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ABSTRACT

This paper describes a series of small universal Petri nets with inhibitor arcs. Four
parameters of descriptional complexity are considered: the number of places, transi-
tions, inhibitor arcs, and the maximal degree of a transition. A number of techniques
for reducing the values of these parameters, with special attention on places, are pre-
sented: we describe strongly universal Petri nets with 30, 21, 14, 11, and 5 places, and
weakly universal Petri nets with similar parameters. We also show a universal Petri
net with 2 inhibitor arcs only. Our investigation highlights several trade-offs. Due to
equivalence of the corresponding models, our results can be immediately translated to
multiset rewriting with forbidding conditions, to P systems with cooperative rules and
inhibitors, or to vector addition systems.
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1. Introduction

Universality is an important concept in the theory of computation. The question of
finding a universal computing device in the class of Turing machines was originally



2

proposed by A. Turing himself in [22]. A universal Turing machine would be capable
of simulating any other Turing machine T : given a description of T and the encoding
of the input tape contents, the universal machine would halt with tape contents which
would correspond to the encoding of the output of T for the supplied input.

In a more general setting of an class arbitrary class C of computing devices, the
universality problem consists in finding such a fixed element M0 ∈ C which would be
able to simulate any other elementM∈ C. More formally, if the result of runningM
with the input x is y (usually written as M(x) = y), then y = f(M0(〈g(M′), h(x)〉)),
where g is the function enumerating C, 〈〉 is some couple encoding (e.g. the Cantor
pairing function), while f and h are the decoding and encoding functions respectively.
Although technically this definition does not impose any restriction on the encoding
and the decoding functions, it is generally agreed that f and h should not be “too”
sophisticated, so that it is mainly M0 who does the heavy lifting and not f and h.
Since it is relatively common to rely on exponential coding when working with devices
computing numbers, the functions f(x) = loga(x) and h(x) = bx, for some a, b ∈ N
are often used (cf. [15, 24]).

If the considered class C is a set of unary non-negative functions, then the encoding
and decoding functions are not mandatory. In this paper, we will adhere to the termi-
nology established by I. Korec in [13] and call the elementM0 defined as above weakly
universal (or just universal). In case the functions f and h are additionally required
to be identities, M0 will be referred to as strongly universal. Hence, the strong uni-
versality permits to capture the situations when the encoding does not alter the power
of the device. For example, 2-register machines are weakly universal [15], but they
cannot be strongly universal as they cannot compute even the square function [3, 20].

As a further development on the question of universality, C. Shannon [21] consid-
ered finding the smallest possible universal Turing machine, where the size is essen-
tially given by the sizes of the alphabets of symbols and states. A series of important
results concerning this direction were obtained [14, 19, 23]. For an overview of the
recent results the reader is referred to [16]. Small universal devices are of considerable
theoretical importance since they indicate the minimal choice ingredients sufficient for
achieving computational completeness.

Register machines were shown to be universal and it is known that already three
registers suffice for strong universality [11, 15]. In 1996, I. Korec described a number
of universal register machines with considerably fewer instructions than were known
to be needed for universality before [13]. Based on these results, several univer-
sal constructions for multiset rewriting models were proposed, e.g. with maximally
parallel rule execution [2] or with weighted inhibitors [6]. Since such models are com-
putationally equivalent to vector additions systems [5] and Petri nets, corresponding
constructions can be immediately translated between all three classes. Yet, no explicit
descriptions of universal Petri nets have been proposed until the recent work [26] by
D. Zaitsev in which a universal Petri net with 14 places and 29 transitions is described.
This work relies on both inhibitor arcs and priorities, while in [25] a universal Petri
net relying on inhibitor arcs only with 500 places and as many transitions it is shown.

In this article we focus on Petri nets with (non-weighted) inhibitor arcs and without
priorities, since the two extensions are equivalent as far as computational power is
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concerned. We systematically investigate such Petri nets working in the classical
sequential semantics and measure the following four fundamental parameters of the
net: the number of places p, of transitions t, of inhibitor arcs h, and the maximal
degree of a transition d. The tuple (p, t, h, d) will be referred to as the size of a Petri
net. Remark that, from the point of view of multiset rewriting, these parameters
correspond to the size of the alphabet, the number of rules, the number of forbidding
conditions, and the maximal size of a rule, respectively. We therefore consider that
these properties are essential to the characterization of a Petri net as a computational
device. We construct several universal nets whose parameters are summarized in
Tables 2 and 3. The appendix of [10] contains incidence tables of some of the nets.

The paper is organized as follows. Section 2 recalls some preliminaries on the
models used in this paper. Section 3 introduces the notion of generalized register
machine that is used as an intermediary step for many further universal Petri net
constructions. Section 4 gives constructions for several universal Petri nets following
the goal of minimization of a single descriptional complexity parameter. Finally,
Section 5 focusses on the design of reusable components that can be combined to
achieve a register machine simulation by Petri nets. Such a design permits to keep
relatively low values for all 4 parameters. We would also like to remark that this
paper is an extended version of [8].

2. Preliminaries

In this section we will briefly define the concepts we use in the rest of the paper. We
will first recall some basic notions from the formal language theory.

Any non-empty finite set of symbols V is called an alphabet. A finite word over V
is any finite sequence of symbols from V . The length of a word is written as |w|; the
notation |w|a refers to the number of occurrences of the symbol a in w. The set of
all words over V of length n is denoted by V n. By definition, the only word of zero
length is the empty word λ: V 0 = {λ}. The set of all finite words over V is denoted by
V ∗ = ∪n∈NV n, and the set of non-empty finite words by V + = ∪n∈N+V n = V \ {λ}.
Any subset of V ∗ is called a language over V .

2.1. Register Machines

A (deterministic) register machine is defined as a 5-tuple M = (Q,R, q0, qf , P ), where
Q is a set of states, R = {R1, . . . , Rk} is the set of registers, q0 ∈ Q is the initial state,
qf ∈ Q is the final state, and P is a set of instructions of the following three forms:

• (increment) (p,A(i), q), where p, q ∈ Q, Ri ∈ R: being in state p, increment
register Ri and go to state q;

• (zero-check-and-decrement) (p, S(i), q, s), where p, q, s ∈ Q,Ri ∈ R: being in
state p, try decrementing register Ri and go to q if successful or to s otherwise;

• (stop) (qf , Stop): halt the execution; associated only to final state qf .

In some sources (e.g., [9, 10, 13]), the increment is written as RiP , and the zero-
check-and-decrement instruction as RiZM . The work [13] also uses other instruction
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types, like a separate decrement (p,RiM, q), which corresponds to (p, S(i), q, q), or a
separate zero-check (p,Ri, q, s), which works like zero-check-and-decrement, but does
not modify the register: it corresponds to the pair of instructions (p, S(i), q′, s) and
(q′, A(i), q).

Sometimes non-deterministic register machines are considered; in this case, the
increment instruction is defined to have the form (p,A(i), q, q′). Thus, after carrying
out the increment in state p, the machine can non-deterministically choose between
states q and q′.

Register machines are often represented graphically in flowchart notation; in this
case the instructions checking a condition on a register are drawn as diamonds, while
non-conditional instructions as rectangles.

A configuration of a register machine is given by (q, n1, . . . , nk), where q ∈ Q and
ni ∈ N, 1 ≤ i ≤ k, describe the current state of the machine as well as the contents of
all of its registers. A transition of the register machine consists in updating or checking
the value of a register according to an instruction of one of the types above and in
changing the current state to another one. We say that the machine stops if it reaches
the state qf . We say that M computes a value y ∈ N on the input x1, . . . , xn, xi ∈ N,
1 ≤ i ≤ n ≤ k, if, starting from the initial configuration (q0, x1, . . . , xn, 0, . . . , 0), it
reaches the final configuration (qf , y, 0, . . . , 0).

In this work we will rely heavily on universal register machines constructed by
Ivan Korec in [13]. We give below the program of U22 – the strongly universal register
machine with 22 commands.

(q1, R1ZM, q3, q6) (q3, R7P, q1) (q4, R5ZM, q6, q7)

(q6, R6P, q4) (q7, R6ZM, q9, q4) (q9, R5P, q10)

(q10, R7ZM, q12, q13) (q12, R1P, q7) (q13, R6ZM, q33, q1)

(q33, R6P, q14) (q14, R4ZM, q1, q16) (q16, R5ZM, q18, q23)

(q18, R5ZM, q20, q27) (q20, R5ZM, q22, q30) (q22, R4P, q16)

(q23, R2ZM, q32, q25) (q25, R0ZM, q1, q32) (q27, R3ZM, q32, q1)

(q29, R0P, q1) (q30, R2P, q31) (q31, R3P, q32)

(q32, R4ZM, q1, qf ) (qf , STOP )

2.2. Universal 2- and 3-Register Machines

We recall that there exist weakly universal register machines with two registers only,
and that strong universality for unary functions can be achieved by adding a third
input/output register. This result was proved by Marvin Minsky in [15], a work which
also gives the actual algorithm for simulating a register machine with any number of
registers using only two (respectively, three) registers. In this section we will discuss
the application of this algorithm to universal register machines constructed by Ivan
Korec [13] in order to give a concrete description of 2- and 3-register machines. We
remark that, even though Minsky’s approach has been known for a long time, we
could not find concrete constructions presented anywhere.

Consider a register machine M = (Q,R, q0, qf , P ). Minsky’s construction is based
on exponential coding of the values of all registers in R as one number. The values
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of the k registers in a configuration of M given by the vector (n1, . . . , nk) can be
represented as the number ρ = pn1

1 × . . . × p
nk

k , where p1, . . . , pk are different prime
numbers. Then, incrementing the register Ri in this coding corresponds to multiplying
ρ by pi, while decrementing the same register corresponds to dividing ρ by pi. For
more details on this simulation approach we refer the reader to Minsky’s work [15].
To achieve strong universality for unary functions, a third input/output register is
required to carry out exponentiation and logarithm, as it is known that without
encoding only simple functions can be computed using only 2 registers [3].

The strategy for achieving weak universality with two registers can be applied
directly to constructing the weakly universal 2-register machine U2 which simulates
Korec’s weakly universal U20. This 2-register machine has 112 decrement and 165
increment instructions: 278 states all in all (including a final state). Simulating
Korec’s strongly universal U22 using two registers, and further adding the coding of
input and the decoding of output, allows building the strongly universal 3-register
machine U3 with 146 decrement and 221 increment instructions: 368 states in total.
Both register machines use register R0 to store the exponentially-coded values of the
simulated machine, and register R1 to keep the intermediate results. The input of
U2 should thus be provided in coded form in R0. The register machine U3, on the
other hand, reads its input from and writes its output to the third register, R2. Full
programs of U2 and U3 are provided in the appendix of [7].

The work [1] takes this reasoning even further by pointing out that both the cases
of an increment and a successful decrement finalize by copying the result from R1 to
R0. In many situations this “recopying” of the result can be avoided by designing the
following operation to work on R1 instead of R0. However, only some of the presented
constructions can be directly used for our goal of the Petri net simulation.

An important remark with regard to the strong universality of 3-register machines is
due here: since such machines use one register for input, they are only able to directly
simulate unary partial recursive functions. Nevertheless, Section 9 of [13] describes
a way to construct register machines simulating n-ary partial recursive functions;
the machines use a coding to store the values of the n arguments in one of the
working registers. This approach can be naturally adapted to 2-register machines to
obtain strongly universal register machines with n input registers, read by successive
decrements at the start of the computation, and which only have two working registers.

We remark that Section 2 of [12] describes the construction of a universal 3-register
machine with 130 states. However in this paper compound instructions are assigned
to single states (e.g. any increment of a register by m is treated as a single instruction).
Writing out such instructions in terms of elementary register machine commands as
we do in [7], however, would yield more than 450 instructions.

2.3. Petri Nets with Inhibitor Arcs

A Petri net with inhibitor arcs is a construct N = (P, T ,W,M0) where P is a finite
set of places, T is a finite set of transitions, with P ∩T = ∅, W : (P×T )∪ (T ×P)→
N∪{−1} is the weight function, and M0 is a multiset over P called the initial marking.

Petri nets are usually represented by diagrams in which places are drawn as circles,
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transitions as squares annotated with their locations, and a directed arc (X,Y ) is
added between X and Y if W (X,Y ) ≥ 1. The weight of the arc will be explicitly
written if it is 2 or more. Arcs of weight −1 are called inhibitor arcs and will be
drawn with a small circle on the side of the transition.

The degree of a transition T is defined as the sum of the weights of the incoming
and outgoing arcs involved with it plus the number of inhibitor arcs:

deg(T ) =
∑
P∈P

∣∣W (P, T )
∣∣+
∣∣W (T, P )

∣∣.
Note that the degree is not the number of weighted arcs adjacent to the transition,
but rather the number of single arcs they represent.

Given a Petri net N , the pre- and post-multiset of a transition T are respectively
the multiset preN(T ) and the multiset postN(T ) such that, for all P ∈ P, for which
W (P, T ) ≥ 0, preN(T )(P ) = W (P, T ) and postN(T )(P ) = W (T, P ). A configuration
of N , which is called a marking, is a multiset M over P; in particular, for every P ∈ P,
M(P ) represents the number of tokens inside place P . A transition T is enabled at
a marking M if the multiset preN(T ) is contained in the multiset M and all inhibitor
places P (such that W (P, T ) = −1) are empty. A transition T enabled at marking
M can fire and produce a new marking M ′ such that M ′ = M − preN(T ) + postN(T )

(i.e. for every place P ∈ P, the firing transition T consumes preN(T )(P ) tokens and

produces postN(T )(P ) tokens). We denote this by M
T→M ′.

For the purposes of this work, we define a special subtype of Petri nets which can
execute computations (e.g. compute partially recursive functions). In such a net some
distinguished places I1, . . . , Ik from P will be called input places and another one,
I0 ∈ P, will be called the output place. The computation of the net N on the input
vector (n1, . . . , nk) starts with the initial marking M ′0 such that M ′0(Ij) = nj , and
M ′0(x) = M0(x), for all x 6= Ij , 1 ≤ j ≤ k. This net will evolve by firing transitions
until deadlock occurs in some marking Mf , i.e. until no transition is enabled in Mf .

Thus we have M ′0 →∗ Mf and there are no M ′f and T ∈ T such that Mf
T→M ′f . The

result of the computation of N on the vector (n1, . . . , nk), denoted by Φk
N (n1, . . . , nk),

is defined as Mf (I0), i.e. the number of tokens in place I0 in the final state. Since in
the general case Petri nets are non-deterministic, the function Φk

N may be considered
to compute sets of numbers.

If, for any reachable marking M of a Petri net N , there is at most one transition T

and one marking M ′ such that M
T→ M ′, the Petri net is called deterministic. This

corresponds to labeled deterministic Petri nets in which all transitions are labeled
with the same symbol [17]. Otherwise the Petri net is called non-deterministic.

We define the size of a Petri net to be the vector (p, t, h, d) where p is the number
of places, t is the number of transitions, h is the number of inhibitor arcs, and d is the
maximal degree of a transition. These parameters provide fundamental information
about the structure of the net and can be further used to reason about its other
features (e.g., the average number of inhibitor arcs per transition). Moreover, each
parameter has a direct equivalent in the multiset rewriting interpretation of Petri nets
as the cardinality of the alphabet, number of rules, inhibitors and maximal rule size.
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3. Generalized Register Machines

In this section we discuss an extension of the construct of a register machine which
originates in the fundamental similarities of this computing model with multiset
rewriting systems and Petri nets.

3.1. Definition and Semantics

A generalised register machine is a construct M = (R,G, q0, F, z, nz, add, sub), where
R = {1, . . . , k} is a set of register numbers, G = (Q,E, s, t) is a directed multigraph of
states Q and arcs (transitions) E, q0 ∈ Q is the initial state, F ⊆ Q comprises the final
states, while z, nz : E → 2R, add : E → R∗, and sub : E → 2R are functions defining
the registers which should be zero or non-zero for a transition to be activated, as well
as the registers which should be decremented or incremented during the transition,
respectively. We require that, for any e ∈ E, z(e)∩nz(e) = ∅, and that sub(e) ⊆ nz(e),
i.e. only those registers which are required to be non-zero are decremented. Remark
that add(e) is a multiset, which means that multiple increments of the same register
can be carried out in a single transition.

A configuration of a generalised register machine is the tuple (q, n1, . . . , nk), where,
just as in the case of conventional register machines, q ∈ Q is the current state of M ,
and ni ∈ N, 1 ≤ i ≤ k, are the values of the registers. We say that there is a transition
from configuration C = (q, n1, . . . , nk) to C ′ = (q′, n′1, . . . , n

′
k) if G contains an edge e

such that s(e) = q, t(e) = q′, the conditions represented by z(e) and nz(e) hold in C:

∀i ∈ z(e) . ni = 0 and ∀i ∈ nz(e) . ni 6= 0,

and the values of registers in C ′ can be obtained by applying the instructions pre-
scribed by se = sub(e) and ae = add(e):

∀i ∈ R .n′i = ni − se(i) + ae(i),

where x(i) is the number of occurrences of i in the multiset x, and the set se is treated
as a multiset. The arc e is said to be enabled in configuration C.

We will say that a generalised register machine is deterministic if, in every config-
uration C = (q, n1, . . . , nk), q ∈ Q \ F , there is precisely one enabled arc, and in any
configuration C = (qf , n1, . . . , nk), qf ∈ F , no arcs are enabled.

In the graphical representation of the labels of an arc e of a generalised register
machine, we use the symbol Z(i) if i ∈ z(e), NZ(i) if i ∈ nz(e), S(i) if i ∈ sub(e),
and Aj(i) if the multiplicity of the register number i in the multiset add(e) is j. If
j = 1, we will just write A(i).

It follows from the definition that any register machine based on the increment and
decrement-and-zero-check operations can be directly transformed into a generalised
register machine; in particular, U22 and U20 from [13] can be directly seen as gener-
alised register machines. Some more care should be taken in case the pure decrement
instruction is used without a prior zero test, because in [13, Section 1] this instruc-
tion is defined to not modify the contents of the register if it is already empty. This
corresponds to a decrement-and-zero-check instruction (p, S(i), q, q), which moves the
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machine into state q no matter what the value of the register was, and should thus
be simulated using two arcs of a generalised register machine having complementary
sets of conditions on the register i.

3.2. State Compression and Universality

As we have seen in the previous subsection, generalised register machines are capable
of performing several register tests and modifications at a single time. This property
can be used to reduce the number of states at the expense of having more complex
transitions. Consider for example the generalized register machine shown in Figure 1a;
it could be described with the instructions (q1, S(1), q2, q3) and (q2, S(j), q4, q5). The
generalized register machine in Figure 1b performs the same operations, but uses one
state less. The idea is that, instead of checking that register 1 is zero on the transition
from q1 to q3, and then checking that register 2 is non-zero and decrementing it while
moving to state q4, the register machine can do all of these checks and operations in
a single direct transition from q1 to q4. We will refer to the procedure of removing
states while conserving the same behaviour as state compression.

q1 q2

q3 q4

q5

Z(1)

Z(2)

NZ(1)
S(1)

NZ(2)
S(2)

(a) Two decrements

q1

q5

q2

q4

NZ(1)
S(1)

Z(1), NZ(2)
S(2)

Z
(1

),
Z

(2
)

(b) Compressed version

Figure 1: State compression for successive S(1) and S(2).

While many states can be reduced away in this fashion, not all of them can. To
formally define the circumstances under which a state may be removed, consider a
state q, the set of edges which end in q: pred(q) = {e ∈ E | t(e) = q}, and another
set of edges which start at q: succ(q) = {e ∈ E | s(e) = q}. Then q is compressible if
all of the following conditions hold:

• no arc going into q modifies a register which is involved in the conditions of an
arc leaving q, that is, for every epred ∈ pred(q) and esucc ∈ succ(q),(

supp(add(epred)) ∪ sub(epred)
)
∩
(
z(esucc) ∪ nz(esucc)

)
= ∅;

• q has no loop arcs (i.e. arcs which do not move the machine away from state q):

@e ∈ E . s(e) = t(e) = q.
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Note that, since all registers which are decremented by an arc are required to be
checked for being non-zero by the same arc, the former condition implies that a state,
for which an incoming arc decrements a register and an outgoing arc decrements the
same register, is not compressible.

To compress away a state q, we take all pairs of edges epred ∈ pred(q) and esucc ∈
succ(q) and pick the pairs which do not check for conflicting conditions, that is:

z(epred) ∩ nz(esucc) = nz(epred) ∩ z(esucc) = ∅.

Then, for every such pair we add a new arc e : qpred → qsucc, putting together all the
conditions and operations of the arcs epred and esucc:

z(e) = z(epred) ∪ z(esucc),
add(e) = add(epred) + add(esucc),

nz(e) = nz(epred) ∪ nz(esucc),
sub(e) = sub(epred) ∪ sub(esucc).

The state q and all arcs having it as source or target are then removed.
The state compression algorithm is defined as the iterative reduction of compress-

ible states. It allows to compress the original register machine U22 to a generalized
register machine with 7 states, including a Stop state. We will refer to this generalized
machine as U7; its program is shown in Table 1. Similarly, the register machine U20

can be compressed to a weakly universal generalised register machine with 7 states,
which we will call U ′7; the program of this machine is given in the appendix of [7].
Both machines start in state q1 with input in register 2 (corresponding to R2 in U22

and U20), and place the result into register 0 (corresponding to R0 in U22 and U20).

Table 1: The program of the universal generalised register machine U7

qi qj Conditions Operations
q1 q1 NZ(1) S(1), A(7)
q1 q4 Z(1) A(6)
q4 q4 Z(5), Z(6)
q4 q4 NZ(5) S(5), A(6)
q4 q10 Z(5), NZ(6) A(5), S(6)
q10 q1 Z(6), Z(7)
q10 q1 NZ(4), NZ(6), Z(7) S(4)
q10 q4 Z(6), NZ(7) A(1), S(7)
q10 q10 NZ(6), NZ(7) A(1), A(5), S(6), S(7)
q10 q16 Z(4), NZ(6), Z(7)
q16 q1 NZ(0), Z(2), Z(5) S(0)
q16 q1 NZ(2), NZ(4), Z(5) S(2), S(4)
q16 q1 Z(0), Z(2), NZ(4), Z(5) S(4)
q16 q18 NZ(5) S(5)
q16 q34 Z(0), Z(2), Z(4), Z(5)
q16 q34 NZ(2), Z(4), Z(5) S(2)
q18 q1 Z(3), Z(5) A(0)
q18 q1 NZ(3), NZ(4), Z(5) S(3), S(4)
q18 q20 NZ(5) S(5)
q18 q34 NZ(3), Z(4), Z(5) S(3)
q20 q1 NZ(4), Z(5) A(2), A(3), S(4)
q20 q16 NZ(5) A(4), S(5)
q20 Stop Z(4), Z(5) A(2), A(3)
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4. Small Universal Petri Nets

In this section, we will describe several small-size Petri nets with inhibitor arcs which
achieve strong and weak universality. We will then evaluate the complexity parame-
ters of the obtained nets: the number of places, the number of transitions, the number
of inhibitor arcs and the maximal degree of transitions. In this section our main goal
is to give constructions that have the smallest value of one of the four parameters.
We will refer to strongly universal nets by the names of the form Ni, and to weakly
universal nets by the names of the form N ′i . Note that we do not describe nets N5

and N ′5 (i.e. the pair N4 and N ′4 is directly followed by N6 and N ′6) to harmonize
with the nomenclature from [7], which also presents a non-deterministic construction
omitted in the present work.

4.1. Minimising the Transition Degree

In this subsection we will show how to construct a strongly and a weakly universal
Petri net with inhibitor arcs, with transitions of degree of most 3, based on the
universal register machines from Ivan Korec’s work [13].

We will mainly rely on the strongly universal U22 and the weakly universal U20

from [13]. Since these machines only use instructions of type increment and zero-
check-and-decrement, it suffices to describe how such operations can be carried out
in Petri nets. One of the simplest ideas is representing registers as places and also
allocating a place per state. The nets carrying out the two types of instructions we
are interested in are shown in Figure 2. The simulation of the increment is straight-
forward: the token moves from place P into place Q and adds one token to Ri along
the way. The zero-check-and-decrement is simulated using an inhibitor arc connected
to Ri: if Ri is not empty, the token can only move from P to Q removing a token
from Ri along the way, while if Ri is empty, the token can only move to S.

P Q

Ri

(a) (p,A(i), q)

P Q

Ri

S

(b) (p, S(i), q, s)

Figure 2: Direct simulation of increment and zero-check-and-decrement

We can now directly construct the universal Petri net N1 simulating the register
machine U22 by iteratively translating all of its instructions. This Petri net has
22 places for states and 8 places for registers, 30 states all in all. There are 34
transitions in this net, as many as there are arcs in the graph representation of U22.
To count the number of inhibitor arcs in N1, remark that one will be required per each
decrement instruction of U22, except for q32, because it suffices to have the net halt
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with a token in Q32 if the place corresponding to register R4 cannot be decremented.
Correspondingly, N1 has 12 inhibitor arcs. Finally, the maximal transition degree is
3, which means that the size of N1 is (30, 34, 12, 3).

At the initial marking N1 will have one token in place Q1 corresponding to state
q1 of U22, the code of the machine to be simulated in place R1, and the input value in
place R2. The output of N1 is to be read from place R0. Therefore in order to simulate
the computation of an arbitrary Petri net N with one input place, N1 shall be provided
with the appropriate coding of N and its input in places R1 and R2 respectively. The
net N1 is strongly universal in the sense of the relation ΦN (x) = Φ2

N1
(g(N), x), where

ΦN is the function computed by the Petri net N and g is a function assigning a
number to every Petri net, in some fixed enumeration (like Gödel numbering).

The same approach can be applied to simulating the weakly universal register
machine U20, yielding the weakly universal Petri net N ′1 of size (27, 31, 11, 3).

Nets N1 and N ′1 achieve the minimal value of the transition degree necessary for
computational completeness. Indeed, a Petri net (even with inhibitor arcs) which only
has transitions of degree 2 is bounded; even more, the total count of tokens present
in such a net at any time can never increase.

4.2. Minimising the Number of Transitions

Because of the similarity of the semantics of Petri net transitions and the arcs of a
generalized register machine, Petri nets can be used to directly simulate the former
class of computing devices.

Consider a generalized register machine M = (R,G, q0, F, z, nz, add, sub), with the
underlying multigraph G = (Q,E, s, t). We will construct a Petri net N with the
weight function W simulating M . As before, we will represent the states Q and the
registers R as places, and, for every edge e ∈ E, with s(e) = q and t(e) = q′, we will
add a Petri net transition T which will have:

• an arc coming from the state place Q (representing the state q) and an arc going
into the state place Q′ (representing the state q′):

W (Q,T ) = 1, W (T,Q′) = 1;

• an arc going into each of the register places representing the registers incre-
mented by e:

W (T,Ri) = ae(i), for ae = add(e), i ∈ R,

• an inhibitor arc to each of the register places representing the registers which
should be zero in order for e to be enabled:

W (Ri, T ) = −1, for i ∈ z(e),

• an arc coming from the register places corresponding to registers decremented
by e:

W (Ri, T ) = 1, for i ∈ sub(e),
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• an arc coming from the register place and an arc going into the same register
place for registers which have to be non-zero for e to be enabled, but which are
not decremented by e:

W (Ri, T ) = W (Ri, T ) = 1, for i ∈ nz(e) \ sub(e).

Using this approach to simulate the generalized register machine U7 from Table 1,
we obtain the strongly universal Petri net N2 of size (14, 23, 30, 6). By simulating the
generalized register machine U ′7, we construct the weakly universal Petri net N ′2 of
size (13, 21, 23, 6). The initial markings of both Petri nets have one token in place
Q1, which corresponds to the initial state, the code of the simulated register machine
in place R1, and the input value (exponentially coded in the case of N ′2) in place R2.
The output of both networks will be found in the register place R0.

We can further reduce the number of places, while keeping the number of transitions
low, by coding the current state number in binary. If the simulated machine has n
states, we will use np = dlog2 ne places to encode the current state number in the
following way: place Qi, 0 ≤ i < np, will contain a token if the i-th bit of the binary
representation of n is 1, and will be empty otherwise. All transitions of such a Petri
net will thus depend on all the state places Qi, 0 ≤ i < np, and will produce the new
marking of the state places corresponding to the next state number.

Remark that the choice of binary codes for states may influence the total number
of inhibitor arcs. Indeed, every transition simulating an arc originating in state q will
need to use as many inhibitor arcs as there are zeroes in the binary code assigned to
q. Therefore, to keep the number of inhibitor arcs low, we will assign numbers with
more non-zero bits to states with more outgoing transitions. This approach yields
a strongly universal Petri net N3 of size (11, 23, 37, 10) and a weakly universal Petri
net N ′3 of size (10, 21, 30, 10). In the initial marking, the state places of both nets
will contain the binary value (010)2, which is the code of the initial states of both U7

and U ′7.
Of course, one need not restrict oneself to the simulation of fully compressed gen-

eralized register machines (i.e. machines which cannot be further compressed). For
example, one could consider only compressing the states corresponding to increment
instructions; such partial compression has interesting applications to the construction
of small universal multiset rewriting systems (e.g. [1, 2]). In the case of Petri nets,
this approach allows building a strongly universal Petri net N4 of size (21, 25, 12, 5)
and a weakly universal Petri net N ′4 of size (19, 23, 11, 5), which use the same number
of transitions as the other two pairs of universal nets shown in this subsection: 23
and 21 for strong and weak universality, respectively.

4.3. Minimising the Number of Places

In this subsection we will construct strongly and weakly universal Petri nets with
5 and 4 places respectively. The constructions will be based on simulations of the
universal 3- and 2-register machines described and discussed in Section 2.2.

The work [9] presents a series of non-deterministic constructions attaining a very
small number of places by simulating small register machines. It turns out that, even
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without non-determinism, it is possible to simulate any n-register machine with a
Petri net with n+ 2 places only. The idea is to represent state qi by putting i tokens
in state place Q0 and |Q| − i tokens in place Q1, and then to have all transitions
read the state out of both places Q0 and Q1. With this approach, any two multisets

Qi
0Q
|Q|−i
1 and Qj

0Q
|Q|−j
1 , representing the markings of state places corresponding to

qi and qj , qi 6= qj , are incomparable with respect to the submultiset relation. This
means that, if the simulated register machine is deterministic, the resulting Petri net
will be deterministic as well.

Figure 3 illustrates how, using such a construction, one can simulate the increment
of the register Rk.

Q0

Q1

Rk
i

j

|Q| − i
|Q| − j

Figure 3: Simulation of (qi, A(k), qj) using two state places

We may use this approach to simulate the generalised 3- and 2-register machines
described in [1]; this yields a strongly universal Petri net N6 of size (5, 246, 123, 378)
and a weakly universal Petri net N ′6 of size (4, 188, 94, 220), which have less transitions
and inhibitor arcs than the nets shown under the same names in [7]. We remark that,
as different from the model in [1], we avoid collapsing the increments from states q30
and q31 from Korec’s machines U22 and U20, because performing the two operations
in one single multiplication loop leads to a considerable and undesirable explosion
in the maximal transition degree. Still, the transition degree in nets N6 and N ′6 is
higher than the corresponding parameter in nets N5 and N ′5 from [7], or even in nets
N6 and N ′6 from the same source. (To preserve consistency with the naming of Petri
nets in [7], we will not define any nets with index 5 in the present article.)

4.4. Minimising the Number of Inhibitor Arcs

In the previous subsections we saw that it was possible to construct universal Petri
nets with as few as four places by having rather complex transitions and by employ-
ing an important number of inhibitor arcs. We will now show that it is possible to
construct a Petri net which will only have as many inhibitor arcs as there are reg-
isters in the simulated register machine. This can be achieved by “outsourcing” the
actual zero-check-and-decrement action to special checker subnets instead of using
an inhibitor arc per each S(i) instruction. Figure 4 shows how a decrement can be
simulated in this way. Essentially, the state token in Qj is “split” into a token in
place Ci activating the checker subnet, and another token which waits in place Q′j
for the result of the checker. The checker subnet is the exact copy of the net from
Figure 2 simulating a decrement instruction, and it has the same function.
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Ci

Ri
CiZ

CiNZ

tZ

tNZ Qk

Qk′

Qj

Q′j

Figure 4: A Petri net simulating a RiZM instruction using a checker subnet

We can now use checker subnets to simulate the 3- and 2-register discussed in
Section 2.2 and described in detail in [7]. To simulate these machines, we will need,
first of all, one place per register, plus three places per checker subnet. To keep the
maximal transition degree at 3, we might connect the checker subnets from Figure 4
directly, which would cost us an extra place per decrement instruction. We will prefer
avoiding the extra joining and splitting of tokens in places Qi, which will mean exactly
one place per instruction and the maximal transition degree equal to 4. We will need
as many transitions as the are increments in the simulated machine, plus double the
number of decrements, plus two transition per checker subnet. Finally, we will only
need as many inhibitor arcs as there are registers. We can therefore construct the
strongly universal net N7 of size (379, 513, 3, 4) and the weakly universal net N ′7 of
size (285, 392, 2, 4).

We remark that, since reachability is decidable for Petri nets with one inhibitor
arc [4, 18], net N ′7 uses the minimal number of inhibitor arcs to achieve universality.

In the construction of N7 and N ′7 we did not use the register machines from [1],
because we represented each instruction separately, while the machines from the cited
article have a number of increment instructions which exceeds by far the number of
places in N7 and N ′7. Yet, we may choose to not represent each individual increment,
which allows considerably reducing the number of places at the expense of an increase
in the maximal transition degree. In this situation, we can use the constructions given
in [1] and build the strongly universal Petri net N8 of size (135, 252, 3, 136) as well as
the weakly universal Petri net N ′8 of size (106, 194, 2, 36).

5. Modular Design by Subnets

In this section, we will continue exploiting the principle of factoring out functions of
subnets with the goal of increasing the reuse of these modules. Instead of building
universal 3- and 2-register machines, we will describe Petri nets simulating Korec’s
U22 and U20 directly, using Minsky’s exponential encoding. The shown Petri nets
will be constituted out of building blocks carrying out some elementary operations:
zero-check, division, multiplication, as well copying the contents around. To avoid
duplicating chains of increments for multiplication and division, the corresponding
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blocks will be parameterized: the prime number to multiply or divide by will be stored
in a place or a group of places accessible to the subnet. Furthermore, the subnets will
often have multiple inputs and outputs, as well as sometimes share internal places.

A preliminary remark is due here about representing finite sets of numbers (e.g.,
the primes of the exponential encoding). Just storing the respective number in a
place has several clear disadvantages, one of which is not being able to know which
value exactly is stored without using additional structures, like, for example, inhibitor
arcs. One obvious candidate for a storage strategy is the complementary encoding,
as the one used in Subsection 4.3. Another strategy would be to have one place per
member of the set of numbers. Since, the choice of the strategy depends on what
size parameter we are optimising for, we will not explicitly define it when introducing
subnets. Graphically, the subnets storing members of such sets of numbers will be
depicted as dotted squares.

We will now define the subnets, simultaneously assessing their combinatorial com-
plexity. On the pictures, the input places will be pointed at by dangling arrows, while
the output places will be contoured in double.

RrQ Rr

RrZ

RrM

Checker subnet checkRr, for every register r. Used to decrement register if
possible, final place depends on whether decrement was successful.

REr checkRr
RrQ

RrM

RrZ

R(1− r)

Y

Recopy subnet recopyr, for r ∈ {0, 1}. Used to move all tokens from Rr to R(1−r).

mul checkR1
R1Q

R1M

R1Z

R0
p

p

N
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Multiplication subnet mult. Used to multiply R1 by p, given as a parameter, into
R0. It is similar to recopy1, but output is multiplied by the parameter.

checkR0

R0Q

R0M

R0Zi

i+ 1

· · ·

p− 1

· · ·

0

p

p

recopy1

RE1

R1Q

Y

mult

mul

R1Q

N

R0

i

multiple transitions
for all i < p− 1

Division subnet divideBy. Used to divide R0 by p, given as a parameter, into R1.
If the division produces the remainder, restores the value into R0, otherwise recopies
the value to R0. Final place depends on whether the division was successful. This
subnet directly corresponds to the full simulation of a SUB instruction of a register
encoded by power of p. Of course, it is enough to represent the position of p in the list
of possible values, not the value itself. In order to be able to use only one updating
transition per value of i, it suffices to encode p as AjBm−1−j , where j is the zero-
based position of p in the list of possible values, and m is the length of this list. in
the increasing order. Then, p > i+ 1 can be verified exactly by Aj , where j-th prime
is the smallest one exceeding i + 1. Graphically, the fact that p or i are not directly
represented by the number of tokens in a place is illustrated by dotted squares. Note
that, for reasons of readability, the picture contains two copies of the dotted place p,
which refer to the same place.

recopy0
RE0

R0Q
Y

mult

mul

R1Q

N

qi

q′i

pr

start(j)
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ADD subnet ADDi. Used for the simulation of the ADD instruction.
start(j) = qj RE0 if j is an ADD instruction, otherwise start(j) = qj prj R0Q 0.

divideBy
R0Q

0
Y

N
pr qi

start(j)

start(k)

SUB subnet SUBi. Used for the simulation of the SUB instruction.

We remark that above subnets implement the blocks of the Minsky algorithm,
so it should be clear that their combination allows to construct the simulation of
any register machine using a Petri net. The global parameters, like the number
of places containing an unbounded number of tokens (corresponding to registers of
the simulating machine) and the encoding of the bounded values permit to obtain
universal Petri nets minimizing different descriptional complexity parameters.

For example, suppose that we want to implement the simulation of U20 using
2 unbounded places (registers). Suppose the optimization priorities are inhibitors,
places, transitions, and the maximal transition degree, in order. Then using the
subnets above we need following shared places: R0, R0Q, R0M , R0Z, R1, R1Q,
R1M , R1Z, RE0, RE1, Y , N , mul, A, B, C, D, and 20 places qi and 9 places q′i,
i.e., 46 places in total. The number of transitions by subnets is equal to 81. The
construction only uses 2 inhibitors. The maximal diameter is 40, so we have a weakly
universal Petri N ′9 net with descriptional complexity (46, 81, 2, 40). In a similar way,
based on U22, the Petri net N9 of size (51, 89, 3, 45) can be obtained.

6. Conclusion

In this article we considered the question of universality for Petri nets with inhibitor
arcs and gave several small universal Petri nets of different descriptional complexity.
The size of the constructed strongly and weakly universal nets are given in Tables 2
and 3, respectively. We remind that, in this paper, we skip the index 5 in the names
of Petri nets to harmonize with the nomenclature from [7].

Table 2: Strongly universal Petri nets

N1 N2 N3 N4 N6 N7 N8 N9

Places 30 14 11 21 5 379 135 51

Transitions 34 23 23 25 246 513 252 89

Inhibitor arcs 12 30 37 12 123 3 3 3

Maximal degree 3 6 10 5 378 4 136 45
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Nets N1 and N ′1 were obtained by directly simulating Korec’s register machines.
Nets with indices 2 through 4 simulate universal generalised register machines at
different degrees of state compression, with and without binary coding of states. Nets
N6 and N ′6 were built by simulating universal 3- and 2-register machines, by storing
state numbers in complementary coding in two places. Nets with indices 7 and 8 rely
on checker subnets, while nets N9 and N ′9 take the idea of subnets even further and
rely heavily on atomic blocks carrying out elementary operations.

We remark that nets with indices 1 through 4, as well as 7 and 8, simulate the
corresponding register machines in real time — one evolution step of the Petri net
is required to simulate an instruction of the register machine. Other nets simulate
corresponding register machines with exponential slowdown. Since Korec’s machines
simulate any other machine with exponential slowdown already, and since register
machines simulate Petri nets with a constant slowdown, nets with indices 1 through
4, 7, and 8 can simulate any other Petri net with exponential slowdown, while the
other nets carry out the simulations with doubly exponential slowdown. This brings
out the trade-off between certain size parameters and the simulation speed.

Some of our constructions achieve the theoretical minimum for the corresponding
parameters of descriptional complexity. Thus, nets N1 and N ′1 attain the minimal
possible value for transition degree: 3, while weakly universal nets with indices 7
through 9 achieve universality with the smallest possible number of inhibitor arcs: 2.
As for the number of places and transitions, we conjecture that the values that we give
for these parameters: 23 and 21 transitions, and 5 and 4 places for strong and weak
universality respectively, cannot be significantly improved upon because of inherent
limitations of Petri nets with inhibitor arcs.

Our constructions bring out a number of interesting trade-offs. Comparing nets
N1 and N ′1 from with N2 and N ′2, N3 and N ′3, and N4 and N ′4, we remark that a
reduction of the number of places leads to an increase in the number of inhibitor arcs
and the maximal degree of a transition. Nets N6, and N ′6 accentuate this trade-off
even more: they are universal with 5 and 4 places, but rely on considerably more
inhibitor arcs and transitions of big degrees.

Table 3: Weakly universal Petri nets

N ′
1 N ′

2 N ′
3 N ′

4 N ′
6 N ′

7 N ′
8 N ′

9

Places 27 13 10 19 4 285 106 46

Transitions 31 21 21 23 188 392 194 81

Inhibitor arcs 11 23 30 11 94 2 2 2

Maximal degree 3 6 10 5 220 4 36 40

Finally, nets N9 and N ′9 show how factoring out certain functions allows drastically
reducing all the components of the size tuple of a Petri net — instead of replicating
subnets with minor variations, we built nets N9 and N ′9 out of modules which are
heavily reused. Another feature of these two nets is that they carry out exponential
encoding directly, instead of simulating a 3- or 2-register machines. This approach
seems likely to have applications to further reducing of size of universal Petri nets.
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