distribution µ: the notion of Martin-Löf random
sequences with respect to µ. These are the sequences which pass all effec-
tive statistical tests for the measure µ, also known as µ-Martin-Löf tests.
(We assume that the reader is familiar with algorithmic randomness and

3



Kolmogorov complexity. The most useful references for our purposes are [5]
and [8]). Having this notion in mind, one could look for an algorithm A with
the following property:

For every almost total probabilistic machine M with output dis-
tribution µM , for µM -almost all X, the sequence

A(X�1),A(X�2),A(X�3), . . .

identifies in the limit an almost total probabilistic machine M ′

such that X is µM ′-Martin-Löf random.

Note that this requirement uses two machines M and M ′ (more precisely,
their output distributions): the first one is used when we speak about “almost
all” X, and the second is used in the definition of Martin-Löf randomness.
Here M ′ may differ from M and, moreover, may be different for different X.

In an early version of [9], Vitányi and Chater claimed that this can be
done in the strongest sense (EX): the guesses A(X�n) converge to a single
code of some machine M ′. It is this claim which motivated the present paper,
and we in fact show that this is incorrect, and that even a much weaker goal
cannot be achieved. This was corrected in the more recent versions of [9].

Let us consider a rather weak notion of success: A succeeds on X if
there exists c > 0 such that for all sufficiently large n the guess A(X�n)
is a machine M ′ such that X is µM ′-Martin-Löf random with randomness
deficiency less than c with respect to measure µM ′ . (Here we use the notion
of uniform randomness deficiency d(X |µ) where X is a sequence and X is a
measure, see [1] for the details.) So the machines A(X�n) may be different,
we only require that X is Martin-Löf random (with bounded deficiency)
for almost all of them. (If almost all machines A(X�n) generate the same
distribution and X is Martin-Löf random with respect to this distribution,
this condition is guaranteed to be true; note that the second argument in
d(X |µ) is the measure, not the machine that generates it.)

Moreover, we require A to be successful only with some positive proba-
bility instead of probability 1, and only for machines from some class: for
every machine M from this class of machines, A is required to succeed with
µM -probability at least δ > 0, for some δ independent of M .

Our first main result is that even with these easier requirements, there
cannot be such an algorithm A (as long as the class of machines is not too
narrow: if for example it contains only one machine M , the algorithm A

4



can always produce a code for this machine). This was the result proven by
Bienvenu, Monin and Shen in an earlier version of this paper presented at
the conference ALT 2014 [3]. The material of this earlier version is presented
in Section 3, but we give a much more natural proof of the main result.

At the time of writing [3], the authors conjectured that the requirement of
bounded deficiency was unnecessary but could not find a proof. In joint work
with Figueira, they proved that, surprisingly, the opposite is true: without
the bounded deficiency assumption, there does exist an algorithm A satisfying
all our requirements. This is the second main result of the present paper,
which is presented in Section 4.

2. Background and notation

We denote by 2ω the set of infinite binary sequences and by 2<ω the set
of finite binary sequences (or strings). The length of a string σ is denoted
by |σ|. The empty string (string of length 0) is denoted by Λ. For σ, τ
strings, we write σ � τ if σ is a prefix of τ . The n-th element of a sequence
X(0)X(1) . . . is the value X(n−1) (assuming that the length of X is at least
n); the string X�n = X(0)X(1) . . . X(n − 1) is n-bit prefix of X. We write
σ � X if the string σ is a prefix of the infinite sequence X (i.e., X�|σ| = σ).
The space 2ω is endowed with the distance d defined by

d(X, Y ) = 2−min{n:X(n) 6=Y (n)}.

This distance is compatible with the product topology generated by cylinders

[σ] = {X ∈ 2ω : σ � X}.

A cylinder is both open and closed (= clopen). Thus, any finite union of
cylinders is also clopen. It is easy to see, by compactness, that the converse
holds: every clopen subset of 2ω is a finite union of cylinders. We say that a
clopen set C has granularity at most n if it can be written as a finite union
of cylinders [σ] with all σ’s of length at most n. We denote by Γn the family
of clopen sets of granularity at most n.

We now give a brief review of the ‘computable analysis’ aspects of the
space of probability measures. For a more thorough exposition of the subject,
the main reference is [5].

The space of Borel probability measures over 2ω is denoted by P . In the
rest of the paper, when we talk about a ‘measure’, we mean an element of the

5



space P . This space is equipped with the weak topology. Several classical
distances are compatible with this topology; for example, one may use the
distance ρ constructed as follows. For µ, ν ∈ P , let ρn(µ, ν) (for an integer n)
be the quantity

ρn(µ, ν) = max
C∈Γn

|µ(C)− ν(C)|

and then set
ρ(µ, ν) =

∑
n

2−nρn(µ, ν).

The open (resp. closed) ball B of center µ and radius r is the set of measures ν
such that ρ(µ, ν) < r (resp. ρ(µ, ν) ≤ r). In the space of measures, the closure
B of the open (or closed) ball B of center µ and radius r is the closed ball of
center µ and radius r.

This distance makes P a computable metric space. Thus, one can define
partial computable functions from some discrete space D (such as N) to P
via type-2 computability as follows. Consider an algorithm G which for every
input z ∈ D enumerates a (finite or infinite) list of rational balls1 B1, B2,. . .
in P such that Bi+1 ⊆ Bi, and the radius of Bi is less than 2−i. For a
given z, the list of balls can be finite or infinite. Given an algorithm G,
we consider a partial function F from D to P ; its domain consists of points
z such that G(z) enumerates an infinite sequence of balls, and F (z) is the
(unique) common point of these balls. Functions obtained in this way are
called (type-2) computable partial functions from D to P . For convenience,
we often identify F to its enumeration algorithm G.

The randomness deficiency function d is the largest, up to additive con-
stant, function f : 2ω × P → N ∪ {∞} such that

• f is lower semi-computable (i.e., f−1((k,∞]) is an effectively open sub-
set of the product space 2ω × P , uniformly in k)

• for every µ ∈ P , for every integer k, µ{X : f(X,µ) > k} < 2−k

We use the usual notation d(X |µ) instead of d(X,µ). We say that X is
(Martin-Löf) random relative to measure µ if d(X |µ) <∞.

1We fix some natural dense set of rational-valued finitely representable measures. Ra-
tional balls are balls of rational radius with centers in this set. Such balls can be finitely
represented. The family of rational balls is a base of the topology on P.

6



If B is a rational ball (open or closed), we write d(X |B) = infµ∈B d(X |µ).
By effective compactness of the space of measures, one can verify that this
quantity is also lower-semicomputable uniformly in X and a code for B. Fi-
nally, if a partial function F from D to P is computable, we write d(X |F (z))
for the supremum of d(X |B) over balls B enumerated by the algorithm com-
puting F (z). This notation is consistent in the sense that if F (z) is defined
and µ is its value, then d(X |F (z)) = d(X |µ); if F (z) is undefined, the value
of d(X |F (z)) is determined by the last (smallest) ball in the enumeration.

At this point the way we view measures – as points of the space P – does
not match the presentation of the introduction, where we asked the learning
algorithm to guess, on input X, a sequence of probabilistic machines Mi such
that for almost all i, Mi is almost total and X is a plausible output for Mi.
The reason is that in fact there are three ways one can think of measures,
which are equivalent for our purposes:

(a) A measure is a point of P .

(b) By Caratheodory’s theorem, a measure µ can be identified with the
function σ 7→ µ([σ]): given any function f : 2<ω → [0, 1] such that
f(Λ) = 1 and f(σ0) + f(σ1) = f(σ), there is a unique measure µ such
that µ([σ]) = f(σ) for all σ. For example, the uniform measure λ is
the unique measure such that λ([σ]) = 2−|σ| for all σ, and the Bernoulli
measure βp of parameter p ∈ [0, 1] is the unique measure satisfying
βp([σ1]) = p · βp([σ]) for all σ.

(c) Consider a Turing functional M , which one might think of as a Turing
machine with a read-only input tape and a write-only output tape. We
say that M is defined on X if M prints an infinite sequence Y given X
on the input tape. When M is defined on λ-almost every X, we say
that M is almost total and then the function

µM(σ) = λ{X : M(X) � σ}

defines a measure in the sense of item (b). The machine M can then be
regarded as a probabilistic machine where X is the random seed and
the output is a random variable whose distribution is µM .

These approaches are equivalent both in the classical and effective realm,
as is well known. For our purposes it is important that a learning algorithm

7



A can be transformed into a computable partial function from strings to
measures that is defined on some string x if and only if A(x) is an almost
total machine. (We produce smaller and smaller balls as soon as the ma-
chine A(x) is more and more total, so to say.) This allows us to translate
the initial statement about learning the machines into the language of com-
putable functions used in the proof of Theorem 3.2 (Section 3) below. The
second approach (b) will be convenient for the positive result (Theorem 4.1,
Section 4).

We end this introduction with a discussion on a concept we will need to
state the main theorem of Section 3: orthogonality. Two measures µ, ν ∈ P
are said to be orthogonal if there is a set X ⊆ 2ω such that µ(X ) = 1 and
ν(X ) = 0 (taking at the complement of X , we see that this is a symmetric
relation). This is equivalent to asking that for each ε, there is a set Xε
such that µ(Xε) ≥ 1 − ε and ν(Xε) < ε (indeed one can then take X =⋂
i

⋃
j X2−i−j).

The class of Bernoulli measures provides an easy example of orthogo-
nality: if p 6= q, the Bernoulli measures βp and βq (see definition above)
are orthogonal (by the law of large numbers, taking for X the set of se-
quences with a limit frequency of zeroes equal to p, we have βp(X ) = 1 and
βq(X ) = 0).

The important fact we need is that when two computable measures µ and
ν are orthogonal, they share no random element, i.e, d(X |µ) and d(X |ν)
cannot both be finite. For a proof of this result, see for example [2].

3. Identifying measures is hard

Now we are ready to give a precise formulation of our main negative
result. The learning algorithm is a partial computable function A from 2<ω

to P ; it gets the prefix X�n of a sequence X and computes (in type-2 sense)
some measure A(X�n). We say that A BC-succeeds on a sequence X ∈
2ω if A(X�n) is defined and outputs the same computable measure µ for
all sufficiently large n, and X is Martin-Löf random with respect to this
measure µ. This is a weaker requirement than exact (EX) success mentioned
above: the algorithm is obliged to produce the same measure (for almost
all n), but is not obliged to produce the same machine (or the sequence of
balls converging to this measure). Our main result, in its weak form, says
that this goal cannot be achieved for all sequences that are random with
respect to some computable measure:

8



Theorem 3.1. No algorithm A can BC-succeed on every sequence X that is
random with respect to some computable measure.

As we have discussed, we prove a stronger version of this result—stronger
in three directions.

First, we require the learning algorithm to succeed only on sequences that
are random with respect to measures in some restricted class, for example,
the class of Bernoulli measures (the main particular case considered in the
original version of [9]).

Second, for each measure µ in this class we do not require the algorithm
to succeed on all sequences X that are µ-Martin-Löf random: we allow it to
succeed only on a set of µ-probability > δ, for a fixed positive δ independent
of the measure µ.

Finally, the notion of success on a sequence X is now weaker: we do not
require that the algorithm produces (for all sufficiently long inputs) some
specific measure. Instead, we only ask that it gives ‘good explanations’ for
the observed sequence from some point on. More specifically, we say that an
algorithm A BD-succeeds (BD stands for ‘bounded deficiency’) on some X,
if for some c and for all sufficiently large n the measure A(X�n) is defined
and X is random with deficiency at most c with respect to A(X�n). Clearly
BC-success implies BD-success. (Recall that in our definition the random-
ness deficiency depends only on the measure but not on the algorithm that
computes it.)

We now are ready to state the main result of this section, in its strong
form.

Theorem 3.2. Let M be a subset of P with the following properties :

• M is effectively closed, i.e., one can enumerate a sequence of rational
open balls in P whose union is the complement of M.

• M is recursively enumerable, i.e., one can enumerate all rational open
balls in P that intersect M.

• for every computable measure ν, and every non-empty open subset ofM
(i.e., a non-empty intersection of an open set in P with M) there is a
computable µ in this open subset which is orthogonal to ν.

Let also δ be a positive rational number. Then there is no algorithm A such
that for every computable µ ∈M, the µ-measure of sequences X on which A
BD-succeeds is at least δ.

9



The notion of a recursively enumerable closed set is standard in com-
putable analysis, see [10, Definition 5.1.1].

Note that the hypotheses on the class M are not very restrictive: many
standard classes of probability measures have these properties. In particular,
the class {βp : p ∈ [0, 1]} of Bernoulli measures is such a class; so there is
no algorithm that can learn all Bernoulli measures (not to speak about all
Markov chains). To see that the third condition is true, note that only count-
ably many Bernoulli measures may be non-orthogonal to a given measure µ:
the sets Lp of sequences with limit frequency p are disjoint, so only countably
many of them may have positive µ-measure. It remains to note that every
open non-empty subset of the class of Bernoulli measures has cardinality
continuum.

Let us give another example beyond Bernoulli measures and Markov
chains, where the probability of the next bit to be 0 may depend on many of
the previous bits: for every parameter p ∈ [0, 1], consider measure µp associ-
ated to the stochastic process which generates a binary sequence bit by bit
as follows: the first bit is 1, and the conditional probability of 1 after σ10k

is p/(k + 1). One can check that the class P = {µp : p ∈ [0, 1]} satisfies the
hypotheses of the theorem (observe that p can easily be reconstructed from
the sequence).

Note also that these hypotheses are not added for convenience: although
they might not be optimal, they cannot be outright removed. If we do not
require compactness, then the class of Bernoulli measures βp with rational
parameter p would qualify, but it is easy to see that this class admits an
algorithm which correctly identifies each of the measures in the class with
probability 1. The third condition is important, too. Consider the measures
β0 and β1 concentrated on the sequences 0000 . . . and 1111 . . . respectively.
Then the class M = {pβ0 + (1 − p)β1 : p ∈ [0, 1]} is indeed effectively
compact, but it is obvious that there is an algorithm that succeeds with
probability 1 for all measures of that class (in the strongest sense: the first
bit determines the entire sequence). For the second condition we do not have
a counterexample showing that it is really needed, but it is true for all the
natural classes (and it is guaranteed to be true ifM has a computable dense
sequence).

The rest of this section is devoted to the proof of Theorem 3.2.

Fix a subsetM of P satisfying the hypotheses of the theorem, and some
δ > 0. We assume for the sake of contradiction that there is an algorithm

10



A such that for every computable µ ∈M, the µ-measure of sequences X on
which A BD-succeeds is at least δ. In the sequel, by “success” we always
mean BD-success.

For every pair of integers (N, d), we define the set

Wrong(N, d) =
{
X
∣∣(∃n ≥ N) d(X |A(X�n)) > d

}
This is the set of X’s on which the algorithm is ‘visibly wrong’ at some

prefix of length n ≥ N , for the deficiency level d. Recall that A(X�n) may
not converge to a measure, being a finite sequence of balls. In this case, as we
have agreed, the inequality d(X |A(X�n)) > d means that the d(X |·) exceeds
d everywhere on some closed ball provided by A(X�n) as an approximation
for µ.

Note that Wrong(N, d), understood in this way, is effectively open uni-
formly in (N, d) and is non-increasing in each of its parameters. The inter-
section of sets Wrong(N, d) for all N and d is some set Wrong; as the
name says, the algorithm A cannot BD-succeed on any sequence in this set.

It is technically convenient to combine the two parameters N and d into
one (even they are of different nature) and consider a decreasing sequence of
sets Wrong(N) = Wrong(N,N) whose intersection is Wrong.

We also consider a set Succ(N, d) of all sequences X such that A BD-
succeeds on X at level N with deficiency d, i.e.,

Succ(N, d) = {X : (∀n ≥ N) [A(X�n) is a measure, d(X |A(X�n)) ≤ d]}

The set Succ(N, d) is a closed set. Indeed, it is an intersection of sets indexed
by n, so we need to show that each of them is closed. For each n there are
finitely many possible prefixes of length n, so the first condition (“A(X�n) is
a measure”) defines a clopen set. The second condition defines an effectively
closed subset in each cylinder where A(X�n) is a measure. (Note that we
do not claim that Succ(N, d) is effectively closed, since the condition “to be
a measure” is only a Π2-condition.) By definition, the set Succ(N, d) does
not intersect the set Wrong(N, d).

The set Succ(N, d) increases as N or d increase; the union of these sets
is the set of all X where A succeeds; we denote it by Succ. Again we
may combine the parameters and consider an increasing sequence of sets
Succ(N) = Succ(N,N) whose union in Succ.

All these considerations deal with the space of sequences. Now we switch
to the space of measures and the class M. We look what are the measures

11



of sets Wrong(N) according to different µ ∈ M. Consider some threshold
x ∈ [0, 1]. There are two possible cases:

• there exist some number N , and some non-empty open set in M such
that µ(Wrong(N)) ≤ x for all µ in this set.

• for every N the set of points µ ∈M where µ(Wrong(N)) > x is dense
in M.

There is some threshold where we switch from one case to the other, so let
use take close values of p < q (i.e., we take the difference q − p to be much
smaller than δ from the statement of the theorem; it would be enough to
require that q − p < δ/10) such that the first case happens for q and the
second one happens for p.

Choose N and open ball B0 that has a non-empty intersection with M
such that µ(Wrong(N)) ≤ q for all µ ∈ B0 ∩M (this is possible since the
first case happens for q).

Lemma 3.3. There exists a computable measure µ∗ ∈ B0 ∩M such that
µ∗(Wrong) ≥ p.

Proof. Since the second case happens for p, we can find some µ ∈ B0 ∩M
such that µ(Wrong(0)) > p. Since Wrong(0) is open, the same is true
for some its clopen subset C, i.e., µ(C) > p. Note that µ(C) is a continuous
function of µ for fixed clopen C, so we can find a smaller ball B1 ⊆ B0

intersecting M such the µ(Wrong(0)) ≥ µ(C) > p for all µ ∈ B1 ∩ M.
Then, repeating the same argument, we find an even smaller ball B2 ⊆ B1

intersecting M such that µ(Wrong(1)) > p for all µ ∈ B2 ∩M, then some
B3 ⊆ B2 such that µ(Wrong(2)) > p for all µ ∈ B3 ∩M, etc. Using the
completeness of the space of measures, consider the intersection point µ∗ of
all Bi (we may assume that their radii converge to 0 and that Bi+1 ⊆ Bi, and
this guarantees the existence and the uniqueness of the intersection point).
We have µ∗(Wrong(i)) > p for all i (but µ∗(Wrong(N)) ≤ q; the same
in true for all subsequent sets Wrong(i) for all i ≥ N). The continuity
property for measure µ∗ then guarantees that µ∗(Wrong) ≥ p.

Refining this argument, we can get a computable measure µ∗ with this
property. Indeed, we may choose Bi+1 in such a way that even the closed ball
Bi+1 of the same radius is contained in Bi; this property is enumerable. “To
have a non-empty intersection with M” is also an enumerable property (by

12



assumption), and “µ(Wrong(i)) > p for all µ ∈ Bi+1” is also an enumerable
property (we may assume without loss of generality that p is rational, and
Wrong(i) is effectively open uniformly in i). So we can perform a search
until Bi+1 is found, and the sequence of Bi is computable, so µ∗ is computable.
Lemma is proven.

Now the argument goes as follows. Since µ∗ is computable, the set Succ
should have µ∗-probability at least δ by assumption. Success means that (at
least) some measures are provided by the learning algorithm A for prefixes
of sufficiently large length M . There are finitely many possible prefixes, and
they correspond to finitely many computable measures µ1, . . . , µs. Then we
choose a measure µ′ orthogonal to all these measures and very close to µ∗

(this is possible according to our assumption). We get the contradiction
showing that µ′(Wrong(N)) is almost p+δ (or more) and therefore exceeds
q which is not possible due to the choice of B0. To get the δ-increase we
use the fact that sequences that are µ′-random cannot be µi-random and
should therefore have infinite deficiency. Let us now explain this argument
in details.

Recall that we have chosen N in such a way that µ(Wrong(N)) ≤ q
for all µ sufficiently close to µ∗. On the other hand, µ∗(Wrong(M)) ≥
µ∗(Wrong) ≥ p for all M .

Since µ∗(Succ) ≥ δ, the continuity property of measures guarantees that
µ∗(Succ(M)) & δ for sufficiently large M , where & means inequality up to
an additive error term that is very small compared to δ (in fact, δ/10 would
be small enough; we do not add more than 10 inequalities of this type).
Fix some M that is large enough and greater than N from the previous
paragraph.

The set Wrong(M) is open and has µ∗-measure at least p. Therefore,
there exist a clopen set C ⊆Wrong(M) such that µ∗(C) & p. Since the set
C is clopen, there exists some K ≥M such that the K-bit prefix determines
whether a sequence belongs to C (the granularity of C is at most K).

Now the Cantor space is split into 2K intervals that correspond to dif-
ferent prefixes of length K. Some of these intervals form the set C (and
belong to Wrong(M) entirely). Among the rest, we distinguish good and
bad intervals; good intervals correspond to prefixes for which the learning
algorithm A produces a measure (whatever this measure is). Let µ1, . . . , µs
be all measures that are produced by A for all good intervals (we have at
most 2K of them).

13



Note that Succ(M) is covered by the good intervals. Indeed, it is disjoint
with Wrong(M) and therefore with C, and also is disjoint with bad intervals
by definition (since K ≥M , the algorithm A should produce a measure when
applied to K-bit prefix).

Now consider a measure µ′ that is very close to µ and orthogonal to all µi.
(Our assumption allows us to get a measure very close to µ and orthogonal to
a given computable measure; now we have several measure µ1, . . . , µs instead
of one, but this does not matter since we may consider their average: any
measure orthogonal to the average is orthogonal to all µi.)

Since the µ∗-measure of Succ(M) is almost δ (or more), and it is covered
by good intervals, then µ∗-measure of the union of good intervals is also
almost δ (or more). The same is true for every measure µ′ sufficiently close
to µ∗ since the union of good intervals is a clopen set.

No µ′-random sequences can be µi-random since the measures are orthog-
onal. This implies infinite deficiency, so all µ′-random sequences in good in-
tervals belong to Wrong(M). So the µ′-measure of the part of Wrong(M)
outside C is almost δ (or more), and the part of Wrong(M) inside C has
µ′-measure almost p or more (this was true for µ, and µ′ is close to µ). To-
gether we get lower bound close to p+ δ for µ′(Wrong(M)). And this gives
us a contradiction, since µ′(Wrong(M)) ≤ µ′(Wrong(N)), and the latter
should be at most q for all µ′ close to µ. (Recall that we have chosen q − p
much smaller than δ.)

This contradiction finishes the proof.

4. Removing the deficiency boundedness assumption:
a positive result

Now we show that the bounded deficiency assumption in Theorem 3.2
cannot be omitted.

Theorem 4.1. There exists an algorithm A such that for every X which is
Martin-Löf random with respect to some computable probability measure, and
for almost all n, the value A(X�n) is a measure with respect to which X is
Martin-Löf random.

The proof of this result is inspired by a result of Harrington (reported
in [4, Theorem 3.10]) which states that there exists a algorithm to learn all
computable sequences up to finitely many errors. More precisely, there is an

14



algorithm A such that for every computable sequence X, for almost all n,
A(X�n) is defined (i.e., is an infinite sequence), and is equal to X except
for finitely many bits. Indeed, consider a program A(σ) that, given input m,
spends time m searching for the minimal program computing some extension
of σ and then runs this program, if found, on m (and returns, say, 0 if no
such program is found).

Proof. We will use an argument similar to Harrington’s one to prove The-
orem 4.1. In this section, it is more convenient to view measures as functions
by identifying µ with the function σ 7→ µ(σ) (here and in the rest of the
section, µ(σ) is the abbreviation of µ([σ])).

It is also more convenient in this section to use an alternative charac-
terization of Martin-Löf randomness, via the Levin–Schnorr theorem, which
states that if µ is a computable measure, a sequence X is Martin-Löf random
with respect to µ if and only if the prefix complexity of its prefixes is big:

(∃c)(∀n) K(X�n) > − log µ(X�n)− c

(see for example [7]). We say that measure µ is exactly computable when the
function σ 7→ µ(σ) is rational-valued and computable as a function from 2<ω

to Q. Of course, not all computable measures are exactly computable, but
the following fact holds:

Lemma 4.2. If X ∈ 2ω is random with respect to a computable probability
measure µ, it is random with respect to an exactly computable probability
measure ν. Moreover, one can suppose that ν(σ) > 0 for all strings σ.

See [6] for a proof (essentially we approximate the given computable mea-
sure with enough precision using positive rational numbers).

This lemma is convenient because it is possible to effectively list the
family F of partial computable functions µ from 2<ω to Q such that

• µ(Λ) = 1;

• for every n, either µ(σ) is defined for all strings σ of length n, or is
undefined for all strings σ of length n;

• if µ(σ0) and µ(σ1) are defined, µ(σ) is defined and is equal to µ(σ0) +
µ(σ1);

15



• µ(σ) > 0 for all σ on which µ is defined.

Let (µe)e∈N be an effective enumeration of all the functions in F . It is
among these functions that, given a sequence X, we are going to look for
the ‘best candidate’ µe such that µe is a measure (i.e., is total) and X is
random relative to µe. Suppose we are given a prefix σ of X. What is a good
candidate µe for this σ? For this, we use the same approach as algorithmic
statistics: a good explanation µe for a string σ should (a) be defined on σ,
(b) be simple, which is measured by the quantity K(e), and (c) give σ a
small ‘local’ randomness deficiency, which we can measure by the quantity
ld(e, σ) = maxτ�σ[− log µe(τ)−K(τ)]. The value

d(X |µe) = sup
τ�X

[− log µe(τ)−K(τ)] = lim
n

ld(X�n|µe) = sup
n

ld(X�n|µe)

is a version of randomness deficiency and is finite if and only if X is Martin-
Löf random with respect to µe (see, e.g., [1] for details). Note that it is
different from the uniform deficiency considered in the previous section, but
since in this section we use only this notion, we use the same letter d.

Returning to algorithmic statistic, we combine the two quantities into a
score function

score(e, σ) = K(e) + dld(e, σ)e,
with score(e, σ) =∞ if µe(σ) is undefined (like in golf, ‘score’ is meant in a
negative sense: high score(e, σ) means that µe is not a good candidate for
being a measure with respect to which σ looks random). Finally, we define
the function Best such that Best(σ) is the e which minimizes score(σ, e) (if
there are several such e’s, we take Best(σ) to be the smaller one). The first
thing to observe is that Best is computable in the halting set 0′. Indeed,
with access to 0′, one can first find an e such that s = score(σ, e) < ∞
(because K is computable in 0′). Then, again using 0′, one can find an N
such that K(e) > s (and thus score(e, σ) > s) for all e > N , and then take
Best(σ) to be the e in [0, N ] which minimizes score(σ, e) (again taking the
smallest one if there are several).

The core of the proof of Theorem 4.1 is the following lemma, which is of
independent interest.

Lemma 4.3. Let X be a sequence which is random with respect to some
computable probability measure. The sequence of integers Best(X�n) con-
verges to a single value e∗ such that µe∗ is a measure, and X is random with
respect to µe∗.

16



Thus learning measures in the EX sense, which we showed in the previous
section to be impossible, becomes possible if one is given access to oracle 0′.

To prove this lemma, consider the best explanation for the entire se-
quence, i.e., some integer e∗ that minimizes the quantity

d = K(e) + dd(X |µe)e

among all e such that µe is a measure. When looking for the best explanation
for some prefix X�n, we consider e too, but it may lose the competition to
some other candidates, since we take into account only the local deficiency
(and not its limit/supremum) and since these other candidates may have
smaller complexity and deficiency on X�n but do not define a total measure.
However, there are only finitely many other candidates that may be better
than e∗ since K(e) becomes too large for large e. And for sufficiently large
values of n the local deficiency will reach its ultimate value, and all the non-
total candidates are also disqualified, so e∗ becomes the winner. Lemma 4.3
is proven.

At this point, we have seen that the function Best does achieve the
learning of measures we want, but unfortunately this function is only 0′-
computable. By Schoenfield’s limit lemma, this means that there exists a
computable procedure which given σ generates a sequence e0, e1, . . . of in-
tegers which converges to e∞ = Best(σ). There is in general no way to
compute µe∞ from this sequence. However, what we can do is assemble all
the µei together (being cautious about the fact that some µei ’s may be par-
tial) into a single measure ν such that ν > cµe∞ , and this, by definition of
d, guarantees that everything that is random with respect to µe∞ , is also
ν-random.

More precisely, we have the following lemma.

Lemma 4.4. Let f : 2<ω → N be a total 0′-computable function such that
µf(σ) is a measure for all σ. Then there is a computable function g such that
µg(σ) is a measure for all σ, and µg(σ) ≥ cσµf(σ) for some positive cσ.

To do this, consider the following effective procedure. On input σ, we use
Schoenfield’s limit lemma to effectively get a sequence ei converging to e∞ =
f(σ). Initially all ei are considered ‘candidates’. We then apply a filtering
process that deletes some of these candidates: We compute in parallel all
µei(τ) for all pairs (i, τ) for which ei is still a candidate. If we find two
candidates ei, ej and τ such that µei(τ) and µej(τ) are both defined and

17



different from each other, then we remove ei and ej from the list of candidates.
This way we ensure, since the sequence converges, that from some point on,
for any candidate ei, the corresponding function µei is equal to µe∞ on its
domain (but µei may be partial). Indeed, each bad candidate (i.e., an ei such
that ei 6= e∞) may destroy at most one good candidate, and by assumption
almost all candidates are good.

Now we let µg(σ) to be a computable measure ν constructed in the follow-
ing way. First, let ν(Λ) = 1. Then we compute the conditional probabilities
ν(x0)/ν(x) and ν(x1)/ν(x) level by level. When computing them on level N ,
we use for the computation the conditional probabilities for some candidate
that remains alive after N steps of filtering process. (Any of them could
be used, for example, we may take the one with smallest computation time.
Note the at least one good candidate remains, so we will not wait forever.)

As we have seen, starting from some level only good candidates remain,
so the conditional probabilities above this level are the same for µf(σ) and ν.
Since by assumption all values of all measures are positive, this guarantees
the required inequality. This finishes the proof of Lemma 4.4.

We can now put all pieces together to prove Theorem 4.1. Applying the
previous lemma to f = Best, we have a computable function g such that
for every σ, the measure µg(σ) dominates, up to a multiplicative constant,
the measure µBest(σ). For every X which is random with respect to some
computable measure, we know, by Lemma 4.3, that µBest(X�n) is eventually
constant and equal to a measure with respect to which X is random. This
measure is dominated (up to multiplicative constant) by µg(X�n), thus X is
also random with respect to µg(X�n) (change in the measure increases the
deficiency at most by O(1)). This finishes the proof. �

Acknowledgements. Laurent Bienvenu and Santiago Figueira acknowledge
the support of the Laboratoire International Associé “INFINIS”. Laurent
Bienvenu and Alexander Shen also acknowlegde the support of ANR-15-
CE40-0016-01 RaCAF grant.

[1] Bienvenu, L., Gács, P., Hoyrup, M., Rojas, C., Shen, A., 2011. Al-
gorithmic tests and randomness with respect to a class of measures.
Proceedings of the Steklov Institute of Mathematics 274, 34–89.

[2] Bienvenu, L., Merkle, W., 2009. Constructive equivalence relations for
computable probability measures. Annals of Pure and Applied Logic
160, 238–254.

18



[3] Bienvenu, L., Monin, B., Shen, A., 2014. Algorithmic identification of
probabilities is hard. In: Algorithmic Learning Theory. Vol. 8776 of
Lecture Notes in Computer Science. Springer, pp. 85–95.

[4] Case, J., Smith, C., 1983. Comparison of identification criteria for ma-
chine inductive inference. Theoretical Computer Science 25, 193–220.

[5] Gács, P., 2005. Uniform test of algorithmic randomness over a general
space. Theoretical Computer Science 341 (1-3), 91–137.

[6] Juedes, D., Lutz, J., 1995. Weak completeness in E1 and E2. Theoretical
Computer Science 143 (1), 149–158.

[7] Levin, L., 1984. Randomness conservation inequalities; information and
independence in mathematical theories. Information and Control 61,
15–37.

[8] Li, M., Vitányi, P., 2008. An introduction to Kolmogorov complexity
and its applications, 3rd Edition. Texts in Computer Science. Springer-
Verlag, New York.

[9] Vitányi, P., Chater, N., 2013. Algorithmic identification of probabilities,
http://arxiv.org/abs/1311.7385.

[10] Weihrauch, K., 2000. Computable analysis. Springer, Berlin.

[11] Zeugmann, T., Zilles, S., 2008. Learning recursive functions: a survey.
Theoretical Computer Science 397, 4–56.

19


