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1 INTRODUCTION

The beginning of the membrane computing goes back to the end of the nineties,
when G. Paun introduced it [I]. This area gets its essence of living cells and, in con-
sequence, the first models are defined as an hierarchical structure or a tree topology
of compartments (membranes that delimits cells), which contains objects (chemi-
cals), which evolves according to applicability rules (chemical reactions). Using this
concept as a starting point, more variations, based on more biological processes
which take place in living cells, have been detailed into following years (and it con-
tinues nowadays). One of the most relevant modifications was the introduction of
the tissue P systems [2], in which the tree topology of the structure of membranes is
substituted for a graph topology, where the structure is composed by cells, instead
of tree nodes [3].

This work is based on the formal framework introduced in [4], in which a general
class of multiset rewriting system, which contains P systems and tissue P systems,
is designed. So, this section only describes, in a non-formal way, the most relevant
aspects for the introduced work. For more details about P systems, we refer to the
books [3, 5], and to [4] for specific information relative to the formal framework.

A P system, II, can be describe as a network of cells

1= (n,V,w, Inf, ), (1)
where:

n is the number of cells.
V' is the alphabet, which contains symbols for each object in the system.

w is a tuple (wy,...,w,), where w; corresponds to the multiset of objects (0 € V)
contained in cell i.

Inf represents which symbols are provided by the environment. In this case, a
cell can receive an infinite number of objects. Inf = (Infi,...,Inf,), where
Inf; CV determines which elements of the alphabet are received by cell ¢ from
the environment.

R is a finite set of rules, r;, with the form r; : X — Y; P, Q). X — Y are vectors of
multisets, which can be written as ((z1,1),...,(z,,n)) = (v1,1),. .., (Yn,n)) ,
meaning that objects in X, also called lhs(r;), left-hand-side of r;, are consumed
by the evolving rule, whereas objects in Y, also called rhs(r;), right-hand-side
of r;, are produced. Attending to P and @, they are also vectors of multisets,
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called permitting and forbidding conditions, but in the form P = (pi,...,pn)
and @ = (¢1,...,¢n)- These last ones affect the applicability of the rule in the
following way: a rule can be applied, or is applicable, if all elements in P are
contained by the cells and none of the elements in ) are contained by them.
Obviously, it is necessary that also exist all elements which are going to be
consumed by the rule, i.e. all elements in X.

For the design of the simulator, we have only considered static tissue-like P
systems. According to above definition, a P system is static when its cells do not
change along the computation. Moreover, in order to reduce complexity, we have
removed from the original rule definition the permitting and forbidding conditions.
As it is shown in section [f] these elements can be added easily to the simulator.

The computation of any P system starts with its initial configuration Cy. A
configuration describes the state of the system at a particular time. So, in the case
of a static P system, the objects contained in each cell of the system are only required,
because of the structure does not change along the computation. In consequence,
the computation begins with Cy = w and, from this state, the system evolves to next
configuration C by means of application of rules, what is called a computation step,
and continues until a halt condition is reached. We will not enter into details about
halting conditions, they are discussed in the bibliography suggested above. However,
the most typical conditions take place when the system reaches a configuration in
which it is not possible to apply any rule, called total halting condition; or it is
equal to previous configuration, i.e. although rules which can be applied exist, their
application does not change the configuration, called adult halting condition.

For our purpose, the most interesting aspect of P systems is the computation
step, i.e. how they evolve from a configuration, C;, to the next one, Cj;y. This
process is described below.

1. At the beginning of the step, the system has a configuration C;.

2. Given C}, there will be rules which can be applied, called as applicable rules, and
others which can not. According to some restrictions, called as derivation mode
(0), it is possible to define multisets of applicable rules. We define Appl(I1, C;, 6)
as the set of all multisets of applicable rules which verify the restrictions imposed
by §. We note that Appl is associated to a P system II, a configuration C; and a
derivation mode §. Hence, computing Appl(I1, C;, 0) will be the first mini-step.
As the reader can deduce, derivation modes play an important role in the se-
mantic of the model. They can be seen as some restrictions which should be
accomplished by a multiset of applicable rules, R, to be included in the Appl
set. There are several types, and we refer again to bibliography for more details.
Maximal parallelism, maz, was the first derivation mode and the most used
until now. In an informal way, it says that a multiset of applicable rules, R, can
be included in Appl if, and only if, it does not exist another rule, not included
in R, and which can be applied; in other words, if we remove from the system
all objects consumed by rules in R, there will not be enough resources so that



Fast Hardware Implementations of Static P Systems 1053

another rule can be applied. Formally, maximal parallelism is defined as:

Appl(T1, C, maz) ={R'|R’ € Appl(I1, C) and @)

BR" € Appl(11, C) such that R” 2 R’}

3. Once the Appl(I1, C, §) has been computed, an element R must be selected from

it. The criteria which must be followed depends on the type of P system. An

example is extracting an element following an equi-probable distribution, i.e. all
elements have the same probability of being chosen.

4. Finally, the last mini-step is applying the selected R. It consists in, for each
rule r : (X — Y;P,Q) in R, removing all objects contained in X and adding
all those ones contained in Y. After that, a new next configuration, Cj,q, is
obtained.

In this paper we detail basic ideas about simulation of non-deterministic P sys-
tems, which choice the applicable set of rules following a uniform distribution. Our
point of view is slightly different from other approaches, achieving a performance
close to ideal. Although it implies a loss of flexibility, reducing the range of input P
systems, it is worth to note that the acceptance of a P system does not depend on
its class, as it happens in other simulators, but on the complexity of the dependen-
cies of its rules, achieving a wide range of target P systems. In order to exemplify
our approach, we present a hardware implementation using FPGA technology and
based on our ideas, with a performance of around 2 x 107 computational steps per
second, independently of the number of used rules or types of objects.

This paper is organized as follows. Firstly, in Section ] we describe previous
implementations of P systems simulators, focusing on those ones using FPGA tech-
nology. Besides, we give a brief introduction to the theory of formal power series
(Subsection , giving examples of the computation of generating series for dif-
ferent languages. In Section [§] we explain our method of pre-computation of all
possible applications of rules (Subsection , and the general architecture of our
simulator (Subsection . Section EI gives an example of a FPGA implementation
of a concrete P system using our ideas: firstly, we present the mathematical details
concerning the example, secondly, subsection [£.1] overviews the specific hardware
design for the simulator and lastly, subsection [.2] presents the obtained results. Fi-
nally, in Section [§] we discuss about some improvements and future research tasks,
and in Section [f] we summarize our conclusions.

2 PRELIMINARIES

The problem of computer simulation of different variants of P systems arose at the
early beginning of the development of the area. The first software simulators [6], [7]
were quite inefficient, but they provided an important understanding of the related
problems. Since most variants of P systems are by definition inherently parallel and
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non-deterministic, it is natural to use distributed or parallel architectures in order
to achieve better performances [, O, [10].

Another fruitful idea is to use specialized hardware for the simulation. This
approach was realized in [T, [12] using FPGA reconfigurable hardware technology.
The first implementation from [II] is based on region processors which have rules
as instructions and multiplicity of objects as data. Although it has several limita-
tions which limit its performance (parallelism across membranes only and a reduced
extensibility and scalability), it demonstrates that P systems can be executed on
FPGAs. In the other [I2] 13| [T4] two possible designs are detailed: rule-oriented
and region-oriented systems. In the first one, each rule is considered as a basic
processing unit and, in consequence, has a specific hardware core. As a result, the
system achieves a maximum degree of parallelism, because of all rules are executed
in parallel by specific hardware components. In the second case, the basic processing
units are regions. Thus, communications between regions acquire more relevance:
local rules are processed by the region processors and, after that, a communication
process between regions takes place in order to update the multiplicity of objects.
In both architectures, there is a control logic which synchronizes the operations of
processing units and updating of registers which save the configuration of the sys-
tem. How registers are grouped and what is considered as a basic processing unit
depend on the approach (rules or regions).

An important point for a (parallel) computing platform for membrane computing
is to achieve a good balance between performance, flexibility and scalability. This is
especially important for hardware simulators because the high performance comes
often at an important price of flexibility or scalability. The important drawback
of FPGA simulators from [IT], 2] is that they suppose that the evolution of a P
system is deterministic, and thus these simulators will yield always the same result
for the same initial configuration. However, the non-determinism in P systems plays
an important role and its absence reduces drastically the classes of P systems that
can be used with the above simulators.

Furthermore, these simulators are based on the model detailed in the founda-
tional article [I]. As a consequence, they have strong restrictions about topology,
type of objects and rules of the P system. So, a more flexible simulator would be
desirable. In that way, some theoretical results, as [4], can be a starting point in
order to develop a simulator which covers most of the restrictions about topology,
rules and objects, obtaining a more flexible one.

2.1 Context-free grammars as generators of formal power series

We assume that the reader is familiar with some notions from the formal power
series theory, especially related to the theory of formal languages. We suggest the
reading of [I5] for more details on this topic. We denote by |w]| the length of the
word w or the cardinality of the multiset or set w. For our purposes we consider
that a formal power series f is a mapping f : A* — N, where A is an alphabet and
N is the set of non-negative integers (in the general case a formal power series is a
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mapping from a free monoid to a semiring). This mapping is usually written as

f=> flww. (3)

wEA*

It is known that a context-free grammar G = (N, T, S, P) can be seen as a set
of equations x; = aq + - -+ + o, for each non-terminal z; of GG, where «; are the
right-hand sides of productions z; — «;, 1 < j < n;. A solution of G is a set
of formal power series $i,..., sk, such that the substitution of z; by s; in above
equations converts them to the identity, .e. corresponding series are equal term by
term. It is well known [I6] that s; = > _ .. fi(w)w, where f;(w) is the number of
distinct leftmost derivations of w starting from z;. Under the mapping that sends
any symbol from A to the same symbol, say x, we obtain the generating series for a

non-terminal x;:
=303 fw)en (4)

n=0 |w|=n

Let fi(n) =3, =, fi(w). Then the above equation can be rewritten as:

fi= filn)a". (5)

Suppose that z; = S, where S is the starting symbol of G. Then f; is called the
generating series of G. If G is unambiguous, then fi(n) gives the number of words
of length n in G. We denote by [2"]f the n-th coefficient of f, i.e. [z"]f = f(n).

Let ¢ be the morphism defined by

17
¢la) =z  VaeT, (6)

Let x; — v;1 | -+ | v, be the set of productions associated to ;. Then f; can
be obtained as the solution of the following system of equations:

k

fi=2 b(vy). (7)

J=1

For a regular grammar G the system @ becomes linear. By considering a
finite automaton A = (V,Q, qo, Qy,9) equivalent to G we obtain that system @
corresponds to the following system (recall that x is considered as a constant)

Q=12MQ+F. (8)

where,
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e Q={q1---q:)" @ € Q, 1 <i<nis the vector containing all states.
e F=]ag...a,l', is the final state characteristic vector, i.e. , a; = 1 if ¢; is a final
state and 0 otherwise.

e M is the transfer matrix of the automaton A, i.e. , the incidence matrix of the
graph represented by A with negative values replaced by zero.

We remark that in the case of a regular language it is also possible to count the
number of words of length n by summing the columns corresponding to the final
states of the n-th power of the transfer matrix of the corresponding automaton:

filn) =7 (M), (9)
i EQy

It is known that the generating series f for a regular language is rational. That
implies that there exist a finite recurrence f(n) = Zle ajf(n—3),k>0,a;, €Z
which holds for large n.

Example 1. Considering the regular language L; recognized by the following au-
tomaton

Then the final state characteristic vector F' of this automaton is defined by
F =10,1,0,1,0]" and the transfer matrix M by

(10)

=

Il
coocoo
=== O =
cooc o~
cooro
o ooo

The corresponding system of linear equations has the following solution

P22+
W=
_ z+1
D= a
2
O el ()
o’ +ar+1
O el
2?4+
Qs =

1—22— g3
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We can expand ¢q to obtain go(n) (= [2"]q),
qo = + 2% + 22° + 3% +42° + 5% + 727 +92° + .. (12)

The coefficients of the above series give the number of words of the corresponding
length. For example, there are 9 words of length 8 in L;.

It is not difficult to verify that the obtained coefficients [z"]qy, 0 < k < 4,
of the corresponding power series are particular cases of the Padovan sequence
ar(n) = qr(n — 2) + gr(n — 3), n > 3, with the following starting values:

4(0) | ar(1) | 4x(2)

H,_.,_.,_.HA
—| po| | = rol~

(
1
1
0
1
0

=l W N~ O]

3 DESIGN OF THE SIMULATOR
3.1 Formal part

As it was detailed in section [T} there are several features of a static P system which
define it: topology, type of objects, rules, derivation mode and how a multiset
of rules is chosen from the Appl set. The formal framework lets us remove from
this list the topology, type of objects and rules. Hence we must only worry about
the application of the rules. In this section, we consider a (static) P system, II,
of any type evolving in any derivation mode, chosen a multiset of rules in a non-
deterministically way. The main idea for the construction of a fast simulator is
to avoid the computation of the set Appl(Il, C,J) and to compute R, the multiset
of rules to be applied directly. In this article we are interested in algorithms that
permit to perform this computation on FPGA in constant time. We remark that, in
a digital FPGA circuit synchronized by a global clock signal, in one cycle of FPGA it
is possible to compute any function whose implementation has a delay which does not
exceed the period of the global clock signal. A pipeline using arithmetical operations
and, in general, any combinatorial and sequential asynchronous subsystems, are
usually included in this group.

In order to simplify the problem we split it into two parts corresponding to the
construction of the following recursive functions:

NBVariants(I1, C, §):
gives the cardinality of the set Appl(11, C, ).

Variant(n,I1,C,0), where 1 < n < NBVariants(II,C,0):
gives the multiset of rules corresponding to the n-th element of some initially
fixed enumeration of Appl(IL, C. §).
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It is clear that if each function is computed in constant time, then the multiset
of rules to be applied can also be computed in a constant time. In what follows, we
will discuss methods for the construction of these two functions for different classes
of P systems.

In the following we will need the notion of the rules’ dependency graph. This is
a weighted bipartite graph where the first partition U contains a node labeled by a
for each object a of II, while the second partition V' contains a node labeled by r for
each rule r of II. There is an edge between a node r € V' and a node a € U labeled
by a weight k if a* € lhs(r) (and a*** & [hs(r)).

Example 2. Considering a P system II; having two rules r; : ab — u and rq : bc —
v. These rules have the following dependency graph:

NN

Let N,, N and N, be the number of objects a, b and ¢ in a configuration C. We
define

N1 = min(N,, Ny),
N5 = min(N,, N,), (13)
N = min(Nh NQ)

Suppose that II evolves in a maximally parallel derivation mode. Then the set
Appl(I1, C,mazx) can be computed as follows:

Appl(11, C, mazx) = U {r’l’+k17”g+k2}, (14)

p+q=N

where k; = N; © N, 1 < j < 2, where © is the positive subtraction operation*ﬂ The
dependency of r; and ry is captured by condition p + ¢ = N, considering p and ¢
are greater than NV, while k; cover those situations in which N; > N.

From this representation it is clear that N BV ariants(Il, C, max) = N+1, which
can be computed in constant time on an FPGA.

The Variant(n,II, C,maz) function can be defined as the n-th element in the
lexicographical ordering of elements of Appl(Il, C,max) and it has the following
formula

Variant(n,I1, C,maz) = ri "1 Tkpn=ttke (15)

We remark that the above formula can also be computed in constant time using an
FPGA.

*:a©bis equal to a — b when a > b and 0 otherwise.
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We could obtain the N BVariants formula using formal power series. In order
to do this we observe that the language UnsoLy, where Ly = {rird | p+q= N} is
regular. Moreover, it holds that Ly = rir;N AN, with A being the alphabet {ry,r,}.
Below we give the automaton A; for the language rir;.

The transfer matrix of this automaton is <(1) }) and the final state charac-

teristic vector is [1,1]t. Using Equation this yields the generating function for
Ly: q = ﬁ It is easy to verify that [2"]go =n + 1.
We modify the previous example by considering weighted rules.

Example 3. Considering a P system II; having two rules 7 : a*ebFer — o and
g 1 b2¢Pe — . These rules have the following dependency graph:

1 T2
NN
a b c

Let N,, N, and N, be the number of objects a, b and ¢ in a configuration C. We
define

mln([Na/kaL [No/kn]),
([No/ ko], [Ne/Ke]),
N mln(Nl, N),
(

N min k}blNl,kngg).

min

(16)

Supposing that II evolves in a maximally parallel derivation mode. Let Ay be

the automaton recognizing the language (r1)*(rkb2)=.

Let Ly = Ay N AY (A = {r,r5}). Then it is clear that

Appl(I, C,max) = | J {rzlwlrgm} 7 (17)

pkp1+qkpz=N

where k1 = k(N1 © N), ko = k(N2 © N).
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0 Ky
F =[1,1]. This gives the following generating function for As:

The transfer matrix of A, (considering the weights) is (kbl kb2> and the vector

1
= ) 1
The coeflicients [2™]gy can be obtained by the recurrence
a(n) = a(n — kbl) + a(n — ]{bg) — a(n — kbl — kbg);n Z kbl + kbg. (19)

The initial values are given by the following cases (we suppose that ky > kye):

, n=0,

1<n<kp—-1,

ko <n<ky—landn=0 (mod kp),

ko <n<ky—landn#0 (mod kp), (20)
kyp <n<ky+kpandn=0 (mod ky)andn=0 (mod ky),

s ky <n<kp+kgandn=0 (mod ky)orn=0 (mod ky),

, ok <n<kp+thkp—landn#0 (mod ky)orn#0 (mod ky).

I R R I

Now we concentrate of the function Variant. If the set Appl(Il, C,¢) is regu-
lar, then we can use the following algorithm to compute Variant(n,II, C,§). Let
AT, C,0) = (Q,V, qo, F') be the automaton corresponding to the language defined
by rules joint applicability and let s;, ¢; € @ be the generating series for the state

4j-
Algorithm 1.

1. In the initial situation, the current state is qg, and the other variables take the
following values: step = 0, nb = so(n), out = \.
2. If step = n then the system stops.

3. Otherwise, let {t : (¢, ar,¢;)}, 1 <t < k; be the set outgoing transitions from
¢i, the systems computes S(k) = an:l 8. (n — step). We put by definition
S(0) = 0. Then, there exists k such that S(k) > nb and there is no &’ < k such

that S(k') > nb.

4. nb and out variables are updated with the following values: nb =nb— S(k — 1)
and out = out - ay.

5. The system goes to step 2.
The main idea of this algorithm is to compute the n-th variant using the lexical

ordering of transitions using an algorithm similar to the computation of the number
written in the combinatorial number system. Being in a state ¢ and looking for a
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sequence of applications of k rules we will use the transition ¢ : (¢,r,¢’) (and add r
to the multiset of rules) if the transition ¢ is the first in the lexicographical ordering
of transitions having the property that the number of words of length & — 1, that
can be obtained using all outgoing transitions from state ¢, that are less or equal
than ¢ is greater than n.

3.2 Hardware implementation

The goal or design key for the implemented arquitecture is to achieve a good bal-
ance between flexibility, scalability, extensibility and performance. From the point
of view of a hardware designer, one of the major drawbacks about implementation
and/or simulation of P systems is not their inherent parallelism, which is already an
important challenge, but the great wide of types, consequence of being an oriented-
machine model. As consequence, a machine must be generated for each instance of
the problem, what makes unfeasible using non-reprogrammable hardware, as custom
hardware or Application-Specific Integrated Circuit (ASIC). In that way, FPGAs are
the only alternative in hardware to implement this computational model. FPGAs
contain lots of reprogrammable logic blocks and interconnections. Users can change
the hardware design a number of times limited only by the number of writing sup-
ported by the store technology of these devices. Thus, users obtain all advantages
associated to reprogram, although at the cost of performance, if compared to ASIC
or custom hardware. When a design is implemented using FPGAs, finding a path
which communicates two logic blocks is usually the task where speed, i.e. perfor-
mance, is compromised. As a result, modular designs which minimize long paths
between logic components are the ones which best fit in this kind of technology. Our
design is based on layers with interfaces clearly defined. Each layer is a block which
performs a main task of the algorithm, and it only communicates with the previous
layer, whose outputs are its inputs, and next layer, which receives its outputs.

In order to design the simulator, the graph of dependencies between rules has
been chosen as starting point to model P systems. This approach reduces complex-
ity, because of deleting some elements, like membranes and, in consequence, the
hierarchical structure of them. Objects and rules are the only elements which have
been having in mind to model the system. Moreover, the implementation is based
on the mathematical foundations described in the previous section, following a di-
vision of tasks, which assures enough encapsulation to achieve a design with a right
flexibility and performance. The objects are explicitly represented using registers,
but it is not the case for the rules. Their logic is distributed along most of the
components, thus there is no correspondence between a rule and a hardware core.

An execution of a P system consists of running iterations until it reaches a
halting condition. At each iteration there is a set of operations to be carried out
in order to obtain the next configuration. To implement the simulator, these tasks
have been divided in the following stages:

1. Persistence stage: Obviously, it is necessary to save the states for which the
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system goes through.

2. Independent stage: How Appl is built and how a multiset of rules is selected
from it depend on the type of the P system. Whereas there are some auxiliary
operations which are independent of this computation and common to most of
the types: according to the rules and to the multiplicity of each type of object
in the system, it is needed to know the maximum number of times that each
rule can be applied without considering no others.

3. Assignment stage: In this stage the system chooses which rules will be applied
(and how many times).

4. Application stage: In this level, the selected rules are applied, computing new
values for multiplicity of objects.

5. Updating stage: In this stage, the current configuration is updated which the
result of the computation of the previous stage.

6. Halting stage: Finally, the system has to check if the halting condition has been
reached.

The simulator is divided into six blocks, two of them are dedicated to the control
of it and input/output interface. So, all specific functionality of the P systems is
achieved by four blocks, which follow the principle of encapsulation. All blocks take
only one clock cycle to perform their tasks, except for assignBlock, which requires
two cycles. In consequence, the simulator is able to compute and apply a transition
and save the new configuration in only five clock cycles. In order to simplify the
explanation, the blocks which compound the design are described following the
functional division commented above (Fig. [I]).

persistenceBlock :

Its goal is to persist the current configuration of the P system, update it and
check adult halting condition. Hence, it implements persistence, updating and a
portion of halting stages. Concerning to the two first ones, it is independent of
the type of the system, being only dependent of the number of different objects
and their maximum multiplicities. There is one register per type of object, that
saves its current multiplicity as an unsigned integer, because of it is not possible
to have a negative number of any objects. An adder performs the operation of
updating the current configuration. Because of the multiplicity can decrease,
this arithmetical component uses signed integers, making the conversion of the
value saved in the register from unsigned to signed integer. This block receives,
for each object, the differences between current and next multiplicities, and it
sends to the next module the current number of objects in the system.

Although the major principle which guides the design is the modularity, some
logic related to checking halting condition must be done in this block. There
are several halting conditions, and which is used depends on the type of the
chosen system. If this condition is reached when the state of the system does
not change, it is necessary to compare the current and new multiplicities. It is
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Stages Tasks Block Clk cycles

Depending of
operation type,
number of objects
and width of buses 4

R Input/Output Interface inoutBlock

¢ Objects' multiplicity ¢

Update configuration

™ Persistence Stage Save current configuration persistenceBlock Leycle g
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Fig. 1. Overview of the architecture. This illustration shows the main blocks and the flow
of information between them.

done using a comparator and a logic and gate which indicates to the unit control
when the system fits it.

independentBlock :

It receives as input the number of objects of the current configuration from
persistenceST and implements the independent stage functionality. It is, in
consequence, an arithmetical component. In that sense, the Xilinx IP Core xil-
inx.com:ip:mult_gen:11.2 has been used in order to implement divisions and
multiplications, being configured with a latency of 1 cycle. Although this oper-
ation is independent of the derivation mode, the fact of considering it can help
to optimize the design. So, instead of giving the maximum number in absolute
terms to the next block, this one usually gives this parameter in the context of
the derivation mode (see section [I] for more details).

assignBlock :

This block computes the assignment stage, so it is dependent of the derivation
mode and how a multiset of rules is chosen to be applied. Moreover, and as
it has been previously detailed, these functionalities are performed through the
implementation of the automaton which recognizes the regular language associ-
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ated to dependency graph of rules. In consequence, a third dependence should
be have in mind: the resource’s consumption of the rules. According to hard-
ware design, it is not possible to give a general implementation. However, we
give an overview about the architecture of this block and we refer to Section [I.1]
for a concrete implementation.

This unit receives the maximum number of times which a rule can be applied
without considering the rest, and it gives the number of applications of each rule,
i.e. the multiset of rules which will be applied to evolve to the next configura-
tion, to the next one. It contains one sub-block per rule which implements the
logic of the automaton. Interconnections between these components are based
on design keys and propagation concepts: each sub-block is only connected to
those ones associated to rules which have a direct dependence, being similar
to a daisy chain network topology. Two additional components are required:
the non-deterministic block (ndBlock) and a small unit control. The last one
controls the computation of this block, because of it is usually the most com-
plex task and it takes more than one clock cycle. It is also connected to all
sub-blocks. The ndBlock gives to the system the non-deterministic behaviour.
Its implementation and connection with the other sub-blocks depend on the
necessities of the system, but the most basic form is a pseudo-random number
generator. The design of this block is based on a LFSR, whose width and taps
depend on the number of rules and dependencies among them.

appBlock :

It performs the application stage. It is an arithmetical component which contains
adders and multipliers (same IP Core and configuration that is used in the
independentBlock) according to the rules. It gives the number of objects which
must be added to current multiplicities to evolve into the next configuration.
Although other blocks (persistenceBlock partially) use unsigned integers in order
to save hardware resources, this one operates with signed integers, because some
objects can be consumed (negative number) or produced (positive number).

controlBlock :

It is required to provide communication and control logic. Control is imple-
mented using a finite state machine, which requires five states, and it generates
all control signals. This block contains the rest of the logic associated to halt-
ing conditions and its complexity depends on the type of P system. The most
frequent conditions are executing a fixed number of transitions; when, given a
configuration, the Appl set is empty; or when the configuration does not change,
even when Appl is not empty.

inoutBlock :
Besides the previous cores, an additional block is required to provide commu-
nication with the computer. It is strictly linked to software which runs in the
computer. We are developing a new software which is able to be connected to
a wide range of simulators, using a serial port as a first approach. Although,
it is not complete yet. In consequence, some debug cores are used to control
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execution and to get results.

4 EXAMPLE OF SIMULATOR CONSTRUCTION

Ounce general architecture and the ideas (modelling of P Systems applying formal
framework) and algorithms on which it is based have been presented in previous
sections, we used the following example to illustrate the FPGA implementation for
our ideas. We considered multiset rewriting rules working in set-maximal mode
(smax). This mode corresponds to the maximally parallel execution of rules, but
where the rules cannot be applied more than once. This mode can be formally
defined as follows (where asyn is the asynchronous mode [4] and R is the set of all
rules):

Sy ={R € Appl(I1, C,asyn) | |R|,, < 1,1 < j < |R]},

21
Appl(I1, C, smax) = {R € S; | there is no R’ € S such that R’ O R}. (21)

We remark that smax mode corresponds to min; mode [4] with a specific partition
of rules: the size of the partition is |R| and each partition p; contains exactly one
rule r; € R.

Considering now a multiset rewriting system (corresponding to a P system with
one membrane) evolving in smaz mode. To simplify the construction we consider
rules having a dependency graph in a form of chain without weights.

NN N

Up—1 Qnp,

Let N,, be the number of objects a; in configuration C'. The number of variants
of applications of a chain of rules r1,...,r, to the configuration C' in smax mode is
denoted by NBV([r,...,7%],C), k > 0 . We remark that for a P system IT having
the set of rules R, NBVariants(Il, C, smax) = NBV(R,C).

It is possible to distinguish 3 cases with respect to the number of objects N,,,
0 <i < n (considering that 0 < s <i <e < n):

N,, =0 . Then the two surrounding rules (r; and r;;1) are not applicable. In this
case the parts of the chain at the left and right of a; are independent, so the
number of variants is a product of corresponding variants:

NBV (rsy...,re,C) = NBV (rg,...,1-1,C) * NBV (rig2,...,7.,C)  (22)

N,, > 1 . Asin the previous case the chain can be split into two parts because both
rules r; and r;;1 can be applied:

NBV(rg,...,re,C) = NBV(rg,...,15,C)x NBV (riy1,...,7¢,C) (23)
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N,, =1 . In this case r; and r;1; are in conflict.

Now let us concentrate on the last case. Without loss of generality we can
suppose that N,, =1, 0 <7 < n. We remark that the language of binary strings of
length n corresponding to the joint applicability vector of rules rq,...,r, coincides
with the language L; from Example [I Therefore the number of possibilities of
application of such a chain of rules of length n is equal to NBV (rq,...,r,,C) =
[#"]qo, i.e. , go(0) =1, qo(1) = 1, go(2) = 2 and go(n) = qo(n —2) + qo(n —3), n > 3.

Hence in order to compute NBVariants(Il,C, smax) we first split the chain
into k > 0 parts of length n; according to the multiplicities of objects and compute
the N BV function for each part using the decomposition above.

The function Variant for each part can be computed using Algorithm [I]

The next section gives more details on the implementation of the above algo-
rithms on FPGA.

4.1 Implementation details

Starting from general architecture, there are only two blocks which can be affected
by the implementation of a new type of P system: controlBlock and assignBlock.
The first modification is originated by the halting conditions, and its impact is
reduced to controlBlock. In this case, the halting configuration is reached when the
configuration of the system does not change, even being the Appl set not empty.
Attending to assignBlock, the derivation mode of the P system changes the way in
which P system evolves, being needed to modify it. These situations are explained
in Section [3-2] so we will not give more details about it.

The implementation of assignBlock depends on the selected evolving mode,
smazx mode in this case. According to algorithms explained in previous sections, it
has to perform the following steps:

Algorithm 2.

1. The input chain is split into & parts as it is described in section [

2. For each part.

(a) The system computes NBVariants(Il,C,smax). For this purpose, algo-
rithms detailed in ] and H are used.

(b) The value of n, which indicates which combination will be chosen (n-th
element), is obtained. It is worth to note that his domain is from 0 to
NBVariants(Il, C, smax) — 1, so, considering that the random number gen-
erator produces numbers in binary format, the following correction is some-
times needed in order to obtain it.

i A random number, rn, is generated by the random number generator,
where
0 < width(rn) < [lgo(NBVariants(Il, C, smax))|
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ii If rn < NBVariants(Il, C, smaz) then n = rn.
Otherwise, n = rn + NBVariants(Il, C, smax).

(¢) Compute Variant(n,Il, smaz), according to algorithm .

We note that the computation of NBVariants(II,C, smax) uses a subset of
operations needed to compute Variant(n, I, smaxz), moreover, these operations can
be done in parallel with the generation of the random number n, necessary to com-
pute Variant(n,II, smaz). Hence, this stage can be performed in 2 clock cycles by
dividing operations into two sets, called left and right propagation respectively. As
it is shown by Fig. [J], left propagation is the first to be executed. In this sub-stage,
steps 2.a and 2.b.i of algorithm [ are computed from the last rule to the first one.
Right propagation, which is compound by steps 2.b.ii and 2.c, is executed in oppo-
site way in the next clock cycle. One advantage of this approach is that it is not
necessary to divide, implicitly, the chain of rules in k parts, deleting a step of the
algorithm which let us reduce the number of required cycles from three to two. This
logic is implemented, explicitly, by signals prevlsDep and chainStateSignal. After
this stage, all rules have a random multiplicity assigned.

In consequence, the architecture of this block is divided into one sub-block per
rule (Fig. , which implements the operations required in order to obtain the number
of applications of its associated rule (left and right propagation). The interconnec-
tions between these components are based on design keys and propagation concepts:
a sub-block is only connected to blocks located on its right and left.

Because of assignBlock is the most critical component in order to achieve the
maximum performance of the simulator, all operations which are required to com-
pute NBVariants(Il, C, smax) and Variant(n, I, smaz) are defined recursively and
are pipelined for the sake of powerful. Hence, each sub-block associated to the n-th
rule computes, asynchronously, the number of times which its associated rule will
be applied, based on values obtained by previous block. It permits to execute all
operations in only two cycles, one for left propagation and another for right propa-
gation, in contrast to synchronous version, which requires, at least, n cycles, due to
dependencies between rules and, in consequence, between operations for computing
Variant and NBVariants.

4.2 Experimental results

Experimental results are divided into two tests. In the first one, the accuracy of the
results generated by the simulator has been proved. Right after, we have obtained
some results about the limitations of the physical hardware (FPGA) regarding size
of the P system, and the relation performance-area required by the simulator in the
device.

The P systems are the same in both tests, only modifying its size (number of
rules and objects). All of them consider rules whose dependency graph forms a chain,
the difference being in the right-hand side. Using these four types of dependences
between rules let us check the accuracy of the results, because their design makes
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Fig. 2. Details of sub-blocks which compound the assignRule block. Flow of information
between sub-blocks in left and right propagation is shown at the top of the figure (1).
Below it, the algorithm is detailed using UML notation (2).
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their behaviour predictable. We consider four P systems with the alphabet O =
{00,...,0n}, N > 0 and having the following rules (we consider index operations
modulo N + 1):

e System 1 (circular)

0i—10; = 0;0; 1<i<N-—-1,
o i—1V% 1Ui4+1 . = (24)
ON_10N —> 0901 @ = N.
e System 2 (2-circular)
Ti 1 0;—10; —> 0;4+10;42 1<i< N (25)
e System 3 (linear)
0;,-10; — 0;0; 1<Z<N*1,
T { ! o= (26)
onN_10N —> oyony 1= N.
e System 4 (opposite), 1 <i < N
i_10; — 0;0; i mod 2 =10
o 0;—10; 0i0j+1 110 . ) (27)
0;0;11 — 0;0;_1  otherwise .

The target circuit for executions was the XILINX VIRTEX-7 XC7VX485T, al-
though similar results have been obtained with a XILINX VIRTEX-5 FXT70 FPGA.
Regarding code generation and extraction of results, different P systems were gen-
erated by a Java software and this code was synthesised, placed and routed using
XILINX tools. Since the input/output interface has not been developed yet, CHIP-
SCOPE, a XILINX debug tool has been used. This tool let us, synchronously, change
and capture the results, i.e. computation results and consumption of hardware re-
sources, directly from the FPGA.

In order to carry out accuracy tests, an initial multiplicity of all objects equal to
one and values 10, 20 and 50 were considered for N parameter for accuracy test. The
P systems with these sizes are manageable enough to let us check this parameter
of the simulator. Values 10, 30, 50, 70, 90, 110, 150 and 200 for N parameter were
considered in case of hardware test. These values are enough in order to give a
general idea about the relationship between consumption of hardware resources by
the simulator and the size of the P systems. Then, for each obtained system, 1024
executions of 8192 transitions have been carried out. Each execution differs from
the others by the seed required by the random number generator in the initialization
stage. In consequence, different values are obtained during the assignment stage,
which results in different executions. As results of experiments the following values
are collected: the cardinality of objects in the last configuration, the seed of the
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random number generator (just for internal results) and the number of steps to
reach the halting configuration, in case the system reached it.

Table [I] gives some statistics concerning the experiments. For each P system
(Type, Size), the table shows if the stop condition is reached and, in this case,
the minimum and maximum number of required transitions to achieved it (col-
umn Halting). The third column shows how many different configurations which
have been reached by the system. This parameter indicates the grade in which the
system evolves following an equiprobable distribution. As expected, linear and 2-
circular systems reach a halting configuration, while in the other two cases it can
not, due to dependencies among their rules. It can be seen that the simulation of
non-determinism is done correctly — in some cases all resulting configurations are
different. Figure [3]shows the maximal, the minimal and the mean value of the num-
ber of different objects. Due to size of the obtained graphs, we only show the case of
10 rules, the other cases present a similar picture. It can be seen that in the case of
the linear system there is a high chance to have a big value for the last object and in
the case of 2-circular systems the second and penultimate objects are never present.
In the case of circular systems it is possible to see an equiprobable distribution of
objects, while for the opposite systems even values have a higher multiplicity. It can
be easily seen that the used rules should exhibit exactly this behavior.

Table 1. Statistics concerning the executions of example systems.

Different Halting
Type N final
conf.
Y/N ‘ min ‘ max
10 982 No - -
Circular | 20 1024 No - -
50 1024 No - -
10 161 Yes 5 89
2-circular | 20 818 Yes 11 197
50 1024 Yes 57 609
10 204 Yes 7 17
Linear 20 944 Yes 14 29
50 1024 Yes 50 65
10 4 No - -
Opposite | 20 938 No - -
50 1024 No - -

Concerning performance tests, they only differ in the N parameter from val-
ues of the P systems. The XILINX tools let user control the generation of final
bitstream providing some parameters. In that way, three sets of parameters, with
three implementation goals, have been used: one to maximize performance, another
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Fig. 3. Objects min/max/mean values for the experiments using 10 rules.

to minimize area and a balanced configuration. For each hardware design and set
of parameters, values relative to performance (Table [2)) and hardware resource con-
sumption (Figure @ were taken. In Table 2| and Figure (4] only the best results are
shown: those ones achieved with performance configuration and area minimization,
respectively.

Table 2] shows hardware period in ns of the system without the debug logic and
Figure H] shows resource consumption using relative values of LUTs and Slices. The
implementation achieves high performance, with frequencies higher than 100 M H z,
i.e. it allows to simulate around 2 x 107 computational steps per second. A runtime
comparison between P-Lingua simulator and our hardware simulator is shown in
Table ] P-Lingua is a Java software framework developed by members of the
Research Group on Natural Computing, at the University of Seville. In order to
make the comparison, several opposite P systems, see Definition 27, with a number
of rules between 10 and 200 have been chosen. These P systems have been converted
to equivalent probabilistic P systems: they have an environment with a membrane,
they follow the same dependencies between rules than opposite P Systems and they
have the same number of rules and objects. The computing platform for execution
was an Intel Core 5 — 5220 at 3 GHz, with 8 GB of RAM. The comparison shows
hardware arquitecture is 5600 times faster than PLingua implementation in the
worst case, when a P system with 10 rules is used, and c. 30000 times faster than
Plingua in the best case, when the P system has 200 rules.

Attending to the hardware resource consumption, it only depends on the number
of rules. This result is coherent with the fact that rules of all systems do not change
the total number of objects and share the same dependency graph. While the period
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is stable, with a slightly linear increase, the resources grow exponentially, reducing
the use of the simulator for really large problems, in terms of thousends of rules.
Current implementation has problems for P systems with more than 1000 rules. In
this case, configurations composed by several devices can be developed to move this
barrier.

60

50

o /
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Fig. 4. LUTs and Slices consumption of hardware implementation for each combination
(type, sizes) in rules.

5 DISCUSSION

One of the major characteristics of the simulator is its speed, offering a constant time
execution step (in terms of clock cycles). Its design is based on the method discussed
in Section 3.1 where, although it is possible to design ad-hoc functions that describe
the execution strategy of the rules, we concentrated on the cases where the multisets
of rules that can be applied form a non-ambiguous context-free language. This fact
allows to easily compute the generating function of the corresponding language and
gives a simple algorithm for the enumeration strategy.

In this work we have focused on P systems whose rules are restricted to depen-
dency graphs which form chains. However, the class of P systems where the set
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Table 2. Period of hardware implementation for each combination (type,sizes).

‘ Type \ Size ‘ Circular ‘ 2-circular ‘ Linear ‘ Opposite ‘

10 7.06 ns 5.63 ns 5.46 ns 7.85 ns
30 8.23 ns 8.55 ns 7.33 ns 6.99 ns
50 7.69 ns 6.71 ns 6.11 ns 6.03 ns
70 9.14 ns 7.33 ns 7.34 ns 6.87 ns
90 7.32 ns 6.38 ns 7.02 ns 7.89 ns
110 7.00 ns 7.84 ns 6.23 ns 8.30 ns
150 7.85 ns 7.42 ns 8.88 ns 7.40 ns
200 7.74 ns 8.42 ns 7.98 ns 8.35 ns

Table 3. Runtime comparison between a software simulation using PLingua, and a hard-
ware simulation using architecture.

‘ Size ‘ Software ‘ Hardware

10 0.22 s 3.927 x 107° s
30 0.326s | 3.495x 107 ° s
50 0.453s | 3.017x 107 % s
70 0542 s | 3.435 x 1077 s
S
S

90 | 0.639s | 3.945 x 1077
110 | 0.742 s | 4151 x 1077
150 | 0.911 s 37x107° s
200 | 1.245s | 4174 x 1075 s

Appl(T1, C, §) corresponds to a non-ambiguous context-free language is quite big.
For example, considering a set of rules forming a circular dependency graph for a
system working in the smax mode.

1 9 S Tn
S N N SO J
Qo a1 [£3) Qap—1
\

Now let C be a configuration where all these rules are applicable exactly one time
(corresponding to the case 3 described in Section @ Then the joint applicability
vectors of these rules (i.e. binary strings of length n with value 1 in é-th position
corresponding to the choice of rule r;) can be described by taking the words of length
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n of the following automaton

qo0 q1 1 g4

This automaton is obtained from the automaton for the language L; from Exam-
ple [[] by adding an additional condition: if rule r; is chosen then 7, is not chosen
and conversely.

Using similar ideas it is possible to describe with regular languages sequences of
rules forming more complicated structures. For example, the following structure

T1 T2 T3 T4
SN N N N
ag ay a2 as Qy
AN
T's
s
as
can be represented as regular language over the binary alphabet if the number of
symbols ay is known. This language can be constructed in a similar way as the
language above for circular dependency. This permits to compute the function
NBVariants(Il, C, smax) by first choosing the appropriate automaton based on
the value of N,, and after that computing its generating function. Clearly, this can
be done in constant time on FPGA.
In a similar way it is possible to describe regular languages for the applicability
of rules having the dependency graph that has no intersecting cycles.
We would like to point out another algorithm for the rule application, applicable
to any type of rule dependency.
Let IT be a P system evolving in the set-maximal derivation mode. Let R be

the set of rules of IT and n = |R|. Let C be a configuration.
Algorithm 3.

1. Compute a permutation of rules of R: o = (r4,,...,7:,), tk # im, k £ m.

2. For j =1,2,...,nif r;; is applicable then apply r;; to C.

The step 1 of the above algorithm can be optimized using the Fisher-Yates shuffle
algorithm [I7] (Algorithm P). However, the implementation of Algorithm [3|is slower
than the implementation we presented in Section [B] because the computation of the
rules’ permutation needs a register usage, so it cannot be done in one clock cycle
and it is dependent on the number of rules.

By extending Algorithm [3]it is possible to construct a similar algorithm for the
maximally parallel derivation mode.
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Algorithm 4.

1. Compute a permutation of rules of R: o = (14,,...,7:,), ik # im, k # M.

N

Compute the applicability vector of rules V' = (my, ..., m,), beingm;, 1 < j <n
the number of times rule 7;; can be applied.

If the vector V is null, then stop.

Otherwise, repeat step 5 for j =1,...,n.

Compute a random number ¢ between 0 and V'[j]. Apply r;; t times.
Goto step 2.

AN ol

This algorithm has similar drawbacks and the number of clock cycles it uses is
at least proportional to the number of rules.

In Section [I] we simplified the model removing the forbidding and permitting
conditions. Adding this feature only affects to independentBlock. In case of forbid-
ding conditions, a specific comparator which checks if the objects exist should be
added, this new component only differs in a not gate in its output, hence its logical
function is the inverse of others. Then, if it returns false, the maximum number of
applications of the rule will be set to zero. Modifications required to give support to
permitting condition are similar, but checking the existence of the object, instead
of inexistence.

On the other hand, P systems are a machine-oriented computational model. In
consequence, each instance of a problem has a tailor-made machine which resolves it,
and each machine has associated a specific hardware which simulates it. So, once we
have defined an architecture which is able to simulate P systems, we need a software
which generates the specific hardware design in order to program the FPGA and
obtain the results. Additionally, a software which gets the results, processes it and
shows it to the user will be welcome, specially for this last one.

As it is said in Section 2] the generation of the hardware design is done by
an ad-hoc software written in Java. Although this solution is acceptable for testing
purposes, it has several limitations, all of them derived from its poor flexibility,
extensibility and modularity. In addition, there are several research lines whose
straight results are simulators. Each research group deals with the same developing
problems, giving different solutions and building incompatible systems, taking a
high cost in effort. A P system framework can resolve, or mitigate in the worst case,
all these problems. This software will resolve general problems related to end-user
and developer interface, debugging and generation of code. Thus, it let developers
focus on the implementation of the algorithm of its simulator. For this purpose,
Model Drive Engineering (MDE) is the most suitable technology [I8]. Simulators
and classes of P systems will be represented as models connected by transformations:
in order to generate the simulator code of a P system we need a transformation from
the model of the class to which the P system belongs, to the model of the simulator.
Once a instance of the simulator model is created, generating the associated code is
possible using MDE.
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Concerning this work, the P system framework constitutes an elegant solution
to software problems. The general architecture can be seen as the model of our
simulator, thus, the input is resolved by the transformation from the meta model
which represents the class of P systems where the set Appl(II, C,d) corresponds
to a non-ambiguous context-free language to the first one, and the hardware code
generation by the transformation from the model of our simulator directly to code.
In that sense, the software tool of our simulator will be highly flexible, scalable, and
modular. Additionally, end-user interface will be also resolved by this framework.

Attending to performance, results show that hardware arquitecture is c. 30000
times faster than Plingua in the best case, when the P system has 200 rules. This
result only refers to execution time. In that sense, if generation time is considered,
i.e. from specification of P system to bitfile generation, first execution would take
about 3 hours more*] This can be an important drawback if the P system is only
executed one time. However, this kind of simulators are widely used in problems
where thousands of computatios are needed. In consecuence, user should use soft-
ware or hardware simulator, depending on the number of executions and size of the
problem.

6 CONCLUSIONS

In this article we have introduced a fast hardware simulator for static P systems
whose set Appl(II, C, §) corresponds to a non-ambiguous context-free language. Its
major feature is the performance that it is possible to achieve: the hardware im-
plementation is able to execute one transition in a constant time of 5 clock cycles,
closed to the ideal value of one transition per clock cycle. In addition, the range of
P systems which can be simulated is only affected by the dependences between their
rules. The key point of our approach is to represent all possible applications as words
of some regular or non-ambiguous context-free language. Then it is possible, using
formal power series for the corresponding language, to generate the total number of
possible applications and select and apply one of them. It is worth to note that the
number of clock cycles is independent of any P system structure, including number
of rules or types of objects. Nevertheless, a relationship between size of P systems
and required hardware resources exists. According to our experimental results, the
area grows exponentially, limiting really large P systems. In these situations, the
hardware platform should use several devices or new architectures which combine
this one with others in order to simulate the system. Besides, P systems which
can be simulated only have to verify that its set Appl(Il, C, ) is a non-ambiguous
context-free language, accepting as input a wider range of P systems in contrast to
other simulators which depend on structural elements, as type of objects.

In order to exemplify our approach, we developed several hardware simulators
using a FPGA. Input P systems work in a maximal set mode with rules dependency

*: The computing platform for execution was an Intel Core 5 — 5220 at 3 GH z, with
8 GB of RAM.
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graph in a form of chain. We obtained a speed greater than 2 x 107 computational
steps per second. Our different tests gave right values, showing a non-deterministic
behaviour in the computations and obtaining expected mean values for the outputs.
Moreover, the architecture of the simulator is highly modular, enclosing all depen-
dent logic of the type of the P system in one block, and reducing the impact of any
other modification.

As a future research we plan to develop a software which generates the hardware
implementation automatically from the regular language describing the rules joint
applicability. This software will be integrated in a framework of P system simula-
tors with the objective of resolving common problems in P systems development,
specially those based on hardware development, and standardizing them and their
related tools.
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