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Abstract. We use concepts of continuous higher randomness, developed in

[BGM], to investigate Π1
1 randomness. We discuss lowness for Π1

1 randomness,

cupping with Π1
1 random sequences, and an analogue of the Hirschfeldt-Miller

characterisation of weak 2 randomness. We also consider analogous questions

for Cohen forcing, concentrating on the class of Σ1
1-generic reals.

1. Introduction

Interest in Π1
1-randomness comes from both above and below. From “above”,

effective descriptive set theory attempts to understand the computable content
of basic facts about definable sets of real numbers. Lightface investigations shed
new light on classical results; for an example we can take Spector’s proof of the
measurabiliy of Π1

1 sets, originally established by Lusin. The ordinal analysis of Π1
1

sets allows us to consider them as being in some sense enumerable. For sets of
natural numbers, this is made precise by using admissible computability over Lωck

1
.

Of course measure plays a central role in descriptive set theory, and so null Π1
1 sets

are a natural object to study.
From “below”, investigation of higher notions of algorithmic randomness were

started by Martin-Löf [ML66], who considered ∆1
1-randomness, mostly because it

satisfies better closure properties than the computably enumerable notion. Sacks
(see [Sac90, IV2.5]) was the first to define the notion of Π1

1 randomness and show
it is distinct from ∆1

1 randomness. An important advance in the theory of “higher
randomness” was made by Hjorth and Nies in [HN07]. They used the analogy
between computably enumerable and Π1

1 sets of numbers to define higher analogues
of notions of algorithmic randomness, the most central being Π1

1-ML-randomness.
The theory was then further developed by Chong, Nies and Yu [CNY08], by Chong
and Yu [CY] and by Bienvenu, Greenberg and Monin [BGM].

These contributions enriched various aspects of the theory, but very little was
discovered about the key notion of Π1

1 randomness. This concept is very natural.
It is simply defined (avoiding all null Π1

1 sets), and has a universal test (a greatest
null Π1

1 set); and unlike ML-randomness, the universal test occurs without having
to encumber the definition with extra conditions (the speed of convergence of the
measure to 0). On the other hand it is a singularity among higher randomness no-
tions, in that it is not the higher analogue of any “lower” notion of randomness: ∆1

1

randomness is higher Schnorr randomness, and other notions are direct analgoues:
the main one is Π1

1-ML randomness, but also higher weak 2 randomness (introduced
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by Nies [Nie09, 9.2.17], studied by Chong and Yu [CY] and later in [BGM]), and
higher Kurtz randomness. It was not clear how to use computability-theoretic tools
to tackle Π1

1 randomness.
A breakthrough was made by the second author in [Mon14], who showed that

the set of Π1
1 randoms is Π0

3, a Borel rank much lower than expected earlier. In
this paper we use his work to continue the effective study of Π1

1 randomness, and in
particular answer some questions that have been left open for more than a decade.
For example, we show that lowness for Π1

1 randomness coincides with being hyper-
arithmetic, and prove a similar result about cupping with Π1

1 random sequences.
We also identify and investigate the category analogue of Π1

1 randomness, which is
Σ1

1-genericity.

1.1. Π1
1 randomness, lowness and cupping. As mentioned above, there is a

greatest null Π1
1 set (Stern and independently Kechris [Ste75, Kec75], and later

rediscovered in [HN07]). In fact, this greatest set can be described succinctly.
Recall that a sequence is ∆1

1-random if it avoids all null ∆1
1 (hyperarithmetic) sets.

We say that a real X collapses ωck
1 if ωX1 ą ωck

1 ; otherwise it preserves ωck
1 . The

following characterisation was first proved by Stern [Ste73, Ste75] and rediscovered
later by Chong, Nies and Yu [CNY08]:

Theorem 1.1. A sequence is Π1
1 random if and only if it is ∆1

1-random and pre-
serves ωck

1 .

In this paper we answer the question of lowness for Π1
1 randomness, first stated

in [HN07]. The idea of lowness has been extensively studied in algorithmic ran-
domness: For a given randomness notion Γ, we say that a set X is low for Γ if
X cannot de-randomize any Γ-random: every Γ-random is also ΓpXq-random. In
particular the class of reals low for ML-randomness has been central in algorithmic
randomness, with many equivalent characterisations. The higher analogue of this
class was studied in [HN07, BGM].

Any ∆1
1 set is low for Π1

1 randomness. In this paper (Theorem 3.1) we prove
that these are the only ones.

We also consider the question of cupping with Π1
1 random sequences. A fun-

damental result in the study of both the local and global Turing degrees is the
Posner-Robinson theorem, showing that any noncomputable real can be joined
above H1 with a 1-generic sequence. The cupping question for incomplete randoms
was settled by Day and Miller [DM14] using tools of effective analysis. Their so-
lution gives yet another characterisation of lowness for ML-randomness. Limits on
cupping with random sequences were established by Day and Dzhafarov [DD13].

In the higher setting, Kleene’s O, the complete Π1
1 set of numbers, often plays

the role of H1. Here the problem of cupping can be rephrased, since a real X
is hyperarithmetically above O if and only if it collapses ωck

1 . Hence for cupping
partner for a real A we are searching for a real X which preserves ωck

1 but such
that A ‘X collapses ωck

1 . Kumabe-Slaman forcing can be used to show that any
non-hyperarithmetic real can be non-trivially cupped (for Kumabe-Slaman forcing
see [SS99]). Theorem 1.1 shows that for random sequences, the random cupping
partners desired are precisely the Π1

1 random sequences. We show that any non-
hyperarithmetic real can in fact be cupped by a Π1

1 random sequence (Theorem 3.3).

1.2. Continuous higher randomness, and an analogue of Hirschfeldt-
Miller. We use concepts, terminology and notation from [BGM]. The main theme
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of that paper is the centrality of continuous reductions in algorithmic randomness.
Hyperarithmetic reducibility is too coarse for many arguments to go through. A
central concept introduced in [BGM] is a higher analogue of Turing reducibility
that allows us to lift many arguments to the higher setting. The idea is to take the
definition of Turing reducibility in terms of functionals and allow the functionals
to be Π1

1 rather than c.e. We give the details in Section 2 below. Higher Turing
reducibility requires any output to be determined by only finitely many bits of
the oracle. If an oracle Y collapses ωck

1 , then hyperarithmetic reducibility gives Y
extra computational power simply because enumerations processes with oracle Y
are carried out over more than ωck

1 many steps; higher Turing reducibility does not
allow that.

Hirschfeldt and Miller gave the following characterisation of weak 2 randomness
(see for example [Nie09, Theorem 5.3.15]).

Theorem 1.2. Let X be ML-random. The following are equivalent:

(1) X forms a minimal pair with H1.
(2) X does not compute any noncomputable c.e. set.
(3) X is weakly 2 random.

In the higher setting, a modified version (involving enumerating ∆2 sets) was
shown to characterise the class MLRrOs, which is strictly smaller than the Π1

1

randoms. For higher weak 2 randomness, or even Π1
1 randomness, (1) of the theorem

fails, since there is a Π1
1 random which is computable from O. However we show

here that using the continuous notion of higher computability, (2) characterises Π1
1

randomness (Theorem 3.6) and not higher weak 2 randomness. The direction (3) Ñ
(2) does not work in the higher setting as it uses what we call a “time trick”: the
number of stages of computation is the same as the length of the oracle. The
fact that in the higher setting, (2) characterizes Π1

1 randomness instead shows that
reliance on this trick is fundamental.

1.3. A higher arithmetical hierarchy. As mentioned above, the second author
showed [Mon14] that the set of Π1

1 randoms is Π0
3. One can ask how effective this is.

The strong analogy between c.e. and Π1
1 allows us to define a new hierarchy which

is the higher analogue of the arithmetical hierarchy (for sets of reals). Namely
a subset of Cantor space is higher effectively open (higher Σ0

1) if it is Π1
1 open,

and higher effectively closed (higher Π0
1) if it is Σ1

1 closed . To continue we take
effective ω-unions. So for example, a set is higher Π0

2 if it is of the form
Ş

Un,
where each Un is Π1

1 open, uniformly in n; higher Σ0
3 if it is of the form

Ť

Qn,
where each Qn is higher Π0

2 (uniformly in n); higher Σ0
2 if it is of the form

Ť

Pn,
where each Pn is Σ1

1 closed (uniformly); and so on. This definition is motivated by
Nies’s higher analogue of weak 2 randomness, defined as avoiding all null higher
Π0

2 sets. For brevity, we use the notation Πck
n and Σck

n to denote the levels in this
hierarchy.

An unusual feature of this hierarchy is that some higher Σ0
1 sets are not Σ0

2.
Indeed, the sets in the classes Σck

1 , Πck
2 , Σck

3 , Πck
4 , . . . are all Π1

1, and some are not
Σ1

1; considering complements, sets in the classes Πck
1 , Σck

2 , Πck
3 , ¨ ¨ ¨ are all Σ1

1, but
some are not Π1

1. See Fig. 1. 1

1 The same phenomenon happens classically if one considers the Borel sets defined on some
non Polish topological space. For example consider the Gandy-Harrington topology; or, let Tp2ωq
be the set of open sets of 2ω and consider the topology on Tp2ωq generated by the subbasis vσw “
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Σck
1 Σck

2 Σck
3 Σck

4 Σck
5 . . .

Πck
1 Πck

2 Πck
3 Πck

4 Πck
5 . . .

Figure 1. The higher hierarchy of complexity of sets. The blue
complexities correspond to Π1

1 sets. The green complexities corre-
spond to Σ1

1 sets.

We can ask two questions:

(1) Which null sets in this hierarchy suffice to capture Π1
1 randomness?

(2) Does the set of Π1
1 randoms lie in this hierarchy?

For example, we could hope that Monin’s Borel rank result is completely effective,
meaning that the set of Π1

1 randoms is higher Π0
3. This is not so, by a result in

[BGM] (any co-null Πck
3 set in fact contains a sequence which is not higher weak 2

random). For question (1), in [BGM] it was shown that Π1
1 randomness is distinct

from higher weak 2 randomness, showing that the level Πck
2 is insufficient. In

Section 4 we establish fairly low bounds for both questions, and in fact pinpoint
Πck

4 as the answer to question (1).

1.4. Σ1
1-genericity. What about category? Stern [Ste75] considered category as

well as measure, showing that the largest meagre Π1
1 set is the set of ∆1

1-generic
sequences which preserve ωck

1 . This uses Feferman’s result [Fef64] that co-meagrely
many reals preserve ωck

1 .
Recall that for any lightface pointclass Γ, we say that a sequence G P 2ω is:

‚ Weakly Γ-generic if it meets all dense open sets with codes in Γ;
‚ Γ-generic if it either meets or avoid all open sets with codes in Γ (does not

lie on the boundary of any such open set).

For example, Jockusch’s familiar notions of n-genericity are Σ0
n-genericity. The

closure properties of the hyperarithmetic sets show that ∆1
1-genericity and weak

∆1
1-genericity coincide.

Our first result here is to capture the precise level of genericity that suffices to
preserve ωck

1 ; this is the category analogue of Monin’s result on Π1
1 randomness.

We show that the level is precisely Σ1
1-genericity. This notion can be considered as

a higher analogue of Π0
1-genericity, a notion which Jockusch noticed is equivalent

to 2-genricity (see [Kur82] and [Kur83]). We also investigate the intermediate
notion of Π1

1 genericity (the higher analogue of 1-genericity), and consider lowness
and cupping questions. We also find a partial analogue of the equivalence of Π0

1-
genericity and 2-genericity (which is the same as 1-genericity relative to H1) by
considering a subclass of the Π1

1pOq dense open sets, the finite-change dense open
sets. Along the way we also give a direct proof of the equivalence of lowness for
tests and lowness for weak genericity, which applies to the lower setting as well.

tU P Tp2ωq : rσs Ď Uu for any string σ. Consider the closed set F “ tU P Tp2ωq : rσs ´U ‰ Hu
for a given string σ. As any open set in this topology contains the element rεs “ 2ω , also any

intersection of open set contains rεs, which is not an element of F .
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2. Preliminaries

2.1. Higher prefix-free sets of strings, and a result of Kučera’s. In “lower”
randomness, many arguments use c.e. (or even computable) prefix-free sets of
strings when working with effectively open sets. However there are higher effec-
tively open sets which are not generated by Π1

1 prefix-free sets of strings (this is
implicit in [HN07] and formally shown in [BGHM]). In the higher setting we focus
on the weight of a set of strings (and see that in several ways it is the more fun-
damental concept). Recall that for a set of strings W , the weight wtpW q of W is
ř

σPW 2´|σ|. Instead of prefix-free generating sets we obtain sets of weight as close
as we like to the measure of the set in question. The technique used in the proof of
the following lemma was already used in [BGM, Lemmas 3.1 and 3.3]. It relies on
the existence of a “projectum function”: a ωck

1 -computable (∆1pLωck
1
q-definable) in-

jective function p : ωck
1 Ñ ω. Recall that a set of strings W generates (or describes,

or codes, or defines) the open set

W “ rW să “
ď

σPW

rσs “ tX P 2ω : Dσ ă X pσ PW qu .

Lemma 2.1. For any higher effectively open set U and ε ą 0 there is a Π1
1 set of

strings W generating U such that wtpW q ď λpUq ` ε.

Though we will not use it, we note that an index for W can be obtained uniformly
from ε and an index for U .

Proof. Let U be a Π1
1 set of strings generating U ; let xUsysăωck

1
be a higher enu-

meration of U . We can assume that at most one string enters U at each stage: this
means that for all s ă ωck

1 , Us`1 ´ Us contains at most one element, and for all
limit s ă ωck

1 , Us “ Uăs “
Ť

tăs Ut.

At a stage s ă ωck
1 , if σ enters Us`1, we find a clopen set Cs Ď rσs such that:

‚ rσs ĎWs Y Cs; and
‚ λpWs X Csq ď ε ¨ 2´ppsq.

We then add a (finite) set of strings generating Cs (whose total weight will be λpCsq)
to Ws`1. At limit stages s we let Ws “

Ť

tăsWt.
By construction, U “ rW să. To bound the weight of W , we observe that if

s ă t ă ωck
1 then the sets Ct´Wt and Cs´Ws are disjoint (as Cs ĎWt); these sets

are subsets of U , and so
ÿ

săωck
1

λpCs ´Wsq ď λpUq.

Also,
wtpCsq “ λpCsq “ λpCs ´Wsq Y λpCs XWsq,

and so

wtpW q “
ÿ

săωck
1

wtpCsq ď λpUq`
ÿ

săωck
1

λpWsXCsq ď λpUq`ε
ÿ

săωck
1

2´ppsq ď λpUq`ε.

�

As a result, we get a characterisation of higher ML-randomness, an analogue of
a result of Kučera’s [Kuč85].

Proposition 2.2. A sequence Z is Π1
1 ML-random if and only if Z has a tail in

every non-null Πck
1 set.
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Proof. Suppose that Z is not Π1
1-ML-random. Then every tail of Z is not Π1

1-ML-
random, so Z and all of its tails miss every Πck

1 set consisting only of Π1
1-ML-random

sequences (e.g. complements of components of the universal Π1
1-ML-test).

Suppose that Z is Π1
1-ML-random. Let P be Πck

1 and non-null, and let V be the
complement of P. By Lemma 2.1, let V be a Π1

1 set of strings which generates V
and has weight smaller than 1. We let Vm “ rV msă, where V m is the set of
concatenations of m strings, all from V . The weight of V m is bounded by pwtpV qqm,
and the measure of Vm is bounded by the weight of V m. The important point is
that λpVmq goes to 0 computably, so xVmy is a Π1

1-ML-test. Let m be least such
that X R Vm; as V0 “ 2ω, m ą 0. Let σ P V m´1 which is a prefix of X; let
Y “ X ´ σ (so X “ σˆY ). Then Y P P. �

2.2. Consistency in higher functionals. Let us define higher Turing reducibil-
ity. Below we use it to compute not only elements of 2ω (or ωω) but also of pωck

1 q
ω,

so we give a general definition. A higher Turing functional is a ωck
1 -c.e. set of triples

pσ, n, αq P 2ăωˆωˆωck
1 . Recall that ωck

1 -c.e. means Σ1pLωck
1
q-definable; if the func-

tional is a subset of 2ăω ˆ ω ˆ ω (or 2ăω ˆ ω ˆ 2) then this is the same as being
Π1

1. The “axiom” pσ, n, αq indicates that with an oracle Y P 2ω extending σ, on
input n, we output α. For a higher functional Φ and an oracle Y P 2ω we let ΦpY q
be the function that Φ computes with oracle Y ; formally, identifying a function as
a set of pairs,

ΦpY q “ tpn, αq : Dσ ă Y ppσ, n, αq P Φqu .

Here we must note something important. Unlike the usual definitions of “lower”
functionals, we do not require that a higher Turing functional is consistent. That
is, we do not require that if pσ0, n, α0q and pσ1, n, α1q are both in Φ, and σ0 and σ1

are compatible, then α0 “ α1. We thus have to regard ΦpY q as a multi-valued
function. For f P pωck

1 q
ω and Y P 2ω, we write f ďωck

1 T Y if f “ ΦpY q for some

higher functional Φ (and say that Y higher computes f). That is, on the oracle Y we
require that Φ gives only consistent answers (and is total), but we do not require
that ΦpZq be consistent on other oracles Z. Indeed, in [BGHM] we show that
there is a higher ML-random sequence (a Π1

1-ML-random) which higher Turing
computes O but does not compute it via a functional consistent on all oracles. So
the inconsistency cannot be completely removed. However, it can be ‘reduced’ by
as much as we want, in a measure theoretic way; and this will be useful for some
results of this paper.

Let us fix some notation. For a functional Φ and an oracle Y we write ΦpY, nqÓ
if n P dom ΦpY q: that is, at least one value is given. If more than one value is
given then we anyway write ΦpY, nq “ α0 and ΦpY, nq “ α1. We say that ΦpY q is
total if dom ΦpY q “ ω, that is, if ΦpY, nqÓ for all n. The totality set of Φ is Πck

2 .
The inconsistency set of Φ (the set of Y for which for some n, ΦpY, nq obtains more
than one value) is Σck

1 (higher effectively open).
The proof of the next lemma again uses the projectum function p : ωck

1 Ñ ω.

Lemma 2.3. For any higher Turing functional Φ and ε ą 0 there is a higher func-
tional Ψ so that:

(1) Every Ψ-computation arises from a Φ-computation: for all n, α and Y , if
ΨpY, nq “ α then ΦpY, nq “ α.

(2) For all Y , if ΨpY q is consistent then dom ΨpY q “ dom ΦpY q.
(3) The measure of the inconsistency set of Ψ is smaller than ε.
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Further, an index for Ψ can be obtained uniformly from an index for Φ and from ε.

Note that (1) and (2) imply that the correct Φ-computations are unchanged in Ψ:
for all Y P 2ω, if ΦpY q is total and consistent then so is ΨpY q, and ΨpY q “ ΦpY q.

Proof. Given Φ and ε we enumerate Ψ. We ensure that for all s, every Ψs-
computation arises from a Φs-computation. We can assume that at most one “ax-
iom” enters Φ at each stage. At stage s ă ωck

1 suppose that an axiom pσ, n, αq enters
Φs`1. Let Es be the inconsistency set of the functional Ψs Y tpσ, n, αqu. This set is
∆1

1 open (uniformly in s). We find a clopen set Cs Ď rσs such that rσs Ď Cs Y Es
and such that λpCs X Esq ď 2´ppsqε. We then enumerate into Ψs`1 axioms which
ensure that Ψs`1pY, nq “ α for all Y P Cs. Since Cs Ď rσs, every Ψs`1-computation
arises from a Φs`1-computation; this establishes (1).

Let us see that (2) and (3) are satisfied. Suppose that ΨpY q is consistent, and
that n P dom ΦpY q; say an axiom pσ, n, αq enters Φs`1, where σ ă Y . If Y P Cs
then n P dom ΨpY q. Otherwise, the functional ΨsYtpσ, n, αqu is inconsistent on Y .
Since ΨpY q is consistent, this means that ΨspY, nqÓ (to some value other than α).
But this again implies that n P dom ΨpY q.

For (3), suppose that ΨpY q is inconsistent. Let s be the stage at which Y enters
the inconsistency set of Ψ: ΨspY q is consistent but Ψs`1pY q is not. [There is such
a stage; if s is a limit stage and ΨtpY q is consistent for all t ă s, then ΨspY q is
consistent.] A new axiom applying to Y is enumerated into Ψs`1, so Y P Cs. The
fact that this new axiom makes Ψs`1pY q inconsistent also implies that Y P Es.
So the inconsistency set of Ψ is a subset of

Ť

săωck
1
pCs X Esq; (2) follows as in the

previous proof, since λp
Ť

spCs X Esqq ď
ř

săωck
1

2´ppsqε ď ε. �

2.3. Π1
1-randomness and forcing. The heart of Monin’s proof that the Π1

1-
randoms form a Π0

3 set goes through an analysis of forcing with Πck
1 sets of positive

measure. This is in analogy to forcing with Π0
1 closed sets of positive measure,

which Monin shows yields computably dominated weakly 2 random sequences. The
precise level resembles genericity.

Theorem 2.4 ([Mon14]). Let X be ∆1
1-random. The following are equivalent:

(1) X is Π1
1-random.

(2) For any Σck
2 set H, either X P H, or X is an element of some Πck

1 set
(necessarily of positive measure) which is disjoint from H.

We present a proof of Monin’s theorem in a language and notation which is
aligned with the rest of this paper.

Proof. For a Πck
2 set G, we let G˚ denote the union of all Πck

1 subsets of G. So we
need to show that if X is ∆1

1-random, then X collapses ωck
1 (fails to be Π1

1-random)
if and only if X P G ´ G˚ for some Πck

2 set G.
Recall that a Π1

1 set A is the union
Ť

săω1
As, where each As is ∆1

1 in any

code for s; in particular, for s ă ωck
1 , As is ∆1

1, uniformly in s. We let Aăωck
1
“

Ť

săωck
1
As. If U is Π1

1 open, then U “ Uăωck
1

; but in general, λpAq “ λpAăωck
1
q

for any Π1
1 set. If G “

Ş

n Un is Πck
2 then G “ Gωck

1
but may not equal Găωck

1
;

the elements of Gωck
1
´ Găωck

1
are those which are enumerted into each Un at stages

sn ă ωck
1 such that the sequence xsny is unbounded in ωck

1 . Note that the sequence
xsny is ∆1pLωck

1
pXqq-definable, so such X collapses ωck

1 .
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We show:

(a) For any G P Πck
2 , G˚ Ď Găωck

1
.

(b) For any G P Πck
2 , Găωck

1
´ G˚ is null, indeed does not contain ∆1

1-random
sequences.

(c) If X is ∆1
1-random and collapses ωck

1 , then X P G ´ Găωck
1

for some Πck
2

set G.

Then (a)+(c) establish the direction (1)ùñ (2) of the theorem; and (a)+(b) estab-
lish (2)ùñ (1), as we already observed that any X P G ´ Găωck

1
collapses ωck

1 .

For (a), let F Ď G be higher effectively closed. Say G “
Ş

n Un. Just like in
the lower setting, by compactness, for each n, there is some s ă ωck

1 such that
Fs Ď Un,s. Observing this fact is ∆1pLωck

1
q, so by admissibility, there is some s

such that for all n, Fs Ď Un,s, that is, Fs Ď Gs, yielding F Ď Fs Ď Gs Ď Găωck
1
.

Both (b) and (c) rely on effective regularity of Lebesgue measure. Recall that
for any ∆1

1 set C we can find a ∆1
1, Gδ set G such that C Ď G and C “˚ G, that is,

λpG´Cq “ 0. (In fact this can be done within the same level of the hyperarithmetic
hierarchy, yielding the equivalence of α-randomness with ML-randomness relative
to Hpαq2.) Of course, taking complements, we can find a ∆1

1, Fσ set F Ď C such
that F “˚ C.

For (b), let X P Găωck
1
´ G˚. Let s ă ωck

1 such that X P Gs. Since Gs is ∆1
1,

find a ∆1
1, Fσ set Q Ď Gs such that Q “˚ Gs. Since Q is a union of ∆1

1 closed sets
and X R G˚, X R Q. So X is an element of the ∆1

1 null set Gs ´Q, and so is not
∆1

1-random.

Finally we prove (c). Let X be a ∆1
1-random which collapses ωck

1 . Let Ψ
be a computable operator taking reals to linear orderings such that ΨX – ωck

1 .
For any Y and n ă ω let ΨY pď nq denote the restriction of the ordering ΨY

to the numbers m ăΨY n. For n ă ω let An consist of the reals Y such that
ΨY pď nq is isomorphic to some computable ordinal. As expected we let An,s “
 

Y : ΨY – t for some t ă s
(

. Then An is Π1
1 and An “ An,ăωck

1
, but of course

is not necessarily open. Let B “
Ş

nAn, and for s ă ωck
1 , let Bs “

Ş

nAn,s; let
Băωck

1
“

Ť

săωck
1
Bs. So X P B “ Bωck

1
´ Băωck

1
. We want the same thing except to

replace An by open sets. We do this by approximating.
For each n and s find Pn,s Ě An,s, ∆1

1 and Gδ, such that An,s “
˚ Pn,s. Further

write Pn,s “
Ş

k Un,k,s, with each Un,k,s being a ∆1
1 open set. These can be chosen

so that Un,k,s Ď Un,k,t if s ă t. Let G “
Ş

n,k Un,k; this set is Πck
2 and Găωck

1
“
Ť

s Gs
where Gs “

Ş

n Pn,s “
Ş

n,k Un,k,s. Since B Ď G, X P G. For each s ă ωck
1 , X R Bs

implies X R Gs: otherwise for some n ă ω, X is an element of the ∆1
1 null set

Pn,s ´An,s. Hence X P G ´ Găωck
1

, as required. �

Theorem 2.4 can be restated in the language of forcing. Let P be the partial order
consisting of the Πck

1 sets of positive measure, ordered by inclusion. Theorem 2.4
implies the following proposition. Recall that for K Ď 2ω we say that a sufficiently
P-generic real is in K if there is a countable collection of dense subsets of P such
that for any filter G Ď P meeting these dense sets, ZG (defined by

Ş

G “ tZGu) is
in K. That is, if

Ş

n

Ť

Dn Ď K, where each Dn is a dense subset of P.

Proposition 2.5 ([Mon14]). A sufficiently P-generic real is Π1
1-random.

2As usual replace α by α´ 1 for α ă ω.
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To prove Proposition 2.5 we observe the following (which we will use later as
well):

Lemma 2.6. Let K be a union of elements of P, and suppose that every element
of P intersects K positively (the intersection has positive measure). Then every
sufficiently P-generic real is in K.

Note that the union is not required to be uniform.

Proof. If K “
Ť

n Fn, with Fn P P, the dense set is the set of F P P such that
F Ď Fn for some n. �

In particular, Lemma 2.6 applies to all open sets (as all nonempty clopen sets are
elements of P). And Proposition 2.5 follows from Theorem 2.4, as the complement
of G ´ G˚ (where G is Πck

2 ) is a union (non-uniform) of elements of P, and it is
co-null.

3. Lowness, cupping, and computing c.e. sets

3.1. Lowness for Π1
1-randomness. Theorem 2.4 helps us here to solve the ques-

tion of lowness for Π1
1-randomness [Nie09, question 9.4.11]: Is there some sequence

A which is not ∆1
1 and such that the largest Π1

1pAq set equals the largest Π1
1 set?

We answer the question by the negative, in a strong sense.

Theorem 3.1. If A is not hyperarithmetic, then some Π1
1-random is not Π1

1pAq-ML
random.

We will then improve this result in Theorem 3.3 by solving the cupping question
for Π1

1-randomness, showing that a non-hyperarithmetic A can be cupped above O
by a Π1

1-random sequence. However the direct proof of Theorem 3.1 is simpler and
we believe is interesting in its own right. Indeed the second proof elaborates on
the simpler one. Our proof can be transfered in a straightforward way to the lower
setting, simplifying the proof that a non K-trivial is not low for weak 2 randomness
[DNWY06].

The proof is based on a result of Hjorth and Nies: only the ∆1
1 sets are low for

higher ML-randomness. Here they use full relativisation. That is, they show that
if A is not hyperarithmetic then Π1

1pAq-ML randomness is strictly stronger than
Π1

1-ML randomness. This does not use the continuous relativisation introduced
in [BGM] (for which the higher K-trivials are indeed low for randomness). Their
argument is a dichotomy: either A is not higher K-trivial, in which case the usual
arguments show that it is not low for higher ML-randomness; or it is, but in that
case it collapses ωck

1 , which gives it sufficient power to derandomize some Π1
1-ML-

random reals. One of the effects of the continuous relativisation is to prevent K-
trivials from using this extra power. In this section we only use full relativisation.

Our first step is a higher version of Kjos-Hanssen’s characterization of lowness for
Martin-Löf randomness [KH07]. Given Proposition 2.2, the argument is identical;
we give a proof for completeness.

Lemma 3.2. Suppose that A is not hyperarithmetic. Let U be a Π1
1pAq-open set

which contains all reals which are not Π1
1pAq-ML-random. Then U positively inter-

sects every higher effectively closed set of positive measure.
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Proof. As mentioned, we use the fact that A is not low for Π1
1-ML-randomness.

Let X be Π1
1-ML-random which is not Π1

1pAq-ML-random. Let P be a non-null Πck
1

set. By Kučera’s Proposition 2.2, there is a tail Y of X in P. Since Y is not Π1
1pAq-

ML-random, Y P U , so U X P ‰ H. Indeed this intersection must have positive
measure; say σ ă Y and rσs Ď U ; then rσs X P is non-null, as it contains Y . �

Proof of Theorem 3.1. Let A R ∆1
1; let xUny be the universal Π1

1pAq-ML test. By
Lemmas 3.2 and 2.6 and Proposition 2.5, a sufficiently P-generic real is both Π1

1-
random and an element of

Ş

n Un, i.e., not Π1
1pAq-ML-random. �

3.2. Cupping with a Π1
1-random. Recall that a realX is higher random-cuppable

(or Π1
1-random cuppable) if there is a a Π1

1 random sequence Z such that X‘Z ěh
O, equivalently X ‘ Z collapses ωck

1 . No ∆1
1 real is higher random-cuppable. We

show here that every other real is higher random cuppable. Note that if A ­ěh O,
then a Π1

1-random cupping partner of A cannot be Π1
1pAq-random; so this result

implies Theorem 3.1. Indeed we prove a stronger cupping theorem.

Theorem 3.3. If A is not hyperarithmetic then for all Y P 2ω there is some Π1
1-

random Z such that Y ďh A‘ Z.

Chong, Nies and Yu (Together with Slaman and Harrington) [CNY08] proved the
following relation between cuppability and lowness: A real is low for Π1

1-randomness
if and only if it is low for ∆1

1-randomness and is not higher random cuppable.
Unfortunately, the equivalence of lowness for Π1

1-randomness, and of Π1
1-random

non-cuppability, with being hyperarithmetic, make this result less interesting. We
however have some hope that an analogous characterization (with possibly a similar
proof) will find its use with Σ1

1-genericity; see Proposition 6.9 below.

The cupping result is very similar to another cupping result of Greenberg, Miller,
Monin and Turetsky [GMMTar]; they show that if A ęLR B then A can be cupped
(in the Turing degrees) with B-ML-randoms arbitrarily high.

As usual in the higher setting, we need to deal with the fact that a Π1
1-open set

does not necessarily have a Π1
1 prefix-free representation, but we will need something

different from Lemma 2.1.

Let us consider the general plan. We are given A which is not hyperarithmetic
and some Y P 2ω. We will construct Z as a sequence Y p0qσ0Y p1qσ1 ¨ ¨ ¨ with
each rσns Ď U , where U is a Π1

1pAq-open set of small measure (say less than 0.1)
which contains all reals which are not Π1

1pAq-random, say a component of the uni-
versal Π1

1pAq-ML-test. To make Z Π1
1-random we use Theorem 2.4. We construct a

sequence P0 Ě P1 Ě ¨ ¨ ¨ of Πck
1 sets of positive measure and ensure that Z P

Ş

n Pn.
The sequence xPny will generate a filter in P (the partial ordering of all Πck

1 sets of
positive measure), sufficiently generic as to ensure that Z is Π1

1 random.
Let τn “ Y p0qσ0Y p1qσ1 ¨ ¨ ¨Y pn ´ 1qσn´1Y pnq (so τ0 “ Y p0q). The inductive

hypothesis is:

(‹) λpPn | τnq ą 0.1

(where recall that λpR | τq is the conditional probability of R given τ , namely
λpR X rτ sq{2´|τ |). We start with P0 “ 2ω so (‹) holds for n “ 0. Given τn, to
define σn we use the following claim, which is identical to one proved in [GMMTar]:

Claim 3.4. For any string τ and any Πck
1 set P such that λpP | τq ą 0.1 there is

some σ such that rσs Ď U and λpP | τσq ě 0.8.
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Proof. First we find an extension ρ of τ such that rρs Ę τU (the latter is of course
tτX : X P Uu), and such that λpP | ρq ą 0.9. This is done with the Lebesgue
density theorem. Letting G “ 2ω ´ τU , as λpG | τq ą 0.9 and λpP | τq ą 0.1, we
must have λpGXP | τq ą 0 and by Lebesgue density theorem there is an extension
ρ of τ such that λpG X P | ρq ą 0.9. In particular we must have λpP | ρq ą 0.9
and G X rρs is nonempty.

Next we find an extension ν of ρ such that rνs Ď τU and λpP | νq ě 0.8 as
required. We let Q be the Πck

1 subset obtained from P X rρs by removing all
cylinders in which the measure of P drops below 0.8. Formally

Q “
 

X P P X rρs : @n ě |ρ|
`

λpP | Xænq ě 0.8
˘(

.

By considering the antichain of minimal strings removed we see that λpP´Q | ρq ď
0.8. Since λpP | ρq ą 0.9 we see that λpQ | ρq ą 0.1. In particular, Q is a positive
measure Πck

1 subset of rτ s, and so by the choice of U and Lemma 3.2, τU intersects
Q. Choose ν Ě ρ such that rνs Ď τU and rνs X Q ‰ H. By the definition of Q,
λpP | νq ě 0.8. �

Now the idea would be to take two steps. First, given τn, by (‹) and Claim 3.4
we find some σn such that rσns Ď U and λpPn | τnσnq ě 0.8. This determines τn`1.
Then to define Pn`1 we consider the next set in a list S1,S2, . . . of Σ0

2 sets which are
each the union of Πck

1 sets, co-null, and such that
Ş

k Sk contains only Π1
1-random

sequences; this is given by Theorem 2.4. We then let Pn`1 “ PnXR, where R Ď Sn
is a Πck

1 set of sufficiently large measure so that λpPn`1 | τnσnq ě 0.7. (‹) for n` 1
follows.

So far the construction is the same as in [GMMTar] (except that instead of Σck
2

sets we use non-uniform unions of Πck
1 sets. This improvement, and Monin’s analysis

of forcing with Π0
1 sets of positive measure, shows that the cupping partner built in

that argument can be made not only weakly 2 random but also of hyperimmune-
free degree.) However we also need to show that Y ďh A‘Z. In [GMMTar] this is
done by using a c.e. antichain which generates U ; then at each step the string σn is
made to be an element of that antichain, and is so determined by Z (and using A
as an oracle to enumerate this antichain). Here we need a new ingredient.

Lemma 3.5. Let U be a Π1
1 open set. Then for every ε ą 0 there is a Π1

1 set of
strings W (and a higher effective enumeration xWsy of W ) such that:

‚ W “˚ U ; and
‚ For every s ă ωck

1 , if σ PWs`1 ´Ws then λpWs | rσsq ă ε.

(As usual, W (and its enumeration) can be obtained uniformly, but we do not
use this.) To complete the proof of Theorem 3.3, we relativise Lemma 3.5 to A,
apply it to U and ε “ 0.1, and apply Claim 3.4 to W instead of U ; since W “˚ U it
is still the case that W intersects all Πck

1 sets of positive measure. We further note
that applying the lemma we can take σ P W : examining the proof of the lemma,
we can take ν to be any extension of ρ such that rνs Ď W and rνs XQ ‰ H. The
plan then would be to throw τnWsn out of Pn`1 (where σn P Wsn`1 ´Wsn); this
will determine σn given Z.

Proof of Lemma 3.5. Let U be a Π1
1 set of strings generating U . As above we

assume that at most one string enters U at each stage. We enumerate W : say
σ P Us`1 ´ Us. Let

Gs “ tτ ě σ : λpUs | τq ă εu.
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This is ∆1
1. We let Ws`1 ´ Ws consist of a ∆1

1 prefix-free set of strings which
generates Gs (for example the minimal strings in Gs). Note that Ws Ď Us (and so
W Ď U).

By induction on s we show that λpUs ´Wsq “ 0. It suffices to show that for
σ P Us`1 ´ Us,

rσs “˚ Gs Y pWs X rσsq .

Suppose not. Then by the Lebegue density theorem there is some τ ě σ such that
λpGs YWs | τq ă ε. Since Ws Ď Us, we see that τ P Gs, which is impossible.

It remains to show that λpWs | τq ă ε for any τ PWs`1 ´Ws. But such τ is an
element of Gs, so λpUs | τq ă ε; and Us “˚ Ws. �

Proof of Theorem 3.3. We breifly give the rest of the details. Let W and S1,S2, . . .
as discussed above. We define the sequence σ0, σ1, . . . as above, which deter-
mines τn. We also let sn be the stage s such that σn P Ws`1 ´Ws. In addition to
(‹) we will ensure that for all n,

(‹‹) Pn`1 X τnWsn “ H.

The only modification to the construction discussed above is the definition of Pn`1.
Given σn, because λpWsn | σnq ă 0.1, we know that λpPn ´ τnWsn | τnσnq ě 0.7,
and we let Pn`1 “ pPn ´ τnWsnq X Q, where Q Ď Sn is sufficiently large so that
λpPn`1 | τnσnq ě 0.69; then (‹) still holds, and (‹‹) as well.

Now to recover Y from A ‘ Z in a hyperarithmetic way, we observe that no
initial segment of Z ´ τn is enumerated into W prior to stage sn ` 1, and so σn is
the first initial segment of Z ´ τn enumerated into W . �

3.3. Hirschfeldt-Miller for Π1
1-randomness. Here we prove the following ana-

logue of the Hirschfeldt-Miller characterization of weak 2 randomness.

Theorem 3.6. Let Z be higher Martin-Löf random. The following are equivalent:

(1) Z is Π1
1-random.

(2) Z does not higher Turing compute a Π1
1 set which is not ∆1

1.

Proof. (1)ùñ (2): This is the easy direction. It is well-known (Spector; see [Sac90,
II.7.1]) that if A is any Π1

1 set which is not ∆1
1 then A collapses ωck

1 . If Z ěωck
1 T A

then Z ěh A and so Z too collapses ωck
1 , so is not Π1

1 random.

(2)ùñ (1): The idea follows the standard Hirschfeldt-Miller construction, which
can be described using cost functions. Recall that construction. We are given
a ML-random set Z which is captured by some weak 2 test xUny. This gives
an X-computable function tXpnq: the stage at which X enters Un. We want to
enumerate a c.e. set A whose settling-time function is bounded by tX . That is, we
want Apnq “ AtXpnqpnq. Hence, enumerating n into As`1 incurs a cost : in this
case, the measure of Un,s. Any c.e. set obeying this cost will be Z-computable. For
example, we can allow the eth Friedberg-Muchnik requirement to spend 2´e. So
the alogrithm for enumerating A is: for each e, if the eth requirement is not met
already, and we see some n P We,s whose cost is at most 2´e, then we enumerate
such n into As`1 (we insist that n ě 2e so that A is co-infinite). The collection of
oracles which are wrong on some input forms a Solovay test, and so Z will correctly
compute A. The fact that the measure of Un approaches 0 shows that if We is
infinite, then it will get to act, as the cost of large n is always small.
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To prove our theorem, we use Theorem 2.4: there is a Πck
2 set G such that Z P G,

but Z is not an element of any Πck
1 subset of G. Say G “

Ş

n Un. The measure of
Un may not go to 0, but we know (in the notation of the proof of Theorem 2.4)
that G ´ G˚ is null. So we let, for n ă ω and s ă ωck

1 ,

cpn, sq “ λpUn,s ´ G˚s q
where recall that Gs “

Ş

n Un,s; from the proof of Theorem 2.4, G˚s is the union of
all ∆1

1 closed subsets of Gs. The construction is the same: let xWey be an effective
list of all Π1

1 subsets of ω. At stage s ă ωck
1 , the eth requirement is already satisfied

if As XWe,s ‰ H. If it is not already satisfied and there is some n ě 2e such that
cpn, sq ď 2´e then we enumerate such n into As`1.

Define Φpσ, nq “ Aspnq if rσs Ď Un,s ´ Un,ăs. This defines a higher Turing
reduction. Certainly ΦpZ, nqÓ for all n. To show that it is wrong only finitely often
we enumerate a higher Solovay test xVny: if n enters As`1 then we let Vn “ Un,s´F
where F Ď G˚s is a ∆1

1 closed set, chosen so that λpVnq ď cpn, sq ` 2´n (i.e., we
choose F such that λpG˚s ´ Fq ď 2´n). Note that we cannot take Vn “ Un,s ´ G˚s ,
as this may not be open. The total weight of the test xVny is bounded by the sum
of

ř

e 2´e (the total costs paid by the requirements enumerating A) and
ř

n 2´n

(the excess to the cost that we added to make Vn open). If Z R Vn then as Z R G˚,
it must be that ΦpZ, nq “ Apnq.

It only remains to show that each requirement is met. Again this is a measure
calculation: since λpG ´ G˚q “ 0, for sufficiently large n, λpUn ´ G˚q is small, and
for sufficiently large s, λpG˚ ´ G˚s q is small as well. �

As mentioned above, in [BGM] it is shown that Π1
1 randomness differs from higher

weak 2 randomness. It follows that there is a higher weakly 2 random sequence
which higher Turing computes a Π1

1 set which is not ∆1
1.

4. Randomness and the higher arithmetic hierarchy

In this section we investigate randomness notions arising from the higher arith-
metical hierarchy. For a lightface pointclass Γ, say that a real is Γ-random if it
avoids all null sets in Γ. We consider the notions of Πck

n - and Σck
n -randomness. We

will see that we get exactly four randomness notions, linearly ordered by strength:

(1) Higher Kurtz randomness;
(2) ∆1

1 randomness;
(3) higher weak 2 randomness;
(4) Π1

1 randomness.

First, observe that we can dispense with Σck
n randomness. For n “ 1, the notion

is trivial, as no nonempty open sets are null. Otherwise, we easily see that Σck
n`1-

randomness is Πck
n -randomness.

Next, recall that the higher arithmetic hierarchy is separated into two strands:
the classes Πck

1 , Πck
3 , Πck

5 , . . . consisting of Σ1
1 sets, and the classes Πck

2 , Πck
4 , . . .

consisting of Π1
1 sets (see Fig. 1).

Sacks noted that Σ1
1-randomness is the same as ∆1

1 randomness. Chong, Nies
and Yu [CNY08] showed:

‚ Πck
1 -randomness (higher Kurtz randomness) is strictly weaker than ∆1

1-
randomness; and

‚ Πck
3 -randomness is ∆1

1 randomness.
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It follows that Πck
3 , Πck

5 , . . . randomness are all the same, namely ∆1
1-randomness.

On the Π1
1 side, higher weak 2 randomness is defined as Πck

2 -randomness; as
mentioned above, this is distinct from Π1

1-randomness. The classification of Πck
n -

randomness is completed by the following theorem:

Theorem 4.1. Πck
4 -randomness is Π1

1-randomness.

Again, it follows that Πck
4 ,Π

ck
6 ,Π

ck
8 , . . . -randomness are all the same, namely

Π1
1-randomness.

4.1. The proof of Theorem 4.1. As discussed in Section 2, we will use higher
functionals which induce functions from 2ω to pωck

1 q
ω. We cannot guarantee that

such functionals are consistent everywhere.
We need to cover the set of non-Π1

1-random sequences by topologically simple
sets, namely null Πck

4 sets. The first step is obtaining cofinal ω-sequences in ωck
1 in

a continuous fashion.

Lemma 4.2. If Z is Π1
1-ML-random but not Π1

1 random then there is an ω-sequence
cofinal in ωck

1 which is higher Turing reducible to Z.

Proof. For a quick proof we use Theorem 3.6. Let A be Π1
1 and not ∆1

1, and let Ψ
be a higher Turing functional such that ΨpZq “ A. Define ΦpX,nq “ s if ΨpXqænÓ
and s is the least such that ΨpXq æn“ As æn. Since A is not ∆1

1, xΦpX,nqy is
unbounded in ωck

1 (this is proved in [BGM]).

If we would like a more direct proof we can appeal to Theorem 2.4 (and its
proof). Let G “

Ş

n Un be a Πck
2 set such that Z P G´Găωck

1
. We let ΦpX,nq “ s if

X P Un,s´Un,ăs. This may be inconsistent because we might see an initial segment
of X enter Un, and then a shorter initial segment enter Un later. By Lemma 2.3 and
its proof, uniformly in ε ą 0 we can modify Φ to a functional Φε whose inconsistency
set has measure at most ε, but preserving the totality of ΦpZq. The sequence of
inconsistency sets of the functionals Φε forms a higher ML-test, and so ΦεpZq is
consistent for some ε, and since Z R Găωck

1
, is unbounded in ωck

1 . �

For a functional Φ mapping from 2ω to pωck
1 q

ω, let UpΦq, the unboundedness set
of Φ, be the set of X such that ΦpXq is total, consistent and unbounded in ωck

1 .
Note that this set is null. Also let EpΦq be the inconsistency set of Φ.

Proposition 4.3. Let Φ be a higher functional mapping from 2ω to pωck
1 q

ω. Then
UpΦq Y EpΦq is Πck

4 . This is uniform in the indices.

Proof of Theorem 4.1, given Proposition 4.3. Since every Πck
4 set is Π1

1, it suffices
to show that every sequence which is not Π1

1-random is an element of some null
Πck

4 set. Let Z P 2ω be not Π1
1-random. If Z is not Π1

1-ML-random then Z is
contained in a null Πck

2 set (determined by the universal Π1
1-ML-test). Otherwise,

by Lemma 4.2 we obtain a functional Φ such that ΦpZq is total, consistent and
cofinal in ωck

1 .
For each ε ą 0, using Lemma 2.3 we modify Φ to a functional Φε preserving the

total and consistent Φ-computations but restricting the inconsistency set to have
measure at most ε. By Proposition 4.3,

H “
č

εą0

`

UpΦεq Y EpΦεq
˘

is Πck
4 . It is null, and contains Z. �
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Proof of Proposition 4.3. Suppose that ΦpXq is total, but not necessarily consis-
tent. We let ΦrXs be the closed subset of pωck

1 q
ω consisting of all possible sequences

xαny such that for each n, αn is a possible value for ΦpX,nq. We let

αpXq “ min

"

sup
n
αn : xαny P ΦrXs

*

“ sup
n

min tα : ΦpX,nq “ αu ;

and

αpXq “ sup

"

sup
n
αn : xαny P ΦrXs

*

“ sup tα : Dn pΦpX,nq “ αqu .

Of course if ΦpXq is total and consistent then αpXq “ αpXq “ sup ΦpXq. What
we want to do is to describe the set of X such that that αpXq is greater than every
computable ordinal. But universal quantification over computable ordinals gives a
Σ1

1, rather than Π1
1, set. The main idea is to use overspill: allow pseudo-ordinals as

well.
Namely, let R be a Harrison linear ordering, and let xRkykăω be the list of

all principal initial segments of R (initial segments determined by a least upper
bound). The list xRky is a list of uniformly computable linear orderings, containing
one copy of each computable ordinal, and otherwise also Harrison linear orderings
(whose well-founded initial segment has order-type ωck

1 ).
For a Harrison linear ordering R let otppRq “ 8 and stipulate that α ă 8 for

every ordinal α. For each k, we let

Sk “ tX : ΦpXq is total and otppRkq ă αpXqu

and

Lk “ tX : ΦpXq is total and otppRkq ą αpXqu .

The set Sk is Πck
2 : beyond totality, to find that X P Sk, working in Lωck

1
, we first find

an ordinal β isomorphic to Rk, and then observe that for some n, ΦpX,nq ą β (for
some possible value of ΦpX,nq); so beyond totality, this is in fact a Σck

1 condition.
The set Lk is Σck

3 : X P Lk if and only if there is some m ă ω such that for all n,
for some possible value αn of ΦpX,nq, αn is embeddable into the initial segment
Rkpď mq (the initial segment of Rk determined by m); note that this embedding
can be found in Lωck

1
.

Hence, the set Sk YLk is Σck
3 . If Rk is a Harrison linear ordering then Lk is the

totality set of Φ. Hence
č

k

pLk Y Skq “
 

X : ΦpXq is total, and either αpXq ă αpXq or αpXq “ ωck
1

(

.

The intersection
Ş

kpLk Y Skq is Πck
4 . If αpXq ă αpXq then ΦpXq is inconsistent.

It follows that

UpΦq Y EpΦq “ EpΦq Y
č

k

pLk Y Skq

is the union of a Σck
1 set and a Πck

4 set, and so is Πck
4 . �

4.2. The complexity of the set of Π1
1 randoms. We now consider the com-

plexity of the largest null Π1
1 set. The following theorem says it is Σck

5 .

Theorem 4.4. The set of Π1
1-randoms is Πck

5 .
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Proof. The proof of Theorem 4.1 is uniform. Using the projetum function p, we
can give a ωck

1 -effective ω-list Φ0,Φ1,Φ2, . . . of all functionals mapping from 2ω

to pωck
1 q

ω. We then define, for each i ă ω and ε ą 0, Φi,ε as in the proof of
Theorem 4.1: restricting the inconsistency set to have measure bounded by ε. We
then let Hi “

Ş

εą0 pUpΦi,εq Y EpΦi,εqq. Also let R be the Πck
2 null set of non Π1

1-

ML-randoms. Then H “ R Y
Ť

iHi is Σck
5 , null, and contains all non-Π1

1-random
sequences; as it is Π1

1, it equals the set of non-Π1
1-randoms. �

As mentioned above, the set of Π1
1-randoms is not Πck

3 ([BGM]): every co-null
Πck

3 set contains an element which collapses ωck
1 . This leaves the question of whether

it is Σck
4 or not. At present we do not know how to resolve this question. It is related

to whether we can improve the Πck
3 result to sets of positive measure.3

Proposition 4.5. The set of Π1
1 randoms is Σck

4 if and only if there is some Πck
3

set of positive measure containing only reals which preserve ωck
1 .

Proof. One direction is easy; a co-null Σck
4 set is the union of Πck

3 sets of positive
measure.

Suppose that H is Πck
3 of positive measure, and contains only reals which preserve

ωck
1 . Let K “

Ť

σP2ăω σH. Then K is Σck
4 , and by the Lebesgue density theorem

has measure 1; and it contains only reals which preserve ωck
1 . Intersecting with the

Σck
2 set of Π1

1-ML-randoms, we can assume that K contains only Π1
1-ML-randoms.

It thus contains only Π1
1-randoms, and is Σ1

1. The set of Π1
1-randoms is the smallest

co-null Σ1
1 set, and so must equal K. �

4.3. The complexity of the set of higher weak 2 randoms. What about the
set of higher weakly 2 random sequences? It is not even immediately clear that this
set is Σ1

1. We know it is not Π1
1; this follows from the fact that Σ1

1 randomness is the
same as ∆1

1 randomness, which is strictly weaker than higher weak 2 randomness.
As mentioned, every co-null Πck

3 set must contain a sequence which is not higher
weakly 2 random [BGM], so the set of higher weakly 2 randoms is not Πck

3 .

Theorem 4.6 (With Dan Turetsky). The set of higher weakly 2 random sequences
is Πck

5 .

In particular, it is indeed Σ1
1. As with Π1

1 randoms, we do not know if the set of
higher weakly 2 random sequences is Σck

4 or not.

Proof. We modify the proof of Theorem 4.4. We start with a modification of the
direct proof of Lemma 4.2. With every Πck

2 set G “
Ş

n Un we associate a higher
functional Φ, defined as follows: pσ, n, sq P Φ if rσs Ď Un,s and λpGsq “ 0. Now
from an effective list G0,G1, . . . of all Πck

2 sets we obtain a list of the associated
functionals Φ0,Φ1, . . . . To each functional Φe and each ε ą 0 we apply Lemma 2.3
to obtain a functional Φe,ε. We then again let He “

Ş

εą0 pUpΦe,εq Y EpΦe,εqq and
K “ R Y

Ť

eHe, where R is the set of non Π1
1-ML-randoms. As in the previous

proof, this is Σck
5 . We want to show that K is the set of sequences which are not

higher weakly 2 random.

3In fact, every co-null Πck
3 set contains a real with a finite-change approximation; such a real

is not even higher weak 2 random. We do not know whether there is a Σck
3 set of measure less

than 1, containing all sequences with finite-change approximations.
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In one direction, suppose that X is not higher weakly 2 random. Find some e
such that λpGeq “ 0 and X P Ge. Since R Ď K, to show that X P K we may
assume that X is ∆1

1-random. This implies that for all s ă ωck
1 , X R Ge,s; so

X P Ge ´ Ge,ăωck
1

.

Since X P Ge and Ge is null, ΦepXq is total; it will be inconsistent. Let ε ą 0. If
Φe,εpXq is consistent, then by (2) of Lemma 2.3, Φe,εpXq is total. Since X R Ge,ăωck

1
,

Φe,εpXq is unbounded in ωck
1 . So X P UpΦe,εqY EpΦe,εq. It follows that X P He, so

X P K.

In the other direction, let X P K; we show it is not higher weakly 2 random.
If X P R then we are done. Suppose that X P He for some e. Since we are
assuming that X is Π1

1-ML-random, there is some ε ą 0 such that X R EpΦe,εq;
so X P UpΦe,εq. The fact that Φe,εpXq is unbounded in ωck

1 implies that for all
s ă ωck

1 , λpGe,sq “ 0 — so λpGeq “ 0; the fact that Φe,εpXq is total implies that
X P Ge. �

5. Higher generic sequences

In the introduction we recalled the concepts of Γ-genericity (for Cohen forcing)
and weak Γ-genericity for lightface pointclasses Γ. In this section we investigate
these notions for the classes Γ “ ∆1

1,Π
1
1,Σ

1
1.

We will see that we get three distinct genericity notions, linearly ordered by
strength: Σ1

1 genericity implies Π1
1-genericity which implies ∆1

1-genericity. We will
further characterise Σ1

1-generic sequences as those which are ∆1
1-generic and pre-

serve ωck
1 — the category analogue of Theorem 1.1. We summarise our results in

Fig. 2.

weakly-Σ1
1-generic

Σ1
1-generic

∆1
1-generic ^ ωX1 “ ωck

1

Π1
1-generic

weakly-Π1
1-generic

∆1
1-generic

weakly-∆1
1-generic

Figure 2. Higher genericity

We start by proving implications and equivalences; then we prove the analogue of
Theorem 1.1; and then separate between the three genericity notions. We will end
the section by giving a characterisation of Σ1

1-genericity using finite-change dense
sets.

5.1. Implications.

5.1.1. ∆1
1-genericity. The closure of the class ∆1

1 under arithmetic operations shows
the equivalence of ∆1

1 and weak ∆1
1-genericity; and so the implication from weak



18 NOAM GREENBERG AND BENOIT MONIN

Π1
1-genericity to ∆1

1-genericity. The equivalence of ∆1
1-genericity with weak Π1

1-
genericity is similar to the equivalence of ∆1

1-randomness and Σ1
1-randomness. Sup-

pose that D Ď 2ăω is Π1
1 and dense; let xDsysăωck

1
be a higher effective enumeration

of D. For each σ P 2ăω, the appearance of some extension of σ into D is a ωck
1 -c.e.

event; by admissibility of ωck
1 , we see that there is some s ă ωck

1 such that Ds is
dense; of course Ds is ∆1

1.

5.1.2. weak Σ1
1-genericity. First we prove:

Proposition 5.1. Weak Σ1
1-genericity implies Π1

1-genericity.

Let us consider the lower analogue of Proposition 5.1, which is true: weak Π0
1-

genericity implies 1-genericity. The argument is simple: given a c.e. open set U ,
we find a computable set U generating U . Then the set of strings which are either
in U or have no extension in U generates the union of U with the complement of
its interior, and is Π0

1. In the higher setting we need to overcome the absence of
nice generating sets for Π1

1-open sets.

Proof of Proposition 5.1. Let U be Π1
1 open; let xUsysăωck

1
be a higher effective

enumeration of a Π1
1 set of strings U generating U . By restraining some strings

from entering U , we can modify the set U and its enumeration to ensure that for
all s ă ωck

1 ,

(‹) for all σ P Us, no proper extension of σ is enumerated into Us`1.

As usual we also assume that at most one string is enumerated at each stage. Let F
be the set of strings, no extension of which is ever enumerated into U . The set F is
Σ1

1. It is dense: suppose that σ R F . Let s be the least stage at which some extension
of σ is enumerated into U ; say that extension is τ . Then no proper extension of τ
is ever enumerated into U , so for example τ0 P F . Finally, suppose that σ P F . If
some predecessor ρ of σ is in U then rσs Ă U . Otherwise, by definition of F , rσs is
a subset of the complement of U . Hence every sequence meeting F , also meets or
avoids U . �

We next use Proposition 5.1 to show the following:

Proposition 5.2. Weak Σ1
1-genericity is equivalent to Σ1

1-genericity.

Proof. What we really prove is that the conjunction of weak Σ1
1-genericity and

Π1
1-genericity implies Σ1

1-genericity, and then appeal to Proposition 5.1. Suppose
that G is weakly Σ1

1-generic; let F be a Σ1
1-open set (an open set generated by a Σ1

1

set of strings F ). An admissibility argument shows that the set W of strings which
have no extension in F is Π1

1: if every extension of σ is eventually extracted from F ,
we will see this at a computable stage. If G meets W then it avoids F . Otherwise
it avoids W: there is some σ ă G with no extension in W ; this means that F is
dense in rσs. Since G is weakly Σ1

1-generic and σ ă G, it must meet F . �

5.2. Preserving ωck
1 . Feferman [Fef64] proved that if G is sufficiently Cohen

generic, then ωG1 “ ωck
1 . We give here the exact genericity notion that is required

for G to preserves ωck
1 .

Theorem 5.3. A ∆1
1-generic sequence preserves ωck

1 if and only if it is Σ1
1-generic.
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A weaker version of one direction of Theorem 5.3 was first observed by Slaman
and the first author (unpublished), namely that if G is ∆1

1-generic and preserves ωck
1

then it is Π1
1-generic. For if W is dense along G, then the fact that ωG1 “ ωck

1 implies
that some Ws is dense along G. A similar argument yields Σ1

1-genericity as well.
Again let G be ∆1

1-generic and suppose that it preserves ωck
1 . Let F be a Σ1

1 set of
strings, and suppose that G does not meet F . Let xFsysăωck

1
be a co-enumeration

of F . For each n we consider the stage at which Gæn leaves F ; since G preserves ωck
1 ,

there is some s ă ωck
1 such that Fs contains Gæn for no n. Since G is ∆1

1-generic
and does not meet Fs, it avoids Fs; since F Ď Fs, G avoids F as well.

The other direction of Theorem 5.3 is an effectivisation of Feferman’s proof. We
first give the proof in modern set-theoretic terminology.

Proof of the other direction of Theorem 5.3. We consider the standard, set-
theoretic forcing language and forcing relation for Cohen forcing, as interpreted
in Lωck

1
. We use the fact that Cohen forcing is a set forcing in this model (unlike

for example forcing with ∆1
1 sets of positive measure, or hyperarithmetic Sacks

forcing). By induction on the complexity of formulas we see that for the classes
Γ “ ∆0,Π1,Σ1, for any formula ϕ P Γ in the forcing language, the relation p , ϕ
(as interpreted in Lωck

1
) is Γ-definable in Lωck

1
. Further, the proof of the forcing

theorem holds for these levels; if G is Σ1
1-generic (and so also Π1

1-generic), any Σ1

or Π1 formula holds in Lωck
1
rGs if and only if it is forced by some initial segment

of G.
Let G be Σ1

1-generic. We need to show that the structure Lωck
1
rGs is Σ1-

admissible. It suffices to show that it is ∆0-admissible. Let ϕ be a ∆0 formula;
suppose that in Lωck

1
rGs, ϕ defines a function from ω into ωck

1 ; we need to show

that this function is bounded below ωck
1 . For all n let Fn be the set of conditions

p P 2ăω which force (in Lωck
1

) that there is no α ă ωck
1 such that ϕpn, αq holds. This

is Π1 definable in Lωck
1

(in other words, is Σ1
1); and so

Ť

n Fn is Σ1
1 as well.4 By

assumption, G does not meet
Ť

n Fn, and so it avoids it; say p ă G has no extension
in

Ť

n Fn. This means that for all n, densely below p we can find conditions which
force some value α ă ωck

1 such that ϕpn, αq holds. By admissibility (ranging over
the extensions of p and of n), there is some γ ă ωck

1 such that for each n, densely
below p we can find conditions which force that ϕpn, αq holds for some α ă γ. That
is, p forces that for all n ă ω there is some α ă γ such that ϕpn, αq holds. But this
is a ∆0 statement, and so holds in Lωck

1
rGs. �

For the benefit of computability-oriented readers who may be uncomfortable with
forcing over models of KP, we translate the proof to the language of computability.
The proof resembles the proof of Theorem 2.4.

Proof of the other direction of Theorem 5.3. Let G be Σ1
1-generic. Let Ψ be a Tur-

ing functional (not a higher functional!), which maps oracles to linear orderings.
It suffices to show that if for all n, ΨGpď nq is isomorphic to a computable or-
dinal, then these ordinals are bounded below ωck

1 . Here we use the notation
of the proof of Theorem 2.4. As in that proof, we let An,α be the set of ora-
cles X such that ΨXpď nq is isomorphic to an ordinal shorter than α; we let

4Note that before we know that G preserves ωck
1 , we cannot claim that the formula

Dn@α p ϕpn, αqq is equivalent to a Π1 formula; this uses admissibility in Lωck
1
rGs.
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An “ An,ωck
1
“

Ť

αăωck
1
An,α and A “

Ş

nAn. The sets An are Π1
1, and the sets

An,α (for α ă ωck
1 ) are ∆1

1, uniformly in α.
The computability-theoretic translation of the forcing theorem is an effectivisa-

tion of Baire’s category theorem. For any ∆1
1 set K we can effectively find a ∆1

1

open set U which is equivalent to K in category; that is, KMU is meagre. As G is
∆1

1-generic, G P K iff G P U . We apply this to the sets An,α to get open sets Un,α.
For each n, Un “

Ť

αăωck
1
Un,α is Π1

1-open. We assume that for all n, G P An, and

so G P Un.
Let F be the interior of the complement of

Ş

n Un. This is a Σ1
1-open set, and G

does not meet it; so G avoids it. This means that there is some σ ă G sucht that
Ş

n Un is dense in rσs. By admissibility of ωck
1 , there is some α ă ωck

1 such that
Ş

n Un,α is dense in rσs; in other words each Un,α is dense in rσs. Again as G is
∆1

1-generic, we see that G P
Ş

n Un,α, so G P
Ş

nAn,α, as required. �

5.3. Separations. We now turn to the separations between the three notions of
genericity we have analysed so far. These separations in fact are not difficult.

5.3.1. Π1
1 and weak Π1

1-genericity. Π1
1-genericty behaves very much as the higher

analogue of 1-genericity. In particular, a familiar proof translates perfectly to give
the following. Recall the notion of higher relative computability (ďωck

1 T) which was

defined in Section 2.

Lemma 5.4. A Π1
1-generic sequence does not higher compute any Π1

1 set which is
not ∆1

1.

On the other hand, some weakly Π1
1-generic sequences do higher compute Π1

1

sets. A standard construction (see for example [Nie09, 1.8.49]) shows the existence
of a left-Π1

1, weakly Π1
1-generic sequence. By Lemma 5.4, such a sequence cannot

be Π1
1-generic.

5.3.2. Σ1
1 and Π1

1 genericity. To separate between Σ1
1 and Π1

1-genericity we use The-
orem 5.3. In [BGM] a higher analogue of the class of ω-computably approximable
(also known as ω-c.e.) functions is introduced. The higher version of Shoenfield’s
limit lemma states that a function is O-computable if and only if it is the pointwise
limit of a ωck

1 -computable approximation xfsysăωck
1

. Such a function is higher ω-c.a.

if there is a hyperarithmetic bound on the number of mind-changes of the approx-
imation. An important fact proved in [BGM] is that any higher ω-c.a. function
collapses ωck

1 . Thus the separation we are after follows from:

Lemma 5.5. There is an ω-c.a., Π1
1-generic sequence.

The proof again is obtained by inserting the word “higher” in appropriate places
in the standard construction of an ω-c.a. 1-generic sequence; see for example [Nie09,
1.8.52].

We note a difference between randomness and genericity here. Above we showed
that a ∆1

1-random sequence collapses ωck
1 if and only if it higher computes a non-

hyperarithmetic Π1
1 set. Lemmas 5.4 and 5.5 show that this equivalence fails for

∆1
1-generic sequences.
On the other hand, another characterisation of the randoms collapsing ωck

1

(Lemma 4.2) does hold for generics:
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Proposition 5.6. A ∆1
1-generic sequence collapses ωck

1 if and only if it higher
computes an ω-sequence cofinal in ωck

1 .

Proof. Using Theorem 5.3, the proof is essentially the proof of the first direction of
that theorem. LetG be a ∆1

1-generic sequence which collapses ωck
1 . By Theorem 5.3,

G is not Σ1
1-generic. Let F be a Σ1

1 set of strings such that G P F ´ F . Define a
higher Turing functional: Ψpσ, nq “ s if |σ| “ n and σ P Fs ´Fs`1. The functional
Ψ is consistent everywhere; ΨpGq is total since G R F ; and as G is ∆1

1-generic,
xΨpG,nqy must be unbounded in ωck

1 . �

Corollary 5.7. There is a sequence which higher computes a cofinal ω-sequence in
ωck

1 , but does not higher compute a non-hyperarithmetic Π1
1 set.

5.4. Finite-change dense sets. As discussed in the introduction, some of the
analogy between higher and lower genericity breaks down when considering rel-
ativisation. As in the higher setting, Π0

1- and weak Π0
1-genericity coincide, and

are strictly stronger than 1-genericity. However, Π0
1-genericity is also equivalent to

2-genericity, whereas Π1
1pOq-genericity is much stronger than Σ1

1-genericity.
We can however find a special subclass of the dense Π1

1pOq-open sets which
does characterise Σ1

1-genericity. Again from [BGM], recall the notion of finite-
change approximable functions. This is a class wider than the class of higher ω-c.a.
functions; we drop the requirement for a ∆1

1 bound on the number of mind-changes.

Definition 5.8. An open set U is dense finite-change if it is generated by the range
of a finite-change approximable function f : 2ăω Ñ 2ăω satisfying σ ď fpσq for all
σ P 2ăω.

Theorem 5.9. A sequence is Σ1
1-generic if and only if it is and element of every

dense finite-change open set.

Proof. In one direction, we observe that all dense Σ1
1-open sets are dense finite-

change sets. Namely, if F is a dense Σ1
1 set of strings, let fpσq be the length-

lexicographic least element of F extending σ. Of course for this direction we use
the equivalence of weak and non-weak Σ1

1-genericity.

In the other direction, let f be a finite-change function defining a dense finite-
change open set; let xfsy be a finite-change approximation of f . We may assume
that for all σ and s, fspσq ě σ. For each s ă ωck

1 let Fs be the set of strings
which extend some string in the range of fs. So each Fs is dense and upward-closed
(closed under taking extensions of strings). Let F “

Ş

săωck
1
Fs. Then F is Σ1

1.

We show that F is dense and that F is a subset of the open set determined by the
range of f .

For the latter, we show that every string in F extends some string in the range
of f . For let τ P F . Let s be a stage such that fspσq “ fpσq for all σ ď τ . The fact
that τ P Fs implies that τ extends some string in the range of f .

It remains to show that F is dense. By induction on s ď ωck
1 we show that

Ş

tăs Ft is dense. Let s ď ωck
1 and suppose, by induction, that for all r ă s,

Ş

tăr Ft is dense.
Let σ P 2ăω. There is some r ă s such that τ “ ftpσq is constant for all t P rr, sq.

This is immeidate if s is a successor ordinal (let r “ s ´ 1); if s is a limit ordinal,
we use the fact that the approximation xfty is finite-change. This means that τ
and all of its extensions are elements of

Ş

tPrr,sq Ft. Now by induction,
Ş

tăr Ft is

dense; let ρ be an extension of τ in
Ş

tăr Ft. Then ρ P
Ş

tăs Ft and extends σ. �
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Actually, the proof above directly gives the equivalence of weak Σ1
1-genericity

and genericity for dense finite-change sets. This in turn implies Proposition 5.1; it
is not too difficult to see that if W is Π1

1, then the union of W and the interior of
its complement is dense finite-change (let fpσq “ σ until we see an extension in W ;
so we change fpσq at most once). We can thus use this characterisation to give an
alternative proof of Proposition 5.2.

6. Lowness for higher genericity

We consider lowness and cupping for the genericity notions investigated above.
The definition of lowness is the same as for randomness: an oracle A is low for
Γ-genericity if every Γ-generic sequence is also ΓpAq-generic. As for randomness
here we use full relativisations.

6.1. Lowness for Π1
1-genericity. Lowness is related to cupping. The Posner-

Robinson theorem [PR81] states that for any noncomputable A and any X there
is a 1-generic G such that X ďT A‘G. This implies that lowness for 1-genericity
coincides with being computable (see [Yu06]). The analogy between 1-genericity
and Π1

1-genericity holds in this respect as well. The Posner-Robinson proof gives
the higher analogue of their theorem:

Proposition 6.1. If A is not hyperarithmetic then for all X there is some Π1
1-

generic sequences G such that X ďωck
1 T A‘G.

Relativising Lemma 5.4 to an oracle shows that for any A, for any sequence G
which is Π1

1pAq-generic, OA ęωck
1 T A‘G (in fact we get this with the relativisation

of ďωck
1 T to A, which is weaker). Hence lowenss for Π1

1-genericity coincides with

being hyperarithmetic.

6.2. Lowness for ∆1
1-genericity. Recall that weak 1-genericity is the lower ana-

logue of weak Π1
1-genericity, which coincides with ∆1

1-genericity. Lowness for weak
1-genericity was characterised by Stephan and Yu [SY06] as being computably
dominated and not diagonally noncomputable.

What is the higher analogue of this characterisation? Computable domination
has an obvious analogue:

Definition 6.2. An oracle X is ∆1
1-dominated if every ∆1

1pXq function is bounded
by a ∆1

1 function.

It is less clear what the higher analogue of DNC is. We use a different char-
acterisation. If X is not high (in particular, if it is computably dominated), then
X is not DNC if and only if it is semi-traceable: every X-computable function
is infinitely often equal to some computable function (Kjos-Hanssen, Merkle and
Stephan [KHMS11]).

Definition 6.3. An oracle X is ∆1
1-semi-traceable if for every ∆1

1pXq function f
there is a ∆1

1 function g such that fpnq “ gpnq for infinitely many n.

Greenberg and Miller [GM09] showed that lowness for 1-genericity and lowness
for Kurtz randomness coincided. In the higher setting, lowness for higher Kurtz
randomness (Πck

1 -randomness, also equivalent to ∆1
1-Kurtz randomness) has been

settled by Kjos-Hanssen, Nies, Stephan and Yu [KHNSY10], who showed it coni-
cided with being both ∆1

1-dominated and ∆1
1-semi-traceable.
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All of this would lead us to expect that lowness for ∆1
1-genericity has the same

characterisation. This is indeed the case, as we show here. This fact was also known
to Kihara (unpublished).

Theorem 6.4. An oracle is low for ∆1
1-genericity if and only if it is both ∆1

1-
dominated and ∆1

1-semi-traceable.

The characterisation of lowness for various notions of randomness and genericity
usually passes through an intermediate notion, that of lowness for tests, or dense
open sets. For example, Stephan and Yu prove the equivalence of:

(1) X is low for dense c.e. open sets: every dense open set which is c.e. in X is
a superset of a dense, c.e. open set.

(2) X is low for weak 1-genericity.
(3) X is computably dominated and semi-traceable.

Their argument is (1) Ñ (2) Ñ (3) Ñ (1). For (2) Ñ (3), they use the fact
that every Turing degree which is not computably dominated computes a weakly
1-generic sequence. The higher analogue of this fact fails, as was shown by Ki-
hara [Kih]: he constructs a function f dominated by no ∆1

1 function such that
there is no ∆1

1-generic G ďh f .
Thus we need a new argument. What we do is independently prove the equiva-

lence of the higher analogues of (1) and (3) (Proposition 6.5) and then the equiva-
lence of the higher analogues of (1) and (2) (Theorem 6.6). The latter is a general
argument which holds in the lower setting as well, giving directly the equivalence
of lowness for weak 1-genericity and lowness for dense c.e. open sets. The higher
analogue of (1) is being low for ∆1

1 dense open sets: every ∆1
1pXq dense open set

is a superset of a ∆1
1 dense open set.

Proposition 6.5. An oracle is low for ∆1
1 dense open sets if and only if it is

∆1
1-dominated and ∆1

1-semi-traceable.

Proof. The direction from right to left is identical to the proof of (3) Ñ (1) in
[SY06], so we omit it.

For the converse, suppose that X is low for ∆1
1 dense open set. Let f ďh X.

We first want to show that f is dominated by a ∆1
1 function g. For this we may

assume that f is non-decreasing and that fpnq ą 0 for all n. Let

W “

!

σ0fp|σ|q : σ P 2ăω
)

.

Let V be a ∆1
1 set of string such that V Ď W. Since ∆1

1pXq is closed under
arithmetic operations, we may assume that every string in V extends a string
in W . Define g : ω Ñ ω by letting gpnq “ |τ |, where τ is the shortest extension of
the string 1n in V ; g is ∆1

1. For every n, as 1m0 K 1n for m ă n it must be the
case that τ extends a string σ0fp|σ|q for some σ ě 1n. This shows that for every n
we have gpnq ě fpnq.

Next, we show that f is infinitely often equal to some ∆1
1 function h. Again, for

simplicity, we may asssume that fpnq ě 1 for all n.
Define a function b : ωăω Ñ 2ăω by letting

bpk0, k1, . . . , kn´1q “ 0k010k11 ¨ ¨ ¨ 0kn´11.

The function b is injective. As 00 is the empty string, the range of b is the collection
of finite binary strings ending with a 1 (together with the empty sequence). Now
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define
W “ tbpσ x̂fpnqyq : n ă ω & σ P ωnu .

Let V be a ∆1
1 set of strings such that every string in V extends a string in W .

Effectively from V , given any lower bound m, we can obtain some n ą m and
a function ρ : n Ñ ω such that ρpkq “ fpkq for some k ě m. Given this, the
construction of the function h is done by recursion; if h is defined up to some m,
then we find ρ with lower bound m, and extend by copying the values (beyond m)
given by ρ.

Given m, we find some τ P V which extends the string 1m. Let ρ “ b´1pτ1q.
The string τ extends bppρæk q̂ fpkqq for some k; so ρpkq “ fpkq. And k ě m, as we
assumed that f ě 1, and ρæm“ 0m. �

Theorem 6.6. An oracle is low for ∆1
1-genericity if and only if it is low for ∆1

1

dense open sets.

As mentioned above, the proof translates easily to directly show the equivalence
of weak 1-genericity and lowness for c.e. dense open sets.

Proof. Let X P 2ω. Suppose that some dense ∆1
1pXq open set U contains no ∆1

1

open set. Our goal is to build a ∆1
1-generic sequence which is not an element of U .

The main step is building a ∆1
1pXq dense open set V with the property that for

every σ P 2ăω, the set V X rσs contains no ∆1
1 open set dense inside rσs.

Let V0 “ tτu for some τ P U . Let k0 “ |τ |. At stage n` 1, for every string σ of
length kn we do the following. Let σ0 ă σ1 ă ¨ ¨ ¨ ă σn “ σ be all the prefixes of σ of
length ki for i ď n. Put in Vn`1 a string τ ě σ such that rτ s Ď U Xσ0U X¨ ¨ ¨XσnU
(here recall that σU “ tσˆY : Y P Uu). Finally let kn`1 be the longest length
among the lengths of the strings in Vn`1. Let V “

Ť

n Vn.
By construction, V is dense. Let us prove that for every string σ the set V X rσs

contains no ∆1
1 open set dense in rσs. Let n be the smallest such that kn is bigger

than |σ|. It is enough to prove that for any extension τ of σ of length kn, the
set V X rτ s contains no ∆1

1 open set dense in rτ s. But by construction we have
V X rτ s Ď τU ; if τW Ď V then W Ď U , and so cannot be dense and ∆1

1 open.

We can now use V to build a ∆1
1-generic sequence not in V. Let W1,W2, . . .

be an ω-enumeration of the ∆1
1 dense open sets. We define a sequence of strings

σ0 ă σ1 ă σ2 ¨ ¨ ¨ and let G “
Ť

σi. We ensure that rσns Ď Wn; this will ensure
that G is ∆1

1-generic. We start with σ0 being the empty sequence. Given σn,
because Un`1Xrσs Ę V, we let σn`1 be an extension of σn such that rσn`1s Ď Un`1

but rσn`1s Ę V. The fact that rσns Ę V for all n implies that G R V. �

6.3. Lowness for Σ1
1-genericity. We do not know what lowness for Σ1

1-genericity
is.

Question 6.7. Is lowness for Σ1
1-genericity different from being hyperarithmetic?

Using the technique proving Theorem 6.6, we can prove that lowness for Σ1
1-

genericity coincides with lowness for finite-change dense open sets. Here again
we take full relativisations. A function f : ω Ñ ω is X-finite-change if there is
an approximation xfsysăωX

1
, ∆1-definable over LωX

1
rXs, with only finitely many

mind-changes on each input.

Theorem 6.8. An oracle is low for Σ1
1-genericity if and only if it is low for finite-

change dense open sets.
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Proof. The idea is the same as in Theorem 6.6: given a X-finite-change dense open
set U containing no finite-change dense open set, we define a X-finite-change dense
open set V such that for every σ, the set V X rσs contains no finite-change open
set dense in σ. The second step is identical. All we have to do is to make sure is
that the same construction works in this context. Let xfsysăωX

1
be a finite-change

approximation of a function f : 2ăω Ñ 2ăω whose range generates U . (If X ěh O
then certainly X is not low for Σ1

1-genericity (there is an O-computable Σ1
1-generic

sequence), so we may assume that ωX1 “ ωck
1 .)

At every stage s ď ωX1 we apply the previous construction to the range of fs.
That is, we let Us be the dense open set generated by the range of fs; we build Vs as
above. We can find a function gs which generates Vs: we let gspεq “ fspεq (here ε is
the empty string). Given σ of length kn,s and its initial segments σ0 ă σ1 ă ¨ ¨ ¨ ă

σn “ σ, each σi of length ki,s, we define gspσq in n ` 1 many steps. Namely, for
i ď n let f i “ f ispσq be the function whose range generates σiUs: f ipσiτq “ fspτq.
We let gspσq “ f0pf1p¨ ¨ ¨ fnpσq ¨ ¨ ¨ qq.

What we need to argue is that everything stabilises with only finitely many
mind-changes. But this follows from xfsy being finite-change. Suppose that on an
interval I of stages, the values ki,s are stable for i ď n and the values gspσq are stable
for every σ of length at most kn´1,s. Then on this interval I, for each string σ of
length kn,s, each value gspσq can change at most finitely often (by induction, fnpσq
changes finitely often; then fn´1pfnpσqq changes finitely often, and so on). Since
there are only finitely many strings of length kn,s, we see that kn`1,s changes only
finitely often. �

As every Σ1
1-generic sequence preserves ωck

1 , we can also ask the question of
cuppability, defined analogously here, as it was defined for Π1

1-randomness in Sec-
tion 3.2. We can prove an analogue of the characterisation of Π1

1-random cuppability
in [CNY08].

Proposition 6.9. An oracle is low for Σ1
1-genericity if and only if it is both low

for ∆1
1-genericity and is not Σ1

1-generic cuppable.

Proof. Suppose that X is low for ∆1
1-genericity and that ωX‘G1 “ ωck

1 for every

Σ1
1-generic G. Let G be Σ1

1-generic. Then G is ∆1
1pXq-generic and ωX‘G1 “ ωX1 .

Relativising Theorem 5.3 to X, we see that G is Σ1
1pXq-generic.

In the other direction, suppose that X is low for Σ1
1-genericity. Then ωX1 “ ωck

1 ,
and again by Theorem 5.3, ωX‘G1 “ ωX1 for every Σ1

1pXq-generic G, and so for
every Σ1

1-generic G. That is, X is not Σ1
1-generic cuppable.

We show that X is low for ∆1
1-genericity. Suppose, for a contradiction, that some

∆1
1-generic G fails to be ∆1

1pXq-generic. Let F be a ∆1
1pXq-meagre containing G;

let Q be the set of ∆1
1-generic sequences. This set is Σ1

1. The set FXQ is nonempty
(it contains G) and Σ1

1pXq. By the Gandy basis theorem (relativised to X), F XQ
contains an element H such that ωH1 “ ωX1 “ ωck

1 . By Theorem 5.3, H is Σ1
1-generic

which fails to be even ∆1
1pXq-generic. �

As for lowness, Σ1
1-cuppability remains unresolved:

Question 6.10. If A is not hyperarithmetic, is there a Σ1
1-generic sequence G such

that A‘G ěh O?

By Theorem 5.3, the set of Σ1
1-generic sequences is Σ1

1. Question 6.10 is related
to a more general question raised by Yu:
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Question 6.11. Let Q be an uncountable Σ1
1 set. If A is not hyperarithmetic, must

there be some Y P Q such that A‘ Y ěh O?

The closest result to date is by Chong and Yu [CY]: if Q and P are uncountable
Σ1

1 sets, then there are X P Q and Y P P such that O ďh X ‘ Y .

7. Equivalent test notions for Π1
1-randomness

We saw how to capture Π1
1-random sequence with Πck

4 sets of measure 0. We
end this paper by giving two more test notions for Π1

1-randomness.

7.1. Difference random style tests. Franklin and Ng [FN11] found a test notion
which characterises the complete Martin-Löf randoms. Informally they are exactly
the sequences which are captured by sets which are Martin-Löf tests inside a Π0

1

set. Following the same idea, Bienvenu, Greenberg and Monin [BGM] argue the
following:

Theorem 7.1. For a Π1
1-ML random sequence Z, the following are equivalent:

(1) Z is captured by a set F X
Ş

n Un with λpF X Unq ď 2´n, where F is Πck
1

and each Un is Σck
1 (uniformly in n).

(2) Z higher Turing computes Kleene’s O.

We shall see an analogous characterisation for Π1
1-randomness, in the same spirit

as (1) in Theorem 7.1.

Theorem 7.2. For a sequence X, the following are equivalent:

(1) There are a Πck
1 set F and a Πck

2 set G such that X P FXG and λpFXGq “ 0.
(2) There are a Σ1

1 set F and a Πck
2 set G such that X P FXG and λpFXGq “ 0.

(3) X is not Π1
1-random.

Proof. (2)ùñ (3): Suppose that X is captured by a null set F X G as in (1). Then
either ωX1 ą ωck

1 , in which case X is not Π1
1-random, or there exists some s ă ωck

1

such that X P Gs; so X P F X Gs. The latter is a Σ1
1 set of measure 0, implying

that X is not ∆1
1-random.

(3)ùñ (1): This is similar to the Franklin-Ng argument. Suppose that X is not
Π1

1-random. If X is not Π1
1-ML random then (1) holds with F “ 2ω and G the set of

non-Π1
1-ML-randoms. Otherwise, by Theorem 3.6, X higher Turing computes a Π1

1

set A which is not hyperarithmetic, say via a higher functional Φ. By Lemma 2.3,
uniformly in ε ą 0 we find a higher functional Φε such that ΦεpXq “ A and the
measure of the inconsistency set of Φε is at most ε.

Let xYsy be a higher effective enumeration of A. For ε ą 0 and n ă ω we let

Un,ε “
ď

s

Φ´1
ε pAsænq “ tZ P 2ω : Ds rYsænď ΦεpZqsu

and let G “
Ş

n,ε Un,ε. We also let F be the set of oracles Z such that ΦpZq does
not lie to the left of A:

F “ tZ P 2ω :  Dn pΦpZ, nq “ 0 & Apnq “ 1qu .

The set F X G contains X, and is null. To see the latter, let Z P F X G. Either
ΦεpZq is inconsistent for all ε. There are only null many such oracles. Otherwise,
for some ε ą 0, ΦεpZq “ A. Since A is not hyperarithmetic, there are only null
many oracles which higher compute A (the usual majority-vote argument holds,
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but we can also appeal to Sacks’ theorem [Sac90, IV.2.4], which says that upper
cones in the hyperdegrees are null).

(1)ùñ (2) is immediate. �

7.2. Demuth style tests. Bienvenu, Greenberg and Monin give in [BGM] give
a Demuth-style caracterisation of higher weak-2-randomness. Let xUeyeăω be an

effective list of all Σck
1 sets.

Proposition 7.3. The nested tests of the form
@

Ufpnq
D

where λpUfpnqq ď 2´n and
f has a finite-change approximation, precisely capture non higher weak 2-randoms.

We now give a notion of test for Π1
1-randomness, which has the same flavour

as Proposition 7.3. Whereas Proposition 7.3 can be seen as a generalization that
no sequence with a closed approximation is higher weak 2-random, the following
characterisation of Π1

1-randomness can be seen as a generalisation of the fact that
no sequence with a collapsing approximation is Π1

1-random.

Theorem 7.4. For a sequence X, the following is equivalent:

(1) X is not Π1
1-random.

(2) X is captured by a set
Ş

n Ufpnq with λpUfpnqq ď 2´n, where f has a ωck
1 -

computable approximation xfsysăωck
1

such that for every n, the set X is in

at most finitely many versions Ufspnq.

Proof. (2)ùñ (1): This is the easy direction. Let
Ş

n Ufpnq be a test which captures
some X following the hypothesis of (2). Note that we can always suppose that the
approximation of f is partially continuous, that is for s limit, if the limit of xftytăs
exists, then it is also equal to fs. We can also always suppose that λpUfspnqq ď 2´n

for any s and n, as it is harmless to trim Ufspnq if its measure becomes too big.

Define g : ω Ñ ωck
1 by gp0q “ 0, and

gpn` 1q “ min

#

s ą gpnq : X P
č

mďn

Ufspmq,s

+

.

The function g is ∆1-definable over Lωck
1
rXs. If supn gpnq “ ωck

1 then X col-

lapses ωck
1 and we have (1). Otherwise s “ supn gpnq ă ωck

1 . Also for each m,
there exists some n such that fgpnqpmq “ fgpkqpmq for any k ě n, as otherwise
X would be in infinitely many versions of Ufspmq. Therefore limn fgpnq exists and
as the approximation is partially continuous, this limit is equal to fs. But then
X P

Ş

m Ufspmq and therefore it is not Π1
1-ML-random.

(1)ùñ (2): Suppose that X is not Π1
1-random. If X is not Π1

1-ML-random then
(2) holds easily. Otherwise we use Theorem 3.6 again. The sequence X higher
Turing computes some non-hyperarithmetic, Π1

1 set A, say via some functional
Φ; we define the functionals Φε as above; we assume that the measure of the
inconsistency set of Φε is strictly smaller than ε. Let, for ε ą 0 and σ P 2ăω,

Wpε, σq “ Φ´1
ε rσs.

For n ă ω and s ă ωck
1 we let mspnq be the least m such that

λ
`

Wp2´n, Asæmqs
˘

ď 2´n
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and then let Ufspnq “ Wp2´n, Asæmspnqq. [Since A is not hyperarithmetic,

limnÑ8 λpΦ
´1
ε pAænqq ă ε; by speeding up the enumeration of A, we may assume

that such m exists for each n and s.]
The sequence xfspnqy stabilises at a limit f “ fωck

1
, λpUfpnqq ď 2´n for all n,

and X P
Ş

n Ufpnq. It remains to show that for all n, there are only finitely many
values of fspnq such that X P Ufspnq.

Suppose that this is not the case. Let s0 ă s1 ă ¨ ¨ ¨ be an ω-sequence of
stages such that the values fsipnq are distinct and X P Ufsipnq for all i. Note

that since xfspnqy reaches a limit, sω “ supi si ă ωck
1 . We observe that the set

tmsipnq : i ă ωu is unbounded in ω: for each m, the value of As æm stabilises
below sω. For notational simplicity, we may assume that Asω “ limiÑω Asi .

Let m ă ω. There is some i ă ω such that Asiæm“ Asωæm and msipnq ą m. So
X P Ufsi pnq implies that Asωæmď ΦpXq. So ΦpXq “ Asω . But ΦpXq “ A and Asω
is hyperarithmetic, a contradiction. �
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[KHNSY10] Bjørn Kjos-Hanssen, André Nies, Frank Stephan, and Liang Yu. Higher Kurtz ran-

domness. Annals of Pure and Applied Logic, 161(10):1280–1290, 2010.

[Kih] T Kihara. Higher randomness and limsup forcing within and beyond hyperarithmetic.
In preparation.
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