

Pre-Proceedings of

The 8th Asian Conference on
Membrane Computing

(ACMC2019)

Xiamen University
Xiamen, China

November 14-17, 2019

Gexiang Zhang
Linqiang Pan
Xiangrong Liu

Editors

The list of authors and some participants as well as their e-mail address are given

below, with the aim of facilitating the further communication and interaction:

Henry N. Adorna, Algorithms & Complexity Lab Department of Computer Science
University of the Philippines Diliman Diliman 1101 Quezon City, Philippines
E-mail: hnadorna@up.edu.ph

Celine Anne A. Moredo, Algorithms & Complexity, Dept. of Computer Science,
University of the Philippines Diliman Diliman 1101 Quezon City, Philippines.

Rodica Ceterchi, University of Bucharest Faculty of Mathematics and Computer
Science 14 Academiei St, 010014 Bucharest, Romania

Francis George C. Cabarle, Algorithms and Complexity Laboratory Department of
Computer Science University of the Philippines Diliman, Quezon City, Philippines;
School of Information Science and Technology Xiamen University
E-mail: fccabarle@up.edu.ph

Wei Cen, School of Electrical and Electronic Engineering, Wuhan Polytechnic
University, Wuhan 430023, Hubei, China.

Dionne Peter Cailipan, Algorithms & Complexity, Dept. of Computer Science,
University of the Philippines Diliman Diliman 1101 Quezon City, Philippines.

Yunhui Chen, State Grid Sichuan Electric Power Company, Chengdu 610094, China

Ying Chen, State Grid Sichuan Electric Power Company, Chengdu 610094, China

Hong Chen, School of Electrical Engeneering, Southwest Jiaotong University,
Chengdu, China

Matteo Cavaliere, Faculty of Science and Engineering, Manchester Metropolitan
University, Manchester, Britain

Lovely Joy Casauay, Algorithms & Complexity Dept. of Computer Science,
University of the Philippines Diliman Diliman 1101 Quezon City, Philippines.

Yingying Duan, School of Electrical and Engineering, Southwest Jiaotong University,
Chengdu 610031, China
E-mail: 208130907@163.com

Jianping Dong, School of Electrical Engineering, Southwest Jiaotong University,
Chengdu, 61003, China

Fang Deng, School of Electrical Engineering, Southwest Jiaotong University, Chengdu,
61003

Haocheng Fang, School of Math and Computer, Development Strategy Institute of
reserve of food and material, Wuhan Polytechnic University, Wuhan 430023, China

Xiantai Gou, School of Electrical Engineering, Southwest Jiaotong University,
Chengdu, 61003, China

Ivan Cedric H. Macababayao, Algorithms & Complexity Dept. of Computer Science,
University of the Philippines Diliman Diliman 1101 Quezon City, Philippines.

Zhixin He, School of Math and Computer, Development Strategy Institute of reserve
of food and material, Wuhan Polytechnic University, Wuhan 430023, China

Qiyao Huang, School of Economics and Management, Wuhan Polytechnic
University, Wuhan 430023, Hubei, China

Ivan Cedric H. Macababayao, Algorithms & Complexity Dept. of Computer
Science, University of the Philippines Diliman Diliman 1101 Quezon City,
Philippines.

YuLei Huang, School of Electrical Engineering and Electronic Information, Sichuan
Province Key Laboratory of Power Electronics Energy-saving Technologies&
Equipment, Key Laboratory of Fluid and Power Machinery , Ministry of Education,
Xihua University,Chengdu 610039, P. R. China.

S James Immanuel, Department of Mathematics, Madras Christian College,
Tambaram, Chennai ---600 059, India
E-mail: James_imch@yahoo.co.in

Meng Hu, School of Electrical Engineering, Southwest Jiaotong University, Chengdu,
61003

Falin Jiang . School of Math and Computer, Development Strategy Institute of
reserve of food and material, Wuhan Polytechnic University, Wuhan 430023, China
E-mail: jiang93214750@gmail.com

Ryan Chester J. Supelana, Algorithms & Complexity, Dept. of Computer Science,
University of the Philippines Diliman Diliman 1101 Quezon City, Philippines.

S Jayasankar, Department of Mathematics, Ramakrishna Mission Vivekananda
College, Chennai --- 600 004, India

E-mail: fksjayjay@gmail.com

Deting Kong, School of Management Science and Engineering, Shandong Normal
University, Jinan,250014, China.

Shuo Liu, School of Economics and Management, Wuhan Polytechnic University,
Wuhan 430023, Hubei, China.
E-mail: liushuo1979@hotmail.com

Xiangrong Liu, School of Math and Computer, Development Strategy Institute of
reserve of food and material, Wuhan Polytechnic University, Wuhan 430023, China

Qifen Liu, School of Electrical Engineering, Southwest Jiaotong University,
Chengdu, 61003

Yezhou Liu, The University of Auckland, Auckland, New Zealand

Wanying Liang, School of Math and Computer, Wuhan Polytechnic University,
Wuhan 430023, Hubei, China

Xiyu Liu, School of Management Science and Engineering, Shandong Normal
University, Jinan,250014, China.
E-mail: sdxyliu@163.com

Ren Tristan A. de la Cruz, Algorithms and Complexity Laboratory Department of
Computer Science University of the Philippines Diliman, Quezon City, Philippines;
E-mail: rentristandelacruz@gmail.com

Miguel Ańgel Martínez-del-Amor, Research Group on Natural Computing
Department of Computer Science and Articial Intelligence University of Seville
E-mail: mdelamor@us.es

Atulya K Nagar, Department of Mathematics and Computer Science, Liverpool
Hope University, Liverpool, United Kingdom
E-mail: nagara@hope.ac.ukg

Radu Nicolescu, Department of Computer Science, University of Auckland,
Private Bag 92019, Auckland, New Zealand.
E-mail: r.nicolescu@auckland.ac.nz

Yunyun Niu, School of Information Engineering China University of Geosciences in
Beijing, Beijing 100083, China
E-mail: niuyunyun1003@163.com

Ferrante Neri, COL Laboratory, School of Computer Science, University of
Nottingham, Nottingham, United Kingdom

Hong Peng, School of Computer and Software Engineering, Xihua University,
Chengdu, 610039,Sichuan, China

Ignacio Pérez-Hurtado, Research Group on Natural Computing, Dpt. Computer
Science and Artificial Intelligence, School of Computer Engineering, Universidad de
Sevilla, Seville, Spain

Linqiang Pan, School of Articial Intelligence and Automation, Huazhong University
of Science and Technology, Wuhan, 430074, China

Mario J. Pérez-Jiménez, Research Group on Natural Computing, Dpt. Computer
Science and Artificial Intelligence, School of Computer Engineering, Universidad de
Sevilla, Seville, Spain

Pirthwineel Paul, School of Electrical Engineering, Southwest Jiaotong University,
Chengdu, 61003, China

Meenakshi Paramasivan, Institut für Informatik, Universität Leipzig, D-04009
Leipzig, Germany
E-mail: meena_maths@yahoo.com

Huaqing Qi, School of Economics and Management, Wuhan Polytechnic University,
Wuhan 430023, China
E-mail: qihuaqing@sohu.com

Dunwu Qi, Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan,
China

Haina Rong, School of Electrical Engeneering, Southwest Jiaotong University,
Chengdu, 610031, China
E-mail: ronghaina@126.com

Zeyi Shang, School of Electrical Engeneering, Southwest Jiaotong University,
Chengdu, Sichuan, China
Laboratoire d’Algorithmique, Complexit´ e et Logique, Universit´ e Paris Est Cr´
eteil, Cr´ eteil, France

Bosheng Song, College of Information Science and Engineering, Hunan University,
Changsha, China
E-mail: boshengsong@hust.edu.cn

Michael Stachowicz, Faculty of Science and Engineering, Manchester Metropolitan
University, Manchester, Britain

K.G. Subramanian, Department of Mathematics, Madras Christian College,
Tambaram, Chennai 600059, India
E-mail: kgsmani1948@gmail.com

Jianchi Sun, School of Math and Computer, Wuhan Polytechnic University, Wuhan
430023, Hubei, China
E-mail: 2233417652@qq.com

Jing Sun, The University of Auckland, Auckland, New Zealand

Hang Shu, School of Math and Computer, Development Strategy Institute of reserve
of food and material, Wuhan Polytechnic University, Wuhan 430023, China

D G Thomas, Department of Mathematics, Madras Christian College, Tambaram,
Chennai ---600 059, India
E-mail: dgthomasmcc@yahoo.com

T.Robinson, Department of Mathematics, Madras Christian College, Tambaram,
Chennai ---600 059, India
E-mail: robin.mcc@gmail.com

Sergey Verlan, Laboratoire d’Algorithmique, Complexit´e et Logique, D´epartement
Informatique, Universit´e Paris Est
E-mail: verlan@u-pec.fr

Luis Valencia-Cabrera, Research Group on Natural Computing, Department of
Computer Science and Artificial Intelligence, University of Sevilla, Spain
E-mail: lvalencia@us.es

Yuan Wang, School of Management Science and Engineering, Shandong Normal
University, Jinan,250014, China.

Di Wang, School of Management Science and Engineering, Shandong Normal
University, Jinan,250014, China.

Jun Wang, School of Electrical Engineering and Electronic Information, Sichuan
Province Key Laboratory of Power Electronics Energy-saving Technologies&
Equipment, Key Laboratory of Fluid and Power Machinery , Ministry of Education,
Xihua University,Chengdu 610039, P. R. China.

Tao Wang, School of Electrical Engineering and Electronic Information, Sichuan

Province Key Laboratory of Power Electronics Energy-saving Technologies&
Equipment, Key Laboratory of Fluid and Power Machinery , Ministry of Education,
Xihua University,Chengdu 610039, P. R. China.

Tianbao Wu, State Grid Sichuan Electric Power Company, Chengdu 610094, China

Jianhua Xiao, School of Information Engineering China University of Geosciences
in Beijing, Beijing 100083, China
E-mail: jhxiao@nankai.edu.cn

Jie Xue, School of Management Science and Engineering, Shandong Normal
University, Jinan,250014, China.

Jian Xie, China Grain Wuhan Scientfic Reserch & Design Institute, Co.ltd, Wuhan
430023, China

Hua Yang, School of Math and Computer, Development Strategy Institute of reserve
of food and material, Wuhan Polytechnic University, Wuhan 430023, China
E-mail:Huay20@163.com

Zehua Yang, School of Information Engineering China University of Geosciences in
Beijing, Beijing 100083, China

Zhao Yao, School of Math and Computer, Development Strategy Institute of reserve
of food and material, Wuhan Polytechnic University, Wuhan 430023, China

Zhibing Yu, School of Electrical Engeneering, Southwest Jiaotong University,
Chengdu, 610031, China

Xiangxiang Zeng, Department of Computer Science, Xiamen University, Xiamen
361005, Fujian, China

Gexiang Zhang, School of Electrical Engineering, Southwest Jiaotong University,
Chengdu, 61003, China
E-mail: zhgxdylan@126.com

Xihai Zhang, School of Electrical Engineering, Southwest Jiaotong University,
Chengdu, 61003, China

Zhe Zhang, Business School, Shandong Normal University, Jinan, China

Luping Zhang, School of Articial Intelligence and Automation, Huazhong University
of Science and Technology, Wuhan, 430074, China

Kang Zhou, School of Math and Computer, Development Strategy Institute of
reserve of food and material, Wuhan Polytechnic University, Wuhan 430023, China
E-mail: zhoukang_wh@163.com

Jian Zhou, college of Food Science and Engineering, Wuhan Polytechnic University,
Wuhan 430023, China

Committees
Steering Committee:

Henry Adorna (Quezon City, Philippines)

Artiom Alhazov (Chisinau, Moldova)

Bogdan Aman (Iasi, Romania)

Matteo Cavaliere (Manchester, UK)

Erzsébet Csuhaj-Varjú (Budapest, Hungary)

Giuditta Franco (Verona, Italy)

Rudolf Freund (Wien, Austria)

Marian Gheorghe (Bradford, UK) – Honorary member

Thomas Hinze (Cottbus, Germany)

Florentin Ipate (Bucharest, Romania)

Shankara N. Krishna (Bombay, India)

Alberto Leporati (Milan, Italy)

Taishin Y. Nishida (Toyama, Japan)

Linqiang Pan (Wuhan, China) – Co-Chair

Gheorghe Păun (Bucharest, Romania) – Honorary member

Mario J. Pérez-Jiménez (Sevilla, Spain)

Agustín Riscos-Núñez (Sevilla, Spain)

José M. Sempere (Valencia, Spain)

Petr Sosík (Opava, Czech Republic)

Kumbakonam Govindarajan Subramanian (Penang, Malaysia)

György Vaszil (Debrecen, Hungary)

Sergey Verlan (Paris, France)

Claudio Zandron (Milan, Italy)

Gexiang Zhang (Chengdu, China) – Co-Chair

Program Committee:

Henry Adorna (Quezon City, Philippines)

Cătălin Buiu (Bucharest, Romania)

Bogdan Aman (Iasi, Romania)

Matteo Cavaliere (Manchester, UK)

Erzsébet Csuhaj-Varjú (Budapest, Hungary)

Giuditta Franco (Verona, Italy)

Xiaoju Dong (Shanghai, China)

Marian Gheorghe (Bradford, UK)

Ping Guo (Chongqi, China)

Juanjuan He (Wuhan, China)

Thomas Hinze (Cottbus, Germany)

Florentin Ipate (Bucharest, Romania)

Tseren-Onolt Ishdorj (Mongolia)

Savas Konur (Bradford, UK)

Alberto Leporati (Milan, Italy)

Jia Li (Chongqing, China)

Xiangrong Liu (Xiamen, China)

Xiyu Liu (Jinan, China)

Ravie Chandren Muniyandi (Bangi, Malaysia)

Radu Nicolescu (Auckland, Australian)

Taishin Nishida (Toyama, Japan)

Yunyun Niu (Beijing, China)

Linqiang Pan (Wuhan, China) – Chair

Gheorghe Păun (Bucharest, Romania)

Hong Peng (Chengdu, China)

Mario J. Pérez-Jiménez (Sevilla, Spain)

Agustín Riscos-Núñez (Sevilla, Spain)

Haina Rong (Chengdu, China)

Jose M. Sempere (Valencia, Spain)

Bosheng Song (Changsha, China)

Tao Song (Qingdao, China)

Petr Sosík (Opava, Czech Republic)

Kumbakonam Govindarajan Subramanian (Chennan, India)

D.G. Thomas (Chennai, India)

György Vaszil (Debrecen, Hungary)

Sergey Verlan (Paris, France)

Jun Wang (Chengdu, China)

Tingfang Wu (Suzhou, China)

Jianhua Xiao (Tianjing, China)

Jie Xue (Jinan, China)

Hsu-Chun Yen (Taiwai, China)

Jianying Yuan (Chengdu, China)

Claudio Zandron (Milan, Italy)

Xiangxiang Zeng (Xiamen University)

Gexiang Zhang (Chengdu, China) – Co-Chair

Xingyi Zhang (Anhui, China)

Xue Zhang (Boston, USA)

Xuncai Zhang (Zhengzhou, China)

Ming Zhu (Chengdu, China)

Organizing Committee:

Xiangrong Liu (Xiamen University, China)– Chair
Xiangxiang Zeng (Xiamen University, China)
Minli Tang (Xiamen University, China)
Lianmin Zhao (Xiamen University, China)

Contents
Invited Talks…………………………………………………….………1

Challenges for hardware implementations of P Systems

Sergey Verlan………………………….…………….…………….……..….2

Epistasis in Optimisation Problems

Ferrante Neri………………………………………………….……….…..….3

Some Variants of P Systems

Bosheng Song………………………………………….………………….…4

Space Filling Curves: Representations and Generation

Rodica Ceterchi ……………………………………………………….…….5

Bibliometric Analysis of Membrane Computing

Gexiang Zhang…………………………………………..……………….….6

Regular Papers………………………………………………………….7

Evaluation and analysis of loss and waste in the processing of rapeseed

oil

Falin Jiang, Hua Yang, Kang Zhou, Huaqing Qi, and Jian Zhou………..…………….8

A Learning Spiking Neural P System and Its Applications to

Classification Problems

Xihai Zhang, Haina Rong, Gexiang Zhang, Pirthwineel Paul,

Zhibing Yu, and Xiantai Gou……..……………………………………………18

Multi-stage stratified sampling for national grain

processing loss and waste census

Zhao Yao, Jiangrong Liu, Kang Zhou, Huaqing Qi, Falin Jiang, and Jian Zhou………...36

Simulating Tissue P systems with promoters through MeCoSim and P-

Lingua

Luis Valencia-Cabrera and Bosheng Song………………………..………...……46

The two-stage multi-objective optimization algorithm based on classified

population

Hang Shu , Kang Zhou 1, Gexiang Zhang, and Zhixin He…………………...……...62

Theory and Application of Three-dimensional Analysis about Propagation

Data

Jianchi Sun, Shuo Liu, Kang Zhou, Wei Cen, Qiyao Huang, and Wanying Liang...……..86

A Novel Spiking Neural P Systems for Image Recognition

Xiantai Gou, Qifen Liu, Gexiang Zhang, Meng Hu, Pirthwineel Paul, Fang Deng, Xihai

Zhang, and Zhibin Yu……………………………………………………….102

Reliability Evaluation of Distribution Network Based on Fuzzy Spiking

Neural P System with Self-Synapse

YuLei Huang, Tao Wang, and Jun Wang, Hong Peng……………………….……..119

Parallel Contextual Array Insertion Deletion P Systems and Siromoney

Matrix Grammars

S. Jayasankar, D. Gnanaraj Thomas, S. James Immanuel, Meenakshi Paramasivan, T.

Robinson, Atulya K. Nagar………………………………………...……...…134

Solving the feasibility problem in robotic motion planning by means of

Enzymatic Numerical P systems

Ignacio Pérez-Hurtado, Miguel Ańgel Martínez-del-Amor, Gexiang Zhang, Ferrante Neri,

and Mario J. Pérez-Jiménez……………………………………………...…152

A survey of learning SNP systems and some new ideas

Yunhui Chen, Gexiang Zhang, Ying Chen, Prithwineel Paul, Tianbao Wu, Xihai Zhang, and

Haina Rong………………………………………………………...…….166

FPGA Implementation of Robot Obstacle Avoidance Controller based on

Enzymatic Numerical P Systems

Zeyi Shang, Sergey Verlan, Gexiang Zhang, and Ignacio Pérez-Hurtado……..…...…184

Research on an evaluation method of rice processing loss

Falin Jiang, Kang Zhou, Jian Xie, Jian Zhou, and Haocheng Fang…………………215

Formal Approach to cP System Verification

Yezhou Liu, Radu Nicolescu, and Jing Sun……………………….…….…….…232

Nondeterminism in Spiking Neural P Systems: Algorithms and

Simulations

Jym Paul Carandang, Francis George C. Cabarle, Henry N. Adorna, Nestine Hope S.

Hernandez, Miguel Ańgel Martínez-del-Amor…………………………..……….246

Notes on Improved Normal Forms of Spiking Neural P Systems and

Variants

Ivan Cedric H. Macababayao, Francis George C. Cabarle, Ren Tristan A. de la Cruz, Henry

N. Adorna, Xiangxiang Zeng…………………………………..…………….257

A Framework for Evolving Spiking Neural P Systems

Lovely Joy Casauay, Ivan Cedric H. Macababayao, Francis George C. Cabarle, Ren Tristan

A. de la Cruz, Henry N. Adorna, Xiangxiang Zeng, Miguel Ángel Martínez-del-

Amor………………………………………………………………….....271

A Framework for Evolving Spiking Neural P Systems with Rules on

Synapses

Celine Anne A. Moredo, Ryan Chester J. Supelana, Dionne Peter Cailipan, Francis George

C. Cabarle, Ren Tristan A. de la Cruz, Henry N. Adorna, Xiangxiang Zeng, Miguel Ángel

Martínez-del-Amor…………………………………………………....……299

Non-intrusive Electrical Appliances Recognition Method Based on Deep

Learning

Zhibin Yu, Hong Chen, Chunxia Chen, Gexiang Zhang, and Xiantai Gou………….....333

Optimizing the Green Open Vehicle Routing Problem by Membrane-

Inspired Hybrid Heuristic Algorithm

Yunyun Niu, Zehua Yang, and Jianhua Xiao……….………………………....…358

Improved spectral clustering algorithm based on Tissue-like P systemS

Zhe Zhang, Xiyu Liu…………..……………………………………...….....374

A review of membrane computing models for ecosystems and a case

study on giant pandas

Yingying Duan, Gexiang Zhang, Dunwu Qi, Luis Valencia-Cabrera, Haina Rong, and Mario

J. Perez-Jimenez………………………………………………………..…384

A Grid-Density Based Algorithm by Weighted Spiking Neural P Systems

with Antispikes and Astrocytes in Spatial Cluster Analysis

Deting Kong, Yuan Wang, Di Wang, Xiyu Liu, and Jie Xue………………………..425

Generating Hilbert Words in Array Representation with P SystemsK.G.

Rodica Ceterchi, Luping Zhang, Linqiang Pan, K. G. Subramanian, and Gexiang

Zhang…………………………………………………………………..437

Automatic Design of Spiking Neural P Systems Based on Genetic

Algorithms

Jianping Dong, Michael Stachowicz, Gexiang Zhang, Matteo Cavaliere, Haina Rong, and

Prithwineel Paul………………………………….….………………..…449

Bi-level multi-objective optimization of loss and waste in the wheat

processing

Wanying Liang, Hua Yang, and Kang Zhou………………………….…..…468

Part 1

Invited talks

1

Challenges for hardware implementations of P Systems

Sergey Verlan
University of Paris Paris Est, France

Abstract: A P system is a computational model that features a massive parallelism. In order
to be able to use this feature in applications it is important to have a truly massively parallel
implementation of P systems. At this moment, the only possibility to practically realize this
is a digital circuit or FPGA (reconfigurable circuit) implementation. In this talk we explain
the challenges raised by such an implementation. As example we discuss recent FPGA
implementations of numerical P systems (NPS) that is a variant of P systems allowing to
easily model physical processes based on differential equations. NPS allows many
applications, the most prominent ones being in the area of robotic control. We will show
how to obtain a hardware FPGA implementation of NPS allowing to achieve extreme
speeds (~10^8 computational steps per second) and featuring massive parallelism (with
more than 5000 parallel computational units). This opens new perspectives for the design
of on-chip fast robotic controllers based on P systems. Another important consequence is
the ability to use some variants of P systems as a programming language for algorithm
description that can be efficiently translated in FPGA hardware by non-specialists.

Short bio: Dr. hab. Sergey Verlan is an associated professor at the University of Paris Est
Creteil, France. He obtained his PhD in Computer Science in 2004 at the University of
Metz, France and his habilitation in 2010 at the University of Paris Est. Dr Verlan’s main
research focus is the area of theoretical computer science and natural computing. He has
expertise in the area of formal language theory, DNA computing, membrane computing,
modeling of biological systems and hardware design.

2

Epistasis in Optimisation Problems
Ferrante Neri

University of Nottingham, Nottingham

Abstract: In biological systems, epistasis is the correlation between pairs of genes. By
loosely interpreting this concept, in optimisation epistasis refers to the correlation between
the variables with respect to an objective function. A low epistatic problem can be
decomposed in multiple simpler problems, each of them with being with a reduced
dimensionality with respect to the original problem.This talk presents the topic of
correlation among variables and analyses the related topics of separability and rotation
invariance. An overview of the literature on techniques to handle epistasis with reference
to Differential Evolution is offered. Furthermore, this talk explores the relation between
dimensionality and correlation among the variables and demonstrates that experimental
conditions are an inherent part of the optimisation problem.

Short bio: Ferrante Neri received a Master’s degree and a PhD in Electrical Engineering
from the Technical University of Bari, Italy, in 2002 and 2007 respectively. In 2007, he also
received a PhD in Scientific Computing and Optimization from University of Jyväskylä,
Finland. From the latter institution, he received the DSc degree (Habilitation) in
Computational Intelligence in 2010. He was Research Fellow with Academy of Finland
in the period 2009-2014. Dr Neri moved to De Montfort University, United Kingdom in
2012, where he was appointed Reader in Computational Intelligence and in 2013, promoted
to Full Professor of Computational Intelligence Optimisation. Since 2019 Ferrante Neri
moved to the School of Computer Science, University of Nottingham, United Kingdom
where he was appointed Associate Professor. Ferrante Neri’s teaching expertise lies in
mathematics for computer science, especially linear and abstract algebra. He is HEA
Senior Fellow and author of the recently published book “Linear Algebra for
Computational Sciences and Engineering”. His research interests include algorithmics,
hybrid heuristic-exact optimisation, scalability in optimisation and large scale problems.
Dr Neri published over 150 publications in these topics. Dr Neri is an IEEE Senior Member
and is Associate Editor and member of the Editorial Board of numerous journals including
Information Sciences, Integrated Computer-Aided Engineering, and Memetic Computing.
He organised over twenty symposia, special sessions, and workshops in International
Conferences. Dr Neri is on the panel of funding bodies in seven countries. He has been in
the Programme Committee of over 100 conferences.

3

Some Variants of P Systems
Bosheng Song

Hunan University, Changsha, China

Abstract: Membrane computing is an unconventional computing area that aims to abstract
computing ideas (e.g., computing models, data structures, data operations) from the
structure and functioning of living cells, as well as from more complex biological entities,
like tissues, organs and populations of cells. The computational models that are part of this
paradigm are generically called P systems, which are distributed and parallel computing
devices. In this talk, inspired by different biological facts, some variants of P systems are
introduced; besides, some new results of these P systems and open problems are presented.

Short bio: Bosheng Song received the Ph.D. degree in control science and engineering
from Huazhong University of Science and Technology, Wuhan, China, in 2015. He spent
eighteen months working in the Research Group on Natural Computing, University of
Seville, Seville, Spain, from November, 2013 to May, 2015. He was worked as a post-
doctoral researcher with the School of Artificial Intelligence and Automation, Huazhong
University of Science and Technology, Wuhan, China, from March, 2016 to February, 2019.
He is currently an Associate Professor with the College of Information Science and
Engineering, Hunan University, Changsha, China. His current research interests include
membrane computing and formal language theory.

4

Space Filling Curves: Representations and Generation
Rodica Ceterchi

Abstract: Space Filling curves have been of interest for mathematicians since the end of
the 19th century, when Peano and Hilbert discovered the first examples. More recently, they
turned out to be useful tools in Computer Science, with many applications, especially to
scientific computing. Their representations as strings (chain-code words) have been
introduced, and different generations with formal languages tools have been studied. We
present here several results concerned with the generation of finite approximations of
space-filling curves in string representation, with parallel rewriting rules, controlled by P
systems. We also introduce a novel representation of them as 2D-arrays, their generation
with array rewriting rules, and the connections between the string representation and the
array representation.

Short bio: Prof. Dr. Habil. Rodica Ceterchi is Professor at the Faculty of Mathematics and
Computer Science, Department of Computer Science, University of Bucharest, Romania.
She obtained her PhD in 1991, and her Habilitation in 1997 from the same University. Her
research interests include algebras for many-valued logics, formal models for semantics,
unconventional models of computation inspired by nature, membrane computing. She was
in 2003 a recipient of the “Grigore C. Moisil” award of the Romanian Academy for her
contributions in this area.

5

Bibliometric Analysis of Membrane Computing

Gexiang Zhang
Chengdu University of Technology

Abstract: This talk will discuss the development process of membrane computing and the
statistical data with respect to the publications appearing in international journals,
conferences and workshops, the researchers in geographical distributions and the funds.
The bibliometric analysis results of membrane computing will be reported in detail. Some
future suggestions will be provided.

Short bio: Gexiang Zhang is currently a full professor of College of Information Science
& Technology at Chengdu University of Technology, Chengdu, China. He worked at The
University of Sheffield, UK, at the University of Seville, Spain, and at the New York
University, USA. His areas contain artificial intelligence (membrane computing, machine
learning, etc.), robotics and smart grids. He is the principle investigator of five projects
funded by National Natural Science Foundation of China. He has published three books,
over 200 refereed book chapters, journal and conference papers, and authored more than
40 Chinese patents. He won 4 best paper awards of international conferences, IMCS Prize
and 3 provincial science and technology advancement awards. He supervised 5 PhD
students and more than 70 master students.
He is the founding President of International Membrane Computing Society (IMCS), IET
Fellow, IET Fellow Assessor, IEEE Senior member, and Managing Editor of Journal of
Membrane Computing (Springer). He serviced ACMC2013 and ACMC2017 as conference
chairs, PC member of tens of international conferences, and also services ACMC as
Steering Committee member and co-chair of PC, and hundreds of international journals as
a reviewer.

6

Part 2

Regular Papers

7

1 1 � 1 2 3

1

2

3

�

8

9

W

M R

p
q

p

p =
M

W
∗ 100%

q = 1− p

p =
R

W
∗ 100%

10

j j
j

pj =
Mj+1

Mj
∗ 100%

j

qj = 1− pj

j

pj =
Rj+1

Mj

11

min

n∑
i=1

√√√√ s∑
j=1

(pj − pij)
2

pj > 0

n
s

pij j i
pj

p
q

p

12

as k (k = 1, 2, ···s)
as

ak = (ak1, ak2, ak3, ak4, lkj)

ak1 k ak2
k ak3 k

ak4 k
lkj k j lj

j
pj j
λi (i = 1, 2)

max{λ1
lj
s∑

j=1

lj

+ λ2
pj
s∑

j=1

pj

}

lj =
1

t

t∑
k=1

lkj

pj =
1

t

t∑
k=1

(lkj − lj)
2

2∑
i=1

λi = 1

ak = (ak1, ak1, ak1, ak1, lkj)

13

14

15

16

17

A Learning Spiking Neural P System and Its
Applications to Classification Problems

Xihai Zhang, Haina Rong*, Gexiang Zhang, Pirthwineel Paul, Zhibing Yu, and
Xiantai Gou

School of Electrical Engineering, Southwest Jiaotong University, Chengdu, 61003,
China

E-mail: ronghaina@126.com

Abstract. Spiking neural P systems (SN P systems), as an important
branch of the third generation neural network models, has been applied
in many real-life areas. Exploration of solutions for pattern recognition
problems by using the SN P systems is a challenging and ongoing topic.
This paper proposes learning SN P systems (LSN P systems) to solve
supervised classification problems. This is the first attempt to construct
LSN P systems to show great potential for handling real-life classifica-
tion problems. LSN P systems are designed by using weighted fuzzy SN
P systems, a multi-layer network structure with adaptive weights ad-
justment rule and a selection method of output neurons, and ascending
dimension techniques for non-linear classification problems. Experiments
conducted on the problems in the University of California, Irvine (UCI)
machine learning repository show the feasibility and effectiveness of LSN
P systems.

Keywords: Spiking neural P systems · Learning spiking neural P sys-
tems · Supervised learning · Adaptive weight adjustment rule.

1 Introduction

Artificial neural networks, as one of the most important tools in artificial intelli-
gence (AI), have been developed for more than sixty years since the introduction
of perceptron linear algorithm [1]. With the development of neural networks,
many network models have been proposed to achieve pattern recognition prob-
lems, such as the first generation neural networks represented by McCulloch -
Pitts neurons [2] and Hopfield Neural Network (HNN) [3], the second generation
neural networks represented by Back Propagation Neural Network (BPNN) [4]
and Extreme Learning Machine (ELM) [5], the third generation neural networks
represented by Spiking Neural Networks (SNNs) [6] and Pulse Coupled Neural
Network (PCNN) [7]. It has been widely used in various fields, such as image
identification [8], voice recognition [9], autonomous vehicles [10], medical diagno-
sis [11]. However, the first generation and the second generation neural networks
also have some disadvantages. The output of the first generation neural networks
must be digital. This weakness limits the application of these networks only to

18

2 X. Zhang et al.

boolean functions [12–14]. One of the most outstanding characteristics of the
second generation neural networks is that it can process the continuous input
and output values, but the second generation neural networks adopt frequency
coding which is not suitable in some biological neurons [12–14]. The third gen-
eration neural networks represented by SNNs in which the coding scheme is a
kind of time coding. In another word, the information of input data is encoded
by generating spikes at different time, which is similar to human neural activity.
However, there is only one type of neuron in SNNs, i.e., spiking neurons [6]. In
real neurobiology research, not only there exist spiking neurons in our brain but
also have other types of neurons, like astrocytes [15], oligodendrocyte [16], etc.

Membrane computing models (usually called P systems) are nature-inspired
models, proposed by Gh. Păun [17]. These models are abstracted from the struc-
ture and the functioning of the biological cells, organs, and colonies. In the last
few decades, many variants of P systems have been introduced, such as cell-like
P systems [17], tissue-like P systems [18], neural-like P systems [19]. These mod-
els also have been used to solve problems in theory and applications [20–23]. In
recent years, the SN P systems have gained popularity because of its similarities
with SNNs. The SN P systems can be regarded as a combination of SNNs and P
systems. A great deal of work has been done on the theoretical aspects of SN P
systems and plenty of other variants with different biological phenomena, such
as SN P systems with astrocytes [24], SN P systems with anti-spikes [25], SN P
systems with structural plasticity [26] have been proposed. The real-life appli-
cations of SN P systems have been in skeletonizing images [27], combinatorial
optimization [28], fault diagnosis [29, 30], decoder design [31], etc. Also, some
researchers have investigated the feasibility of pattern recognition problems by
using the SN P systems in [32, 33]. Although they have explored the models of
pattern recognition by using SN P systems in different aspects, these models
have some drawbacks such as the structure of the network is not universal and
the accuracy of the model also needs some improvements.

In the field of membrane computing, the attempt to extend P systems to
achieve pattern recognition is a challenging and ongoing research topic. How-
ever, the papers about SN P systems with learning ability are very rare. The
learning ability in SN P systems is a very important aspect to expand the real-life
application. Under these circumstances, this paper proposes a design strategy of
neural systems capable of solving pattern recognition problems. The proposed
learning model is unlike the models in [32, 33], it archives the pattern recogni-
tion problems in an explanatory network structure and can be used to recognize
some real-life problems. The learning SN P systems (LSN P systems) are orga-
nized in a multi-layer network structure in which the properties of the neurons in
Weighted Fuzzy Spiking Neural P Systems (WFSN P systems) and Taylor theo-
rem are considered comprehensively. In order to make the model fit better with
the streaming inputs, the Widrow-Hoff learning law is employed to adjust weights
during the iterative learning process. Moreover, the Taylor series expansion is
used to generate higher-dimensional information and these higher dimensional
informations transform non-linearly separable data into linearly separable, and a

19

A LSN P System and Its Applications to Classification Problems 3

network in the framework of WFSN P systems with Widrow-Hoff learning algo-
rithm has been introduced for identification of the pattern recognition problem.
In this manner, the pattern recognition problem can be solved perfectly in LSN
P systems. Furthermore, it is the first known attempt to construct a supervised
learning algorithm for solving pattern recognition problems using the WFSN P
systems, and the experimental results in the UCI machine learning repository
illustrate that the model is powerful and better than BPNNs and SNNs in the
performance of classification. In this paper, we not only construct a new super-
vised learning algorithm for multilayer networks in the framework of membrane
computing but also expand the scope of membrane computing models in solving
real-world problems.

The remainder of this paper is organized in the following way. Section 2
recalls the WFSN P systems briefly. Section 3 presents the proposed LSN P
systems in detail and use several simple cases to illustrate how to achieve the
function of learning in the LSN P systems. Experimental results are described
in Section 4. Concluding remarks are given in Section 5.

2 WFSN P Systems

In this section, we introduce the WFSN P systems and its advantages in con-
strucing the LSN P systems.

Definition 1. The WFSN P systems of degree m(≥ 1) is a construct of the
form [34]:

Π = (O,Np, Nr, syn, IN,OUT)

where

(1) O = {a} is the singleton alphabet and a is called spike.
(2) Np = {σp1, σp2, ..., σpm} is proposition neurons set. The fuzzy proposition

within the fuzzy knowledge base is associated with each proposition neu-
ron σpi,1 ≤ i ≤ m. Every proposition neuron σpi has the form σpi =
(αi,

−→ωi, λi, ri) where
a) αi ∈ [0, 1] is the potential value of pulse in the proposition neuron σpi,

αi is the fuzzy truth value of the proposition for each proposition neuron
σpi.

b) −→ωi = (ωi1, ωi2, ..., ωisj) is the output weight vector for each proposition
neuron σpi, where each ωij ∈ [0, 1](1 ≤ j ≤ sj) is the weight from σpi to
σrj and sj is the number of rule neurons in the next layer.

c) ri is a finite set of firing/spiking rules of the form E/aα → aα; d, where
α ∈ (0, 1] and d ∈ N. E is the firing condition where E = {α ≥ λi}. It
means that if α ≥ λi, then the firing rules will be used. λi ∈ [0, 1) is
called the threshold of firing rule.

(3) Nr = {σr1, σr2, ..., σrn} is rule neurons set, the weighted fuzzy production
rule in fuzzy knowledge base is associated with each rule neuron σrj , 1 ≤
j ≤ n. For every rule neuron σrj has the form σrj = (αj , γj ,

−→vj , τj , rj) where

20

4 X. Zhang et al.

a) αj ∈ [0, 1] is the potential value of pulse in the rule neuron σrj .
b) γj ∈ [0, 1] is the certain factor. It represents the strength of belief in the

weighted fuzzy production rule with rule neuron σrj .
c) −→vj = (vj1, vj2, ..., vjti) is the output weight vector for each rule neuron

σrj , where each vji ∈ [0, 1](1 ≤ i ≤ ti) is the weight from σrj to σpi and
ti is the number of proposition neurons in the next layer.

d) rj is a finite set of firing/spiking rules of the form E/aα → aβ ; d, where
α ∈ (0, 1], β ∈ (0, 1], d ∈ N and E = {α ≥ τj} is the firing condition. It
means that if α ≥ τj , then the firing rule can be used, where τj ∈ [0, 1)
is called the threshold of firing rule.

(4) syn ⊆ (Np ×Nr) ∪ (Nr ×Np) represents the synaptic connections between
proposition neurons and rule neurons. The connection between proposition
neurons and proposition neurons(or rule neurons and rule neurons) is not
allowed in the WFSN P systems.

(5) IN,OUT ⊆ Np, i.e., the input neurons and output neurons are all proposition
neurons.

There are two types of neurons in the WFSN P systems, one is proposition
neurons and the other is rule neurons. For different neurons, the output value is
totally different. In the following, the rules of two types of neurons are discussed.

For proposition neurons, when the firing condition E = {α ≥ λi} is satisfied,
then the firing rule E/aα → aα; d can be applied. There are two situations in
the proposition neurons:

(1) If the spike arrives in proposition neurons at different time, then the propo-
sition neurons will judge whether the firing condition is satisfied separately.
If it is satisfied, then the firing rule will be applied and the output value of
potential is α ⊗ ω, where ⊗ is multiplication operator of fuzzy truth values
and ω is output weight of proposition neuron, otherwise the firing rule will
not be used.

(2) If the spike arrives at the same time, then the proposition neurons will use a
logical operator to judge whether the firing condition is satisfied. The logical
“OR” operator (∨) will be used to estimate the potential values of spikes
received from the predecessor neurons. For example, as shown in Fig.1(a),
if a proposition neuron receives a series of potential values of spikes at the
same time, then the potential value will be αin = x1 ∨ x2 ∨ ... ∨ xk. So the
environment will receive the potential αout = (x1 ∨ x2 ∨ ... ∨ xk)⊗ ω.

For rule neurons, when firing condition E = {α ≥ τj} is satisfied, then the
firing rule E/aα → aβ ; d can be applied. There are also two situations in the
rule neurons:

(1) If the spikes arrive in rule neuron at different time, then the rule neurons will
judge whether the firing condition is satisfied separately. If it is satisfied, then
the firing rule will be used and the output value of the potential is (α�v)⊗γ,
where � is division operator of fuzzy truth values, v is output weight of rule
neuron and γ is certain factor, otherwise the firing rule will not be used.

21

A LSN P System and Its Applications to Classification Problems 5

(2) If the spikes arrive at the same time, then the rule neurons use logical oper-
ator to judge whether the firing condition is satisfied. The addition operator
“⊕” is used to calculate the potential values of spikes received from the
predecessor neurons. For example, as in Fig.1(b) , if a rule neuron receives
a series of potential values of spikes at the same time, then the potential
value will be αin = x1 ⊕ x2 ⊕ ...⊕ xk. So the environment receives the value
βout = ((x1 ⊕ x2 ⊕ ...⊕ xk)� v)⊗ γ.

(a) proposition neurons (b) rule neurons

Fig. 1. Two types of neurons

From the above introduction we know that the WFSN P systems integrate
the advantages of SN P systems and fuzzy logic, i.e., the model not only can
process information in a distributed and parallel manner but also can perform
operations on real numbers by introducing fuzzy logic [35]. These properties
greatly broaden the application of the WFSN P systems and make it feasible
to solve problems of pattern recognition. One such model has been discussed in
[33] where the adjustment of the weights in the network is done by using the
Widrow-Hoff learning law. Although the model in [33] only analyzes the method
of changing weights and is not used to solve real-life problems. Moreover, its
achievements greatly expand the perspective of researchers and provide a feasible
principle of weight adjustment.

Inspired by the excellent performance of WFSN P systems, this paper pro-
poses a novel network to solve classification problems in the framework of WFSN
P systems. Unlike past studies which only consider the activity of individual neu-
rons [37, 38], this model takes into account the activity of the single neuron in
the prefrontal cortex (PFC), which is the higher-order brain structures and has
an impact in planning complex cognitive behavior, decision making and mod-
erating social behavior [39]. The experiment in [40] shows that the PFC can
mix selectivity in complex cognitive tasks. It means that the neurons in PFC
can obtain high-dimensional information by non-linear mixed encoding and the
high-dimensional information can help us tomake a decision. The LSN P systems
are proposed based on the above considerations mentioned above.

22

6 X. Zhang et al.

3 LSN P Systems

In this section, we introduce the structure of LSN P systems. The learning pro-
cess and two examples (OR-problem, XOR-problem) are introduced to explain
the working of LSN P systems.

3.1 The structure of LSN P systems

The network architecture consists of a feedforward network of proposition neu-
rons and rule neurons with different spiking rules and firing conditions, as shown
in Fig.2. The neurons in the network generate a new potential value when the
incoming potential crosses the firing condition. Depending on the special style
of code found in the brain and the WFSN P systems with more biological char-
acteristics, it is reasonable to combine these two points. The learning system
based on Π WFSN P systems is of the following form:

Π = (A,
{
σ1
p1, ..., σ

1
pk, σ

3
p1, σ

5
p1

}
,
{
σ2
r1, ..., σ

2
rn, σ

4
r1, ..., σ

4
rn,
}
, syn, IN,OUT)

where:

(1) A={a} is the singleton alphabet(a is called spike).
(2) For each proposition neuron i have the form σh

pi =
{
0, wh

ij , λ
h
i , r

h
i

}
, where h

is the label of the layers in the network.
a) 0 denotes that there is no potential value of pulse in all proposition

neurons.
b) The weights between the proposition neurons and rule neurons are of the

form w1
ij(i = 1, ...k, j = 1, ..., n) = rand(0, 1) and w3

1j(j = 1, ..., n) = 1.

The process of learning is to adjust w1
ij to find a set of weights with the

highest fitness.
c) The set of rules rhi is firing/spiking rule of form r1i : E1/aαi → aαi(i =

1, . . . , k − 1), where E1 =
{
αi ≥ λ1

i

}
and λ1

i (i = 1, ..., k) = 0. The last
neuron is called bias neuron and have the form r1k : E1/a → a. The
function of bias neuron is discussed in the next subsection; r31 : E3/ao →
ao, where E3 =

{
o ≥ λ3

1

}
, λ3

1 = 0 and o = θ1 ∨ θ2 ∨ ... ∨ θn.
(3) Each rule neuron has the form σk

rj =
{
0, 1, 1, τkj , r

k
j

}
, where k is the label of

the layers in the network.
a) 0 denotes that there is no potential value of pulse in the rule neurons.
b) 1 denotes that the certain factor in the rule neurons.
c) The weights between the rule neurons and proposition neurons are always

1. In another word, the weights in rule neurons do not participate in the
weight adjustment process.

d) The spiking rules of σ2
r1, ..., σ

2
rn have the form r2j (j = 1, 2...n) : E2/aθj →

aθj , where E2 = {θj ≥ τ2j }, τ2j (j = 1, 2, ..., n) = 0 and θj = (w1j ⊗α1)⊕
(w2j⊗α2)⊕ ...⊕(wkj⊗αk); the neurons σ

4
r1, σ

4
r2, ..., σ

4
rn have the spiking

rules r41:E
4
j /a

θj → a; dj , where E4
j = {θj ≥ τ4j } and τ4j (j = 1, 2, ..., n) =

o. It means that only the neurons with the maximum potential value of
pulse in the previous layer of rule neurons will be activated in this layer.

23

A LSN P System and Its Applications to Classification Problems 7

(4) syn = {(σ1
p1, σ

2
r1), (σ

1
p1, σ

2
r2), ..., (σ

1
pk, σ

2
rn), (σ

2
r1, σ

3
p1), (σ

2
r2, σ

3
p1), ..., (σ

2
rn, σ

3
p1),

(σ3
p1, σ

4
r1), (σ

3
p1, σ

4
r2), ..., (σ

3
p1, σ

4
rn), (σ

4
r1, σ

5
p1), (σ

4
r2, σ

5
p1), ..., (σ

4
rn, σ

5
p1)}

(5) IN = {σ1
p1, σ

1
p2, ..., σ

1
pk}, OUT = {σ5

p1}.

Fig. 2. The structure of learning model

3.2 The learning process of the LSN P systems

In order to process the pattern recognition problem by using the LSN P systems,
we assume that:

24

8 X. Zhang et al.

(1) The LSN P system Π is employed to deal with the learning problem.
(2) The operation of normalization of input data has been processed before

entering the system Π.
(3) The parameters of LSN P systems are known, like the weights, thresholds

and certainty factor, etc., i.e., the LSN P systems have been initialized.

The LSN P system contains six layers of neurons, each layer in the system
has different function. The first layer is the input layer which consists of the
neurons σ0

p1, σ
0
p2, ..., σ

0
pm. The input data is fed into the system through these

neurons.
The neurons σ1

p1, σ
1
p2, ..., σ

1
pk (k >m) compose the second layer. The func-

tion of this layer is to acquire higher dimensional information. From the bio-
logical phenomenons, several scientists have found that the decision making in
our brain is through higher-dimensional information rather than the same di-
mensional information by sensory organs [40]. The most obvious advantage of
higher-dimensional information is that it can transform non-linearly separable
data into linear separable. However, the real encoding scheme is also not clear
so far [40]. Since all pattern recognition problems can be deemed as a problem
of finding a smooth curve that meets the requirement of classification [41] and
any smooth curve can be represented by a Taylor series. In this case, the Taylor
series can be used to achieve the method of ascending dimension.
The Taylor expansion can be described as follows:

f(x1, ..., xn) =f(x10 , ..., xn0) + (h1
∂

∂x1
+ ...+ hn

∂

∂xn
)f(x10 , ..., xn0

)

+ ...+
1

k!
(h1

∂

∂x1
+ ...+ hn

∂

∂xn
)kf(x10 , ..., xn0

) +Rk+1

(1)

where:

(1) −→x = (x10 , . . . , xn0) is any point on the curve f(x1, . . . , xn);
(2) hi = xi − xi0(1 ≤ i ≤ n);
(3) Rk+1 = 1

(k+1)! (h1
∂

∂x1
+ . . . + hn

∂
∂xn

)k+1f(x10 + θh1, . . . , xn0
+ θhn), where

θ ∈ (0, 1).

In the Equation.1, if the order of expansion is appropriate, then the Rk+1

can be ignored because this term is very close to zero. The constant term
f(x10 , ..., xn0

) can be used by a neuron at the end of input data as a bias of
the LSN P systems. The bias is very important for learning system. If the bias
term does not exist in the learning system, this model will be useless because it
can not approach that curve more accurately. At last, it is not difficult to see
that the value of the output is a linear combination of high-dimension data. So
for some complex problems (linear indivisible), the Taylor series is a powerful
tool to solve these problems.

The third layer is a hidden layer, the synapses between the second and third
layer have weights. The output spikes of last layer are multiplied by the weights
and sum the spikes present in the neurons in third layer. The next layer is a

25

A LSN P System and Its Applications to Classification Problems 9

comparison layer, it can compare the potential of spikes which is sent from the
last layer. The spikes with the highest potential value is considered as output.
The fifth layer is a selection layer. The role of this layer is to select the neuron
having the highest value. Furthermore, the neuron with the maximum potential
value will fire according to the delay associated with the rules in the subsequent
steps.

The last layer is an output layer, the neuron σ5
p1 will send a spike and the

time of firing in the output layer is considered as the result of the system. Then
the Widrow-Hoff learning law (Least Mean Square) [42] is used to change the
weights between the second and third layer.
The Widrow-Hoff learning law is described in Equation.2:

Wij(t+ 1) = Wij(t) + α(di − yi)xj(t) (2)

where:

(1) Wij is the weight from neuron j to neuron i ;
(2) α represents the learning rate;
(3) di is the expected output of neuron i ;
(4) yi is the real output of neuron i ;
(5) xj(t) represents the state of neuron j.

3.3 The LSN P systems to identify base classification problem

In this subsection, we use the learning model to classify base classification prob-
lems like OR-problem and XOR-problem. In order to let readers have a better
understanding of how the network works, we use an example to elaborate on the
solution of OR-problem.

The model to solve the OR-problem The OR-problem is a typical linear
classification problem, so the technology of ascending dimension is unnecessary.
These values are entered directly into the LSN P systems and the truth table
can be seen in Table.1.

Table 1. The input and output value of OR-problem.

Input Output

1 1 1
1 0 1
0 1 1
0 0 0

According to the truth table, the dimension of input data is two and the
state of output is also two. So the structure of network can be confirmed and

26

10 X. Zhang et al.

the weight between σ1
pi and σ2

rj is randomly initialized. Suppose that w1
11 =

0.46, w1
21 = 0.18, w1

31 = 0.67, w1
12 = 0.63, w1

22 = 0.62, w1
32 = 0.49 and learning

rate is set to 0.1. The w1
31 and w1

32 are the weights from the bias neuron.
1stiteration:
0.46 ∗ 1 + 0.18 ∗ 1 + 0.67 < 0.63 ∗ 1 + 0.62 ∗ 1 + 0.49, which is inconsistent with
real output. So use Widrow-Hoff learning rule to change weights.
After the change, the new weights are w1

11 = 0.56, w1
21 = 0.28, w1

31 = 0.77;w1
12 =

0.53, w1
22 = 0.52, w1

32 = 0.39.
0.56 ∗ 1+0.28 ∗ 0+0.77 > 0.53 ∗ 1+0.52 ∗ 0+0.39, which is consistent with real
output, so do not change weights.
0.56 ∗ 0+0.28 ∗ 1+0.77 > 0.53 ∗ 0+0.52 ∗ 1+0.39, which is consistent with real
output, so do not change weights.
0.56 ∗ 0 + 0.28 ∗ 0 + 0.77 > 0.53 ∗ 0 + 0.52 ∗ 0 + 0.39, which is inconsistent with
real output. So use Widrow-Hoff learning rule to change weights.
After the change, the new weights are w1

11 = 0.56, w1
21 = 0.28, w1

31 = 0.67;w1
12 =

0.53, w1
22 = 0.52, w1

32 = 0.49. The accuracy rate is 50%.
2nditeration:
0.56 ∗ 1 + 0.28 ∗ 1 + 0.67 < 0.53 ∗ 1 + 0.52 ∗ 1 + 0.49, which is inconsistent with
real output. So use Widrow-Hoff learning rule to change weights.
After the change, the new weights are w1

11 = 0.66, w1
21 = 0.38, w1

31 = 0.77;w1
12 =

0.43, w1
22 = 0.42, w1

32 = 0.39.
0.66 ∗ 1+0.38 ∗ 0+0.77 > 0.43 ∗ 1+0.42 ∗ 0+0.39, which is consistent with real
output, so do not change weights.
0.66 ∗ 0+0.38 ∗ 1+0.77 > 0.43 ∗ 0+0.42 ∗ 1+0.39, which is consistent with real
output, so do not change weights.
0.66 ∗ 0 + 0.38 ∗ 0 + 0.77 > 0.43 ∗ 0 + 0.42 ∗ 0 + 0.39, which is inconsistent with
real output. So use Widrow-Hoff learning rule to change weights.
After the change, the new weights are w1

11 = 0.66, w1
21 = 0.38, w1

31 = 0.67;w1
12 =

0.43, w1
22 = 0.42, w1

32 = 0.49. The accuracy rate is 50%.
3rd iteration:
0.66 ∗ 1+0.38 ∗ 1+0.67 > 0.43 ∗ 1+0.42 ∗ 1+0.49, which is consistent with real
output, so do not change weights.
0.66 ∗ 0+0.38 ∗ 1+0.67 > 0.43 ∗ 0+0.42 ∗ 1+0.49, which is consistent with real
output, so do not change weights.
0.66 ∗ 1+0.38 ∗ 0+0.67 > 0.43 ∗ 1+0.42 ∗ 0+0.49, which is consistent with real
output, so do not change weights.
0.66 ∗ 0 + 0.38 ∗ 0 + 0.67 > 0.43 ∗ 0 + 0.42 ∗ 0 + 0.49, which is inconsistent with
real output. So use Widrow-Hoff learning rule to change weights.
After the change, the new weights are w1

11 = 0.66, w1
21 = 0.38, w1

31 = 0.57;w1
12 =

0.43, w1
22 = 0.42 = 0.42, w1

32 = 0.59. The accuracy rate is 75%.
4th iteration:
0.66 ∗ 1+0.38 ∗ 1+0.57 > 0.43 ∗ 1+0.42 ∗ 1+0.59, which is consistent with real
output, so do not change weights.
0.66 ∗ 1+0.38 ∗ 0+0.57 > 0.43 ∗ 1+0.42 ∗ 0+0.59, which is consistent with real
output, so do not change weights.

27

A LSN P System and Its Applications to Classification Problems 11

0.66 ∗ 0 + 0.38 ∗ 1 + 0.57 < 0.43 ∗ 0 + 0.42 ∗ 1 + 0.59, which is inconsistent with
real output. So use Widrow-Hoff learning rule to change weights.
After the change, the weights are w1

11 = 0.66, w1
21 = 0.48, w1

31 = 0.67;w1
12 =

0.43, w1
22 = 0.32, w1

32 = 0.49.
0.66 ∗ 0 + 0.38 ∗ 0 + 0.67 > 0.43 ∗ 0 + 0.42 ∗ 0 + 049, which is inconsistent with
real output. So use Widrow-Hoff learning rule to change weights.
After the change, the new weights are w1

11 = 0.66, w1
21 = 0.48, w1

31 = 0.57;w1
12 =

0.43, w1
22 = 0.32, w1

32 = 0.59. The accuracy rate is 50%.
5th iteration:
0.66 ∗ 1+0.48 ∗ 1+0.57 > 0.43 ∗ 1+0.32 ∗ 1+0.59, which is consistent with real
output, so do not change weights.
0.66 ∗ 1+0.48 ∗ 0+0.57 > 0.43 ∗ 1+0.32 ∗ 0+0.59, which is consistent with real
output, so do not change weights.
0.66 ∗ 0+0.48 ∗ 1+0.57 > 0.43 ∗ 0+0.32 ∗ 1+0.59, which is consistent with real
output, so do not change weights.
0.66 ∗ 0+0.48 ∗ 0+0.57 < 0.43 ∗ 0+0.32 ∗ 0+0.59, which is consistent with real
output, so do not change weights. The accuracy rate is 100%.

Stop training and save this set of weights. The OR problem can be effectively
identified by these set of weights.

The model to solve XOR-problem The XOR-problem is a classical non-
linearity problem. The ability to solve XOR-problem can be very competitive
and next we discuss how to solve the XOR-problem.

Since input data is non-linear, the idea of raising dimension is necessary to
solve this problem. The formula for raising the dimension can be described in
the following manner:

(x1, x2) → (x1, x2, x
2
1, x

2
2, x1x2) (3)

From the Equation.3, it can be found that the order of Taylor expansion for
this problem is two. The main reason for only choosing two is that the XOR
problem a very simple non-linear model. For more complex non-linear data, the
higher order Taylor expansion needs to be employed. So these higher-dimensional
information are input to the model and the accuracy curve is shown in Fig.3.

4 Experimental Results

In this section, we discuss the learning model to solve some real-life application
problems. The performance of binary classification problems and multiple clas-
sification problems are presented and compared with some other models in the
existing literature.

4.1 The pattern recognition of binary classification problems

The binary classification problem is very general in real-life and it is also a
relatively simple pattern recognition problems. Only if a model can solve binary

28

12 X. Zhang et al.

0 10 20 30 40 50

Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
c
c
u
ra

c
y
 r

a
te

Fig. 3. The accuracy curve of XOR-problem

classification problem, it is able to solve multi-classification problem and have
the possibility of generalization. The Wisconsin breast cancer dataset (WBCD)
is a classic binary classification problem. This dataset consists of nine labels, such
as age, tumor-size, inv-nodes, node-caps, deg-malign, irradiated, etc. The classes
of this dataset are recurrence and no-recurrence. Since the input data consists
of only real numbers, it is necessary to make input data normalized. Under the
circumstances, the linear normalization is proposed to solve this problem. The
formula can be constructed as follows:

x =
x− xmin

xmax − xmin
(4)

After linear normalization, also adopt the coding scheme of rising dimension.
The degree of Taylor expansion, in this case, is chosen as three in the coding
scheme. The data is divided into two parts. One is training set, which accounts
for 50% of the total, the other is testing set. The classification result can be seen
in Fig.4(a), the accuracy rate of training set is 100 % at the end. After training
the training set, the parameters of the model are saved and these parameters
are used to test the ability of generalization. The result of testing set is 98.6%,
as shown in Fig.4(b). The above simulation is executed many times to avoid
accidental situations and the average accuracy is shown in Table.2 to compare
with other algorithms.

Table 2. Comparison with other methods on WBCD dataset.

Max epochs Training Testing

BPNN [43] 9.2 · 106 98.1% 96.3%
LM [43] 3500 97.7% 96.7%

SpikeProp[43] 1500 97.6% 97.0%
SRESNN[44] 306 97.7% 97.2%
MuSpNN[45] 100 98.2% 96.4%
Proposed 200 99.5% 97.4%

29

A LSN P System and Its Applications to Classification Problems 13

From Table.2 , we can see that the accuracy rate of proposed learning model
in both training set and testing set are the best ones and in comparison with
other models, the numbers of iteration steps are smaller. More specifically, the
proposed learning model not only have a strong learning ability but also has
a good generalization ability in binary classification problems when compared
with other methods in [43–45].

0 25 50 75 100 125 150 175 200

Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
c
c
u
ra

c
y
 r

a
te

(a) Training set

0 50 100 150 200 250

1

2

prediction

real

(b) Testing set

Fig. 4. The result on WBCD dataset

30

14 X. Zhang et al.

4.2 The pattern recognition of multiple classification problems

From the analysis of the last subsection, we can say that the model can solve
binary classification problem commendably. In this section, the IRIS dataset is
employed to test whether this model can solve multi-classification problem.

The IRIS dataset, also known as the iris flower dataset, is a collection of
multivariate datasets. One hundred and fifty data are contained in the dataset
which is divided into three classes evenly. It is possible to predict the species of
the iris flower (Setosa, Versicolour, Virginia) by the length of sepal, the width
of sepal, the length of petal, and the width of petal. The data set is divided into
two parts, one part is training set which accounts for 50% of the total dataset.
The other part is testing set. The learning parameters in IRIS dataset are same
as WBCD dataset except the degree of Taylor expansion. The degree of Taylor
expansion is chosen as four in this case. The classification result of training set
is shown in Fig.5(a). After obtaining the parameters of the model, the testing
set is used to test the ability of generalization. The result of testing set can
be seen in Fig.5(b). In order to avoid the situation caused by randomized initial
weights, repeat the above simulation many times. Table.3 shows that the average
accuracy of this model and the comparisons in which some other algorithms also
using the same dataset.

Table 3. Comparison with other methods on IRIS dataset.

Max epochs Training Testing

BPNN[43] 2.6 · 106 98.2% 95.5%
LM[43] 3750 99% 95.7%

SpikeProp[43] 1000 97.4% 96.1%
SRESNN[44] 102 96.9% 97.3%
MuSpNN[45] 100 99.8% 95.7%
Proposed 100 98.6% 97.5%

From the result, we can infer that the proposed learning system can solve
multiple classification problems easily. The experimental result says that al-
though the accuracy rate in training set is not the highest one when compared
with other algorithms in Table.3, the testing set is the best one. It says that
the generalization ability of the proposed learning system is better than other
algorithms.

From the result in Table.2 and Table.3, we can find that the proposed learning
system is an excellent classifier. The implementation of LSN P systems can
achieve pattern recognition problems easily. In addition, not only in the field
of accuracy rate, but also the number of iterations has advantages. In short,
the LSN P systems are a method that is worth popularizing and need further
investigation.

31

A LSN P System and Its Applications to Classification Problems 15

0 20 40 60 80 100

Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
c
c
u
ra

c
y
 r

a
te

(a) Training set

0 10 20 30 40 50 60 70

1

2

3

prediction

real

(b) Testing set

Fig. 5. The result in IRIS dataset

5 Concluding Remarks

This article proposes a model named LSN P systems to deal with pattern recog-
nition problem. In this paper, a feasible way to use P systems to solve pat-
tern recognition problem is proposed. In order to obtain the effectiveness of
this model, the motivation, the description of algorithm and the experimental
results are presented in the article. This work is inspired by several machine
learning algorithms and the models of P systems. Although this work is not
the first attempt to construct a learning model by using SN P systems and its
variants, the results are gratifying and competitive when compared with other
algorithms. Although more work needs to be done in order to be competitive

32

16 X. Zhang et al.

with existing machine learning algorithms. One of the biggest advantages of the
proposed model is that it combines the phenomena in biology with some ma-
chine learning algorithms to make a model having human-level performance in
solving problems.

Although this work is promising, two areas of this model need further im-
provement: One is for the multi-classification problem, in this model the output
pattern can be described as one against all [46]. But when the number of training
set increases, the complexity of problems increase rapidly, making the problem of
computing speed more prominent. In this condition, whether we can find a way
to solve the multi-classification problem efficiently is a very important scheme in
this model. The second one is the way to regularize the network. As pointed out
in [40] that nonlinear mixed selectivity is useful but also fragile. So the problem
is to determine the degree of Taylor expansion or to add regularization items to
the network.

6 Acknowledgment

This work was supported by the National Natural Science Foundation of China
(61972324, 61672437, 61702428), the Sichuan Science and Technology Program
(2018GZ0185, 2018GZ0086), Artificial Intelligence Key Laboratory of Sichuan
Province (2019RYJ06) and the postgraduate workstation in the State Grid
Sichuan Electric Power Research Institute.

References

1. Rosenblatt, F.:The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological Review 65(6), 386-408(1958).

2. McCulloch, W. S., Pitts, W.:A logical calculus of the ideas immanent in nervous
activity. The Bulletin of Mathematical Biophysics, 5(4), 115-133(1943).

3. Hopfield,J. J.:Neural networks and physical systems with emergent collective com-
putational abilities. Proceedings of the National Academy of Sciences,79(8), 2554-
2558(1982).

4. Rumelhart, D. E., Hinton, G. E., Williams, R. J.:Learning representations by back-
propagating errors. Cognitive Modeling, 5(3), 1(1988).

5. Huang, G. B., Zhu, Q. Y., Siew, C. K.:Extreme learning machine: a new learning
scheme of feedforward neural networks. Neural networks, 2, 985-990(2004).

6. Ghoshdastidar, S., Adeli, H.:Spiking neural networks. International Journal of Neu-
ral Systems, 19(4), 295-308(2009).

7. Johnson, J. L., Padgett, M. L.:PCNN models and applications. IEEE Transactions
on Neural Networks, 10(3), 480-498(1999).

8. ElSawy, A., Hazem, E. B., Loey, M.:CNN for handwritten arabic digits recognition
based on LeNet-5. In: International Conference on Advanced Intelligent Systems
and Informatics pp. 566-575. Springer, Cham(2016).

9. Wu, C.:Discriminant-function-based minimum recognition error rate pattern-
recognition approach to speech recognition. Proceedings of the IEEE, 88(8), 1201-
1223(2000).

33

A LSN P System and Its Applications to Classification Problems 17

10. Prun, V.:Geometric filtration of classification-based object detectors in realtime
road scene recognition systems.In: Eighth International Conference on Machine Vi-
sion pp.98750O. Barcelona(2015).

11. Sridar, K., Shanthi, D.:Web based medical diagnosis system using ann-arm for
the diabetes mellitus. International Journal of Computers and Distributed Systems,
3(3), 15-20(2013).

12. Bohte, S. M., Kok, J. N.:Applications of spiking neural networks. Information
Processing Letters, 6(95), 519-520(2005).

13. Maass, W.:Networks of spiking neurons: the third generation of neural network
models. Neural Networks, 10(9), 1659-1671(1997).

14. Siddique, N., McDaid, L., Kasabov, N., Widrow, B.:Special issue: Spiking neural
networks introduction, International Journal of Neural Systems. 20(6), v–vii(2010).

15. Ridet, J. L., Privat, A., Malhotra, S. K., Gage, F. H.:Reactive astrocytes: cellular
and molecular cues to biological function. Trends in Neurosciences, 20(12), 570-
577(1997).

16. Bradl, M., Lassmann, H.:Oligodendrocytes: Biology and Pathology. Acta Neu-
ropathologica, 119(1), 37-53(2010).

17. Păun, Gh.:Computing with membranes, Journal of Computer and System Sciences,
61(01), 108–143(2000).

18. Mart́ın-Vide, C., Pǎun,Gh., Pazos, J., Rodŕıguez-Patón, A.:Tissue P systems. The-
oretical Computer Science, 296(2), 295-326(2003).

19. Ionescu, M., Pǎun,Gh., Yokomori, T.:Spiking neural P systems. Fundamenta In-
formaticae, 71(2, 3), 279-308(2006).

20. Orellana-Mart́ın, D., Valencia-Cabrera, L., Riscos-Núnez, A., Pérez-Jiménez, M.
J., P systems with proteins: a new frontier when membrane division disappears.
Journal of Membrane Computing, 1(1), 29-39(2019).

21. Dı́az-Pernil, D., Gutiérrez-Naranjo, M.A., Peng, H.:Membrane computing and im-
age processing: a short survey. Journal of Membrane Computing, 1(1), 58-73(2019).

22. Orellana-Mart́ın, D., Valencia-Cabrera, L., Riscos-Núnez, A., Pérez-Jiménez, M.
J.:Minimal cooperation as a way to achieve the efficiency in cell-like membrane
systems. Journal of Membrane Computing, 1(2), 29-39(2019).

23. Nash, A., Kalvala, S.:A P system model of swarming and aggregation in a Myxobac-
terial colony, Journal of Membrane Computing. 1(2), 103-111(2019).

24. Pan, L., Wang, J., Hoogeboom, H. J.:Spiking neural P systems with astrocytes.
Neural Computation, 24(3), 805-825(2012).

25. Pan, L., Pǎun, Gh.:Spiking neural P systems with anti-spikes. International Journal
of Computers Communications & Control, 4(3), 273-282(2009).

26. Cabarle, F. G. C., Adorna, H. N., Pérez-Jiménez, M. J., Song, T.:Spiking neural
P systems with structural plasticity. Neural Computing and Applications, 26(8),
1905-1917(2015).

27. Dı́az-Pernil, D., Peña-Cantillana, F., Gutiérrez-Naranjo, M. A.:A parallel algo-
rithm for skeletonizing images by using spiking neural P systems. Neurocomputing,
115, 81-91(2013).

28. Zhang, G., Rong, H., Neri, F., Pérez-Jiménez, M. J.:An optimization spiking neural
P system for approximately solving combinatorial optimization problems. Interna-
tional Journal of Neural Systems, 24(05), 1440006(2014).

29. Wang, T., Zhang, G., Zhao, J., He, Z., Wang, J., Pérez-Jiménez, M. J.:Fault diag-
nosis of electric power systems based on fuzzy reasoning spiking neural P systems.
IEEE Transactions on Power Systems, 30(3), 1182-1194(2014).

34

18 X. Zhang et al.

30. Wang, T., Zhang, G., Pérez-Jiménez, M. J., Cheng, J.:Application of weighted
fuzzy reasoning spiking neural P systems to fault diagnosis in traction power sup-
ply systems of high-speed railways. Journal of Computational and Theoretical
Nanoscience, 12(7), 1103-1114(2015).

31. Li, J., Huang, Y., Xu, J.:Decoder Design Based on Spiking Neural P Systems.
IEEE Transactions on Nanobioscience, 15(7), 639-644(2016).

32. Song, T., Pan, L., Wu, T., Zheng, P., Wong, M. D., Rodŕıguez-Patón, A.:Spiking
neural P systems with learning functions. IEEE Transactions on Nanobioscience,
18(2), 176-190(2019).

33. Wang, J., Peng, H.:Adaptive fuzzy spiking neural P systems for fuzzy inference and
learning. International Journal of Computer Mathematics, 90(4), 857-868(2013).

34. Wang, J., Shi, P., Peng, H., Pérez-Jiménez, M. J., Wang, T.:Weighted fuzzy spiking
neural P systems. IEEE Transactions on Fuzzy Systems, 21(2), 209-220(2012).

35. Zhang, G., Pérez-Jiménez, M. J., Gheorghe,M.:Real-life applications with mem-
brane computing. Springer, Berlin(2017).

36. Abbott, L F.:Lapique’s introduction of the integrate-and-fire model neuron. Brain
Research Bulletin, 50(5), 303-304(1999).

37. Gerstner W, Kistler W M.:Spiking neuron models: Single neurons, populations,
plasticity. Cambridge University Press, New York(2002).

38. Abbott L F.:Lapique’s introduction of the integrate-and-fire model neuron. Brain
Research Bulletin, 50(5), 303-304(1999).

39. Yang, Y., Raine, A.:Prefrontal structural and functional brain imaging findings in
antisocial, violent, and psychopathic individuals: a meta-analysis. Psychiatry Re-
search: Neuroimaging, 174(2), 81-88(2009).

40. Rigotti, M., Barak, O., Warden, M. R., Wang, X. J., Daw, N. D., Miller, E. K.,
Fusi, S.:The importance of mixed selectivity in complex cognitive tasks. Nature,
497(7451), 585(2013).

41. Bishop, C. M.:Pattern recognition and machine learning. Springer, Berlin(2006).
42. Wang, Z. Q., Manry, M. T., Schiano, J. L.:LMS learning algorithms: misconceptions

and new results on converence. IEEE Transactions on Neural Networks, 11(1), 47-
56(2000).

43. Bohte, S. M., Kok, J. N., La Poutre, H.:Error-backpropagation in temporally en-
coded networks of spiking neurons. Neurocomputing, 6, 17-37(2002).

44. Dora, S., Subramanian, K., Suresh, S., Sundararajan, N.:Development of a self-
regulating evolving spiking neural network for classification problem. Neurocom-
puting, 171, 1216-1229(2016).

45. Taherkhani, A., Belatreche, A., Li, Y., Maguire, L. P.:A supervised learning al-
gorithm for learning precise timing of multiple spikes in multilayer spiking neural
networks. IEEE Transactions on Neural Networks and Learning Systems, 29(11),
5394-5407(2018).

46. Hsu, C. W., Lin, C. J.:A comparison of methods for multiclass support vector
machines. IEEE Transactions on Neural Networks, ,13(2), 415-425(2002).

35

1 1 � 1 2 1

3

1

2

3

�

36

37

38

μ

σ2 n μ σ2/
n

1−α X̄ ε
ε =

∣∣X̄ − μ
∣∣ σ2

σ2 t
t n−1

S t = X̄−μ
S/

√
n

ε =
∣∣X̄ − μ

∣∣ = tα(n− 1) S√
n

n

n =
t2α(n−1)S2

ε2

α < 0.05

n = 4S2

ε2

39

40

Xt =
Qt0

Qt1
, (t = 1, 2, · · · , 31)

Xt t Qt0

Qt1

n ni i
i = 1, 2, 3, 4

ni = n · ωi(β) = n · ϕi+β·φi

1+β (i = 1, 2, 3, 4) 15 ≤ ni ≤ 35

φi =
ΔXi
4∑

i=1
ΔXi

ΔXi =
ni∑
j=1

(
Xij − X̄i

)2
ϕi =

Qi1
4∑

i=1
Qi1

ωi (β) i ϕi

i ΔXi

i Xij j
i X̄i i

φi i Qi1

i β
ϕi φi

β

nij j
i

41

nij = ni · ωij (λ) = ni · Qij+λη
1+λ

η =

3∑

k=1

(αijkZijk)

j∑

m=1
(

3∑

k=1

αimkZimk)

(i = 1, 2, 3, 4; j = 1, 2, 3, · · ·ni;m = 1, 2, 3, · · · j; k = 1, 2, 3)

ωij (λ) j
i Qij j
i i αijk

k j i
k = 1, 2, 3 Zij1

j i Zij2

j
i Zij3

j i λ

nijk

j i

nijk = nij · ωijk = nij · αijkZijk

3∑

k=1

(αijkZijk)

(j = 1, 2, 3, · · ·ni; i = 1, 2, 3, 4; k = 1, 2, 3)

ωijk

j i

Yt

nijk

j i

42

43

44

45

Simulating Tissue P systems with promoters
through MeCoSim and P-Lingua

Luis Valencia-Cabrera1 and Bosheng Song2,�

1 Research Group on Natural Computing,
Department of Computer Science and Artificial Intelligence,

University of Sevilla, Spain
lvalencia@us.es

2 College of Information Science and Engineering,
Hunan University, Changsha, China

boshengsong@hnu.edu.cn

Abstract. Tissue P systems constitute a well-known class of comput-
ing models in the research field of membrane computing. Inspired by
the information exchange among cells and with the environment, they
have attracted much attention over the last decade, with many interest-
ing variants emerging along the years. One of such variants, the so-called
tissue P systems with promoters, was proved to be Turing-universal even
with a significantly restricted number of elements, and able to solve NP-
complete problems. On the other hand, P-Lingua framework has pro-
vided useful tools to membrane computing community to model, debug
and simulate different types of P systems, with a special relevance of
P-Lingua language, pLinguaCore language and MeCoSim environment.
This work presents new features introduced in the framework to cover
the functionalities associated with tissue P systems with promoters, in-
cluding extensions of the language, variants of tissue models and their
corresponding simulators within P-Lingua version of MeCoSim. The new
elements are described in detail, and the use of the tools is described
through basic examples. Besides, a solution for SAT is experimentally
validated using the developed software.

1 Introduction

Membrane computing [12] has been providing new computing models for the
last two decades, inspired from different features observed in the structure and
functioning of living cells, tissues or neurons. Many of these computational de-
vices, generically called P systems, have proved their computational complete-
ness (Turing-universal), and also a number of them have shown their ability
to solve computationally hard problems as SAT [13, 20], HAM-CYCLE [18] or
3-COL [1], among others [11, 19].

� Corresponding author

46

2 Luis Valencia-Cabrera et al.

One of the groups of P systems that has attracted more attention over the
years has been tissue P systems, inspired by the way cells organize and commu-
nicate in tissues [9]. Many variants exist where the features just mentioned were
present, and among them in 2016 tissue P systems with promoters were proved
to be both Turing-universal and able to solve SAT [20, 21], probably the best
known computationally hard problem.

In any kind of P system, when defining a new computing model, it can possi-
bly include interesting specific syntactic features, semantic restrictions, dynamic
aspects or subtleties to consider. This implies that it might be worth studying
different properties the new variants will offer. Thus, computability and complex-
ity properties are usually explored for different variants of the models. Besides,
for those providing solutions to hard problems, the designs proposed can be too
complex and tedious to follow the evolution of the systems without some external
help.

Therefore, this seems the perfect context to make use of helpful tools making
our lives easier when debugging new models and simulating them under certain
inputs or scenarios of interest, both for theoretical and real-life more practical
applications [23]. However, it is a time-consuming task to develop such kind of
tools for every model we can conceive [6, 22]. Besides, for every variant proposed
new elements can be present in many aspects, so despite having rich frameworks
covering many types of P systems, the compliance for future models cannot be
ensured.

To overcome the highlighted limitation, significant efforts have been put in
membrane computing community, trying to cover as many features as possible
in a generic way [4, 5], with different approaches. Thus, P-Lingua framework
includes many general features as a common language and some shared features
for all the models, but cannot cover by default (in the last official version 4.0,
nor in the last version included in MeCosim) new variants unless some further
development is made.

On the other hand, UPSimulator provides a set of features of P systems that
can be generically combined in a flexible way, thus allowing the use of new models
not studied so far, by the combination of syntactic and semantic ingredients. This
interesting software provides a significant contribution for the syntactic parsing
and the simulation of P systems. However, it must pay a price for not restricting
to the highly specific semantic peculiarities of each P system variant. This goal
(i.e., taking into account fine-grained subtle aspects of each variant) was present
from the beginning in the former P-Lingua, in order to control that the proper
specification of each variant is absolutely respected by the developer and the P
system designer providing a solution for a given problem.

In order to provide general functionalities for computing models within the
field of Membrane Computing, P-Lingua framework [4, 28] including MeCoSim
environment [15, 27] serve the double purpose of: 1) a rich set of features for
modeling, debugging, simulation, and final apps development, among others;
and 2) the strict control, for the type and variant of P system used, of all the
syntactic, semantic and dynamic aspects defined within the computing model.

47

Simulating Tissue P systems with promoters 3

We consider at the same level the flexibility of the tools and the fidelity to the
rules of the game defined with any new computing model. Thus, the framework
can control the use that any P system designer can make of the elements present
in a solution given within a specific framework.

Thus, the present work extends the functionality provided by P-Lingua frame-
work (specifically, the P-Lingua version - language and library - running inside
MeCoSim environment) with all the features required to work with tissue P
systems with promoters. These features must include, at least: 1) the specifi-
cation in P-Lingua language of the ingredients trying to mimic the syntax of
the promoters appearing in papers studying their computational completeness
and complexity [20]; 2) the semantic restrictions imposed to different variants
in terms of the types of rules allowed within the model; 3) the specific simulator
following the dynamics described in the definition of the system [20]; and 4) the
connection with all the pre-existing generic tools within the framework provided
by P-Lingua and MeCoSim.

The paper is organized as follows: in Section 2, tissue P systems with pro-
moters are defined; following, in Section 3 the main elements of the framework
given by P-Lingua and MeCoSim are recalled; then, the new syntactic ingredi-
ents introduced in P-Lingua language to define tissue P systems with promoters
is presented in Section 4, along with a brief description of the simulator adapted
to work with promoters; finally, the work with tissue P systems in our platfor-
m is illustrated in Section 5, with simple examples plus the translation of the
solution to SAT in P-Lingua, taken from [20].

2 Tissue-like P systems with promoters

This section introduces the computing model of tissue P systems with promoters,
subject of the present paper and the simulator developed. More specifically, the
type of devices covered is tissue P systems with promoters and cell division, thus
incorporating the division rules to the basic tissue P systems with promoters.
Similar variants using cell separation instead are out of the scope of our work.

2.1 Tissue P systems with promoters and cell division

In what follows the definition of our devices is recalled, as appeared in [20].

Definition 1. A tissue P system with promoters and cell division, of degree
q ≥ 1, is a tuple

Π = (Γ, E , w1, . . . , wq,R, iout),

where

– Γ is an alphabet of objects;
– E ⊆ Γ is a set of objects initially located in the environment;
– wi, 1 ≤ i ≤ q, are finite multisets over Γ ;
– R is a finite set of rules of the following forms:

48

4 Luis Valencia-Cabrera et al.

– Communication rules:
– Symport rules: (pro | i, u/λ, j) or (pro | i, λ/u, j), where 0 ≤ i �= j ≤

q, pro, u ∈ Mf (Γ), |u| > 0;
– Antiport rules: (pro | i, u/v, j), where 0 ≤ i �= j ≤ q, pro, u, v ∈

Mf (Γ), |u| > 0, |v| > 0;
– Division rules:

– [a]
i

→ [b]
i
[c]

i
, where i ∈ {1, . . . , q}, i �= iout, a, b, c ∈ Γ ;

– iout ∈ {0, 1, . . . , q}.

As also detailed in [20], tissue P system with promoters and cell division of
degree q ≥ 1 can be viewed as a set of q cells labeled by 1, . . . , q, providing the
nodes of a directed graph; w1, . . . , wq represent the finite multisets of objects
initially placed in these q cells; the important alphabet E contains the set of
objects initially located in the environment of the system, which will be available
in an arbitrary number of copies; R is the finite set of rules of the system,
including symport/antiport rules operating on pro, u, v ∈ Mf (Γ) (i.e., multisets
over the working alphabet), plus division rules (defined as usual); and iout is a
distinguished region that will hold the output of the system.

Thus, a configuration of this kind of system is described by the multisets of
objects over Γ associated with all cells in the system, plus the multiset of objects
over Γ \ E placed in the environment at that moment (as the objects from E are
present in the environment in an arbitrarily large number of copies, the specific
number of these objects is not relevant along the computation, considering they
will be always enough to trigger the proper communication rules with the cells
interacting with it). The initial configuration is, not surprisingly, (w1, . . . , wq; ∅).

Despite the fact that the applicability and effect produced by the different
types of rules is properly described in [20], as it is crucial for the understanding of
the semantics of the system, we will include such information in this preliminary
section in order to avoid the reader the need of such additional access to the
corresponding sources, thus making the reading of this document mostly self-
contained. Therefore, in what follows we keep describing the semantic aspects of
the system:

– A symport rule (pro | i, u/λ, j) ∈ R is applicable to a configuration if region
i contains multiset u and the objects of the promoter pro are present in such
i. Then, if such a rule is applied, u is sent from region i to j.

– An antiport rule (pro | i, u/v, j) ∈ Ri is applicable to a configuration if
region i contains multiset u, region j contains multiset v, and the objects of
the promoter pro are present in i. Thus, when it is applied, the objects of u
are sent from i to region j, in exchange of objects of v, which are sent from
j to i.

– A division rule [a] i → [b] i[c] i is applicable to a configuration if the cell i
contains object a, and i is not the output cell. When such a rule is applied,
i is divided into two cells (with the same label): in the first one, a is replaced
by object b, and in the second one by object c; the rest of objects present in
the original cell are all kept (replicated) in the two new cells.

49

Simulating Tissue P systems with promoters 5

Let us recall that, in a tissue P system with promoters and cell division, the
presence of the promoter objects enables the use of the associated rule as many
times as possible, without any restriction; consequently, a promoter can be
used simultaneously by any number of rules associated with this promoter, which
is not consumed nor blocked by the rule. Let us note that, if the rule does not
require any promoter, the initial part of the rule is omitted, writing the rule as
(i, u/λ, j) (resp., (i, u/v, j)) instead of (∅ | i, u/λ, j) (resp., (∅ | i, u/v, j)).

Regarding the dynamics of the system (i.e., the execution strategy), the rules
of these systems are applied in a maximally parallel manner: at each step, all
cells which can evolve must evolve in a maximally parallel way (no further rule
can be added being applicable, at any given instant). The only constraint to this
statement is the following: when a cell is divided, the division rule is the only
one to be applied involving such cell at that step, so the objects inside that cell
not explicitly present in the syntax of the division rule do not evolve by means
of communication rules.

The concepts of computation following the sequence of configurations, and
the halting configuration are the usual ones in membrane systems. Concerning
the result of the halting computations, it will be encoded by the number of
objects present in the output region in the halting configuration.

3 P-Lingua framework for P systems

Along the last two decades, many types and variants of P systems have been
defined, providing computing theoretical devices showing interesting properties.
However, no physical implementation of such machines exists so far, and the
solutions based on such systems are difficult to work with at certain level in a
manual way.

In this context, having at disposal automatic tools to support the design,
debug, analysis and simulation of these novel solutions may result crucial. In
this sense, P-Lingua [4, 16] provides a uniform framework for the specification,
debugging and simulation of this kind of computing models. Additionally, on top
of P-Lingua, MeCoSim [15, 22] provides a user-friendly environment using the
previous core to parse and simulate models (for technical users), along with a
higher-level interface to handle models and deliver end-user applications based
on this framework (for end users, not requiring knowledge about P systems).

This section outlines the main elements included in the framework provided
by P-Lingua and MeCoSim.

3.1 P-Lingua framework

The main components of P–Lingua framework[3] were initially a specification
language to define P systems, and a Java [25] library called pLinguaCore, in-
cluding parsers and simulators for different models within membrane computing.
Later on, additional types of P systems have been covered, along with additional

50

6 Luis Valencia-Cabrera et al.

features of the language. Along with these main elements, different command-
line tools were provided from the beginning.

P-Lingua is intended to be a standard language for the definition of P systems
through simple text files, easily processed by pLinguaCore directly or using some
command-line tool or visual client (as MeCoSim, described in section 3.2). These
files can specify P systems of families of them, depending on certain parame-
ters included in the files (so that different values for the parameters instantiate
different members of the family). The common syntax shared by many kind-
s of P systems including membrane structures, initial multisets, some types of
rules, etc. decreases the learning curve for P systems designers learning different
computing models within membrane computing.

Fig. 1 shows a small specification in P–Lingua language, for the definition of
a simple P system. In this case, we are showing a tissue P system with promoters,
using some new features introduced in this work. However, many elements (as the
specification of the model, the definition of functions, the membrane structure
or the initial multisets) take advantage of the general features provided by the
language. This implies that someone familiar with P-Lingua and transition P
systems, for instance, can understand most of the code, without prior experience
with tissue P systems with promoters and cell division.

r1 : (1, a/p, 2)

r2 : (p | 1, b/be, 0)
r3 : (p | 1, c/ce, 0)
r4 : (p | 1, bc/λ, 0)

1 @model <tpdc >

2 def main()

3 {

4 @mu = [[]’1 []’2]’0;

5 @ms (0) = b,c,e;

6 @ms (1) = a,b,c;

7 @ms (2) = p;

8 [a]’1 <--> [p]’2;

9 [p | b]’1 <--> [b,e]’0;

10 [p | c]’1 <--> [c,e]’0;

11 [p | b,c]’1 <--> []’0;

12 }

Fig. 1. A simple P system specification in P–Lingua

Apart from the language, as mentioned above, P-Lingua framework includes
the library pLinguaCore, providing parsers and simulators for the variants of P
systems supported by the language, plus other useful tools. A detailed explana-
tion can be found at [3, 4], and further information on a deeper level is given in
[16] (this last one in Spanish).

3.2 MeCoSim (Membrane Computing Simulator)

MeCoSim provides visual tools to manage membrane computing models using
P-Lingua. Thus, for P systems designers explore the models as white boxes to
deepen in the study of the P systems themselves, while end users (possibly

51

Simulating Tissue P systems with promoters 7

unrelated to membrane computing) use them as black boxes to focus on the
problems, abstracting from the internal details of the P systems actually solving
such problems.

On the one hand, model designers find in MeCoSim a graphic tool to de-
sign, simulate, analyse and verify their models. On the other hand, end users
receive MeCoSim-based applications (customized by the designers) adapted to
their problems, where they simply enter the input data and check the results. As
previously introduced, MeCoSim is built on top of P–Lingua: models are speci-
fied in P–Lingua language, processed by their parsers; then, the simulations are
performed by executing simulation algorithms provided by pLinguaCore library,
or through external simulators connected to MeCoSim.

In this visual environment, there exists a general application where any spe-
cific single P system written in P-Lingua can be processed, from the load
and parsing to its simulation). However, if we want to have custom applications
where the end user can introduced data to instantiate some member of a family
of P systems and/or providing the external input to the system, the designer can
configure a custom application through a spreadsheet file with .xls extension,
adapting the inputs and outputs to the desired P system family, and indicating
the way the input data by the end user will populate the parameters for the final
P system to generate with each run of the system.

The overall process to customize apps and to use them, enriching the core
parsing and simulation functionalities with further debugging and visualization
tools, plus other add-ons using MeCoSim extension mechanisms, can be reviewed
in detail in [22, 27].

4 Extensions of P-Lingua language

The previous section has outlined the main elements of our general framework
provided by P-Lingua and MeCoSim.In the present work, the general tools of
this framework are extended to handle tissue P systems with promoters and cell
division. This includes genuine features added to the specific language for this
kind of systems, including in their syntax some lexicon and grammar elements.
Additionally, the existence of new ingredients (promoters) in the rules of these
systems implies the need of new simulators capturing the dynamic behavior of
these systems, following the description in [20].

In summary, we will take as a reference the existing P–Lingua syntax for
P systems introduced in [16, 17], and will introduce the syntactic elements for
tissue P systems with promoters and cell division along the following subsections.
Then, a brief description of the simulator developed for this variant of P systems
is given.

4.1 Model specification

Any P–Lingua file defining a tissue P system with cell division can be specified,
in general, using tpdc as its model (similar to TPDC[20]):

52

8 Luis Valencia-Cabrera et al.

@model <tpdc >

This use of tpdc will imply the allowance in (t)issue P systems of the use of
(p)romoters (not present nor allowed in pre-existing models as tissue psystems

or TSCS), and cell (d)ivision, as well as the usual (c)ommunication rules.
Similarly, two additional restricted variants have been defined for this new

type of P systems, both available to use instead of tpdc, depending on the type
of constraints imposed:

@model <tpds >

@model <tpda >

As one might expect, the suffix s means that communication rules are re-
stricted to (s)ymport rules only, while the a constraints the systems to allow
(a)ntiport rules only instead.

The rest of the file will then define the main elements describing the P sys-
tem, including the membrane structure containing the different cells, the initial
multisets present in each one of them at the beginning of the computation and
the set of rules. Let us note that some elements, as Γ or the underlying graph
connecting the cells, are inferred from the initial multisets and the rules. On
the other hand, E is also inferred from the initial multiset associated with the
environment in the P-Lingua file.

The membrane structure, initial multisets, sets of rules and output region
will be set, as explained in the following subsections.

4.2 Membrane structure and initial multisets

Tissue P systems with promoters are based on a graph structure as any other
tissue–like P systems. As commonly used in P-Lingua models, in order to specify
the initial membrane structure the reserve word @mu is used, defining the corre-
sponding μ, as defined in Section 2. More specifically, if we have q cells, it would
be defined as:

@mu = [[]’1 []’2 ... []’q]’0;

This can be seen for a specific example in Fig. 1:

@mu = [[]’1 []’2]’0;

Regarding the objects in the initial configuration of the system, they can be
defined by the reserved word @ms, assigning a certain multiset to the desired
membrane. Thus, for the example in Fig. 1, the initial multisets are defined in
P-Lingua as:

@ms (1) = a,b,c;

@ms (2) = p;

Similarly, the alphabet of the environment, establishing which objects will
be present in the environment in an arbitrarily large number of copies along the
computation, is defined with the same syntax, but assigning a set to label 0.

@ms (0) = b,c,e;

53

Simulating Tissue P systems with promoters 9

Let us recall that in the rest of regions (in the cells) we may have more than one
copy of certain objects, and that P-Lingua expresses this by using operator *,
followed by the multiplicity of the object, as in the following example:

@ms (1) = a,b*3,c*2;

Alternatively, the definition of these initial objects can be included directly in
the definition of μ presented above, so that any membrane may include both
child membranes and objects inside, as in the following code:

@mu = [a*2 [b]’2 []’3 [c*5]’4]’1;

Besides the previous separate definitions of cells structure and initial multisets
(plus definition of the alphabet of the environment), these elements might be
combined to express in a more succinct way the same ideas. Thus, the corre-
sponding lines into the example in Fig. 1 could be rewritten as:

@mu = [b, c, e [a, b, c]’1 [p]’2]’0;

4.3 Definition of rules

As we recalled in Section 2, Tissue P systems with promoters and cell division
introduce a new feature with respect to classical tissue P systems with cell
division, in such a way that any symport/antiport rule can be conditioned by
the presence of promoters. These elements were not present in P-Lingua so far,
so they have been included in the language, and applied to the rules of the new
models (tpdc, tpds and tpda). The example shown in Fig. 1 illustrate the use
of the new feature:

[p | b]’1 <--> [b,e]’0;

[p | c]’1 <--> [c,e]’0;

[p | b,c]’1 <--> []’0;

As we can see in the example, the syntax prom | inside the left hand side
of any of the rules is used, to express that the promoter object (p in the example)
must be present in order to make the rule applicable.

4.4 Simulation of the new model with P-Lingua and MeCoSim

A new simulator has been developed within P-Lingua framework, making use of
the general simulator available for tissue P systems, but including the semantic
and dynamic aspects derived from the use of promoters in the rules of the new
model.

Thus, once a P system in P-Lingua language is available in its text file, the
simulator will perform a possible computation (let us recall our systems are non-
deterministic) from the initial configuration given by the structure and multisets
specified, producing the corresponding transitions until a halting configuration
is reached.

Thus, the simulation algorithm follows the general schema present in most
of the simulators included in the platform:

54

10 Luis Valencia-Cabrera et al.

1. Initialization

2. For each computation step, while there are applicable rules:

(a) Selection of rules

(b) Execution of rules

The initialization stage sets initial structures used by the algorithm (tech-
nical details are not relevant here). Then, the main loop runs until a halting
configuration is reached (i.e., until no applicable rule is present).

The selection phase checks for the applicability of the rules for each cell.
Then, for every membrane, if there are applicable rules, a maximal set is se-
lected non-deterministically, following the constraints detailed in Section 2. The
applicability of a rule is determined by the presence of at least the number of
objects of each type present in each interacting region cell (let us recall that, if
the environment is one of such regions, the objects of the alphabet of the envi-
ronment will be present in an arbitrarily large number of copies). Additionally,
if promoters are included in the rule, then their presence will also be required in
order to make the rule applicable.

Finally, as a result of this selection phase, a set of rules have been selected.
In this case, let us also recall that, while the multiplicity of each object restricts
the choice of rules for our maximal set, in the case of promoters is different: with
only one promoter object affecting many rules, all of them would be enabled in
with respect to the promoter. In this sense, we say that rules do not compete for
the promoters, they imply more a context condition that an object to consume
(it is in fact not removed).

Then, the execution phase applies the change in the configuration, passing
from Ct to Ct+1, removing the objects consumed by the rules selected, and
adding the objects produced, with the semantics specified in Section 2.

4.5 Availability of the software tools developed

The tools described in the previous sections, concerning the language, parsing
and simulation have made publicly available in the current version of MeCoSim,
that can be downloaded from [27]. Once downloaded, whenever the software
runs, if an Internet connection is active, it checks the presence of new versions
of any of the files involved, thus guarantees it always provides the user with the
last version of MeCoSim (that includes in its installation pLinguaCore).

4.6 Further technical considerations

The tools developed along this work aim to complement P-Lingua framework, in
order to provide both P system experts/designers and end users of the P-system
based applications with an environment where they can debug their designs,
verify solutions to hard problems and run virtual experiments for a variant of P
system not previously supported.

55

Simulating Tissue P systems with promoters 11

The main challenges faced during the development are derived from the def-
inition of a sub-language for tissue P systems with promoters integrated in P-
Lingua framework, plus the corresponding simulator handling this variant of P
system.

On the one hand, the extension of the language includes new syntactic and
grammatical elements for the parser, based on JavaCC [26], and the proper inte-
gration with the rest of P-Lingua language. On the other hand, the definition of
the corresponding semantic constraints and the logic of the specific simulor, tak-
ing into account the semantic and dynamic aspects defined by tissue P systems
with promoters and cell division [20], was developed in Java [25], and following
the structure defined for other simulators and semantic decorations.

Let us recall that the aim of P-Lingua framework and MeCoSim environment
is the precise definition of each variant of P system covered from a functional
point of view. Other aspects as the development of the fastest possible solutions
for these systems (e.g., with parallel simulators using high performance com-
puting - HPC) would be out of the scope of this work, and could improve the
performance of the simulator developed. Those potential alternatives could still
make use of the parsing tools developed with P-Lingua, and also be connect-
ed with MeCoSim environment acting as a client providing the interface and
pre/post-processing tool for a server HPC-based simulator.

5 Case studies

In the previous section, the software tools developed for the design and simula-
tion of tissue P systems with promoters and cell division have been described.
In this last section, we will illustrate the use of the software, showing the cor-
responding P-Lingua files specifying the solutions in the input format for the
computer tools, and some runs for simple and complex problems.

5.1 Basic example

In order to check the proper behavior of the new features included in our frame-
work, we started with a very simple example, as included at the beginning of he
paper:

1 @model <tpdc >

2 def main()

3 {

4 @mu = [[]’1 []’2]’0;

5 @ms(0) = b,c,e;

6 @ms(1) = a,b,c;

7 @ms (2) = p;

8 [a]’1 <--> [p]’2;

9 [p | b]’1 <--> [b,e]’0;

10 [p | c]’1 <--> [c,e]’0;

11 [p | b,c]’1 <--> []’0;

12 }

56

12 Luis Valencia-Cabrera et al.

This simple example included both symport and antiport rules, so we made
use of tpdc model, and started debugging in MeCoSim, as shown in Fig. 2.

Fig. 2. Debugging a simple tissue P system with promoters in MeCoSim

If we had used a different model, as tpda or tpds, our environment would
inform us about the error, thus disabling the possibility to run it until we correct
this aspect, as we can see in Fig. 3.

Fig. 3. Informing about semantic errors

57

Simulating Tissue P systems with promoters 13

5.2 Solving SAT by tissue P systems with promoters and cell division

In this case study, we will recall the solution for SAT given in [20], illustrating
the behavior of these systems, and we will show the corresponding P-Lingua files
specifying the solutions in the input format for the computer tools.

The SAT problem is a well known NP-complete problem [2], which is defined
as follows: given a Boolean formula in conjunctive normal form (CNF), deter-
mine whether or not there exists an assignment to its variables such that the
formula is evaluated to be true.

In what follows, we provide here the linear time solution to the SAT problem
by a family of recognizer tissue P systems with promoters and cell division di-
rectly taken from [2]: Π = {Π(t) | t ∈ N}. As expressed there, each system Π(t)
processes all Boolean formulas ϕ in conjunctive normal form with n variables
and m clauses, where t = 〈n,m〉 = ((n +m)(n +m + 1)/2) + n, assuming the
corresponding input multiset cod(ϕ) is supplied to the system.

For each n,m ∈ N, we consider the recognizer tissue P system with promot-
ers and cell division

Π(〈n,m〉) = (Γ,Σ, E , w1, w2,R, iin, iout),

where

– Γ = Σ ∪ {ai, ti, fi | 1 ≤ i ≤ n} ∪ {bj , cj | 1 ≤ j ≤ m} ∪ {zi | 0 ≤ i ≤
2n+m+ 3} ∪ {bm+1, e, p, q, q

′, yes, no},
– Σ = {xi,j , x̄i,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m},
– E = {ai | 1 ≤ i ≤ n} ∪ {bj , cj | 1 ≤ j ≤ m} ∪ {zi | 0 ≤ i ≤ 2n +m + 3} ∪

{bm+1, e, q
′},

– w1 = {a1}, w2 = {p, q, z0, yes, no},
– iin = 1 is the input cell,
– iout = 0 is the output region,
– The set R consists of the following rules:

r1,i ≡ [ai]1 → [ti]1[fi]1, 1 ≤ i ≤ n,
r2,i,j ≡ (ti | 1, xi,j/cj , 0), 1 ≤ i ≤ n, 1 ≤ j ≤ m,
r3,i,j ≡ (fi | 1, x̄i,j/cj , 0), 1 ≤ i ≤ n, 1 ≤ j ≤ m,
r4,i ≡ (1, ti/ai+1, 0), 1 ≤ i ≤ n,
r5,i ≡ (1, fi/ai+1, 0), 1 ≤ i ≤ n,
r6 ≡ (1, an+1/b1, 0),
r7,j ≡ (bj | 1, cj/bj+1, 0), 1 ≤ j ≤ m,
r8 ≡ (1, bm+1/p, 2),
r9 ≡ (bm+1 | 2, yes/e, 0),
r10 ≡ (bm+1 | 2, q/e, 0),
r11,i ≡ (2, zi/zi+1, 0), 0 ≤ i ≤ 2n+m+ 2,
r12 ≡ (z2n+m+3 | 2, q/q′, 0),
r13 ≡ (q′ | 2, no/e, 0).

All the details about the behavior and verification of the model can be read
in [2]. For our purposes, it is interesting to see the translation of this system to
P-Lingua language, using the new model and elements introduced:

58

14 Luis Valencia-Cabrera et al.

@model <tpda >

def main()
{

call module_init_conf(n,m);
call module_rules(n,m);
call module_input ();

}

def module_init_conf(n,m)
{

@mu = [[]’1 []’2]’0;
@ms(0) = b{m+1},e,qp;
@ms(0) += a{i} : 1 <= i <= n+1;
@ms(0) += b{j},c{j} : 1 <= j <= m;
@ms(0) += z{i} : 0 <= i <= 2*n+m+3;
@ms(1) = a{1};
@ms(2) = p,q,z{0},yes ,no;

}

def module_rules(n,m)
{

/* r1{i} */ [a{i}]’1 --> [t{i}]’1 [f{i}]’1 : 1<=i<=n;
/* r2{i,j} */ [t{i} | x{i,j}]’1 <--> [c{j}]’0: 1<=j<=m, 1<=i<=n;
/* r3{i,j} */ [f{i} | nx{i,j}]’1 <--> [c{j}]’0: 1<=j<=m, 1<=i<=n;
/* r4{i} */ [t{i}]’1 <--> [a{i+1}]’0 : 1<=i<=n;
/* r5{i} */ [f{i}]’1 <--> [a{i+1}]’0 : 1<=i<=n;
/* r6 */ [a{n+1}] ’1 <--> [b{1}] ’0;
/* r7{j} */ [b{j} | c{j}]’1 <--> [b{j+1}] ’0 : 1<=j<=m;
/* r8 */ [b{m+1}] ’1 <--> [p]’2;
/* r9 */ [b{m+1} | yes]’2 <--> [e]’0;
/* r10 */ [b{m+1} | q]’2 <--> [e]’0;
/* r11{i} */ [z{i}]’2 <--> [z{i+1}]’0 : 0<=i<=2*n+m+2;
/* r12 */ [z{2*n+m+3} | q]’2 <--> [qp]’0;
/* r13 */ [qp | no]’2 <--> [e]’0;

}

def module_input ()
{

/* We define here the input for the P system */
/* Let be m: number of clauses , and n: number of variables */

@ms(1) += nx{variable{i},clause{i}}* valn{i}, x{variable{i},clause{i}}*
val{i} : 1<=i<= nvals;

}

Figure 4 shows this last example loaded in MeCoSim, running a specific
example, and visualizing both P-Lingua file editor and the multisets viewer.

Let us note that previous to getting this result a debugging process was
conducted through the platform generic tools with the new features incorporated.
Additionally, the formal verification of this solution given in [20] could be checked
with the step-by-step run, thus checking that the statements made in the original
paper are indeed satisfied for specific examples, what enriches the previous result
with experimental validation.

Acknowledgments

The work of Luis Valencia-Cabrera was partially supported in part by the re-
search project TIN2017-89842-P, cofinanced by Ministerio de Economa, Indus-
tria y Competitividad (MINECO) of Spain, through the Agencia Estatal de In-
vestigacin (AEI), and by Fondo Europeo de Desarrollo Regional (FEDER) of the

59

Simulating Tissue P systems with promoters 15

Fig. 4. SAT simulation in MeCoSim

European Union. The work of Bosheng Song was supported in part by National
Natural Science Foundation of China (61972138, 61602192), and in part by the
Fundamental Research Funds for the Central Universities (531118010355).

References

1. Dı́az-Pernil, D., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J. Solving 3-COL with
Tissue P Systems Proc. Fourth Brainstorming Week on Membrane Computing,
Sevilla, 2006, 17–30.

2. M.R. Garey, D.J. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, W.H. Freeman, San Francisco, 1979.

3. Dı́az-Pernil, D., Pérez-Hurtado, I., Pérez-Jiménez, M.J., Riscos-Núñez, A. A P-
Lingua programming environment for membrane computing. Lecture Notes in
Computer Science, 5391 (2009), 187–203.

4. Garćıa-Quismondo, M., Gutiérrez-Escudero, R., Pérez-Hurtado, I., Pérez-Jiménez,
M.J., Riscos-Núñez, A. An overview of P-Lingua 2.0. Lecture Notes in Computer
Science, 5957 (2010), 264–288.

5. Guo, P., Quan, C., Ye, L. UPSimulator: A general P system simulator. Knowledge-
Based Systems, 170 (2019), 20–25.

6. Lefticaru, R., Ipate, F., Valencia-Cabrera, L., Turcanu, A., Tudose, C., Gheorghe,
M., Pérez-Jiménez, M.J., Niculescu, I.M., Dragomir, C. Towards an integrated
approach for model simulation, property extraction and verification of P systems.
Proc. Tenth Brainstorming Week on Membrane Computing, Sevilla, 2012, I, 291–
318.

60

16 Luis Valencia-Cabrera et al.

7. Maćıas-Ramos, L.F. Developing efficient simulators for cell machines. PhD thesis.
University of Seville, 2016.

8. Maćıas-Ramos, L.F., Pérez-Hurtado, I., Garćıa-Quismondo, M., Valencia-Cabrera,
L, Pérez-Jiménez, M.J., Riscos-Núñez, A. A P-Lingua based simulator for spiking
neural P systems. Lecture Notes in Computer Science, 7184 (2012), 257–281.

9. Mart́ın-Vide, C., Păun, Gh., Pazos, J., Rodŕıguez-Patón, A.: Tissue P systems,
Theoretical Computer Science, 296, 2 (2003), 295–326.

10. Pan, L., Alhazov, A.: Solving HPP and SAT by P Systems with Active Membranes
and Separation Rules. Acta Informatica, 43, 2 (2006), 131–145.

11. Pan, L., Song, B.: P systems with rule production and removal. Fundamenta In-
formaticae, 2020, 171, (2020), 313–329.

12. Păun, Gh. Computing with membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108–143.

13. Păun, Gh. P Systems with Active Membranes: Attacking NP-Complete Problems.
Journal of Automata, Languages and Combinatorics, 6, 1 (2001), 75–90.

14. Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) The Oxford Handbook of Membrane
Computing. Oxford University Press, New York, 2010.

15. Pérez-Hurtado, I., Valencia-Cabrera, L., Pérez-Jiménez, M.J., Colomer, M. A.,
Riscos-Núñez, A. Mecosim: A general purpose software tool for simulating bio-
logical phenomena by means of p systems. IEEE Fifth Intl. Conf. on Bio-inpired
Computing: Theories and Applications (BIC-TA 2010), I (2010), 637–643.

16. Pérez-Hurtado, I. Desarrollo y aplicaciones de un entorno de programación para
Computación Celular: P-Lingua. PhD thesis. University of Seville, 2010.

17. Pérez-Hurtado, I., Valencia-Cabrera, L., Chacón, J.M., Riscos-Núñez, A., Pérez-
Jiménez, M.J. A P-Lingua based simulator for tissue P systems with cell separation,
Romanian Journal of Information Science and Technology, 17 (2014), 89–102.

18. Porreca, A.E., Murphy, N., Pérez-Jiménez, M.J. An Optimal Frontier of the Effi-
ciency of Tissue P Systems with Cell Division. In Proc. Tenth Brainstorming Week
on Membrane Computing, Sevilla, 2012, II, 141–166.

19. Song, B., Kong, Y.: Solution to PSPACE-complete problem using P systems
with active membranes with time-freeness. Mathematical Problems in Engineer-
ing, 5793234, (2019).

20. Song, B., Pan, L. The computational power of tissue-like P systems with promoters.
Theoretical Computer Science, 641 (2016), 43–52.

21. Song, B., Zhang, C., Pan, L.: Tissue-like P systems with evolutional symport/an-
tiport rules. Information Sciences, 378 (2017) 177–193.

22. Valencia Cabrera, L. An environment for virtual experimentation with computa-
tional models based on P systems. PhD thesis. University of Seville, 2015.

23. Zhang, G., Pérez-Jiménez, M.J., Gheorghe, M. Real-life applications with Mem-
brane Computing. Springer Publishing Company, 2017.

24. GNU GPL Website, http://www.gnu.org/copyleft/gpl.html
25. Java tutorial Website,

https://docs.oracle.com/javase/tutorial

26. Javacc,
https://javacc.org

27. MeCoSim Website. http://www.p-lingua.org/mecosim/
28. P-Lingua Website. http://www.p-lingua.org/

61

1 1 � 2 1

1

2

�

62

63

M = {1, 2, · · · ,m} N = { , 2 · · · , n} n(n ≥ m)

[Tsi, Tei] Tsi Tei

Tsi Tsi

dij

ri

W

pk(pk ⊂ N)

Tik

tij

xijk =

{
1
0
if vehicle travels from grain depot to grain depot

otherwise

64

min f1 =
∑
k∈M

∑
j∈N

x0jk

min f2 =
∑
k∈M

∑
i∈N

∑
j∈N

dijxijk

min f3 = max
k∈M

∑
i∈pk

∑
j∈pk

dijxijk

s.t

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
k∈M

∑
j∈N

xijk = 1, ∀i ∈ N∑
i∈N

(ri
∑
j∈N

xijk) ≤ W, ∀k ∈ M∑
j∈N

x0jk =
∑
i∈N

xi0k ≤ 1, ∀k ∈ M∑
i∈N

xihk =
∑
j∈N

xhjk, ∀h ∈ N, ∀k ∈ M

Tik + tij − K(1 − xijk) ≤ Tjk, ∀i, j ∈ N, ∀k ∈ M∑
k∈M

∑
i,j∈D

xijk ≤ |D| − 1, ∀D ⊆ N

Tei ≥ Tik ≥ 0

miny =f(x) = (f1(x)......fm(x))T

gi(x) ≤ 0, i = 1, 2, . . . , u

hj(x) = 0, j = 1, 2, . . . , v

Ω= {x| ∀i (gi(x) ≤ 0) ∧ ∀j (hj(x) = 0) ∧ x ∈ Rn}
V = {y = (y1, . . . , ym)| yi = fi(x) ∧ x ∈ Ω}

x1, x2 ∈ Ω ∀j (fj(x1) ≤ fj(x2))∧∃k (fk(x1) < fk(x2)) x1

x2 x1 � x2

ϕ ⊂ Ω ∀x1, x2 (x1, x2 ∈ ϕ ∧ ¬ (x1 � x2 ∨ x2 � x1)) ϕ

x (x ∈ Ω) ∀x′
(
x

′ ∈ Ω ∧ ¬
(
x

′ � x
))

x

ϕ ⊂ Ω x (x ∈ ϕ) ∀x′
(
x

′ ∈ ϕ ∧ ¬
(
x

′ � x
))

x

ϕ

65

PS
{
x|x ∈ Ω ∧ ∀x′

(
x

′ ∈ Ω ∧ ¬
(
x

′ � x
))}

ϕ ⊂ Ω NS (ϕ) =
{
x|x ∈ ϕ ∧ ∀x′

(
x

′ ∈ ϕ ∧ ¬
(
x

′ � x
))}

ϕ PS3

PF {f (x)|x ∈ PS} ϕ ⊂ Ω NF (ϕ) =
{f (x)|x ∈ NS (ϕ)} ϕ PF 3

ϕ
NF (ϕ) PF 3

NF (ϕ)
NS (ϕ)

NS (ϕ)
NF (ϕ)

xi

ϕ {x1x2...xn}
fj(x1) ≤ fj(x2) ≤ ... ≤ fj(xn) fj(x1) =

fj(xn) = ∞
Cj(xi) =

[fj(xi+1) − fj(xi−1)]

(fmax
j (x) − fmin

j (x))
, (2 ≤ i ≤ n 1)

xi

C(xi) =

m∑
j=1

Cj(xi)

66

Initial Population

Begin

Second Stage
Parent Population NO (m,n) Lower Bound and Upper

Bound of Vehicle Number

Individuals Satisfying Upper and
Lower Bounds

nd Stage
Population OONO (m,n) Lower Bound and Upper U

Bound of Vehicle NumberN

Individuals Satisfying Upper and U
L B d

YES

Main Loop
Operator

Offspring Population

Termination
Criteria

NO

Stop

YES

Main L
Opera

Offspring Po

Termina
C i

YES

67

S(xi) f(xi)

S(xi) = {x| m

Λ
k=1

fk(xi) = fk(x)} xi ∈ S(xi)

|S(xi)| xi

C(xi) = (1 − 2) = −1 |S(xi)|
xi C(xi) = (1− 3) = −2 |S(xi)| ≥ 2 C(xi) =

(1 − |S(xi)|)
xi

ϕ {x1x2...xn}

C(xi) =

⎧⎨
⎩

m∑
j=1

Cj(xi)

(1 − |S(xi)|)

|S(xi)|= 1

|S(xi)| ≥ 2

Q

q ∈ Q
|S(q)| ≥ 2
Cq = 1− |S(q)|

Q,m
C1 = Cend = ∞
Ci = Ci + (Q[j + 1].m−Q[j − 1].m)/(fmax

m − fmin
m)

Q[j].m

68

NF (ϕ)
PF 3

NF (ϕ)

NF (ϕ)

PF

PF 3 PF 3

f1
PF 3 [m,n]

PS2

n =
{
f1(x)|x ∈ R2

}
PF 3

∀x′
(
x

′ ∈ Ω ∧ f1(x
′
) > n

)
PS2

∃x (x ∈ PS2
)
f2(x

′
) ≥ f2(x) ∧ f3(x

′
) ≥ f3(x)

f1(x
′
) > n ≥ f1(x) x � x

′
PS3 n

PF 3

PF 3

D =

⎛
⎜⎜⎝

m xm,1 ... xm,km

m+ 1 xm+1,1 ... xm+1,km+1

...
n xn,1 ... xn,kn

⎞
⎟⎟⎠

xi,j (m ≤ i ≤ n, 1 ≤ j ≤ ki) i ki
i N = km + km+1 +

...+ kn

69

n

P1 P1

P1 P1

P1 : minF1 = (f2, f3)

P2 : maxF2 = f1
P1 P2

f1
f2 f3

(f2, f3)

(f2, f3)
f1

I Q

I

t ← 0

qt ← It f1
Q1 ← qt
m ← Min(car)
t ← t+ 1

t ← 0

Q2← It f2, f3

n ← Max(Q2)
Q← Q1 Q2

70

PF 3

(f2, f3)

(f2, f3)

D∗

∗ =

⎛
⎜⎜⎝

m km ... 2
m+ 1 km+1 ... 2
...
n kn ... 2

1
1
...
1

⎞
⎟⎟⎠

pi,j =
j

ki∑
j=1

j

, (m ≤ i ≤ n, 1 ≤ j ≤ ki)

P =

⎛
⎜⎜⎝

m pm,1 pm,2 ...
m+ 1 pm+1,1 pm+1,2 ...
...
n pn,1 pn,2 ...

pm,j

pm+1,j

...
pn,j

⎞
⎟⎟⎠

PF 3

71

q

q q
q

q

Q, fit min

Q

Q

Q∗ Q
q ∈ Q∗

nq = 0
p ∈ Q

p � q
nq ++ nq

q � p
np ++

Q[q]
Q[q]

Q, fit min

PF 3

72

Begin

Genetic
Operator

Selection

Crossover

MutationUpdate of Intermediate
Population

Update Completed

YES

Stop

Gen
Oper

Update of In
Popul

Update C

NO

73

Pc
Pm Pc Pm

NF (ϕ) PF

NF (ϕ)
PF

C (A,B) =
|{u ∈ NS (B) |∃v ∈ NS (A) : v � u}| × μ (A)

|NS (B) |

74

NS (A) NS (B)

PF

μ (A)

μ (A) = |NS(A)|
|A|

S (A) =
m∑
i=1

fmax
i (NS (A)) − fmin

i (NS (A))

f∗
i

fmax
i (NS (A)) fmin

i (NS (A))
f∗
i

H(A) =

m∑
j=1

∑
x∈NSj(A)

(
Cj(x) − C̄j (NS (A))

)2
|NS (A) | − 2

C̄j (NS (A)) NSj (A)
NS (A)

(f1 (x) , f2 (x) , f3 (x))

75

NF (A) = { (f1 (x) , f2 (x) , f3 (x))|x ∈ NS (A)}

76

77

S(A)−S(B)/S(A)

f1 f2

f3

f1 f2 f3

(
−
f1 ,

−
f2)

78

79

(
−
f1 ,

−
f2)

(
−
f1 ,

−
f2,

−
f3)

(
−
f1 ,

−
f2) (

−
f1 ,

−
f2,

−
f3)

101

102 103

Vi =
fCTSNSGA−II
i −fmin

i

fmax
i −fmin

i
fCTSNSGA−II
i

(V1, V2) = (0, 0.012)

(V1, V2) = (0.684, 0.734)

(V1, V2) = (0. , 0.014)

(V1, V2) = (0.5, 0)

80

(V1, V2) = (0. , 0. 6)

NF (ϕ)
NF (ϕ) dif < 0

NF (ϕ) dif > 0
NF (ϕ) dif = 0

81

NF (ϕ)
(f, f2, f3)

f2 f3

f1

f3
f2

f1
f3

82

PF

83

84

85

Theory and Application of Three-dimensional
Analysis about Propagation Data

Jianchi Sun1, Shuo Liu1∗, Kang Zhou1, Wei Cen3, Qiyao Huang2, and Wanying
Liang1

1 School of Math and Computer, Wuhan Polytechnic University, Wuhan 430023,
Hubei, China 2233417652@qq.com

2 School of Economics and Management, Wuhan Polytechnic University, Wuhan
430023, Hubei, China

3 School of Electrical and Electronic Engineering, Wuhan Polytechnic University,
Wuhan 430023, Hubei, China

Abstract. Most of the traditional grey system Verhulst models can only
consider the propagation characteristics of time, but it can not consid-
er the influence of spatial and other social factors. In order to solve this
problem, a mathematical model of three-dimensional about data analysis
is proposed in this paper. Firstly, the Verhulst model in grey system is es-
tablished in each subspace, and the solution of general Verhulst model is
obtained to solve the problem of prediction in time dimension. Secondly,
in the spatial dimension, considering the mutual effect among subspaces,
the spatial flow factor is added to the original Verhulst model to solve
the propagation problem. Finally, in the dimension of social factors, it
is necessary to solve problems led by the influence of many social fac-
tors on the response. In order to eliminate the natural factors of growth
and highlight the changes of social growth factors to the response, this
paper proposes a trend vector model. Each index with maximum and
minimum subspace correlation is fitted with the two-dimensional data
analysis model by the least square method, and the action factors of
social factors are obtained, thus improving the three-dimensional data
analysis of the spread data. In this paper, the eight-year drug use in five
states of the United States and the seven-year index value of 149 social
factors provided by the United States Bureau of Information Statistics
are used as examples for simulation experiments. The accuracy of the
model calculated by considering the spatial dimension is 10 times higher
than that of the traditional grey system. Having taken the influence of
social factors into consideration, the correlation of indicators and factors
is believed to provide the direction for the government to make the policy
to prevent the drug crisis. The model can be widely used in the field of
big data analysis, which is beneficial to the prediction of data and the
mining of data information, and provides help for human social life.

Keywords: Verhulst model· Multidimensional analysis · Trend vector ·
Least square method · Drug spread.

86

2 F. Author et al.

1 Introduction

In recent years, the problem of data dissemination has attracted the attention
of social and scientific researchers, especially with the advent of the information
age and the rapid development of computer science, the information presents
explosive growth. Data analysis has become a hot topic at present. Two main
purposes of data analysis are used to predict the future observations as accurate-
ly as possible, and the other is to scientifically understand the relationship be-
tween features (various information) and responses (research objects) [1].Under
the current social background, the problem of data transmission is everywhere.
At the beginning of this century, the most serious SARS (severe Acute Respira-
tory Syndrome) incident broke out in Shun De, Guangdong Province, China, and
soon spread to the world. The SARS epidemic was gradually eliminated only in
mid-2003. This is an unprecedented global epidemic of infectious diseases, caus-
ing social panic and leading to the death of a large area of patients, including
medical personnel. It has caused great disaster to the world health and economy.
With the continuous progress of medicine, SARS is basically conquered under
the current medical conditions, but it is easy to spread such as epidemic cold,
AIDS and so on. Infectious diseases have also been lurking around us, and pop-
ulation movements and controls, energy projections, and so on are all related
data dissemination problems, especially the recent outbreak of classical swine
fever in Africa and the drug crisis faced by countries around the world. This
series of problems are closely related to nature and social sciences. The in-depth
study of this kind of problem can be helpful to the development of the world
society by making suggestions for the relevant departments and enterprises of
the government.

At present, the common data analysis methods use mathematical probability
statistics, differential equation and other related knowledge to establish mathe-
matical models for analysis. Artificial intelligence and BP neural network [2] are
also used to analyze the data in the field of machine learning. The same data
source chooses different data analysis methods to obtain data analysis results,
which may be completely different. The establishment of related mathemati-
cal models such as artificial intelligence requires a large amount of data to be
trained, and it is not suitable for the method with fewer samples. The classical
prediction data analysis methods include time series [3], grayscale prediction and
fitting regression model, and so on. These models and methods play an impor-
tant role in these models and methods. Important role, to provide guidance for
the development of social-related industries [4].

Traditional data analysismodels andmethods havemade remarkable achieve-
ments in the field of social science, establishing mathematical models of time
series between the power sector and users to predict the unit price of energy
for the next day. Provides vital information for producers and consumers [5] [6].
The discrete grey increment model and the new initial grey increment model
are established to forecast the population in the future [7]. Especially in recent
years, transmission of the virus seriously affects the quality of life of the people,
through the establishment of differential equation model and parameter inver-

87

Title Suppressed Due to Excessive Length 3

sion [8] method to predict the trend of the virus, and health sector advice. But
traditional data of the analytical model only discusses the impact of time char-
acteristics on its response without considering other characteristic factors, such
as the spread of SARS virus and the spread of drugs, which are more affected by
regional and macro factors. If only time characteristics are taken into account,
their propagation characteristics cannot be fully described. Therefore, the tradi-
tional data analysis model cannot meet the needs of social science for the ability
of multi-angle information mining. The main purpose of this paper is from three
dimensions, that is, time, region, and so on. The social factors improved the
traditional gray-scale prediction and put forward the three-dimensional analysis
theory of the dissemination data. Finally, the application of the drug abuse prob-
lem recently faced by the international community as an example was carried
out. The accuracy and practicability of the theory are verified.

2 The raising of the Problem of Propagation Data and
the fundamental thoughts of the Model

The problem of the propagation of data is defined as the response value of each
point in time in a certain area under other effects. This problem has a high
degree of abstraction and a wide range of applications. For a non-negative data
set D as the data source for the response of the study object, the set describes
the short-term response values of different places and years, and the regions and
years are uniform and adjacent, where dts ∈ D, that represents the response
value of the s region (subspace) in year t ,t0 ≤ t ≤ t1, 1 ≤ s ≤ m.For a
given set of social factors, L, where ltsk ∈ L, represents the value of the k-type
characteristic index of the s region in the t year, t0 ≤ t ≤ t1, 1 ≤ s ≤ m,
1 ≤ k ≤ K. By establishing mathematical models to describe the diffusion
patterns and characteristics between each other.

This problem is a typical problem of data prediction and data mining, which
gives a large amount of information and abstract problems. It is difficult to break
through the regional and social factors by using the traditional prediction mod-
el. This paper first carries on the simple time dimension simulation experiment
through the traditional grayscale prediction model, through the simulation ex-
periment result obtains the propagation law of the time dimension of a certain
area, applies this law to consider the space dimension influence again. Optimize
the original time dimension model. In the set of social factors, because there are
many social factors given, it is not practical to consider the influence of each
factor on its propagation one by one. In this paper, a trend vector model is
established to extract the factors. In order to obtain the final three-dimensional
data analysis law, the two-dimensional propagation model is further optimized
for the social factors which have a great influence on the law of communication.

The first step is the gray-scale prediction of the time dimension of the model.
In this paper, the Verhulst model in the grey system is established by using the
data in the D set, and the rule of propagation in the time dimension is obtained
[9].

88

4 F. Author et al.

The second step, the influence of spatialmobility on the originalmodel. In the
study of the response of one subspace and the spatial mobility factor, the average
quantity of other subspace responses is calculated, and the spatialmobility factor
is obtained by using the least square method into the time dimension model.

The third step is the influence of social factors on the two-dimensional ana-
lytical model. Since there may be a large number of social factors in the L-set,
it is not realistic to take each factor into account, so first of all, it is necessary
to streamline the social factors. The trend vector model is established for all the
factors in the L-set and the predicted results of the two-dimensional model, and
the most representative social two factors are obtained by the correlation anal-
ysis, and the factors are substituted into the two-dimensional analysis model.
Then the results of three-dimensional data analysis are obtained.

Fig. 1. Solution analysis.

3 Mathematical Model of three-dimensional data
Analysis

3.1 Mathematical Model of time Dimension Analysis

When studying abstract systems such as social system, economic system and
so on, random interference (noise) can be often encountered. In this paper, the
number generation method is used to mine and find the regularity of the number
by processing the data in the sequence to generate a new sequence of numbers.
Commonmethods of generating numbers have cumulative generation [10](AGO).
For non-negative sequences, cumulative generation can transform any random
irregularity sequence into a non-decreasing, increasing sequence.

Assume that the original sequence is listed as

X = (x(1), x(2), . . . , x(n)) (1)

where x (k) ≥ 0 , we call it a non-negative sequence.
The cumulative generation has r accumulative generation, which is recorded

as r-AGO, and its relationship is as follows.

x(r)(k) =
k∑

i=1

x(r−1)(i) (2)

89

Title Suppressed Due to Excessive Length 5

where k = 1, 2, 3....n, then the relation of the recursive primordial sequence is

x(r−1)(k) = x(r)(k) − x(r)(k − 1) (3)

In grey system prediction, the influence of background value should be con-
sidered. The background value is usually generated by adjacent value, and its
relation is as follows

z(k) = αx(k − 1) + (1 − α)x(k) (4)

Grey model is a kind of differential equation model which is established by
making use of discrete series to become more regular generating number. The
common grey forecasting models are GM model and Verhulst model [11]. And
Verhulst model is a generalization of the former. The Verhulst model is more
suitable for the non-monotone oscillatory evolution sequence and the sequence
similar to the S-type curves, and is more conducive to the study and description
of its variation process [12].

The derivative of its x(1) is replaced by the difference equation[13]

d(k) = x(0)(k) = x(1)(k) − x(1)(k − 1) (5)

Set the background value of grayscale as the formula (4), the difference e-
quation model is defined as

d(k) + az(1)(k) = b
(
z(1)(k)

)2
(6)

The discrete difference equation is continuous and its corresponding whiten-
ing equation is

dx(1)

dt
+ ax(1) = b

(
x(1)

)2
(7)

where x(0) (k) is grey derivative, a is developmental quotient, z(1) (k) is albino
background value, a is ash action.

By using the Verhulst model, we can get the time-dependent response char-
acteristics of the response in a subspace. Might as well set up f (t) is the response
function relation with time is calculated for the Verhulst model.

⎧⎪⎪⎨
⎪⎪⎩

x′(k) =
∑k

j=1 x(j), k = 1, 2, . . . n

z′(k) = αx′(k) + (1 − α)x′(k − 1), k = 2, 3, . . . n

x(k) + az′(k) = b (z′(k))2 , k = 2, 3, . . . n
x ≥ 0, x ∈ X

(8)

where α is adjacent value generating coefficient in a given interval value(0, 1).
Usually α takes 0.5, that is, the variables we solve.

90

6 F. Author et al.

3.2 A Mathematical Model for Multidimensional Analysis

After the mathematical model of time dimension analysis has been established,
the prediction sequence of time dimension can be set up as f1 (t). Now con-
sidering the influence of its spatial propagation characteristics on the subspace
response, let g (t) function is the average response in other subspaces, as shown
below

g(t) =
1

m − 1

∑
s∈S

dts (9)

where S represents a collection that removes the subspace, dts represents at t
times the response of the s region, m represents the number of subspaces.

A two-dimensional data analysis and prediction model considering spatial
propagation characteristics is established.λ is a spatial flow factor. Where F2 is
the prediction sequence of the two-dimensional analysis model,X is the actual
response sequence.

min
∑

(F2 − X)
2⎧⎪⎪⎪⎨

⎪⎪⎪⎩
F1 =

[
f1 (1) f1 (2) ... f1 (n − 1) f1 (n)

]T
G =

[
g (1) g (2) ... g (n − 1) g (n)

]T
X =

[
x (1) x (2) ... x (n − 1) x (n)

]T
F2 = F1 + λG

(10)

In order to obtain the relation between response and L set finding, we need to
find some relationship between response and the quantity of each index. In order
to describe this relationship, we put forward the concept of trend vector. Let F2

be the predicted sequence of two-dimensional data analysis with geographical
factors, and X be the real value sequence.

dert = X − F2 (11)

where, sequence dert indicates that the effect of promoting or suppressing the
sequence change due to external factors, that is, the change trend is understood
to be F2 under the condition that there are no external environmental factors.
It is because of the influence of a certain factor that this trend is caused the
influence of dert, and turned dert into an X.

Let the order of an external factor over time be listed as

Ei = (ei (1) , ei (2) , ..., ei (n)). (12)

then {
EiΔ(1) = 0
EiΔ(k) = ei(k) − ei(k − 1)k = 2, 3, ..n

(13)

where EiΔ is called factor change sequence.
For ease of comparison EiΔ and dert, the relationship between the EiΔ and

dert needs to be standardized, and compared with dert similarity can tell the
relationship between the two sequences.

91

Title Suppressed Due to Excessive Length 7

The common similarity is distance similarity and cosine similarity, etc. In this
paper, cosine similarity [14] is used to measure the similarity. In order to ensure
dimensionless difference, two vectors substituted into cosine similarity formula
are normalized. The similarity of two cosine is extended from cosine theorem to
high dimensional space. The closer the cosine value is to 1, the closer the angle
is to 0 degrees, that is, the more similar the two vectors are. When the cosine
value is closer to-1, the angle is closer to 180 degrees, that is, the two vectors
are inversely correlated, and when the cosine value is closer to 0, that is, the two
vectors are vertical, indicating no similarity. The formula is as follows

sim =
a ∗ b

|a| ∗ |b| (14)

Based on the mathematical model of two-dimensional data analysis with
spatial flow factor, let L be the set of social factors. Let the index i corresponding
to the matrix li be. And the acting factors are pi. In order to ensure that the
initial value prediction is the same as the actual one, it is necessary to add a
constant.

Through the above analysis, a three-dimensional data analysismodel is estab-
lished, in which, F3 is the prediction sequence of a three-dimensional analytical
model with a social factor, X for the actual response sequence, K for all social
factors to be considered.

−−→
dert,

−−→
EiΔ is the vector that in order to standardize each

other. EiΔ is a series of changes known as indicator number i. F2 is the prediction
sequence of the two-dimensional analysis model with spatial flow factor.

min
∑

(F3 − X)
2⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dert = X − F2

EiΔ (1) = 0
EiΔ (k) = ei (k) − ei (k − 1) k = 2, 3, ...n.

simi =
−−→
dert∗−−→EiΔ∣∣∣−−→
dert

∣∣∣∗∣∣∣−−→EiΔ

∣∣∣
F3 = F2 + pili + pj lj + b, i ∈ max {sim} j ∈ min {sim}
F3(1) = X(1)
1 ≤ i ≤ K

(15)

4 Three-dimensional data analysis model solving
algorithm

For the mathematical model of the time dimension (8), the first-order linear
partial differential equation is used for the calculation. Let Y be a partial data
matrix and B be a parameter matrix. β be the parameter matrices, these are as
follows:

Y = (x(2), x(3), . . . , x(n))T (16)

B =

[
z′(2)2 z′(3)2 . . . z′(n)2

−z′(2) −z′(3) . . . − z′(n)

]T
(17)

92

8 F. Author et al.

β = (a, b)T (18)

Then the mathematical model representing the time dimension is the matrix
equation:

Y = Bβ (19)

It can be obtained by least squares method:{
β = (a, b)T =

(
BTB

)−1
BTY

x′
0 = x(1)

(20)

By solving the first-order nonlinear differential equation solution, we can get:

x′(t) =
ax′

0

bx′
0 + (a − bx′

0) e
at

(21)

Then the discrete time prediction is

x′(k + 1) =
ax′

0

bx′
0 + (a − bx′

0) e
ak

(22)

Restore sequence is

f1(k + 1) = x(k + 1) − x(k) (23)

where f1 (k + 1) is the predicted value of themodel, and F1 = [f1 (1) , f1 (2) , ..., f1 (n)]
is the prediction vector.

For the two-dimensional data analysismodel (10) with spatialmobility factor,
the least squares method can be used to obtain:

λ =
(
GTG

)−1
GT (X − F) (24)

In the three-dimensional data analysis model, the least squares method is
also used to obtain values in the model (14).

[pi, pj] =
(
[li, lj]

T ∗ [li, lj]
)−1

∗ [li, lj] ∗ (X − F2) (25)

In order to ensure that the predicted value of the first year is the same as
the actual value, the constant term is solved by the undetermined coefficient.

b = x(1) − (F2 + pili + pj lj) (26)

In summary, the final data analysis equation is⎧⎪⎪⎪⎨
⎪⎪⎪⎩

F3(k + 1) = x′(k + 1) − x′(k) + λg(k + 1) + pli(k + 1) + pj lj(k + 1) + b

x(k + 1) =
αx′

0

bx′
0+(a−bx′

0)eα
k

g(t) = 1
m−1

∑t
i=5 d

t
s

x′
0 = x(1)

(27)
of which,S represents a collection that removes the location, dts indicates the
response at the moment t and the position S , m indicates the number of sub-
spaces.

93

Title Suppressed Due to Excessive Length 9

5 Simulation application of three-dimensional analysis
model

5.1 Simulation experiment of Gray Prediction Model on time
Dimension

According to the theory of the three-dimensional analysis model of transmis-
sion data, this paper takes drug abuse data analysis as an example to apply the
model. The simulation object data source is DEA/National Forensic Laborato-
ry Information System (NFLIS), which provides annual reports of drug testing
results and related data of drug cases analyzed by five states (Ohio, Kentucky,
West Virginia, Virginia and Pennsylvania) and their counties, local forensic lab-
oratories from 2010 to 2017. Secondly, the data sources of social factors are the
social and economic factors of five states and counties from 2010 to 2016, such
as education level, age ratio, family structure and other related characteristics.
These simulation data sources can be downloaded on the 2019 MCM/ICM Offi-
cial Website. Drug use is only eight years old in time series, so it is inappropriate
to use AI correlation analysis methods. Traditional time series models are not
enough to calculate relatively good results because of few years. At the same
time, the data of a certain type of drug use are often interrelated with other fac-
tors (such as the use of drugs in the previous year, the amount of other subspace
drugs used, etc.). The relationship between them can only be predicted by a
small number of sample data, which is consistent with the characteristics of grey
system [11]. The traditional gray prediction model can only predict and analyze
in the time dimension, but not in the multi-dimensional feature and response
information mining, which will lead to inadequate use of some information. The
main purpose of simulation application is to improve the traditional gray pre-
diction from three dimensions, namely time, region and social factors, to reflect
the application of the three-dimensional analysis model of communication data
in social science.

According to the model theory of the above analysis and the introduction of
simulation examples, the performance of the simulation computer includes pro-
cessor of AMD A10-9600P RADEON R5,10COMPUTE CORES 4C+6G 2.8GHz
and memory of 4.00GB, 64 Bit Operating System of Windows 10. And program-
ming with MATLAB 2016a, Table 1 shows the total drug use in each state after
data preprocessing.

Table 1. Total drug use in the counted states.

2010 2011 2012 2013 2014 2015 2016 2017

VA 8685 6749 7831 11675 9037 8810 10195 10448
OH 19707 20330 23145 26846 30860 37127 42470 46104
KY 10453 10289 10722 11148 11081 9865 9093 9394
WV 2890 3271 3376 4046 3280 2571 2548 1614
PA 19814 19987 19959 20409 24904 25651 26164 27894

94

10 F. Author et al.

According to the mathematical model theory of time dimension analysis, the
total amount of drug use in each state is analyzed. The predicted value of time
dimension analysis in each state can be obtained by solving the first-order linear
differential equation and least square method. According to the general equation
of Verhulst model, the parameters of each state are shown in Table 2.{

x′(k + 1) =
ax′

0

bx′
0+(a−bx′

0)eak

f1(k + 1) = x′(k + 1) − x′(k)
(28)

Table 2. General Solution Parameter of One-Dimensional Verhulst Model for Each
State.

a b
(
10−4

)
x

′
0

VA -0.4676 -0.0493 8685
OH -0.4331 -0.0106 19707
KY -0.5143 -0.0540 10453
WV -0.6279 -0.2501 2890
PA -0.4446 -0.0174 19814

Table 3. Predicted value of drug use in time dimension in VA.

2010 2011 2012 2013 2014 2015 2016 2017

VA 8685 6749 7831 11675 9037 8810 10195 10448
Prediction 8685 4460 6236 8197 9941 10945 10838 9663

Table 4. Error parameter for each state in time dimension.

VA OH KY WV PA

relative errorε 0.0625 0.1220 0.0540 0.0408 0.0812

In order to make the errors more convincing and as different as possible,
the relative errors mentioned above represent the integral multiple relationship
between absolute errors and real values, that is, εY ≈ |Y − F |, making the
absolute error vector as real error vector ε times as possible, the smallerεis, the
smaller the overall error is.

5.2 Simulation experiment of Two-dimensional Data Analysis
Model with spatial mobility factor

By providing the actual geographic location of five states according to Google
Earth software, as shown in Figure 2. It can be seen that the geographical re-

95

Title Suppressed Due to Excessive Length 11

lationship between the States is contiguous, and the geographical region has a
certain role in the impact of drug volume. Ohio, Pennsylvania and Virginia are
closely related to each other. They are influenced by diffusion. So it is necessary
to consider spatial mobility factors.

Fig. 2. Geographical location of five states.

According to the model theory of two-dimensional data analysis with spatial
mobility factor, the predicted value of the total drug use and time dimension in
each state and the average drug use in other states are analyzed. The predicted
value of two-dimensional data analysis with geographical factors in each state
and the size of geographical factors can be obtained by (10) model and (23)
formula calculation.

Table 5. Predictive values of drug use in VA on a two-dimensional model with geo-
graphic factors.

2010 2011 2012 2013 2014 2015 2016 2017

VA 8685 6749 7831 11675 9037 8810 10195 10448
Prediction 9003 4784 6580 8572 10362 11397 11320 10173

From the calculation results, we can see that the magnitude of spatial mobil-
ity factor can be regarded as the sensitivity of drug use and regional mobility in
the region. The factors are positive, indicating that regional mobility promotes

96

12 F. Author et al.

Table 6. Relevant Calculating Parameters of States on a two-dimensional model with
geographical factors.

VA OH KY WV PA

Geographic factor λ 0.0240 0.3944 0.0161 0.0014 0.1294
Relative error ε 0.0191 0.0135 0.0284 0.0326 0.0064

drug use, that is, drug use in other states leads to increased use in the region.
OH is the most sensitive to regional liquidity, and WV is hardly affected by
regional liquidity. OH can devote more energy and financial resources to border
control ports to prevent drug invasion. Within the scope of policy control, strict
drug inflow and outflow management at county or state borders can reduce drug
use in the state. For the WV, space interaction is very small, the border control
cannot have to invest a lot. The relative error is significantly lower than that of
the time dimension analysis model, and the fitting effect is better.

5.3 Simulation experiment of three-dimensional data Analysis
Model with social action factors

According to the model theory of three-dimensional data analysis, there are 149
social factors in all public years with the factor data source, and each social factor
gives four different description forms, in order to facilitate the establishment and
normalization of the model. Take the first description form as the description
value. According to the trend vector theory, the similarity between each social
factor and the original sequence change trend is calculated for each state. The
similarity can be used to understand whether the factor promotes or inhibits or
does not work.

Because the relevant indicators are still considered much, considering the
influence of major social factors in each state, this paper selects the social factors
with the most positive and negative correlations in each state as the fitting
parameters to be incorporated into the two-dimensional data analysis model
equation. The main social factors associated with each state are shown in Table
7.

Table 7. The correlation of the main social factors of positive and negative correlation
in each state.

Indicator number Correlation Indicator number Correlation

VA 115 0.96 116 -0.83
OH 20 0.91 14 -0.93
KY 69 0.89 105 -0.92
WV 128 0.83 6 -0.98
PA 128 0.87 14 -0.90

97

Title Suppressed Due to Excessive Length 13

For VA, the value vector corresponding to the 132th indicator is l132, the
corresponding vector of the 6th indicator is l6, and the action factors are respec-
tively p132, p6, where F2 is the two-dimensional model prediction sequence with
the geographical flow factor, F3 is the three-dimensional data analysis model
prediction sequence. And then

F3 = F2 + p132l132 + p6l6 + b (29)

We can get {
[p132, p6] = [0.0374,−0.1197]
b = −1776.3

(30)

The final three-dimensional data analysis model based on the obtained action
factor is ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

x′
0 = 8685

x′(k + 1) =
ax′

0

bx′
0+(a−bx′

0)eak

D1 = x′(k + 1) − x′(k)
D2 = 0.024g(k + 1)
D3 = 0.0374l132(k + 1) − 0.1197l6(k + 1) − 1776.3
F3(k + 1) = D1 +D2 +D3

(31)

Similarly, the factors and error parameters of the main social factors in other
states are calculated as Table 8 and Table 9.

Table 8. The indicator factors of themain social factors related to positive and negative
correlation in each state.

Indicator number Indicator factor Indicator number Indicator factor Constant

VA 132 0.7254 6 -0.1934 -1776.3
OH 20 0.0099 14 -0.0274 -6668.7
KY 3 0.0464 65 -0.0870 -2737.4
WV 59 0.0248 91 -0.2239 -600.4
PA 128 0.0374 15 -0.1197 -5784.2

Table 9. Relative error parameters for each state on the three-dimensional model.

VA OH KY WV PA

Relative error ε 0.2038 0.2138 0.2624 0.1924 0.2535

Through the calculation of the above mathematical model, it is found that
the positive correlation index are the positive and negative correlation factors
are negative, thus verifying the accuracy of the model. The relative error of the
two-dimensional data analysis is better than the time dimension relative error,
but the relative error is relatively large after considering the three-dimensional

98

14 F. Author et al.

data analysis, mainly because the social environment is considered only when
the two kinds of the most valued society are considered. There are still links
between factors and social factors, and they all have more or less influence on
the amount of drugs used. If only two extreme correlations are considered, the
error will be larger.

In order to prove that the number of the social factors into the model can
affect the error of the three-dimensional analysis model. In the case of social
factors with maximum positive correlation and maximum negative correlation in
the model, the sub-positive correlation factors and the sub-negative correlation
factors continue to be considered. In formula (30), the predicted value after
fitting is also obtained by the least square method, and the error is obtained by
using the error formula, as shown in Table 10.

Table 10. The relative error parameters of each state in the three-dimensional model
considering the four factors.

VA OH KY WV PA

Relative error ε 0.0452 0.0540 0.0861 0.1270 0.0567

Compared with Table 9, the relative errors of all states have decreased after
considering four factors. Therefore, it can be shown that the number of social
factors considered in the model will affect the accuracy of the model. And when
the number is large enough, the accuracy is high enough. But the more the
number considered, the greater the cost of computing time. And in the real
society, the most important social factors and the larger correlation factors are
often considered, so that the calculation time is saved, and also provide specific
guidance for the correct decision-making of the government, greater investment
can be placed on some of the most critical factors.

In order to obtain more possible correlation factors for qualitative analysis,
this paper establishes the advantage of the trend vector model, and averages the
149 social factors in all states, setting the positive correlation threshold to 0.6,
that is, the average similarity is greater than 0.6 for positive correlation. The
public social factor has a negative correlation threshold of -0.65 and an average
similarity of less than -0.65 as a negative correlation public social factor. The
public social factors of all regions are obtained by threshold classification. The
positive and negative similarities of public social factors are shown in Table 11.
and Table 12.

It can be found that each state is affected by many social factors. It is indeed
inaccurate to consider the social factors of the two most valued cases. However,
the degree of influence can be qualitatively compared by the size of the factors.
Finding certain social factors from the size of relevance can also provide sug-
gestions for relevant departments and make targeted strategies for the spread of
drugs.

99

Title Suppressed Due to Excessive Length 15

Table 11. Public social factors with positive similarities.

Indicator number 59 69 134

VA Similarity 0.798 0.405 0.304
OH Similarity 0.809 0.851 0.759
KY Similarity 0.606 0.702 0.752
WV Similarity 0.802 0.754 0.605
PA Similarity 0.574 0.927 0.682

Table 12. Public social factors with negative similarities.

Indicator number 6 11 91 94

VA Similarity -0.875 -0.511 -0.37 -0.481
OH Similarity -0.877 -0.932 -0.65 -0.652
KY Similarity -0.659 -0.783 -0.66 -0.723
WV Similarity -0.374 -0.606 -0.79 -0.705
PA Similarity -0.749 -0.918 -0.82 -0.814

6 Conclusion

In this paper, we propose the theory of three-dimensional analysis of propagation
data, and an improved three-dimensional data analysesmodel based on grayscale
prediction is established. The simulation experiment is carried out by using the
data of drug spread in the United States. The prediction equation is obtained
by least squares method. The general solution and the spatial flow factor of
each region, the size of the spatial flow factor can be used as a reference for the
mobility of the drug area. Comparing the residuals after two data analysis, the
overall error of the two-dimensional analysis model with geographic factors is
smaller. In the establishment of a three-dimensional data analysis model with
social factors, this paper proposes the concept of trend vector, eliminates the
natural increase of the feature response itself, and makes the change of social
factors completely correspond to the changes in drug use interfered by social
factors. Through the calculation of similarity, the most important social factors
and corresponding impact factors affecting the increase or decrease of drug use in
social factors are found, and making suggestions for government macro-control.
The discussion and establishment of the three-dimensional data analysis model
has improved the shortcomings of most of the gray-scale predictions, and the
data analysis is reflected by multiple angles. In the later period, we mainly
discuss the impact of multiple social factors on the response, so as to improve
the prediction precision after considering multiple social factors.

References

1. Fan J, Han F, Liu H. Challenges of big data analysis[J]. National science review,
2014, 1(2): 293-314.

100

16 F. Author et al.

2. Yu F, Xu X. A short-term load forecasting model of natural gas based on optimized
genetic algorithm and improved BP neural network[J]. Applied Energy, 2014, 134:
102-113.

3. YANG Hai-min, PAN Zhi-song, BAI Wei. Review of Time Series Prediction Meth-
ods [J]. Computer Science, 2019, 46(1):21-28.

4. Xue-Qi C , Xiao-Long J , Yuan-Zhuo W , et al. Survey on Big Data System and
Analytic Technology[J]. Journal of Software, 2014,(9):1889-1908.

5. Nogales F J, Contreras J, Conejo A J, et al. Forecasting next-day electricity prices
by time series models[J]. IEEE Transactions on power systems, 2002, 17(2): 342-
348.

6. Alvarez F M, Troncoso A, Riquelme J C, et al. Energy time series forecasting
based on pattern sequence similarity[J]. IEEE Transactions on Knowledge and
Data Engineering, 2011, 23(8): 1230-1243.

7. Ke-Pei M , Lin-Lin G , Xun-Zhen Y . PREDICTION OF CHINA’S POPULATION
BASED ON TWO NEW GREY MODELS[J]. Economic Geography, 2007, 27(6):
942-945.

8. Weiguo H , Jinfeng W , Xuhua L . BACK ANALYZING PARAMETERS AND
PREDICTING TREND OF SARS TRANSMISSION[J]. Advance in Earth Sci-
ences, 2004, 19(6):925-930.

9. Lin Y H, Chiu CC, Lee P C, et al. Applying fuzzy greymodificationmodel on inflow
forecasting[J]. Engineering Applications of Artificial Intelligence, 2012, 25(4): 734-
743.

10. YONG-HUANG LIN, CHIH-CHIANG CHIU, PIN-CHAN LEE,et al. Applying
fuzzy grey modification model on inflow forecasting[J]. Engineering Application-
s of Artificial Intelligence: The International Journal of Intelligent Real-Time
Automation,2012,4(4):734-743.

11. ZHANG Chuang, PENG Zhenbing, PENG Wenxiang. Application of optimized
grey discrete Verhulst model in settlement prediction of foundation pit[J].Journal
of Central South University Science and Technology), 2017, 48(11):3030-3036.

12. Ping-Ping X , Yao-Guo D , Tianxiang Y , et al. The Research on the Modeling
Method of Background Value Optimization in Grey Verhulst Model[J]. Chinese
Journal of Management Science, 2012, 20(6):154-159.

13. Yonge AN, Xueying B, Qicai W. Railway freight volume forecasting based onun-
biased grey Verhulst model[J]. Journal of Railway Science & Engineering, 2016,
13(1):181-186.

14. Wang Z X , Dang Y G , Liu S F . Unbiased Grey Verhulst Model and Its Appli-
cation[J]. Systems Engineering-Theory & Practice, 2009, 29(10):138-144.

101

A Novel Spiking Neural P Systems for Image
Recognition�

Xiantai Gou, Qifen Liu*, Gexiang Zhang, Meng Hu, Pirthwineel Paul, Fang
Deng, Xihai Zhang, and Zhibin Yu

School of Electrical Engineering, Southwest Jiaotong University, Chengdu, 61003
email:1622680696@qq.com

Abstract. Spiking neural P systems (SNPS), a kind of distributed par-
allel bio-inspired model, has been a research hotspot in the field of mem-
brane computing. SNPS has been widely concerned by scholars due to
its powerful computing capacity and brain-like information transmission
schema. Nevertheless, there are quite few research results about SNPS
with learning ability applied for image recognition. In this research, the
routing mechanism in capsule neural network is introduced into SNPS
to update the weights between synapses of spiking neurons dynamically.
The learning ability of SNPS is realized by the weight update algorithm,
which represents the changes in the strength of neuronal synaptic con-
nections. Moreover, this is the first attempt to construct a universal net-
work model of SNPS with learning ability which extracts features though
the image convolution. The experimental results demonstrate that the
recognition accuracy of the Mixed National Institute of Standards and
Technology database, namely MNIST, reaches 95.87% and the recogni-
tion accuracy of English letters with noise and rotation reaches 98.06%
in SNPS, which verify the feasibility and effectiveness of the model we
constructed.

Keywords: membrane computing · spiking neural P systems · image
recognition · learning ability.

1 INTRODUCTION

Membrane computing is a systematic framework inspired by cell structure and
function to research computational models or algorithms, which was proposed
by the academician Gheorghe Pǎun in 1998 and belongs to the branch of nat-
ural computing[1]. The computational model of membrane computing research
is called as membrane systems or P systems. The membrane system is a kind
of distributed parallel bio-inspired model. The researches have proved that the
computational power of most membrane systems is equivalent to the Turing ma-
chine [2-5]. Furthermore, the application research of membrane computing in-
volves many fields, including ecosystem modeling [6-8], image processing [9,10],

� supported by the National Natural Science Foundation of China under Grant
No.61972324 and No.61702428, and the Major Science and Technology Projects in
Sichuan Province under Grant No. 2018GZDZX0043.

102

2 X. Gou et al.

intelligent algorithm [11, 12] and so on. At present, the application of mem-
brane computing in the field of image processing mainly focuses on simple image
processing and image analysis, but it has not been applied in image high-level
processing [13]. It is still challenging for membrane computing to process im-
age recognition [14], therefore, it is significant to pay more attention on image
recognition.

The SNPS, proposed by Ionescu et al in 2006, is a type of neurological com-
putational model under the framework of membrane computing [15]. It is derived
from the biological characteristics of neurons in the biological nervous system
that transmit pulses and exchange information through synapses. The outstand-
ing feature of SNPS is that information is encoded by time and transmitted
by the pulses between neurons, which simulates the working mechanism of in-
formation interaction in biological neural network better. From the perspective
of model characteristics, SNPS belongs to the third generation neural network
models [16,17]. The third generation neural network represented by spiking neu-
ral network processes information through pulse sequences, which is the research
frontier and hotspot in the field of current neural network [18-20]. In the past
decade, SNPS has been widely concerned by scholars in the field of membrane
computing due to its good mechanism of restoring biological information inter-
action and high computational parallelism, therefore, abundant research results
in both theory and application has been obtained. Inspired by biological charac-
teristics and mathematical computation models in the biological nervous system,
many SNPS have emerged, such as SNPS with anti-spikes [21,22], SNPS with
astrocyte [23], reversible SNPS [24], SNPS with structural plasticity [25], SNPS
with rules on synapses [26-28], fuzzy SNPS [29], and so on. SNPS is applied to
the practical application based on huge amounts of theoretical researches, and
has achieved many research results, such as skeletonizing images [30], combinato-
rial optimization [31], fault diagnosis [32-36], etc. Illuminated by learning mech-
anisms in biological neural networks and artificial neural networks, Gutiérrez
established a SNPS model with Hebbian learning [37]. However, there are quite
few papers about SNPS with learning ability for image recognition. In 2019,
A class of specific SNPS with simple Hebbian learning function is constructed
to recognize English letters in a template matching manner that calculates the
variance of the letter to be recognized and the standard letter output vector,
which proved the potential of SNPS in pattern recognition. A high recognition
accuracy is achieved in the absence of noise, but the recognition effect is poor in
high noise [38]. In addition, the input data is only represented by a 0/1 character
matrix of size 5*7 and the model is relatively simple, which is difficult to handle
real-life applications.

SNPS for image recognition is still an open research problem, which has at-
tracted the attention of a large number of scholars. In particular, there exist
many application practices for image recognition and reach a high level of recog-
nition in traditional artificial neural networks, while SNPS in the framework of
membrane computing has hardly applied to research on pattern recognition, so
it has fatal research significance to apply SNPS to image recognition. Because

103

A Novel Spiking Neural P Systems for Image Recognition 3

there exist few research results about image recognition in SNPS at present,
there is no suitable encoding method to encode the image into pulse number-
s while retaining the pixel position information, the application of the simple
Hebbian learning function is not sufficient to express the changes in the strength
of neuronal synaptic connections, and there is no universal neuron connection
topology in SNPS.

Aiming at the above problems, the time-coded image pixel data is converted
into pulse numbers as the input of SNPS and the routing mechanism in capsule
neural network [39] is introduced firstly. Then, a general network model of S-
NPS with learning ability is constructed. In order to verify the feasibility and
effectiveness of the model, it is used to deal with the classical handwritten digit
recognition and the English letters recognition with noise and rotation in this
research.

2 SNPS WITH LEARNING ABILITY

Learning function is extremely important for pattern recognition in artificial
neural networks. Therefore, it is the key to construct SNPS with learning ability
for image recognition.

2.1 SYSTEM DEFINITION

The SNPS with learning ability of degree m (m ≥ 1) is a construct of the form:

Π = (A, {σ1, · · · , σm} , syn, fpre, flearn , in, out) (1)

where:

(1) A = {a} is an alphabet with single symbol, which denotes a pulse.
(2) {σ1, · · · , σm} represents the neuron collection in SNPS. σi = (ni, Ri) , 1 ≤

i ≤ m is a certain neuron in the system, where ni ≥ 0 is the pulse numbers con-
tained in the neuron σi at the beginning of the computation, and Ri represents a
finite set of all the rules in the neuron σi .There are two forms of rules, including
the firing rule and the forgetting rule in SNPS.

Firing rule is shaped like E/ac → a; d , where E is a regular expression on
the character a, c ≥ 1 and d ≥ 0 are integers. The forgetting rule is shaped like
as → λ . as /∈ L(E) (s ≥ 1) is required for any firing rule E/ac → a; d , where
L(E) is the regular language defined by E. Each neuron can contain one or more
rules, but the firing rule and the forgetting rule cannot be triggered at the same
time in a neuron. In a plurality of rules, a selection mechanism can be applied
to trigger one of the rules to achieve an optimal level of system output.

(3) Syn ⊆ {1, 2, · · · ,m} × {1, 2, · · · ,m} is a directed graph of synaptic con-
nections between neurons, with (i, i) /∈ syn for each 1 ≤ i ≤ m .

(4) In, out ∈ {1, 2, · · · ,m} represent the input and output neurons of sys-
tem Π , respectively.

104

4 X. Gou et al.

(5) Fpre is the data preprocessing function of the system. In this paper, the
data preprocessing function of SNPS for image recognition contains convolution
and pooling operations, which could extract image features. Different prepro-
cessing functions can be adopted towards different applications.

(6) Flearn is a systematic learning function that characterizes the strength
of neuronal synaptic connections by synaptic weights updating in training. The
learning function adopted in this research is shown in Section 2.2.

Fig. 1. An example of SNPS constitution.

2.2 LEARNING FUNCTION

In the SNPS with learning ability designed in this research, the routing mecha-
nism, which core idea is the error back propagation algorithm, is used to update
the weight of neuronal synaptic connections dynamically to imitate the informa-
tion layered communication between the visual perception and comprehension
neurons in the human brain [39].

Assume that the input of the nth layer neuron σi is ui , and the input of the
n+1th layer neuron σj is vj in the SNPS. The routing mechanism updates the
synaptic weights dynamically as follows [39]:

(1) Initializing the logarithmic prior probability bij = 0 of all neurons between
σi in the nth layer and σj in the n+1th;

(2) Calculating the coupling coefficient ci of the neuron σi in nth layer;

ci =
exp (bij)∑
k exp (bik)

(2)

105

A Novel Spiking Neural P Systems for Image Recognition 5

(3) Calculating the intermediate variable sj of the neuron σj in n+1th layer;

sj =
∑
i

cijui (3)

(4) Calculating the input vj of the neuron σj in n+1th layer;

vj = squash (sj) =
‖sj‖2

1 + ‖sj‖2
· sj

‖sj‖ (4)

(5) Updating the logarithmic prior probability bij by the input vj of the
neuron σj in n+1th layer obtained by the above process;

bij = bij + ui • vj (5)

(6) The input vj of the neuron σj in n+1th layer can be obtained by repeating
steps (2)-(5) r times for a given iteration step number r.

The coupling coefficient cij is the synaptic weight ωij between neuron σi and
neuron σj in SNPS.

3 NETWORK MODEL OF SNPS WITH LEARNING
ABILITY

Based on the above theoretical research, this paper shows the encoding method
converting image pixel data into pulse numbers and the topology of neuron con-
nections in SNPS. Moreover, a universal network model of SNPS with learning
ability is constructed for image recognition, referred to as SNPSNet in this paper.

3.1 IMAGE DATA ENCODING

In general, the storage method of the image is pixel data, nevertheless SNPS pro-
cesses input data in the form of pulses. Therefore, we need to encode the image
into discrete pulse sequences by appropriate encoding method while preserving
the pixel position of the image.

Spiking neurons in SNPS transmit information in the form of pulses [15].
Studies have shown that much of the information about a stimulus signal is
actually transmitted within 20ms or 50ms in the start of the neuronal response
[40-43]. Hence the neuron can be idealized as: the time of the first pulse generated
after receiving the stimulus contains all the information of the stimulus [43].

Based on the above research results, the image pixel data is encoded as the
pulse trigger time through the time-to-first spike coding [44]. For the time coding
window T, the linear time coding formula is as follows.

Frc = T ×
(
1 − prc

pmax

)
(6)

106

6 X. Gou et al.

Where Frc is the pulse trigger time in the rth row and the cth column of the
image pixel matrix, prc is the pixel value in the rth row and the cth column of
the image pixel matrix, and pmax is the maximum pixel value. It is obvious that
the larger the pixel value, the earlier the trigger time, the greater the effect, and
the smaller the pixel value, the later the trigger time, the less the effect from the
formula above.

For the time-encoded data, further processing is required to convert into
the discrete pulse numbers as the input of the network model designed in this
research. Taking the MNIST data set as an example, the input tensor is 28*28,
and the 28*28 input neurons are necessary accordingly. Suppose that for any N
consecutive pixel points of the input tensor, the time-encoded image pixel data
is a finite set T ∈ {t1, t2, · · · , tn} , t ∈ (a, b). And b−a is divided into m shares,
then the pulse numbers are saved in λ-th input neuron σλ , which trigger time
fall in

[
b−a
m × (λ − 1), b−a

m × λ
]
(λ ≥ 1). The larger m , the more precise position

information of the original pixel is saved.
It is obvious that the original pixel data is more complicated than the tensor

of discrete pulse sequences. The encoded tensor is adopted as the input of the
network model we constructed, which makes the computer memory consumption
less and improves the computational efficiency. In addition, the time cost of
encoding consumption could be negligible for large image sample training and
testing.

3.2 NETWORK MODEL OF SNPS

Considering that only neurons with synaptic connections in SNPS could trigger
firing rule or forgetting rule, and it could be encoded only if neurons connected
in a certain pattern. Of course, the random connections cannot guarantee the
reliability of network output. Therefore, a topology of SNPS is constructed in
this research shown in Figure 2.

In this figure, dim1 indicates the initial state of the input neurons, dim2
indicates that there are synaptic connections between two adjacent neuron-
s, dim3 indicates that there are synaptic connections between three adjacent
neurons, dim4 indicates that there are synaptic connections between four adja-
cent neurons, and dim5 indicates that there are synaptic connections between
five adjacent neurons. All neurons in dim1 are spiking neurons of SNPS. Each
neuron could be set with one or more firing rules or forgetting rules, such as
aα → aβ ; d , where α ⊆ {1, 2, 3, · · · , n} is the initial pulse numbers of the neu-
ron, β ⊆ {0, 1, 2, 3, · · · ,m} represents the pulse numbers of neurons transmitted
to the next layer, and d indicates the time of the rule triggered. Of course, this
connection method could retain as much position information as possible toward-
s the input pulse numbers in the model. It is that the input tensor is (dim1),
and the output tensor is (dim1, dim2, ..., dim5) in SNPS. That is equivalent to
which the dimension of the input tensor is increased after applying the rules of
neurons in SNPS.

The structure of the whole SNPSNet model constructed in this paper is shown
in Figure 3. The main components are the convolution layer, the pooling layer,

107

A Novel Spiking Neural P Systems for Image Recognition 7

Fig. 2. Schematic diagram of neuron topology in SNPS.

the SNPS processing of the above topology connections and the decoder com-
posed of three fully connected layers, which restore the input data and complete
data classification.

The input of the SNPSNet is the pulse numbers obtained by time-coded im-
age pixel data. First, the characteristics of the input data are extracted through
the screening of each convolution kernel in the convolution layer. The specific pa-
rameters of the convolution layer are 64 convolution kernels with conv size=3*3,
and the activation function is relu. It economizes computational cost through the
convolution to extract image features, so that large pixel data could not bring
computer memory overflow easily during model operation. And then the data in
the pooling area is compressed by the pooling layer with pooling size=2*2. The
purpose of pooling is to reduce the number of parameters. For example, if the
dimension of input tensor is (20, 20, 64), the dimension of pooled output tensor
is (10, 10, 64).

After that, it is the turn for the SNPS in Figure 2. The pulse information is
transmitted and the synaptic weight is updated in learning process after rules
triggered in spiking neurons. There are multiple rules could be selected for every
neuron in SNPS. The rule selected in this paper is a → a . The SNPS reacts
under the global clock. The upper neurons satisfy the firing rule, consume the
corresponding pulses immediately, and transmit pulses to neurons with synaptic
connections in the next layer. Dynamic routing reflects the learning process of
synaptic weights. SNPS is the core of the whole network model constructed in
this paper and is the concentrated expression of learning capabilities. Further-
more, its input is the output tensor of the pooling layer. Toward the neuron σi

in SNPS, a pulse is consumed, and ωij ×1 pulses are transmitted to the neurons
σj with synaptic connections (ωij is derived from the learning function shown in
Section 2.2).

Finally, the image recognition is completed in the fully connected layers to
increase the receptive field. The first and the second fully connected layers are

108

8 X. Gou et al.

Fig. 3. Schematic diagram of SNPSNet model.

composed of 1024 and 512 neurons respectively which activation functions are
relu. The number of neurons in the third fully connected layer is determined
by the categories we expect about the images, and the activation function is
sigmoid. The output of the model is stored in the form of a matrix, including
recognition accuracy and loss values.

4 SIMULATION EXPERIMENTAL

In this paper, the feasibility and effectiveness of the SNPSNet model are ver-
ified through classical handwritten digit recognition and the English alphabet
recognition with noise and rotation.

4.1 SNPSNET FOR MNIST RECOGNITION

In this research, the MNIST dataset is divided into training set and test set
according to 6:1. The training set is 60,000 pictures and the test set is 10,000
pictures. And the 35 handwritten digital images selected randomly are shown in
Figure 4.

First, the image pixel data is encoded into the pulse numbers through the
data preprocessing method in Section 3.1, and saved to a file in mat format.
For each MNIST image, 28*28 pixels, the original pixel data is encoded into the
pulse trigger time after the time-to-first spike coding. Next, the time-encoded

109

A Novel Spiking Neural P Systems for Image Recognition 9

Fig. 4. Schematic diagram of MNIST handwritten digital.

data of each row in the mat are sorted and the pulse numbers are accumulated
during a given time interval. In other words, the element of the rth row and the
cth column towards every two-dimensional vector in the mat file indicates pulse
numbers, which are triggered at time t ∈ (c − 1, c), (c > 0) in the rth row of the
original pixel matrix. Then, the encoded data is fed in SNPSNet model in Section
3.2 for training, and the rule selected for each spiking neuron in SNPS is a → a,
with no delay. A pulse is consumed in spiking neurons that satisfy the firing
rule at any moment and ωij × 1 pulses are delivered to neurons with synaptic
connections in the next layer (ωij is derived from the learning function shown
in Section 2.2). The size of input image is 28*28 in this model; the batch size
is 60; the RMSProp is selected as the optimizer, which could be able to adjust
the learning rate automatically [45]. Thus, the learning rate is no longer need to
perform any attenuation operations once the initial learning rate is given. The
initial learning rate is 0.0005 in this experiment. There are the accuracy and loss
rate of 50 epochs shown in figure below.

After 50 epochs training, the recognition accuracy reached 95.87% for MNIST
in SNPSNet designed in this research under the initial learning rate and batch
size according to the above parameters. By modifying the epoch, batch size, and
learning rate parameters, the recognition accuracies for MNIST in SNPSNet are
shown in Table 1.

Table 1. Experimental results obtained by different parameters

epoch batch size initial learning rate accuracy
30 60 0.001 92.85%
50 100 0.001 93.96%
60 100 0.001 93.55%
30 50 0.0005 93.14%
50 60 0.0005 95.87%
50 100 0.0005 94.32%

110

10 X. Gou et al.

Fig. 5. Recognition accuracy graph for MNIST in training.

Fig. 6. Training loss graph for MNIST.

Fig. 7. Recognition accuracy graph for MNIST in test.

111

A Novel Spiking Neural P Systems for Image Recognition 11

4.2 SNPSNET FOR ENGLISH LETTER RECOGNITION

In this paper, 26 classes of English letters are selected which are synthesized by
different fonts of the computer in the chars 74k EnglishFnt dataset, including
combinations of italic, bold and ordinary characters. Since there are only 1016
images of each type of English alphabet in the original dataset, the quantity
of input data as the SNPSNst is too small. The image enhancement is used
to expand the number of each class of English letter images to 5000 in this
research. And the image enhancement methods adopted in this paper include
rotating 30◦, 60◦ and adding 10, 15, 20, 25 noises respectively, which is closer
to practical applications. The training set and the test set are divided according
to 12:1, the training set is 120,000 pictures, and the test set is 10,000 pictures.
The 35 English letter images selected randomly are shown in Figure 8.

Fig. 8. Schematic diagram of English letter.

First, the image pixel data is encoded into the pulse numbers through the
data preprocessing method in Section 3.1, and saved to a file in mat format. For
each English letter image, 28*28 pixels, the original pixel data is encoded into
the pulse trigger time after the time-to-first spike coding. Next, the time-encoded
data of each row in the mat are sorted and the pulse numbers are accumulated
during a given time interval. In other words, the element of the rth row and the
cth column towards every two-dimensional vector in the mat file indicates pulse
numbers, which are triggered at time t ∈ (c − 1, c), (c > 0) in the rth row of the
original pixel matrix. Then, the encoded data is fed in SNPSNet model in Section
3.2 for training, and the rule selected for each spiking neuron in SNPS is a → a
, with no delay. One pulse is consumed in spiking neurons that satisfy the firing
rule at any moment and ωij × 1 pulses are delivered to neurons with synaptic
connections in the next layer (ωij is derived from the learning function shown
in Section 2.2). The size of input image is 28*28 in this model; the batch size
is 60; the RMSProp is selected as the optimizer, which could be able to adjust
the learning rate automatically [45]. Thus, the learning rate is no longer need to

112

12 X. Gou et al.

perform any attenuation operations once the initial learning rate is given. The
initial learning rate is 0.0005 in this experiment. There are the accuracy and loss
rate of 50 epochs shown in figure below.

Fig. 9. Recognition accuracy graph for English letter in training.

Fig. 10. Training loss graph for English letter.

After 50 epochs training, the recognition accuracy reached 98.06% for the
English letter based on the chars 74k dataset in SNPSNet under the learning
rate and batch size according to the above parameters.

In order to perform an experiment about the influence of noise on the recog-
nition effect, the Gaussian white noise with signal-to-noise ratio (namely SNR)
of 20db, 15db, 10db and 5db is added to the English alphabet test set respec-
tively. The comparison between different noise and the original test set is shown
in Figure 12. As shown in the figure, there are 35 images selected randomly from

113

A Novel Spiking Neural P Systems for Image Recognition 13

Fig. 11. Recognition accuracy graph for English letter in test.

the original test set and test set with noise which SNR is 20db, 15db, 10db and
5db respectively from top to bottom. And the recognition accuracies obtained
are shown in Table 2.

Fig. 12. Schematic diagram of different noise and original image.

Table 2. Experimental results for different noise recognition

SNR of Test set ∞ 20db 15db 10db 5db
accuracy 98.06% 98.00% 96.93% 94.80% 86.17%

It is obvious that the test set with the SNR above 20db has little effect
on the recognition accuracy towards English alphabet from the experimental

114

14 X. Gou et al.

results. When the SNR of the test set is above 10db, the model can achieve
high recognition accuracy. And it is proved that SNPSNet possesses a sort of
anti-noise ability.

5 CONCLUSION AND PROSPECT

In this research, a novel universal model named SNPSNet is constructed to
deal with the image recognition problem. This work is inspired by the routing
mechanism in capsule neural network and the theoretical study of SNPS. The
time-coded image pixel data is converted into pulse numbers as the input of
SNPSNet model while retaining the position information. Besides, the routing
mechanism is introduced to update the weights dynamically between the synaps-
es of the neurons in SNPS. The experimental results show that the recognition
accuracy for MNIST is 95.87% and the recognition accuracy of English letters
after image enhancement reaches 98.06% in SNPSNet, which verify the feasibil-
ity and effectiveness of the model. For convolutional and BP neural networks
with the same recognition accuracy, the time and space complexity of SNPSNet
is reduced to a certain degree. Furthermore, the comparison experiments of the
test set under different degrees of noise for English letters recognition prove
that SNPSNet possesses a sort of anti-noise ability. The accuracy of SNPSNet
is 94.80% and 86.17% when test set SNR is 10db and 5db respectively. Under
the same experimental conditions, we did another test where the recognition
accuracy is 94.56%, 76.81% respectively in the traditional convolutional neural
network. From the experimental results it is obvious that when the SNR of test
set is small, SNPSNet has better anti-noise performance in contrast with that
of traditional convolutional neural network.

Although it does not reach the current highest recognition level in neural
networks, this work is the first attempt to construct a novel SNPS for image
recognition in the field of membrane computing which extracts features though
the image convolution and applied to MNIST and English letters recognition,
which provides some reflections and references for the pattern recognition prob-
lem of membrane system. The most prominent feature of SNPS is that different
rules can be triggered in the same neuron at different time, and it could deal
with different types of objects flexibly, such as texts, images, and voices. For
further research, more rules could be adopted to the spiking neurons in SNPS,
and corresponding delays could be set for the rules. In addition, a learning mech-
anism of rules could be introduced to select the disparate rules which achieve an
optimal level in each neuron to attain better recognition accuracy and to make
the SNPS system more universal.

References

1. Pǎun G.: Computing with Membranes.Journal of Computer & System Sciences
61(1), 108-143 (2000)

115

A Novel Spiking Neural P Systems for Image Recognition 15

2. Freund R , Gheorghe Pǎun, Mario J. Pérez-Jiménez.: Tissue P systems with channel
states. Theoretical Computer Science 330(1), 101–116 (2005)

3. Zhang X , Liu Y , Luo B , et al.: Computational power of tissue P systems for
generating control languages. Information Sciences 278, 285–297 (2014)

4. Freund R , Rogozhin Y , Verlan S .: Generating and accepting P systems with
minimal left and right insertion and deletion. Natural Computing (2014)

5. Krishna S N, Gheorghe M, Ipate F, et al.: Further results on generalised communi-
cating P systems. Theoretical Computer Science 701, 146-160 (2017)

6. Besozzi D , Cazzaniga P , Pescini D , et al.: Modelling metapopulations with s-
tochastic membrane systems. Biosystems 91(3), 499–514 (2008)

7. Colomer, Maȧngels, Margalida A , Valencia, Lúıs, et al.: Application of a compu-
tational model for complex fluvial ecosystems: The population dynamics of zebra
mussel Dreissena polymorpha as a case study. Ecological Complexity 20, 116–126
(2014)

8. Garćıa-Quismondo, Manuel, Levin M , Lobo D.: Modeling regenerative processes
with membrane computing. Information Sciences 381, 229–249 (2017)

9. Christinal H A , Daniel Dı́az-Pernil, Real P.: Region-based segmentation of 2D and
3D images with tissue-like P systems. Pattern Recognition Letters 32(16), 2206–
2212 (2011)

10. Dı́az-Pernil, Daniel, Berciano A , PeñA-Cantillana F , et al.: Segmenting images
with gradient-based edge detection using Membrane Computing. Pattern Recogni-
tion Letters 34(8), 846–855 (2013)

11. Zhang X , Li J , Zhang L.: A multi-objective membrane algorithm guided by the
skin membrane. Natural Computing 15(4), 597–610 (2016)

12. Li Z , Zhang L , Su Y , et al.: A skin membrane-driven membrane algorithm for
many-objective optimization. Neural Computing and Applications (2016)

13. Yuan J, Zhang G ,Guo D, et al.: Review of the application of membrane calcula-
tion in the field of image processing. Journal of Anhui University(Natural Science)
42(03), 29–36 (2018)

14. M. Gheorghe, G. Pǎun, M. J. Perez-Jimenez, and G. Rozenberg.: Spiking neural
P systems, research frontiers of membrane computing: Open problems and research
topics. International Journal of Foundations of Computer Science 24(05), 547–623
(2013)

15. Ionescu M, Pǎun G ,Yokomori T.: Spiking Neural P Systems. Fundamenta Infor-
maticae 71(2, 3), 279–308 (2006)

16. Maass W, Bishop C M. : Pulsed Neural Networks. Cambridge, MA: MIT Press,
Location (2001)

17. Ghosh-Dastidar S , Adeli H: Spiking Neural Networks. International Journal of
Neural Systems 19(04), 295–308 (2009)

18. Maass, Wolfgang: Lower Bounds for the Computational Power of Networks of
Spiking Neurons. Neural Computation 8(1), 1–40 (1996)

19. Maass W.: Networks of Spiking Neurons: The Third Generation of Neural Network
Models. Neural Networks 10(9), 1659–1671 (1997)

20. Zhang G , Rong H , Neri F , et al.: An Optimization Spiking Neural P System for
Approximately Solving Combinatorial Optimization Problems. International Jour-
nal of Neural Systems 24(05), 1440006 (2014)

21. Pan L, Pǎun G.: Spiking neural P systems with anti-spikes. International Journal
of Computers Communications & Control 4(3), 273-282 (2009)

22. Song T, Pan L, Wang J, et al.: Normal forms of spiking neural P systems with
anti-spikes. IEEE Transactions on NanoBioscience 11(4), 352-359 (2012)

116

16 X. Gou et al.

23. Pan L, Wang J, Hoogeboom H J.: Spiking neural P systems with astrocytes. Neural
Computation 24(3), 805-825 (2012)

24. Song T, Shi X, Xu J.: Reversible spiking neural P systems. Frontiers of Computer
Science 7(3), 350-358 (2013)

25. Cabarle F G C, Adorna H N, Perez-Jimenez M J, et al.: Spiking neural P systems
with structural plasticity. Neural Computing and Applications 26(8), 1905-1917
(2015)

26. Song T, Pan L, Pǎun G.: Spiking neural P systems with rules on synapses. Theo-
retical Computer Science 529, 82-95 (2014)

27. Song T, Pan L.: Spiking neural P systems with rules on synapses working in max-
imum spikes consumption strategy. IEEE Transactions on NanoBioscience 14(1),
38-44 (2015)

28. Song T, Pan L.: Spiking neural P systems with rules on synapses working in maxi-
mum spiking strategy. IEEE Transactions on NanoBioscience 14(4), 465-477 (2015)

29. Wang J , Shi P , Peng H , et al.: Weighted Fuzzy Spiking Neural P Systems. IEEE
Transactions on Fuzzy Systems 21(2), 209–220 (2013)

30. Dı́az-Pernil, Daniel, PeñA-Cantillana F , Gutirrez-Naranjo, Miguel A.: A parallel
algorithm for skeletonizing images by using spiking neural P systems. Neurocom-
puting 115, 81–91 (2013)

31. Zhang G , Rong H , Neri F , et al.: An optimization spiking neural p system for
approximately solving combinatorial optimization problems. International Journal
of Neural Systems 24(05), 1440006 (2014)

32. Peng H , Wang J , Pérez-Jiménez, Mario J, et al.: Fuzzy reasoning spiking neural
P system for fault diagnosis. Information Sciences 235(Complete), 106–116 (2013)

33. Zhao J B , Wang T , Zhang G , et al.: Fault Diagnosis of Electric Power Systems
Based on Fuzzy Reasoning Spiking Neural P Systems. IEEE Transactions on Power
Systems 30(3), 1182–1194 (2014)

34. Xiong G, Shi D, Zhu L, et al.: A new approach to fault diagnosis of power sys-
tems using fuzzy reasoning spiking neural P systems. Mathematical Problems in
Engineering 2013, 1-13 (2013)

35. Wang T, Zhang G, Rong H, et al.: Application of fuzzy reasoning spiking neural
P systems to fault diagnosis. International Journal of Computers Communications
& Control 9(6), 786-799 (2014)

36. Yahya Y, Qian A, Yahya A. Power transformer fault diagnosis using fuzzy reasoning
spiking neural P systems. Journal of Intelligent Learning Systems and Applications.:
Tissue P systems with channel states. Theoretical Computer Science 8(04), 77-91
(2016)

37. Gutiérrez-Naranjo M A, Pérez-Jiménez M J.: A spiking neural P system based
model for Hebbian learning. in: Proceedings of the 9th Workshop on Membrane
Computing 189-207 (2008)

38. Song T , Pan L , Wu T , et al.: Spiking Neural P Systems with Learning Functions.
IEEE Transactions on NanoBioscience 1(1),(2019)

39. Sabour S , Frosst N , Hinton G E.: Dynamic Routing Between Capsules. Neural
Information Processing Systems 3856–3866 (2017)

40. Optican L M, Richmond B J.: Temporal encoding of two-dimensional patterns by
single units in primate inferior temporal cortex. III. Information theoretic analysis.
Journal of Neurophysiology 57(1), 162 (1987)

41. Tovee M J , Rolls E T , Treves A , et al.: Information encoding and the responses
of single neurons in the primate temporal visual cortex. Journal of Neurophysiology
70(2), 640–654 (1993)

117

A Novel Spiking Neural P Systems for Image Recognition 17

42. Kjaer T W , Hertz J A , Richmond B J.: Decoding cortical neuronal signals: Net-
work models, information estimation and spatial tuning. Journal of Computational
Neuroscience 1-2(1), 109–139 (1994)

43. Maass W.: Computing with spiking neurons. Pulsed neural networks, Location
(1999)

44. Bialek W, Rieke F, De R R V S, et al.: Reading a neural code. Science 252(5014),
1854–1857 (1991)

45. Tieleman T, Hinton G.: Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning
4(2), 26–3 (2012)

118

Reliability Evaluation of Distribution Network Based on
Fuzzy Spiking Neural P System with Self-Synapse

YuLei Huang1,2, Tao Wang1,2, and Jun Wang1,2 Hong Peng3

1 School of Electrical Engineering and Electronic Information, Xihua University,
Chengdu 610039, China

2 Key Laboratory of Fluid and Power Machinery, Ministry of Education, Xihua University,
Chengdu 610039, PR China

3 School of Computer and Software Engineering, Xihua University,
Chengdu 610039, PR China

Abstract. This paper proposes a fuzzy spiking neural P system with self-synapse (in short,
FSNPSSs) which applied to the reliability assessment of distribution network. This method
maps the operation or fault state of the distribution network component and the load to
the excited or resting state of the neuron, and converts the electrical relationship between
the component and the load and the system into a synaptic connection relationship. Then,
the probability of occurrence of the state is transmitted in the form of a pulse value, and the
reliability index of the distribution network is accumulated. Finally, the successful application
of membrane system in reliability assessment of distribution network is realized.

Keywords: spiking neural P system, self-synapse, reliability assessment, distribution net-
work

1 Introduction

The reliability of the distribution network of power system is directly related to the electricity
consumption experience of the majority of users. It is of great practical significance to evaluate
the reliability of the distribution network. The mainly methods for the reliability assessment of
distribution network include the Monte Carlo method [1] and the analytical method [2]. These two
methods can be used to calculate the reliability index of the system. However, these two methods
cannot be used to calculate the failure probability of the component in the system failure, and
cannot identify the weak link of the system. For this reason, many scholars have proposed Bayesian
networks and other reasoning models to calculate the degree of influence of various components in
the power grid on the system [3][4]. But there are certain difficulties in calculating the index of the
system failure frequency when using a Bayesian network for non-sequential simulation of reliability.

The membrane computing, also known as P system, is a distributed parallel computing system
derived from the structure and function of biological cells, first proposed by Pǎun in [5]. Spiking
neural P system (in short, SNPs) is an important branches of the P system, which realize the
information transfer and processing by simulating the transmission process of electrical impulses
[6][7]. The neurons and the synapses are the basic composed of components SNPs. In SNPs, a
neuron and a synapse represent a node and a connection among nodes(neurons), respectively. The
synapses in original SNPs is static which limits its extension of function. So, in recent years, some
studies focused on synapse modification and proposed a few new models through adding the learning

119

2

functions [8][9], considering the plasticity or timeliness of synapse [10][11], introducing the division
and budding of neuron to the SNPs [12] and so on.

Under the guidance of the basic ideas of SNPs, many scholars have proposed fuzzy spiking neural
P system (in short, FSNPs) by changing the transfer medium of the pulse in SNPs [13][14]. FSNPs
is ability to process fuzzy information with dynamically and efficiently, and it has been successfully
applied in the field of power system fault diagnosis [15][16][17][18]. At present, in general FSNPs
and their extension systems, it is believed that the synapse connection can only from one neuron
to another neuron and not to itself. Biological studies have shown that neuronal synapses can be
directed not only from one neuron to another, but also from neuronal axons to their own dendrites
or soma. These synapses are also called self-synapses [19][20], and the existence of self-synapse is
of great significance to the normal physiological activities of living things. In addition, currently
FSNPs is mainly used in the field of fault diagnosis of power systems, and there is still a lack
of research data for the application of FSNPs in other fields of power systems.In addition, the
introduce of self-synapse can improve the programming experience to convenient to observe the
change of pulse value with time.

In this paper, a FSNPs with self-synapses(in short, FSNPSSs) is proposed. The FSNPSSs can
accumulate the pulse value, and this feature is applied to calculate the reliability index of the
distribution network. This method has the following two improvements to the FSNPs: (1) A new
type of synapse(self-synapse) is added to the FSNPs. The FSNPSSs break through the limitations
that the spiking of the neurons cannot be passed on to itself in FSNPs. As a result of, FSNPSSs
realizing the accumulation of pulse values. (2) The forgetting rule is used for terminating system
operations. In this paper, the RBTS-BUS2 system is used as an example to verify the feasibility of
the algorithm. The self-synaptic neurons accumulate the probability of failure at each load point,
and finally realize the calculation of the system reliability index. In the meantime, the analysis of
the influence degree of components on the system can be simultaneously completed and provide an
important data for improving the reliability of the distribution network.

2 Problem Description

Fig. 1 is a widely studied distribution network system(RBTS-BUS2-F1) which mainly includes
7 loads (LP1∼LP7), three segment switches (D1∼D3), 11 lines (L1∼L11), 7 transformers and a
alternate supply(A) [21]. When the distribution network is in normal operation, all components are
in normal working condition, and the segmentation switch is closed, and the load point is powered
by the main power supply. When the line or transformer located on the load branch fails, due to the
isolation of the fuse, only the load branch where the faulty component is located is power failure.
And the power outage time is the component failure time, and other loads are not affected. For
example, line L5 or transformer T5 failure will cause to load LP3 or load LP5 failure, respectively.
If the fault occurs on the main feeder, all load points will be power failure. Then, the failure time of
the load branch power which is in series with the faulty component is fault time of the component.
However, the segment switch directly connected to the fault point will be disconnected, which is
located at the front and rear ends of the load point. The load branch can be restored by the main
power supply and the backup power supply respectively, and the failure time of the power is the
switching operation time. For example, if line L7 is failure, then loads LP1∼LP7 will be outage of
power.

The different state combinations of all components correspond to a certain probability of oc-
currence. Moreover, the probability of outage of each load point can be obtained by accumulating

120

3

A

B1 L1 L4
D1

L2

LP1

L5

LP3

R3

T3T1

R1
L10

D2 D3

L3

LP2

R2

T2
L6

LP4

R4

T4

L9

LP6

R6

T6

L8

LP5

R5

T5

L7

L11

LP7

R7

T7

F1

Fig. 1. RBTS-BUS2-F1 feeder system

the probability of failure of the load point under different operating states. Finally, the system
reliability index can be calculated based on the corresponding data.

3 The fuzzy spiking neural P system

We briefly review the basic definition of the fuzzy spiking neural P system (FSNPs) [13].
Definition 1: An FSNPs (with degree m ≥ 1) is a construct

� = (A, σ1, σ2, . . . , σm, syn, I,O) (1)

Here:
(1) A={a} is a singleton alphabet (a is called spike);
(2) σ1, σ2, . . . , σm, are m neurons, of the form σi = (θi, ci, ri), i = 1, 2, · · · ,m, where:

(a) θi is a real number in [0, 1] representing the potential value of spikes(also called pulse
value) contained in neuron σi;

(b) ci is a real number in [0, 1] representing the truth value associated with neuron σi;
(c) ri is a firing rule corresponding to neuron σi, of the form E/aθ → aβ , where E is a reg-

ular expression,θ and β are real numbers in [0, 1];
(3) syn ⊆ {1, 2, · · · ,m} × {1, 2, · · · ,m} is the connection among neurons (synaptic directed gr-

aph), for all (i, j) ∈ syn, i ≤ m, j ≤ m, i �= j;
(4) I and O are the input neuron set and the output neuron set, respectively.
The basic operation process of the FSNPs is as follow: firstly, the input neurons obtain input

pulses from the environment. Then, if the neuron satisfies the firing condition, it sends pulses to all
postsynaptic neurons which are connected to itself. Moreover the output neurons will output the
final result. Since this system does not have a memory function, the neurons cannot accumulate
the pulse values.

4 A fuzzy spiking neural P system with self-synapse

In this paper, we need to accumulate the pulse values obtained in each time. So, a fuzzy spiking
neural P system with self-synapse system(FSNPSSs) is proposed.

121

4

Definition 2: An FSNPSSs (with degree m ≥ 1) is a construct

∏
= (A, σ1, σ2, . . . , σm, syn, I,O) (2)

Here:

(1) A, I and O are the same as definition 1.

(2) σ1, σ2, . . . , σm, are m neurons, of the form σi = (θi, ci,
−→ω i, λi, ri), i = 1, 2, · · · ,m, here:

(a) θi is a real number in [0, 1] representing the potential value of spikes (also called pulse

value) contained in neuronσi;

(b) ci is a real number in [0, 1] representing the truth value associated with neuron σi;

(c) −→ω i = (ωi1, ωi2, · · · , ωin) is a real vector in [0, 1]k representing the weight value of synaptic

between neuron σi and postsynaptic neurons, where k is the dimension of −→ω i and n is
the number of postsynaptic neurons with neuron σi.

(d) λi = {λr
i , λ

s
i} is a pair of real numbers in [0, 1]. λr

i and λs
i represent the firing threshold

and forgetting threshold of the neuron σi , respectively.

(e) ri is a rule set. Here

1) E/aθ → aβ is a firing(spiking) rule, and θ > λr
i is the firing condition. If the θ recei-

ved by σi is greater λ
r
i , the firing rule is activated.

2) E/aθ → λ is a forgetting rule, and θ ≥ λs
i is the forgetting condition. If the θ received

by σi is greater or equal to λs
i , the forgetting rule is activated. For the same neuron

σi, λ
s
i > λr

i .

(f) syn ⊆ {1, · · · ,m}×{1, · · · ,m} is the connection among neurons(synaptic directed graph),

for all (i, j) ∈ syn, i ≤ m, j ≤ m.

The FSNPSSs is similar in form to the FSNPs. The main difference between the FSNPs and
the FSNPSSs is that the FSNPSSs remove the restriction i �= j in syn, and allow neurons to link
synapses to themselves, thereby passing pulses to themselves. In addition, the forgetting rule is used
to terminate the operation of the system.

4.1 Fuzzy production rules

According to different purposes, the neurons are divided into two types: the proposition neurons
and the regular neurons. The regular neurons have two kinds of: the or regular neurons and the
and regular neurons.
Definition 3: A proposition neuron, as shown in Fig. 2, represents a proposition in a production
rule which is expressed by a symbol P.

122

5

a
a a
a

a
p

1()
=

0

s
t t p t

s
t

c
t

(a) (b)

cP

cP

Fig. 2. (a) Proposition neuron and (b) its simplified form.

A proposition neuron can be represented as σ = (θ, c,−→ω , r), where θ, c are the pulse value
and the true value of the proposition neuron, respectively. −→ω ⊆ [0, 1]k is the k dimensions synaptic
weight vector, where ωp is the self-synaptic weight value which is a special elements in −→ω . If ωp = 0,
then this proposition neuron is a neuron without self-synapse. r is a finite rule set in which the
firing rule is E/aθ → aβ and the forgetting rule is E/aα → λ.

(1) If ωp �= 0, when the neuron receives a pulse value from the other neurons at time t meets
the θt < λs, the firing rule is triggered. And the neuron updated pulse value in accordance with the
βt = θt + βt−1 ⊗ ωp and transmitted it to each of the postsynaptic neurons which connected itself.
If θt > λs, the forgetting rule is triggered and the pulse value is cleared.

(2) If ωp = 0, when the neuron receives a pulse with pulse value θt of a at time t, the pulse value
is updated according to βt = θt and it is transmitted to each postsynaptic neuron. This type of
neuron has no forgetting rules. If the proposition neuron is an input neuron, then its pulse value is
obtained from the environment. Otherwise, its pulse value is obtained from its presynaptic neurons.

Definition 4: An or rule neuron, as shown in Fig. 3, a rule that indicates an ”or” relationship
between presynaptic proposition neurons, represented by the symbol or. It has more than two
presynaptic proposition neurons, but only one post-synaptic proposition neuron.

k

a
a a

cR
a

cR or

or

1

1

k

= 1 1 2 2 }max{ , , ,,, k k c

(a) (b)

2
2

Fig. 3. An or rule neuron

123

6

When the or rule neuron receives k pulses of pulse value θ1, θ2, · · · , θk, if the firing condition is
satisfied, a pulse with a pulse value of β = max{θ1 ⊗ ω1, θ2 ⊗ ω2, · · · , θk ⊗ ωk} ⊗ c is outputted to
its postsynaptic neurons. Otherwise the received pulse is used to update the neuron pulse value.

Definition 5: An and rule neuron, as shown in Fig. 4, a rule that indicates an ”and” relationship
between presynaptic proposition neurons, represented by the symbol and. It has more than one
presynaptic proposition neurons, but only one postsynaptic proposition neuron.

k

a
a a

cR
a

cR and

and

1

1

k

(a) (b)

2
2

= 1 1 2 2()k k c

Fig. 4. An and rule neuron

When the and rule neuron receives k pulses of pulse value θ1, θ2, · · · , θk, if the firing condition
is satisfied, a pulse with a pulse value of β = (θ1 ⊗ω1 + θ2 ⊗ω2 + · · ·+ θk ⊗ωk)⊗ c is outputted to
its postsynaptic neurons. Otherwise the received pulse is used to update the neuron pulse value.

In addition:
(1) θjt is the pulse value corresponding to the neuron θj at time t.
(2) All regular neurons do not have forgetting rules.

4.2 FSNPSSs model for fuzzy production rules

In this paper, the fault transfer process of the distribution network will be simulated, so the
following fuzzy production rule models are established. Type1: or rule model. The modeling process
is shown in Fig. 5(a), and the reasoning process is as follows:

Firstly, neuron σk+1 obtains one group pulse with pulse value of θ1,t−2, θ2,t−2, · · · θk−1,t−2 from
the environment or the presynaptic neurons. Then, the neuron σk+1 transmits a pulse with value
of max{θ1,t−2 ⊗ ω1 + θ2,t−2 ⊗ ω2 + · · · + θk−1,t−2 ⊗ ωk−1} ⊗ c to the postsynaptic proposition
neuron σk. Finally, the proposition neuron σk decided to use the firing rule or the forgetting rule
according to the received pulse value. If the firing rule is used, the pulse value is updated according
to θk,t = θk+1,t−1 + θk,t−1 ⊗ ωk. And if the forgetting rule is used, the pulse value is cleared. For
the neurons without self-synapse, no forgetting rules are used.

Type2: and rule model. The modeling process is shown in Fig. 5(b), and the reasoning process
is similar to type1.

4.3 Reasoning algorithm based on FSNPSSs

Based on the definition of each neuron type and neuron production rule of the FSNPSSs, this
section proposes a corresponding fuzzy reasoning algorithm. Including the definition of transfer

124

7

1k

,k k tP

k

1k

or k

1

11 1, 2tP

22 2, 2tP

11 1, 2 kk k tP

2

, 1 1, 2 1 2, 2

, 2 1, 2 1}

max{ ,
, ,

0
1,111

k t k t t s
k

k t k t k
s
k

c

R(c)

(a) or rule model

1k

,k k tP

k

1k

and k

1

11 1, 2tP

22 2, 2tP

11 1, 2 kk k tP

2

1, 2 1 2, 2 2
, 1

, 1, 2 1

0
111

t t s
k t k k

k t k t k

s
k

c

R(c)

(b) and rule model

Fig. 5. (a) or rule model and (b) and rule model

matrix, pulse vector, arithmetic operator, and the update method of neuron pulse value etc. The
reasoning algorithm is as follows:

(1) Initialization the proposition neuron pulse vector is θt = (θ1,t, θ2,t, · · · , θp,t)p and the regular
neuron pulse vector δ is δt = (δ1,t, δ2,t, · · · , δr,t)t. The start time t=1 and the end time t=T.
Synaptic weight value matrix is set to Wr1,Wr2,Wp1,Wp2.

(2) Corresponding to the input pulse sequence according to the pulse time series table.
(3) It is judged whether the neuron forgetting rule is satisfied. If it is satisfied, then the forgetting

rule is executed and no pulse is generated,and the pulse value is 0. If the forgetting rule is
not met, it is judged whether the firing rule of the neuron is satisfied. If it is satisfied, then
a pulse is transmitted to all postsynaptic neurons of the regular neuron.

(4) Updating the regular neuron pulse vector with the following formula.

δt+1 = WT
r1 � θt (3)

(5) Updating the proposition neuron pulse vector with the following formula.

θt+1 = WT
p1 � (CT ⊗ δt) +WT

p2 ⊗ θt (4)

(6) Determining whether t is equal to the termination time T. If it is satisfied, the operation is
terminated and the result is outputted. If not, then t=t+1 and return (2). Determining
whether t is equal to the termination time T, and if it is satisfied, the operation is terminated
and the result is output. If not, then t=t+1 and return (2).

Here:
(a) Wr1 = (ωij)p×r is the synaptic weight matrix representing the directed weight connect-

ion from proposition neurons to or rule neurons. If there is a synapse from the proposition
neuron σi the or rule neuron to σj , then ωij �= 0, otherwise, ωij = 0.

(b) Wr2 = (ωij)p×r is the synaptic weight matrix representing the directed weight connect-

125

8

ion from proposition neurons to and rule neurons. If there is a synapse from the propo-
sition neuron σi to the and rule neuron σj , then ωij �= 0, otherwise, ωij = 0.

(c) Wp1 = (ωij)r×p is the synaptic weight matrix representing the directed weight connect-
ion from regular neurons to proposition neurons. If there is a synapse from the regular
neuron σi to the proposition neuronσj , then ωij �= 0, otherwise, ωij = 0.

(d) Wp2 = (ωii)p×p is the synaptic weight matrix representing the directed weight connect-
ion from proposition neurons to proposition neurons. If there is a synapse from the
proposition neuron σi to the proposition neuron σi ,then ωii �= 0, otherwise, ωii = 0.

(e) θt = (θ1,t, θ2,t, · · · , θp,t)p is the pulse value vector of the proposition neuron, where θi,t is
the pulse values of the ith proposition neuron at time t and it is a real numbers in [0, 1],
i=1, 2, · · · , p.

(f) δt = (θ1,t, θ2,t, · · · , θr,t)r is the pulse value vector of the regular neuron, where δj,t is the
pulse values of the jth regular neuron at time t and it is a real numbers in [0, 1], j=1, 2,
· · · , r.

(g) C = diag(c1, c2, · · · , cr), where cj is the real number in [0, 1], j=1, 2, · · · , r. Indicates
the pulse truth value of the jth regular neuron, that is, its deterministic factor corre-
sponding to the production rule.

Here:

WT �θ=(δ1, δ2,· · ·, δp)T , where, δi = max{w1i ⊗ θ1, w2i ⊗ θ2,· · ·, wpi ⊗ θp}, i=1, 2,· · ·, p. (5)

WT ⊗θ=(δ1, δ2,· · ·, δr)T , where, δi = w1i ⊗ θ1 ⊕ w2i ⊗ θ2 ⊕· · ·⊕ w1i ⊗ θp, i=1, 2,· · ·, p. (6)

WT �δ=(θ1, θ2,· · ·, θr)T , where, θi = max{w1i⊗δ1, w2i⊗δ2,· · ·, wri ⊗ δr}, i=1, 2,· · ·, r. (7)

C�δ = (c1⊗δ1, c2⊗δ2,· · ·, cr ⊗ δr)
T . (8)

5 Distribution Network Reliability Evaluation Algorithm Based on
FSNPSSs

In this paper, the process of the reliability assessment of distribution network is as follows.
Firstly, accumulating the probability of power failure of each load point according to different state
combinations of all components, and then calculates the probability of power failure of the feeder by
the FSNPSSs. Finally, the reliability index is calculated according to the statistical data. Therefore,
the fault information transmission sequence is from the component to the load point to the entire
feeder. When mapping the FSNPSSs, each component is used as an input unit, and the load and
the feeder are used as output units.

According to the above principles, the reliability evaluation method based on the FSNPSSs is
as follows:

(1) Data initialization, which mainly includes calculating the failure probability of each compo-
nent node and joint node. In this paper, we use 1 and 0 indicate the fault status and the
normal operation status respectively. The calculation method is as follows:
(a) For line components, the probability of failure is:

P (L = 1) = l(λlrl + λ′
lr

′
l)/8760 (9)

Here, l is the length of the line. λl and λ′
l, the annual average failure rate and the annual

average planned maintenance rate of the line, respectively. rl and r′l are the annual fault
repair time and planned maintenance time of the line, respectively.

126

9

Establishing a reliability evaluation
model based on FSNPSSs.

Calculating the reliability index value
of the distribution network.

t==T t=t+1

Updating pulse value.

No

Yes

Sending a pulse vector to the
FSNPSSs

Initialization

Calculating system state probability.

Establishing an input neuron
pulse vector sequence table. t=1;

Fig. 6. Reliability Evaluation Flow of Distribution Network Based on FSNPSSs

(b) For transformer components, the probability of failure is:

P (T = 1) = l(λT rT + λ′
T r

′
T)/8760 (10)

Here, λT and λ′
T are the annual average failure rate of the transformer and the annual

average planned maintenance rate, and rT is the annual fault repair time or replacement
time of the transformer. r′T is the planned maintenance time of the transformer.

(c) For a joint node composed of a line and a transformer in series, the joint failure probab-
ility is:

P (LT = 1) = 1 − P (L = 0)P (T = 0) (11)

(d) For the joint node composed of the line and the front-end segment switch, the joint fa-
ilure probability is:

P (LD = 1) = lλlrD/8760 (12)

Here,rD is the action time of the segment switch.
(e) For joint nodes composed of line and back-end sectional switches and alternate supply,

t-
he joint failure probability is:

P (LDA = 1) = lλlrm/8760 (13)

Where, rm is the maximum operating time of the sectional switch and the standby pow-
er switch closing time.

127

10

(2) According to the relationship between components and loads, load and feeder in fault trans-
mission. The network model based on FSNPSSs is established.

(3) The table of input pulse vectors sequence is calculated according to the probability obtained
in (1). The impulse sequence of input neurons in (2) is in detail described in case analysis.

(4) Running the FSNPSSs according to the reasoning algorithm in Section 4.3.
(5) Determining whether the termination operation condition is satisfied. If it is satisfied, go to

(6), and if not, return to (4).
(6) Obtaining the failure probability of each load point and feeder, and calculate all the reliability

indicators in combination with the output unit’s corresponding state change of the input u-
nits.
The calculation process is shown in Fig. 6.

6 Case analysis

B1

L5

LP3

R3

T3

L6
R4

T4

L9

LP6

R6

T6

L8

LP5

R5

T5

L11

LP7

R7

T7

F1

R9

L1

L2

LP1

T1

R1

L3

LP2

R2

T2

L4
D1

L10
D2 D3

L7

L16 L18
D5

L24
D6 D7

L21

LP4

L12 L14
D4

L13

LP8

R8

LP9

L15

B2

L19

LP11

T9

R11

L20

LP12

R12

T10

L17

LP10

T8

R10
L25

LP15

T13

R15

L29

D8

L34

D9 D10

L32

L22

LP13

T11

R13

L23

LP14

R14

T12
L27

LP16

T14

R16

L28

LP17

R17

T15

L30

LP18

T16

R18

L31

LP19

R19

T17

L35

LP21

T19

R21

L36

LP22

R22

T20
L33

LP20

R20

T18

A1

A2

B3
F3

B4
F4

F2

L26

Fig. 7. The RBTS-BUS2 system

In this paper, RBTS-BUS2 is used as the test system. The system structure and parameters,
such as line length, failure rate and repair time, are presented in Ref. [21] There are four feeders

128

11

(F1∼F4) in the system. The structure of BUS2 is shown in Fig. 7. Taking the feeder F1 as an
example, the rationality of this method is illustrated. The calculation process of other feeders and
the whole bus are similar to the F1. According to the discussion in Sections 1 to 5, the failure
probability of each node in F1 is calculated and its FSNPSS network is established as shown in Fig.
8.

σ3

σ4

σ5

σ6

σ7

σ8

σ9

σ10

σ11

σ12

σ13

1L

4 1L D

7 2L D

10 3L D

7 3 1L D A

σ1

σ2

1 1 1L D A

σ18

σ19

σ20

σ21

σ22

σ23

σ24

1LP

2LP

3LP

4LP

5LP

6LP

7LP

σ25

1F

σ33

σ14

σ15

σ16

2 1L T

3 2L T

5 3L T

4L

6 4L T

8 5L T

7L

9 6L T

11 7L T
σ17

10L

σ26 or

σ27 or

σ28 or

σ29 or

σ30 or

σ31 or

σ32 or

and

ω1

ω2

ω3

ω4

ω5

ω6

ω7

4 2 1L D A

Fig. 8. FRSNPSS network model corresponding to BUS2-F1

Here:

(1) The input neuron is σ1 ∼ σ17, corresponding to the component node, and the output neuron

is σ18 ∼ σ25, corresponding to the load points and the feeder. Among them, σ18 ∼ σ24

neurons are the neurons with self-synapse.

(2) According to the electrical principle, the relationship among the input nodes and the load

nodes are mapped to the neuron σ26 ∼ σ32 in the graph. For example, synapses from the
input neurons σ1, σ2, σ5, σ10 and σ15 to the neuron σ26 means that for nodes L2T1, L1,

129

12

L4D1, L7D2 and L10D3, as long as there is one fault, the load point LP1(σ18) will be cut
off, so these neurons(σ1, σ2, σ5, σ10 and σ15) are connected by or regular neuron(σ26). Theirs
synaptic weights are all 1 (Not shown in the Fig. 8).

(3) Each load acts on the feeder through different influence factors, which are mapped to neuron
σ33 in the graph. For these synapses from neurons σ18 ∼ σ24 to neuron σ33 means that for load
points LP1∼LP7 whose fault influence on feeder F1(σ25) by a certain weight value(ω1 ∼ ω7)
respectively, so these neurons(σ18 ∼ σ24) are connected by and regular neuron(σ33). And the
formula of synaptic weight is:

ωi = Ni/

n∑
i=1

Ni (14)

Where, Ni is the number of users of ith load point and n is the number of load points.
(4) The last input of the input neuron is a pulse with a pulse value of 1. The purpose is to sti-

mulate the forgetting rule in the neurons with self-synapse, so that the output is zero, and the
system is prevented from running unrestricted. The threshold of the forgetting rule within
the neurons with self-synapse is λs = 1.

(5) The input neuron pulse sequence is shown in Table 1.

Table 1. Input neuron status sequence

t σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 · · · σ17 θ

0 0 0 0 0 0 0 0 0 · · · 0 θ0
1 0 0 0 0 0 0 0 0 · · · 1 θ1
2 0 0 0 0 0 0 0 0 · · · 0 θ2
...

...
...

...
...

...
...

...
...

...
...

...
2n−1 1 1 1 1 1 1 1 1 · · · 1 θ2n−1

2n 1 1 1 1 1 1 1 1 · · · 1 θ2n

Where, 1 and the 0 represents the excitation or rest of the neuron, indicating that the element
is in the fault/disconnection state or in the normal/closed state, respectively.
(a) The formula for calculating the pulse value is as follows:

θt,i =

⎧⎪⎪⎨
⎪⎪⎩

St,i

n∏
i=1

Pt,i if t ≤ 2n − 1

1 if t = 2n

0 if t > 2n

(15)

Here:

Pt,i =

{
P if St,i = 0
1 − P if St,i = 1

(16)

P is the normal working probability of the corresponding element of the neuron. St,i is the
state of the component i at time t. n is the number of all elements. 1 and 0 represents the state
of fault/action or the state of normal/non-action, respectively.

130

13

6.1 The reliability index of the system

In this paper, the simulation operation is performed on matlab2010b, and the reasoning algo-
rithm is programmed according to the Section 4. According to the output result, the reliability
index of the system can be calculated, including ASUI (system average unavailability index) ASAI
(system average availability index), SAIDI (system average interruption duration index), EENS (ex-
pected energy not supplied), SAIFI (system average interruption frequency index). Table 2 shows
the comparison of FSNPSS results with those in Ref.[21]. (The ASUI can be derived directly from
the final output of the system. The ASAI and SAIDI can be derived from ASUI. The SAIFI can be
calculated according to the change of load point failure rate with component state, and EENS can
be calculated from the energy shortage at each load point.These indexes are calculated by formulas
provided in [22])

Table 2. The results calculated from the FSNPSS model and Ref.[21]

ASAI SAIFI EENS ASUI SAIDI

FSNPSS Ref.[21] FSNPSS Ref.[21] FSNPSS Ref.[21] FSNPSS Ref.[21] FSNPSS Ref.[21]
F1 0.999912 0.999912 0.247 0.248 13171 13172 0.000088 0.000088 3.61 3.62
F2 0.999940 0.999940 0.139 0.140 1122 1122 0.000060 0.000060 0.52 0.52
F3 0.999586 0.999586 0.230 0.250 11203 11203 0.000412 0.000412 3.60 3.61
F4 0.999588 0.999588 0.248 0.247 12248 12248 0.000412 0.000412 3.60 3.61

BUS2 0.999588 0.999588 0.241 0.248 37743 37746 0.000412 0.000412 3.62 3.61

It can be seen from the data in the table that the results obtained by the FSNPSSs method and
the Ref.[16] are consistent, and the correctness of the method is verified.

6.2 The failure probability of component during system failure

Fig. 9. Possible failure rate of components at each load point or system failure of F1

131

14

In FSNPSSs, the output pulse varies with different input pulse. By comparing the relationship
between input pulse and output pulse, the probability of simultaneous failure of load point and
component is counted. Then the probabilities of possible failure of each component can be calculated
according to the Bayesian conditional probability formula, and the influence of components on load
and feeder reliability can be analyzed by fault probability. Fig. 9 shows the possible failure rate of
each component in each load point or system failure in F1.

From the Fig. 9, we can see that when the feeder F1 is failure, the failure rates of components L3,
L5, L8 and L11 are higher relative to the others components. So, in order to reduce the failure rate
of feeder F1, it is necessary to give priority to improving the reliability parameters of components
L3, L5, L8 and L11.

7 Conclusion

(1)This method proposed in this paper achieves the accumulation of pulse values by introduc-
ing self-synapses into the FSNPs. Combined with the fault information transmission principle of
distribution network, the system reliability index is accumulated. A reliability assessment method
of distribution network based on FSNPSSs is proposed.

(2) The method has the characteristics that the graphical interface structure is simple and clear,
and the states of the load point and the feeder line in the component failure can be obtained in
parallel. In addition, since the FSNPSSs can obtain the output state of the corresponding system
under different input states. The calculation of reliability index and component impact analysis on
system can be performed simultaneously.

(3) Because this method converts the transmission relationship of fault information into the
process of neuron excitation on the synapse, it has strong applicability. When the component
connection mode is changing, such as absence of the fuse or the isolating switch etc. The system
reliability also can be calculated by changing the synaptic connection mode or inputting pulse
sequence.

(4) Compared with the original FSNPs, the complexity of FSNPSSs programming has not
increased much, but its operation efficiency and function have been greatly improved. So it can
obtain a better programming experience.

(5) Compared with the traditional methods and Bayesian network, the method proposed by this
paper can not only calculating all reliability indexes but also synchronous obtaining the importance
of components in the system.

Acknowledgment This work was supported by a grant from Sichuan Provincial Department of
Science and Technology (No. 2019122).

References

1. Heydt, G.T., Graf, T.J.: Distribution system reliability evaluation using enhanced samples in a monte
carlo approach. IEEE Transactions on Power Systems 25(4), 2006–2008 (2010)

2. Hou, K., Jia, H., Xu, X., Liu, Z., Jiang, Y.: A continuous time markov chain based sequential analytical
approach for composite power system reliability assessment. IEEE Transactions on Power Systems
31(1), 738–748 (2015)

3. Yu, D.C., Nguyen, T.C., Haddawy, P.: Bayesian network model for reliability assessment of power
systems. IEEE Transactions on Power Systems 14(2), 426–432 (1999)

132

15

4. Zhu, Y., Huo, L., Zhang, L., Yan, W.: Bayesian network based time-sequence simulation for power
system reliability assessment. In: Mexican International Conference on Artificial Intelligence (2008)

5. Pǎun, G.: Computing with membranes. Journal of Computer System Sciences 61(1), 108–143 (2000)
6. Ionescu, M., Yokomori, T.: Spiking Neural P Systems (2006)
7. Pǎun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Computing (2010)
8. Song, T., Pan, L., Wu, T., Zheng, P., Wong, M.D., Rodŕıguez-Patón, A.: Spiking neural p systems with

learning functions. IEEE transactions on nanobioscience 18(2), 176–190 (2019)
9. Gutirrez-Naranjo, M.A., Prez-Jimnez, M.J.: Hebbian learning from spiking neural p systems view. In:

Membrane Computing - 9th International Workshop, WMC 2008, Edinburgh, UK, July 28-31, 2008,
Revised Selected and Invited Papers (2008)

10. Cabarle, F.G.C., Adorna, H.N., Pérez-Jiménez, M.J., Song, T.: Spiking neural p systems with structural
plasticity. Neural Computing and Applications 26(8), 1905–1917 (2015)

11. Fgc, C., Adorna, H.N., Jiang, M., Zeng, X.: Spiking neural p systems with scheduled synapses PP(99),
1–1 (2017)

12. Pan, L., Păun, G., Pérez-Jiménez, M.J.: Spiking neural p systems with neuron division and budding.
Science China Information Sciences 54(8), 1596 (2011)

13. Hong, P., Wang, J., Prez-Jimnez, M.J., Hao, W., Jie, S., Tao, W.: Fuzzy reasoning spiking neural P
system for fault diagnosis. Information Sciences 235(6), 106–116 (2013)

14. Wang, J., Shi, P., Peng, H., Prez-Jimnez, M.J., Wang, T.: Weighted fuzzy spiking neural P systems.
IEEE Transactions on Fuzzy Systems 21(2), 209–220 (2013)

15. Min, T.U., Wang, J., Hong, P., Peng, S.: Application of adaptive fuzzy spiking neural P systems in
fault diagnosis of power systems. Chinese Journal of Electronics 23(1), 87–92 (2014)

16. Zhao, J.B., Tao, W., Zhang, G., He, Z., PErez-JimEnez, M.J.: Fault diagnosis of electric power systems
based on fuzzy reasoning spiking neural P systems. IEEE Transactions on Power Systems 30(3), 1182–
1194 (2015)

17. Wang, J., Hong, P., Min, T.U., Mario, P.J.J., Peng, S.: A fault diagnosis method of power systems
based on an improved adaptive fuzzy spiking neural P systems and PSO algorithms. Chinese Journal
of Electronics 25(2), 320–327 (2016)

18. Xiong, G., Shi, D., Lin, Z., Duan, X.: A new approach to fault diagnosis of power systems using fuzzy
reasoning spiking neural P systems. Mathematical Problems in Engineering 2013(1), 211–244 (2013)

19. Yin, L., Zheng, R., Ke, W., He, Q., Zhang, Y., Li, J., Wang, B., Mi, Z., Long, Y.s., Rasch, M.J.,
et al.: Autapses enhance bursting and coincidence detection in neocortical pyramidal cells. Nature
communications 9(1), 4890 (2018)

20. Bekkers, J.M.: Synaptic transmission: excitatory autapses find a function? Current Biology 19(7), R296–
R298 (2009)

21. Allan, R.N., Billinton, R., Sjarief, I., Goel, L., So, K.S.: A reliability test system for educational
purposes–basic distribution system data and results. IEEE Transactions on Power Systems 6(2), 813–
820 (1991)

22. Li, W.: Risk assessment of power systems : models, methods, and applications 36(2), 179–180 (2014)

133

Parallel Contextual Array Insertion Deletion P
Systems and Siromoney Matrix Grammars

S. Jayasankar(A) D. Gnanaraj Thomas(B)

S. James Immanuel(B) Meenakshi Paramasivan(C)

T. Robinson(D) Atulya K. Nagar(E)

(A)Department of Mathematics, Ramakrishna Mission Vivekananda College, Mylapore,
Chennai - 600004, India
ksjayjay@gmail.com

(B)Department of Science and Humanities (Mathematics Division), Saveetha School of
Engineering, Chennai - 602105, India

dgthomasmcc@yahoo.com , james imch@yahoo.co.in

(C)Institut für Informatik, Universität Leipzig, D-04009 Leipzig, Germany
meena maths@yahoo.com

(D)Department of Mathematics, Madras Christian College, Tambaram, Chennai - 600059,
India

robinson@mcc.edu.in

(E)Department of Mathematics and Computer Science, Liverpool Hope University, Liverpool,
United Kingdom

nagara@hope.ac.uk

Abstract
A variant of P systems named as parallel contextual array insertion deletion P system was
introduced and some of its properties were studied in [14]. The family of array languages gen-
erated by this variant PCAIDPS includes families of array languages like recognizable picture
languages (REC) and context-sensitive matrix languages (CSML). In this paper we show that
another interesting family L(CF : RIR) of Siromoney matrix languages [12] is included in the
family of array languages generated by PCAIDPS with two membranes.

1. Introduction

A P system or a membrane system introduced by Gh. Paun [10] evolves in parallel. A compu-
tation starts from an initial configuration of a system, defined by a membrane structure with
objects and evolution rules in each membrane and terminates when no further rule can be ap-
plied. Various types of P systems have been introduced in the literature and their properties,

134

2 S. Jayasankar, D.G. Thomas, S. James Immanuel et. al.,

computing power, normal forms and basic decision problems have been studied [10, 11]. In [9]
the contextual way of handling string objects in P systems has been considered and the contex-
tual P systems are found to be more powerful. In [1], a P system model, called contextual array
P system with array objects and array contextual rules has been introduced. An interesting
model of array P systems using contextual array grammars [5] with an application of Kolam
patterns has been considered in [4]. In [6], another P system model namely, external and in-
ternal parallel contextual array P systems have been defined and examined. A new variant of
P system model called parallel contextual array insertion deletion P system (PCAIDPS) has
been studied in [14] based on array insertion and deletion operations and parallel contextual
array insertion deletion grammar [15]. It is proved that the family of languages generated by
PCAIDPS includes families of array languages like recognizable picture languages (REC) [2, 3]
and context-sensitive matrix languages CSML [12]. For an application of insertion and deletion
operations in natural computing, we refer to [7] and in P systems, we refer to [8].

Insertion Deletion System has the generative power equal to the class of recursive enumerable
string languages [16]. The primary motivation for studying PCAIDPS is not only to develop
the 2D counterpart of Insertion Deletion System available for one dimensional string languages
but also to find the status of L(PCAIDPS) among the families of 2D languages available in
the literature. As far as our knowledge goes, there is no definite hierarchy for the families of 2D
languages like Chomsky hierarchy for the classes of string languages. Hence, we are motivated to
show that PCAIDPS has more generative power than any other class of 2D grammars generating
languages having intersection with REC and CSML. One such family is L(CF : RIR) of
Subramanian et al [13] who have considered the Siromoney matrix grammar (SMG) [12] and
examined the notion of attaching indices to nonterminals in the vertical derivations. The
system (CF:RIR)SMG has greater generative power compared to context free matrix languages
CFML [12] with interesting applications in the studies of tilings, polyominoes, noisy patterns
and parquet deformations. In this paper we prove L(PCAIDPS2) includes L(CF : RIR) [13].

2. Preliminaries

In this section, we recall some notions of parallel contextual array insertion deletion P systems
and give an example. For further details of the P system we can refer to [14].

Let V be a finite alphabet, V ∗, the set of words over V including the empty word λ. V + =
V ∗ − {λ}. For w ∈ V ∗ and a ∈ V , |w|a denotes the number of occurrences of a in w. An
array consists of finitely many symbols from V that are arranged as rows and columns in some

particular order and is written in the form, A =

⎡
⎢⎣
a11 · · · a1n
...

. . .
...

am1 · · · amn

⎤
⎥⎦ or in short A = [aij]m×n , for all

aij ∈ V , i = 1, 2, . . . ,m and j = 1, 2, . . . , n. The set of all arrays over V is denoted by V ∗∗ which
also includes the empty array Λ (zero rows and zero columns). V ++ = V ∗∗ − {Λ}. The column

135

Parallel Contextual Array Insertion Deletion P Systems and Siromoney Matrix Grammars 3

concatenation of A =

⎡
⎢⎣
a11 · · · a1p
...

. . .
...

am1 · · · amp

⎤
⎥⎦ and B =

⎡
⎢⎣
b11 · · · b1q
...

. . .
...

bn1 · · · bnq

⎤
⎥⎦, defined only when m = n, is given

by A©|| B =

⎡
⎢⎣
a11 · · · a1p b11 · · · b1q
...

. . .
...

...
. . .

...
am1 · · · amp bn1 · · · bnq

⎤
⎥⎦. As 1×n-dimensional arrays can be easily interpreted as

words of length n (and vice versa), we will then write their column catenation by juxtaposition
(as usual). Similarly, the row concatenation of A and B, defined only when p = q, is given by

A©=B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a11 · · · a1p
...

. . .
...

am1 · · · amp

b11 · · · b1q
...

. . .
...

bn1 · · · bnq

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. The empty array acts as the identity for column and row catenation

of arrays of arbitrary dimensions.

Definition 2.1 Let V be a finite alphabet. A column array context over V is of the form, c =
[u1
u2] ∈ V ∗∗, u1, u2 are of size 1 × p, p ≥ 1.

A row array context over V is of the form, r = [u1 u2] ∈ V ∗∗, u1, u2 are of size p× 1, p ≥ 1.

Definition 2.2 The parallel column contextual insertion (deletion) operation is defined as fol-
lows: Let V be an alphabet, C be a finite subset of V ∗∗ whose elements are the column array
contexts and ϕi

c(ϕ
d
c) : V

∗∗ × V ∗∗ → 2C be a choice mapping. We define ϕi
c(ϕ

d
c) : V

∗∗ × V ∗∗ →
2V

∗∗
such that, for arrays A =

[
a1j ··· a1(k−1)...

. . .
...

amj ··· am(k−1)

]
, B =

[
a1k ··· a1(l−1)...

. . .
...

amk ··· am(l−1)

]
, j < k < l, aij ∈

V ,

(
B =

[
a1(k−p) ··· a1(l−1)...

. . .
...

am(k−p) ··· am(l−1)

])
, Ic ∈ ϕi

c(A,B)(ϕd
c(A,B)), Ic(Dc) =

[
u1
u2...
um

]
, if ci = [ui

ui+1] ∈
ϕi
c

(aij ··· ai(k−1)
a(i+1)j ··· a(i+1)(k−1)

,
aik ··· ai(l−1)

a(i+1)k ··· a(i+1)(l−1)

) (
ϕd
c

(aij ··· ai(k−1)
a(i+1)j ··· a(i+1)(k−1)

,
aik ··· ai(l−1)

a(i+1)k ··· a(i+1)(l−1)

))
, ci ∈ C, 1 ≤

i ≤ m − 1, not all need to be distinct.

Given an array X = [aij]m×n, aij ∈ V X = X1©|| A©|| B©|| X2 (X = X1©|| A©|| Dc©|| B©|| X2),

X1 =

[
a11 ··· a1(j−1)...

. . .
...

am1 ··· am(j−1)

]
, A =

[
a1j ··· a1(k−1)...

. . .
...

amj ··· am(k−1)

]
, B =

[
a1k ··· a1(l−1)...

. . .
...

amk ··· am(l−1)

]
, X2 =

[a1l ··· a1n...
. . .

...
aml ··· amn

]
, 1 ≤ j ≤

k < l ≤ n+ 1 (or) 1 ≤ j < k ≤ l ≤ n+ 1, we write X ⇒coli(cold) Y if Y = X1©|| A©|| Ic©|| B©|| X2

(Y = X1©|| A©|| B©|| X2), such that Ic ∈ ϕi
c(A,B) (Dc ∈ ϕd

c(A,B)). Ic(Dc) is called as the
inserted (deleted) column context. We say that Y is obtained from X by parallel column con-
textual insertion (deletion) operation. The following 4 special cases for X = X1©|| A©|| B©|| X2

are also considered,

1. For j = 1 we have X1 = Λ.

2. For j = k, we have A = Λ. If j = k = 1, then X1 = Λ and A = Λ.

136

4 S. Jayasankar, D.G. Thomas, S. James Immanuel et. al.,

3. For k = l (For k + p = l), we have B = Λ.

4. For l = n + 1, we have X2 = Λ. If k = l = n + 1 (If (k + p) = l = n + 1), then B = Λ
and X2 = Λ.

The case j = k = l is not considered for parallel column contextual insertion (deletion)
operation.

Similarly, we can define parallel row contextual insertion (deletion) operation by inserting
(deleting) row context Ir(Dr) in between two sub-arrays A and B with the help of row operation
©= and set of row array contexts R. We have X ⇒rowi(rowd) Y if X = X1©=A©=B©=X2

(X1©=A©=Dr©=B©=X2) and Y = X1©=A©=Ir©=B©=X2 (X1©=A©=B©=X2).

Definition 2.3 A parallel contextual array insertion deletion P system with h membranes
(PCAIDPSh) is a construct,

∏
= (V, T, μ, C,R, (M1, I1, D1), . . . , (Mh, Ih, Dh), ϕ

i
c, ϕ

i
r, ϕ

d
c , ϕ

d
r , i0)

where,

− V is the finite nonempty set of symbols called alphabet;

− T ⊆ V is the output alphabet;

− μ is the membrane structure with h membranes or regions;

− C is the finite subset of V ∗∗ called set of column array contexts;

− R is the finite subset of V ∗∗ called set of row array contexts;

− Mi is the finite set of arrays over V called as axioms associated with
the region μi of μ;

− ϕi
c : V

∗∗ ×V ∗∗ → 2C is the choice mapping performing parallel column contextual insertion
operations;

− ϕi
r : V ∗∗ × V ∗∗ → 2R is the choice mapping performing parallel row contextual insertion

operations;

− ϕd
c : V

∗∗ × V ∗∗ → 2C is the choice mapping performing parallel column contextual deletion
operations;

− ϕd
r : V ∗∗ × V ∗∗ → 2R is the choice mapping performing parallel row contextual deletion

operations;

− Ii = ∅ (or)
{({

ϕi
c(Ai, Bi) = [ui

ui+1]
∣∣∣i = 1, 2, . . . ,m − 1

}
, α
)}

where

137

Parallel Contextual Array Insertion Deletion P Systems and Siromoney Matrix Grammars 5

Ai =
[aij ··· ai(k−1)
a(i+1)j ··· a(i+1)(k−1)

]
, Bi =

[aik ··· ai(l−1)
a(i+1)k ··· a(i+1)(l−1)

]
, 1 ≤ j ≤ k < l ≤ n+ 1 (or)

1 ≤ j < k ≤ l ≤ n+ 1, α ∈ {here, out, int}, ui and ui+1 are of size 1 × p with p ≥ 1.

(or){({
ϕi
r(Ci, Ei) = [ui ui+1]

∣∣∣i = 1, 2, . . . , n − 1
}
, α
)}

where

Ci =

[
aji aj(i+1)...

...
a(k−1)i a(k−1)(i+1)

]
, Ei =

[
aki ak(i+1)...

...
a(l−1)i a(l−1)(i+1)

]
, 1 ≤ j ≤ k < l ≤ m + 1 (or) 1 ≤ j < k ≤ l ≤

m+ 1, α ∈ {here, out, int}, ui and ui+1 are of size p × 1 with p ≥ 1.

Di = ∅ (or)
{({

ϕd
c(Ai, Bi) = [ui

ui+1]
∣∣∣i = 1, 2, . . . ,m − 1

}
, α
)}

where

Ai =
[aij ··· ai(k−1)
a(i+1)j ··· a(i+1)(k−1)

]
, Bi =

[ai(k+p) ··· ai(l−1)
a(i+1)(k+p) ··· a(i+1)(l−1)

]
, 1 ≤ j ≤ k < l ≤ n + 1, α ∈

{here, out, int}, ui and ui+1 are of size 1 × p with p ≥ 1.

(or){({
ϕd
r(Ci, Ei) = [ui ui+1]

∣∣∣i = 1, 2, . . . , n − 1
}
, α
)}

where

Ci =

[
aji aj(i+1)...

...
a(k−1)i a(k−1)(i+1)

]
, Ei =

[
a(k+p)i a(k+p)(i+1)...

...
a(l−1)i a(l−1)(i+1)

]
, 1 ≤ j ≤ k < l ≤ m + 1, α ∈ {here, out, int},

ui and ui+1 are of size p × 1 with p ≥ 1.
− i0 is the output membrane.

The array language generated by
∏

is denoted by L(
∏
) and the family of array languages

generated by PCAIDPS with h membranes is denoted by L(PCAIDPSh).

Example 2.4 Consider a P system given by PCAIDPS2

∏
= (V,T, μ,C,R, (M1, I1,D1), (M2, I2,D2), ϕ

i
c, ϕ

i
r, ϕ

d
c , ϕ

d
r ,1),where

V = {•, X, Y }; T = {•, X}; μ = [1[2]2]1;

C =

{[•
X

]
,

[
X
•
]
,

[•
•
]
,

[
Y
Y

]}
;

R =

{[
X Y
Y Y

]
,

[
Y •
Y Y

]
,

[• X
Y Y

]
,

[• •
Y Y

]
,

[
Y Y
X Y

]
,

[
Y Y
Y •

]
,

[
Y Y
• X

]
,

[
Y Y
• •

]
,

[
Y Y

]}
; M1 = ∅;

M2 =

⎡
⎣X • X
X X X
X • X

⎤
⎦; I1 = ∅; D1 = ∅;

I2 =

{({
ϕi
c

[
X •
X , X

]
=

[
λ λ
λ λ

]
, ϕi

c

[
X •
X , •

]
=

[
λ λ
λ λ

]
, ϕi

c

[
X X
X , •

]
=

138

6 S. Jayasankar, D.G. Thomas, S. James Immanuel et. al.,

[
λ λ
λ λ

]}
, out

)
,({

ϕi
c

[
X •
X , X

]
=

[•
X

]
, ϕi

c

[
X •
X , •

]
=

[•
•
]
, ϕi

c

[
X X
X , •

]
=

[
X
•
]}

, here

)
,({

ϕi
c

[
X •
X , X

]
=

[
Y
Y

]
, ϕi

c

[
X •
X , •

]
=

[
Y
Y

]
, ϕi

c

[
X X
X , •

]
=

[
Y
Y

]}
, here

)
,({

ϕi
r

[
X Y , X Y

]
=

[
X Y
Y Y

]
, ϕi

r

[
Y • , Y X

]
=

[
Y •
Y Y

]
, ϕi

r

[• X , X X
]
=

[• X
Y Y

]
, ϕi

r

[• • , X X
]
=

[• •
Y Y

]}
, here

)
,({

ϕi
r

[
X Y , X Y

]
=

[
Y Y
X Y

]
, ϕi

r

[
Y X , Y •] = [

Y Y
Y •

]
, ϕi

r

[
X X , • X

]
=

[
Y Y
• X

]
,

ϕi
r

[
X X , • •] = [

Y Y
• •

]}
, here

)}
;

D2 =

{({
ϕd
c

[
X •
X , •

]
=

[
Y
Y

]
, ϕd

c

[
X •
Y , Y

]
=

[
Y
Y

]
, ϕd

c

[
Y Y
X , X

]
=

[
Y
Y

]
,

ϕd
c

[
X X
Y , Y

]
=

[
Y
Y

]
, ϕd

c

[
Y Y
X , •

]
=

[
Y
Y

]}
, here

)
,({

ϕd
r

[
X • , X X

]
=
[
Y Y

]
, ϕd

r

[• • , X X
]
=
[
Y Y

]
,

ϕd
r

[• X , X X
]
=
[
Y Y

]}
, here

)
,({

ϕd
r

[
X X , X •] = [

Y Y
]
, ϕd

r

[
X X , • •] = [

Y Y
]
,

ϕd
r

[
X X , • X

]
=
[
Y Y

]}
, here

)}
;

Clearly L(
∏
) is

{X • X
X X X
X • X

,

X • • X
X • • X
X X X X
X • • X
X • • X

, · · ·
}
, the set of tokens of H of X ′s with the horizon-

tal row of X ′s exactly in the middle. A sample computation is shown below.

139

Parallel Contextual Array Insertion Deletion P Systems and Siromoney Matrix Grammars 7

In the picture given below, A ⇒αk
s B means A is transformed into B by k (k = i or d)

rewriting rules of α (α = row or col) rewriting in the membrane s using the appropriate rules
of the membrane s. Also, M → A means A is in the membrane M.

- is the (row or column) context inserted

- is the (row or column) context deleted

M2 →
X • X
X X X
X • X

⇒coli
2

X • • X
X X X X
X • • X

⇒coli
2

X Y • • X
X Y X X X
X Y • • X

⇒rowi
2

X Y • • X
X Y • • X
Y Y Y Y Y
X Y X X X
X Y • • X

⇒rowi
2

X Y • • X
X Y • • X
Y Y Y Y Y
X Y X X X
Y Y Y Y Y
X Y • • X
X Y • • X

=

X Y • • X
X Y • • X
Y Y Y Y Y
X Y X X X
Y Y Y Y Y
X Y • • X
X Y • • X

⇒cold
2

X • • X
X • • X
Y Y Y Y
X X X X
Y Y Y Y
X • • X
X • • X

⇒rowd
2

X • • X
X • • X
X X X X
Y Y Y Y
X • • X
X • • X

⇒rowd
2

X • • X
X • • X
X X X X
X • • X
X • • X

�

3. Main Result

In this section, we recall the definition of the Siromoney matrix grammar (CF : RIR)SMG
and an example [13]. We show that L(CF : RIR) ⊆ L(PCAIDPS2)

Definition 3.1 A right-linear indexed right-linear(RIR) grammar G is a five-tuple (N,T,F,P,S)
where N, T, F are finite, pairwise disjoint sets of nonterminals, terminals and indices respec-
tively; P consists of two types of productions, namely

1. right-linear productions of the form A → xBf , A ∈ N , x ∈ T ∪ {λ}, f ∈ F ∪ {λ},
B ∈ N ∪ {λ}, not all λ, and

2. indexed productions of the form Af → xB, A ∈ N , B ∈ N ∪ {λ}, x ∈ T ∪ {λ}, f ∈ F ,
and S ∈ N is the start symbol.

Derivations are as in a Chomskian right-linear grammar except that a nonterminal A is
replaced using a production of the form (1) or an index f is consumed by a production of the

140

8 S. Jayasankar, D.G. Thomas, S. James Immanuel et. al.,

form (2).

Definition 3.2 A (CF:RIR)SMG G = (G1, G2) is defined as follows: G1 = (N, I, P, S) is a
context-free (CF) grammar where N is a finite set of nonterminals, I is a finite set of k inter-
mediate symbols S1, S2, · · · , Sk with N ∩ I = ∅, P is a finite set of production rules and S ∈ N
is the start symbol of G1. G1 is called the horizontal grammar.

G2 = {G21, G22, G23, · · · , G2k}, where each G2i, i = 1, · · · , k is called a vertical grammar
where G2i = (Ni, T, Fi, Pi, Si) is an RIR grammar with Ni, Fi being distinct from Nj, Fj for
i �= j(1 ≤ i, j ≤ k). The intermediate symbol Si of G1 is in Ni and is the start symbol of G2i.

The derivations are as follows: Gi generates finite strings of intermediates as in a Chomskian
CF grammar. The vertical derivation starts with a string of intermediates generated by G2

and proceeds in parallel as in Siromoney matrix grammar [12]. Rules of the same type - either
CF productions A → α or indexed productions Af → α with the length of α being the same
(3, 2, 1 or 0), are applied in the vertical derivation. At every step of the vertical derivation, a

row A1, A2, · · · , Am of nonterminals is expanded or a string of indexed nonterminals
A1 · · · Am

f1 · · · fm
is rewritten, consuming the indices. A derivation successfully ends on generating an array M
over T by rewriting a row of nonterminals with(without) indices by rules of the form Af → α
(A → α). The array language generated by the grammar G is given by

L(G) = {M ∈ T++/S ⇒∗
G1

α and α ⇒∗
G2

M,α ∈ I++}.
Example 3.3 The (R : RIR)SMG which generates the tokens H of x′s with the horizontal
row of x′s exactly in the middle is as follows:

G = (G1, G2)

where

G1 = ({S,A}, {S1, S2}, {S → S1A,A → S2A,A → S2S1}, S)
generating strings of intermediates S1S

n
2S1 for n ≥ 1 and G2 = 〈G21, G22〉

where

G21 = ({S1, A1, A2, A3}, {x}, {g1, g2}, P21, S1)

with P21 = {S1 → xA1g2, A1 → A2g1, A1 → xA1g1, A2g1 → xA3,
A3g1 → xA3, A3g2 → x},

G22 = ({S2, B1, B2, B3, B4}, {·, x}, {f1, f2}, P22, S2)

with P22 = {S2 → ·B1f2, B1 → ·B1f1, S2 → ·B2f2, B1 → ·B2f1,
B2 → B3f1, B3f1 → xB4, B4f1 → ·B4, B4f2 → ·}.

141

Parallel Contextual Array Insertion Deletion P Systems and Siromoney Matrix Grammars 9

A sample vertical derivation is as follows:

S1S2S1 ⇒G2

x · x
A1 B2 A1

g2 f2 g2

⇒G2

x · x
A2 B3 A2

g1 f1 g1
g2 f2 g2

⇒G2

x · x
x x x
A3 B4 A3

g2 f2 g2

⇒G2

x · x
x x x
x · x

Example 2.4 and example 3.3 exhibit the fact that L(R : RIR) ∩ L(PCAIDPS2) �= ∅. We
now proceed to prove the main result.

Theorem 3.4 L(CF : RIR) ⊂ L(PCAIDPS2)

Proof. This result can be proved by showing that for any grammar generating a language L, a
P-system can be constructed to generate L by introducing insertion deletion rules correspond-
ing to the rules of the grammar G.

L(CF : RIR) ⊂ L(PCAIDPS2) can be proved by the following construction:

For every (CF : RIR)SMG, with G = (G1, G2) with G1 = (N, I, P, S), G2 = 〈G21, · · · , G2k〉,
G2i = (Ni, T, Fi, Pi, Si), Ni, Fi being distinct from Nj, Fj with i �= j, i = 1, 2, · · · , k (1 ≤ i, j ≤
k), we can construct a PCAIDPS2∏

=
(
V,T, [1[2]2]1,C,R, (M1, I1,D1), (M2, I2,D2), ϕ

i
c, ϕ

i
r, ϕ

d
c , ϕ

d
r ,1

)
such that L(

∏
) = L(G) where V = N ∪ (

⋃k
i=1 Ni) ∪ T ∪ (

⋃k
i=1 Fi) ∪ I ∪ {#};

T = T ; M1 = ∅ ; M2 =

{
#
S

}
;

C =

{
#
α

∣∣∣∣S → α ∈ P

}

∪
{
#
S

∣∣∣∣ S → α ∈ P

}

∪
{
#
γ

∣∣∣∣β → γ ∈ P, β ∈ N, γ ∈ (N ∪ T)∗
}

∪
{
#
β

∣∣∣∣β → γ ∈ P, β ∈ N, γ ∈ (N ∪ T)∗
}
;

R =

{# c
Ci

fi

∣∣∣∣C → cCifi ∈ Pi, C ∈ Ni

}

∪
{
c
Ci

∣∣∣∣C → cCi ∈ Pi, C ∈ Ni

}

∪
{
c
#

∣∣∣∣C → c ∈ Pi, C ∈ Ni

}

142

10 S. Jayasankar, D.G. Thomas, S. James Immanuel et. al.,

∪
{ c d
Ci Dj

fi fj

∣∣∣∣C → cCifi ∈ Pi, D → dDjfj ∈ Pj, C ∈ Ni, D ∈ Nj

}

∪
{

c d
Ci Dj

∣∣∣∣C → cCi ∈ Pi, D → dDj ∈ Pj, C ∈ Ni, D ∈ Nj

}

∪
{
c d
#

∣∣∣∣C → c ∈ Pi, D → d ∈ Pj

}

∪
{ c #
Ci #
fi #

∣∣∣∣C → cCifi ∈ Pi, C ∈ Ni

}

∪
{

c #
Ci #

∣∣∣∣C → cCi ∈ Pi, C ∈ Ni

}

∪
{
c #
#

∣∣∣∣C → c ∈ Pi, C ∈ Ni

}

∪
{

c d
Ci Dj

∣∣∣∣Cfi → cCi ∈ Pi, Dfj → dDj ∈ Pj

}

∪
{
c
Ci

∣∣∣∣Cfi → cCi ∈ Pi

}

∪
{

c #
Ci #

∣∣∣∣Cfi → cCi ∈ Pi

}

∪
{
c
#

∣∣∣∣Cfi → c ∈ Pi

}

∪
{
c d
#

∣∣∣∣Cfi → c ∈ Pi, Dfj → d ∈ Pj

}

∪
{
c #
#

∣∣∣∣Cfi → c ∈ Pi

}

∪
{
C

∣∣∣∣C → cCifi or C → cCi or C → c ∈ Pi

}

∪
{
C D

∣∣∣∣C → cCifi or C → cCi or C → c ∈ Pi, D → dDjfj or D → dDj or D → d ∈ Pj

}

∪
{
C #

∣∣∣∣C → cCi or C → c ∈ Pi

}

∪
{
C D
fi fj

∣∣∣∣Cfi → cCi or Cfi → c ∈ Pi, Dfj → dDj ∈ Pj

}

∪
{
C
fi

∣∣∣∣Cfi → cCi ∈ Pi or Cfi → c ∈ Pi

}

∪
{
C #
fi #

∣∣∣∣Cfi → cCi ∈ Pi or Cfi → c ∈ Pi

}

∪
{
#

}
.

I1 = ∅ , D1 = ∅ ;

143

Parallel Contextual Array Insertion Deletion P Systems and Siromoney Matrix Grammars 11

In the membrane 2, three column insertion rules and twenty eight row insertion rules are
defined in I2 based on the rules of G1 and G2 respectively of the grammar G (See the Appendix).
For every rule S → α ∈ P in G1, column insertion rule(s) to insert the context #

α between #
#

and #
S

are defined.

For every rule of the form β → γ ∈ P in G1 the corresponding column insertion rules are
defined to insert the context #

γ between #
and

β (or) #
A

and #
β .

In membrane 2, three column deletion rules and thirty three row deletion rules are defined in
D2 based on the rules of G1 and G2 respectively of the grammar G (See the Appendix). For
every rule S → α ∈ P in G1 deletion rule(s) to delete the contexts #

S
between #

α and #
are

defined.

For every rule of the form β → γ ∈ P in G1 the corresponding column deletion rules are
defined to delete the context #

β between #
α and #

(or)
γ and #

.

Using these column insertion and column deletion rules of the P-system the same horizontal
derivation of the horizontal grammar G1 of G can be achieved.
It is to be noted that the rules for the horizontal growth in I2 and D2 of the P-system are
defined in such a manner that the column insertion rules and column deletion rules are applied
alternatively.

To simulate the vertical derivation of the grammar G, row insertion and row deletion rules
are defined based on the rules of the vertical grammars G2i(1 ≤ i ≤ k) of G2 in G.

For the rules of the form C → cCifi , C → cCi , C → c , Cfi → cCi in Pi of G2i the
corresponding row insertion and row deletion rules are defined in I2 and D2 respectively to
replicate the vertical derivation of the vertical grammars G2i.

It is again to be noted that the rules for vertical growth in I2 and D2 of the P-system are
defined in such a manner that the row insertion and row deletion rules are applied alternatively.
A row insertion rule in I2 is defined in to send the generated picture to the skin membrane
which is the output membrane.

The working of the P-system in membrane 2 is as follows: The axiom set consists of the array
#
S

based on the starting symbol S of any (CF : RIR)SMG G. We consider the rules in

I2 and D2 to perform the parallel contextual column insertion and column deletion operations
and these operations are performed alternatively to simulate the generation of horizontal strings

144

12 S. Jayasankar, D.G. Thomas, S. James Immanuel et. al.,

of intermediates based on G1 of G. Now we consider the rules in I2 and D2 to perform the
parallel contextual row insertion operation and row deletion operations. Parallel contextual row
insertion and deletion operations are performed alternatively to simulate the vertical generation
of the picture based on the G2i. Then using the parallel contextual column deletion rules in D2

the #’s along the borders of the columns are deleted and finally using the parallel contextual
row deletion rules in D2 the #’s along the borders of the rows are deleted. The resulting arrays

belong to L(G). Finally, using the rule

({
ϕi
r

[
a b , λ λ

]
=

{
λ λ

∣∣∣∣∣a, b ∈ T

}}
, out

)
∈ I2, the

resultant arrays are sent to membrane 1, which is the output membrane.

�

4. Conclusion

PCAIDPS has greater generative capacity to obtain some known families of two dimen-
sional array languages. So far, we could show that L(PCAIDPS) includes REC, CSML and
L(CF : RIR). We note that these three classes are incomparable but not disjoint. It is worth
investigating to form a hierarchy among the families of two dimensional array languages. This
paper strives in this direction.

References

[1] K.S. Dersanamiba, and K. Krithivasan: Contextual Array P systems, International Journal
of Computer Mathematics, Vol.81, No.8, 955–969 (2004)

[2] D. Giammarresi and A. Restivo: Two- Dimensional Languages, Handbook of formal lan-
guages, vol. 3, 215–267 (1997)

[3] D. Giammarresi and A. Restivo: Recognizable Picture Languages, International Journal
of Pattern Recognition and Artificial Intelligence 6, 241–256 (1992)

[4] H. Fernau, R. Freund, Markus L. Schmid, K.G. Subramanian, and P. Wielderhold: Con-
textual array grammars and array P systems, Annals of Mathematics and Artificial Intel-
ligence, Vol. 75, 5–26 (2013)

[5] R. Freund, Gh. Păun, G. Rozenberg: Contextual Array Grammars, Formal Models, Lan-
guages and Applications, Series in Machine Perception and Artificial Intelligence, Vol. 66,
World Scientific, 112–136, (2007)

[6] S. James Immanuel, D.G. Thomas, T. Robinson and Atulya K Nagar: Parallel Contextual
Array P Systems, in the Proceedings of Asian Conference on Membrane Computing -
ACMC 2014, IEEE Xplore, 1–9 (2014)

[7] L. Kari and G. Thierrin: Contextual insertions/deletions and computability. Information
and Computation, 131(1):47-61 (1996)

145

Parallel Contextual Array Insertion Deletion P Systems and Siromoney Matrix Grammars 13

[8] S.N. Krishna and R. Rama: Insertion-deletion P systems, Lecture Notes in Computer
Science 2340, Springer, 360-370 (2002).

[9] M. Madhu and K. Krithivasan: Contextual P Systems, Fund. Info., 49, 179–189 (2002)

[10] Gh. Păun: Computing with membranes, Journal of Computer and System Sciences, 61,
108–143 (2000)

[11] Gh. Păun, G. Rozenberg and A. Salomaa(Editors): The Oxford Handbook of Membrane
Computing, Oxford Univ. Press (2010)

[12] G. Siromoney, R. Siromoney, and K. Krithivasan: Abstract families of matrices and picture
languages, Computer Graphics and Image Processing 1, 234–307 (1972)

[13] K.G. Subramanian, L. Revathi and R. Siromoney: Siromoney Array Grammars and Ap-
plications, International Journal of Pattern Recognition and Artificial Itelligence, Vol. 3
No.3 & 4 333-351, (1989)

[14] S. James Immanuel, D.G. Thomas, T. Robinson and Atulya K. Nagar: Parallel Contex-
tual Array Insertion Deletion P System, Proceedings of IWCIA 2017, Lecture Notes in
Computer Science 10256, Springer, 170-183 (2017)

[15] D.G Thomas, S. James Immanuel, Atulya K. Nagar and T. Robinson: Parallel Contextual
Array Insertion Deletion Grammar, Lecture Notes in Computer Science 11255, 28-42 (2018)

[16] S. Verlan: Recent Developments on Insertion Deletion Systems , Computer Science Journal
of Maldova, vol.18, no.2(53), 2010

146

14 S. Jayasankar, D.G. Thomas, S. James Immanuel et. al.,

Appendix

The definitions of I2 and D2 of theorem 3.4 are given below:

Definition of I2:

I2 =

{({
ϕi
c

[
#
, S

]
=

{
#
α

∣∣∣∣∣S → α ∈ P

}
, here

)
,({

ϕi
c

[
#
, β

]
=

{
#
γ

∣∣∣∣∣β → γ ∈ P

}
, here

)
,({

ϕi
c

[
#
A , β

]
=

{
#
γ

∣∣∣∣∣β → γ ∈ P,A ∈ N ∪ I

}
, here

)
,

({
ϕi
r

[
, # C

]
=

{# c
Ci

fi

∣∣∣∣∣C → cCifi ∈ Pi, C ∈ I, Ci ∈ Ni

}
,

ϕi
r

[
, C D

]
=

{ c d
Ci Dj

fi gj

∣∣∣∣∣C → cCifi ∈ Pi, C ∈ I, Ci ∈ Ni, D → dDjfj ∈ Pj, D ∈ I,Dj ∈

Nj

}
,

ϕi
r

[
, C

]
=

{ c #
Ci #
fi #

∣∣∣∣∣C → cCifi ∈ Pi, C ∈ I, Ci ∈ Ni,

}}
, here

)
,

({
ϕi
r

[
, # C

]
=

{
c
Ci

∣∣∣∣∣C → cCi ∈ Pi, C ∈ I, Ci ∈ Ni

}
,

ϕi
r

[
, C D

]
=

{
c d
Ci Dj

∣∣∣∣∣C → cCi ∈ Pi, C ∈ I, Ci ∈ Ni, D → dDj ∈ Pj, D ∈ I,Dj ∈ Nj

}
,

ϕi
r

[
, C

]
=

{
c #
Ci #

∣∣∣∣∣C → cCi ∈ Pi, C ∈ I, Ci ∈ Ni,

}}
, here

)
,({

ϕi
r

[
, # C

]
=

{
c
#

∣∣∣∣∣Cfi → c ∈ Pi, C ∈ I, c ∈ T

}
,

ϕi
r

[
, C D

]
=

{
c d
#

∣∣∣∣∣Cfi → c ∈ Pi, Dgi → d ∈ Pj, c, d ∈ T,C,D ∈ I

}
,

ϕi
r

[
, C

]
=

{
c #
#

∣∣∣∣∣Cfi → c ∈ Pi, C ∈ I, c ∈ T,

}}
, here

)
,({

ϕi
r

[
, # C

]
=

{
c
#

∣∣∣∣∣C → c ∈ Pi, C ∈ I, c ∈ T

}
,

ϕi
r

[
, C D

]
=

{
c d
#

∣∣∣∣∣C → c ∈ Pi, c ∈ T,C ∈ I, ,D → d ∈ Pj, d ∈ T,D ∈ I

}
,

147

Parallel Contextual Array Insertion Deletion P Systems and Siromoney Matrix Grammars 15

ϕi
r

[
, C

]
=

{
c #
#

∣∣∣∣∣C → c ∈ Pi, C ∈ I, c ∈ T,

}}
, here

)
,({

ϕi
r

[
a b C D
c d , fi fj

]
=

{
c d
Ci Dj

∣∣∣∣∣Cfi → cCi ∈ Pi, a, b, c, d ∈ T,C ∈ I, Ci ∈ Ni, Dfj → dDj ∈

Pj, D ∈ I,Dj ∈ Nj

}
,

ϕi
r

[
a # C
b, # fi

]
=

{
c
Ci

∣∣∣∣∣Cfi → cCi ∈ Pi, a, b ∈ T,C ∈ I, Ci ∈ Ni

}
,

ϕi
r

[
a # C #
b #, fi #

]
=

{
c #
Ci #

∣∣∣∣∣Cfi → cCi ∈ Pi, a, b ∈ T,C ∈ I, Ci ∈ Ni

}}
, here

)
,({

ϕi
r

[
a , # E

]
=

{
e
#

∣∣∣∣∣E → e ∈ Pi, a, e ∈ T,E ∈ Ni

}
,

ϕi
r

[
a b , E F

]
=

{
e f
#

∣∣∣∣∣E → e ∈ Pi, a, e, f ∈ T,E ∈ Ni, F ∈ Nj

}
,

ϕi
r

[
a # , E #

]
=

{
e #
#

∣∣∣∣∣E → e ∈ Pi, a, e ∈ T,E ∈ Ni,

}}
here

)
,

({
ϕi
r

[
a , # E

]
=

{# e
Ei

fi

∣∣∣∣∣E → eEifi ∈ Pi, E, Ei ∈ Ni, e ∈ T

}
,

ϕi
r

[
a b , E F

]
=

{ e f
Ei Fj

fi fj

∣∣∣∣∣E → eEifi ∈ Pi, E, Ei ∈ Ni, e, f ∈ T, F → fFjfj ∈ Pj, F, Fj ∈ Nj

}
,

ϕi
r

[
a # , E #

]
=

{ e #
Ei #
fi #

∣∣∣∣∣E → eEifi ∈ Pi, E, Ei ∈ Ni, e ∈ T

}}
, here

)
,

({
ϕi
r

[
a , # E

]
=

{
e
Ei

∣∣∣∣∣E → eEi ∈ Pi, E, Ei ∈ Ni, e ∈ T

}
,

ϕi
r

[
a b , E F

]
=

{
e f
Ei Fj

∣∣∣∣∣E → eEi ∈ Pi, E, Ei ∈ Ni, e, f ∈ T, F → fFj ∈ Nj, F, Fj ∈ Nj

}
,

ϕi
r

[
a # , E #

]
=

{
e #
Ei #

∣∣∣∣∣E → eEi ∈ Pi, E, Ei ∈ Ni, e ∈ T

}}
, here

)}
,({

ϕi
r

[
a , # E

]
=

{
e
#

∣∣∣∣∣E → e ∈ Pi, a, e ∈ T,E ∈ Ni

}
,

ϕi
r

[
a b , E F

]
=

{
e f
#

∣∣∣∣∣E → e ∈ Pi, F → f ∈ Pj, a, e, f ∈ T,E ∈ Ni, F ∈ Nj

}
,

ϕi
r

[
a # , E #

]
=

{
e #
#

∣∣∣∣∣E → e ∈ Pi, a, e ∈ T,E ∈ Ni,

}}
, here

)
,

148

16 S. Jayasankar, D.G. Thomas, S. James Immanuel et. al.,

({
ϕi
r

[
a b , λ λ

]
=

{
λ λ

∣∣∣∣∣a, b ∈ T

}}
, out

)
.

Definition of D2:

D2 =

{({
ϕd
c

[
#
α , #

]
=

{
#
s

∣∣∣∣∣s → α ∈ P

}
, here

)
,({

ϕd
c

[
#
γ , #

]
=

{
#
β

∣∣∣∣∣β → γ ∈ P

}
, here

)
,({

ϕd
c

[
#
γ , B

]
=

{
#
B

∣∣∣∣∣β → γ ∈ P,B ∈ N ∪ I

}
, here

)
,

({
ϕd
r

⎡
⎣# c
Ci , λ λ
fi

⎤
⎦ =

{
C

∣∣∣∣∣C → cCifi ∈ Pi, Ci ∈ Ni, C ∈ I

}
,

{
ϕd
r

⎡
⎣ c d
Ci Dj , λ λ
fi gi

⎤
⎦ =

{
C D

∣∣∣∣∣C → cCifi ∈ Pi, Ci ∈ Ni, C ∈ I,D → dDjfj ∈ Pj, Dj ∈ Nj, D ∈

I

}
,

{
ϕd
r

⎡
⎣ c #
Ci # , λ λ
fi #

⎤
⎦ =

{
C #

∣∣∣∣∣C → cCifi ∈ Pi, Ci ∈ Ni, C ∈ I

}}
, here

)
,

({
ϕd
r

[
c
Ci , λ λ

]
=

{
C

∣∣∣∣∣C → cCi ∈ Pi, Ci ∈ Ni, C ∈ I

}
,{

ϕd
r

[
c d
Ci Dj , λ λ

]
=

{
C D

∣∣∣∣∣C → cCi ∈ Pi, Ci ∈ Ni, C ∈ I,D → dDj ∈ Pj, Dj ∈ Nj, D ∈ I

}
,{

ϕd
r

[
c #
Ci # , λ λ

]
=

{
C #

∣∣∣∣∣C → cCi ∈ Pi, Ci ∈ Ni, C ∈ I

}}
, here

)
,({

ϕd
r

[
c
, λ λ

]
=

{
C

∣∣∣∣∣C → c ∈ Pi, C ∈ I, c ∈ T

}
,{

ϕd
r

[
c d
, λ λ

]
=

{
C D

∣∣∣∣∣C → c ∈ Pi, c ∈ T,C ∈ I,D → d ∈ Pj, d ∈ T,D ∈ I

}
,{

ϕd
r

[
c #
, λ λ

]
=

{
C #

∣∣∣∣∣C → c ∈ Pi, c ∈ T,C ∈ I

}}
, here

)
,({

ϕd
r

[
c
Ci , λ λ

]
=

{
C
fi

∣∣∣∣∣Cfi → cCi ∈ Pi, a, b ∈ T,C ∈ I, Ci ∈ Ni

}
,{

ϕd
r

[
c d
Ci Dj , λ λ

]
=

{
C D
fi fj

∣∣∣∣∣Cfi → cCi ∈ Pi, C ∈ I, Ci ∈ Ni, Dfj → dDj ∈ Pj, D ∈ I,Dj ∈

149

Parallel Contextual Array Insertion Deletion P Systems and Siromoney Matrix Grammars 17

Nj

}
,{

ϕd
r

[
c #
Ci # , λ λ

]
=

{
c #
fi #

∣∣∣∣∣Cfi → cCi ∈ Pi, c ∈ T,C ∈ I, Ci ∈ Ni

}}
, here

)
,({

ϕd
r

[
e
Ei , # gi

]
=

{
E

∣∣∣∣∣E → eEi ∈ Pi, E, Ei ∈ Ni, e ∈ T, gi ∈ Fi

}
,

ϕd
r

[
e f
Ei Fj , gi gj

]
=

{
E F

∣∣∣∣∣E → eEi ∈ Pi, E, Ei ∈ Ni, gi ∈ Fi, F → fFj ∈ Pj, F, Fj ∈ Nj, gj ∈

Fj, e, f ∈ T

}
,

ϕd
r

[
e #
Ei # , gi #

]
=

{
E #

∣∣∣∣∣E → eEi ∈ Pi, E, Ei ∈ Ni, e ∈ T, gi ∈ Fi

}}
, here

)
,({

ϕd
r

[
e
, λ λ

]
=

{
E

∣∣∣∣∣E → e ∈ Pi, a, e ∈ T,E ∈ Ni

}
,

ϕd
r

[
e f
, λ λ

]
=

{
E #

∣∣∣∣∣E → e ∈ Pi, a, e, f ∈ T,E ∈ Ni, F ∈ Nj

}
,

ϕd
r

[
e #
, λ λ

]
=

{
E #

∣∣∣∣∣E → e ∈ Pi, a, e ∈ T,E ∈ Ni

}}
, here

)
,({

ϕd
r

[
a , λ λ

]
=

{
#

∣∣∣∣∣a ∈ T

}
,

ϕd
r

[
a b , λ λ

]
=

{
#

∣∣∣∣∣a, b ∈ T

}
,

ϕd
r

[
a # , λ λ

]
=

{
#

∣∣∣∣∣a ∈ T

}}
, here

)
,({

ϕd
r

[
λ λ , # a

]
=

{
#

∣∣∣∣∣a ∈ T

}
,

ϕd
r

[
λ λ , a b

]
=

{
#

∣∣∣∣∣a, b ∈ T

}
,

ϕd
r

[
λ λ , a #

]
=

{
#

∣∣∣∣∣a ∈ T

}}
, here

)
,({

ϕd
c

[
λ a
λ , b

]
=

{
#
#

∣∣∣∣∣a, b ∈ T

}}
, here

)
,({

ϕd
c

[
a λ
b , λ

]
=

{
#
#

∣∣∣∣∣a, b ∈ T

}}
, here

)
,

150

18 S. Jayasankar, D.G. Thomas, S. James Immanuel et. al.,

({
ϕd
c

[
a λ
b , λ

]
=

{
#
#

∣∣∣∣∣a, b ∈ T

}}
, here

)
,({

ϕd
r

[
c
Ci , # gi

]
=

{
C
fi

∣∣∣∣∣Cfi → cCi ∈ Pi, gi ∈ Fi, C ∈ I, Ci ∈ Ni

}
,

ϕd
r

[
c d
Ci Dj , gi gj

]
=

{
C D
fi fj

∣∣∣∣∣Cfi → cCi ∈ Pi, gi ∈ Fi, C ∈ I, Ci ∈ Ni, Dfj → dDj ∈ Pj, gj ∈

Fj, Dj ∈ Nj, D ∈ I

}
,

ϕd
r

[
c #
Ci # , gi #

]
=

{
C #
fi #

∣∣∣∣∣Cfi → cCi ∈ Pi, gi ∈ Fi, C ∈ I, Ci ∈ Ni

}}
, here

)
,

({
ϕd
r

⎡
⎣# e
Ei # gi
fi ,

⎤
⎦ =

{
E

∣∣∣∣∣E → eEifi ∈ Pi, E, Ei ∈ Ni, gi ∈ Fi, e ∈ T

}
,

ϕd
r

⎡
⎣ e f
Ei Fj gi gj
fi fj ,

⎤
⎦ =

{
E F

∣∣∣∣∣E → eEifi ∈ Pi, E, Ei ∈ Ni, e, f ∈ T, gi ∈ Fi, F → fFjfj ∈

Pj, F, Fj ∈ Nj, gj ∈ Fj

}
,

ϕd
r

⎡
⎣ e #
Ei # gi #
fi # ,

⎤
⎦ =

{
E #

∣∣∣∣∣E → eEifi ∈ Pi, E, Ei ∈ Ni, e ∈ T

}}
, here

)}
.

151

Solving the feasibility problem in robotic motion
planning by means of Enzymatic Numerical P systems

Ignacio Pérez-Hurtado1, Miguel Á. Martı́nez-del-Amor1,

Gexiang Zhang2, Ferrante Neri3, and Mario J. Pérez-Jiménez1

1 Research Group on Natural Computing, Dpt. Computer Science and Artificial Intelligence,

School of Computer Engineering, Universidad de Sevilla, Seville, Spain
2 School of Electrical Engineering, Southwest Jiaotong University, Chengdu,

People’s Republic of China
3 COL Laboratory, School of Computer Science, University of Nottingham, Nottingham,

United Kingdom

Abstract. Solving the feasibility problem in robotic motion planning means to

find feasible trajectories for specific mobile robots acting in environments with

obstacles whose positions are known a priori. The Rapidly-exploring Random

Tree (RRT) algorithm is a classical algorithm to solve such a problem in real-life

applications. In this paper, we provide a model in the framework of Enzymatic

Numerical P systems to reproduce the behaviour of the RRT algorithm. A C++

ad-hoc simulator is also provided to validate the model.

Keywords: Motion Planning · Rapidly-exploring Random Tree · Membrane Com-

puting · Enzymatic Numerical P systems

1 Introduction

This article studies a crucially important problem related to motion tracking, i.e. motion

planning. The motion planning problem consists of finding a trajectory to move an agent

trough a complex environment from a starting point to a desired area avoiding any

obstacle while considering constraints related to the agent such as shape, kinematics

and others. This problem is critical in almost all robot applications since, by definition,

a robot is a machine developing tasks in the real world.

Several approximated solutions have been proposed to the motion planning prob-

lem. An special mention should be given to a category of algorithms to build Rapidly-

exploring Random Trees (RRTs) [5]. They are based on the randomized exploration of

the configuration space by building a tree where nodes represent reachable states and

edges represent transitions.

The RRT algorithms are inherently sequential, but there are modules that can be

parallelized such as the obstacle collision detection [2].

Membrane Computing [15] is a computing paradigm inspired from the living cells

and it provides distributed, massively parallel devices. Models in Membrane Computing

are generically called P systems and they have been used in different contexts. Among

others, we stress the following: (a) showing the ability of some models to give poly-

nomial time solutions to computationally hard problems, by trading space for time; (b)

152

2 I. Pérez-Hurtado et al.

providing a new methodology to tackle the P versus NP problem [14, 9, 7]; (c) being a

framework for modelling biomolecular processes as well as real ecosystems [17, 4, 1,

3]; (d) incorporating fuzzy reasoning in models that mimic the way that neurons com-

municate with each other by means of short electrical impulses, and applying them to

many different industrial applications related to fault diagnosis [18].

A variant of P systems called Enzimatic Numerical P systems (ENPS, for short) has

been used to model and simulate robot controllers [11, 12, 20]. In this work, the ENPS

framework is used to design a bio-inspired parallel RRT model. It is worth pointing

out that no additional ingredient to the ENPS framework has been included, as in [13].

In consequence, the presented models can be compatible with existing ENPS robot

controllers. In order to validate the model, an ad-hoc simulator has been implemented

in C++.

The rest of this paper is structured as follows. Next section summarizes some pre-

liminary concepts. Section 3 is devoted to present a novel ENPS model for the RRT

algorithm. The simulator implemented in C++ is described in Section 4. The paper

ends with conclusions and some ideas for future work.

2 Preliminaries

This Section provides the reader with the basic concepts and notation used throughout

this paper.

2.1 Motion planning

In general terms, the problem of motion planning can be defined in the configuration

space of a mobile agent as follows. Given:

- An initial configuration state.

- A set of valid final configuration states.

- A map of obstacles in the environment.

- A description of the agent shape.

- A description of the agent kinematics.

Find a sequence of configuration states through the configuration space, a.k.a. tra-

jectory or plan, from the initial state to one of the final states, which does not touch any

obstacle in the environment considering the agent shape and kinematics.

There are two variants of the problem:

- The feasibility problem is to find a feasible trajectory, if one exists, and report

failure otherwise.

- The optimality problem is to find a feasible trajectory with minimal cost where

the cost of a trajectory is given by a computable function.

153

Solving the feasibility problem 3

2.2 Rapidly-exploring random trees

AN RRT [5] is a randomized tree structure for rapidly exploring the obstacle-free con-

figuration space. It has successfully been used to solve nonholonomic and kinodynamic

motion planning problems [6]. Nodes in an RRT represent possible reachable states,

edges represent transitions between states. The root of an RRT is the initial state. Each

state in an RRT can be reached by following the trajectory from the root to the cor-

responding node, as can be seen in Figure 1. Algorithms used in robotics to generate

RRTs are known to be anytime and any-angle, i.e, the produced trajectories could con-

tain turns in any valid angle considering the robot constraints and kinodynamics.

Fig. 1: A trajectory conducted by an RRT

The RRT algorithm The RRT algorithm [5] is used to generate an RRT structure

in order to solve the feasibility problem for motion planning in robotics. Algorithm 1

shows the pseudocode.

Algorithm 1 The RRT algorithm

V ← {xinit}; E ← /0; i ← 0;

while i < N do
G ← (V,E);
xrand ← Sample(); i ← i+1;

(V,E) ← Extend(G,xrand);
end while

where

- xinit is the initial robot state.

- Sample() returns independent identically distributed (i.i.d.) samples from the state

space.

154

4 I. Pérez-Hurtado et al.

Algorithm 2 Extend(G,x)

V ′ ← V ; E ′ ← E;

xnearest ← Nearest(G,x);
xnew ← Steer(xnearest ,xnew);
if ObstacleFree(xnearest ,xnew) then

V ′ ← V ′ ∪ {xnew};

E ′ ← E ′ ∪ {(xnearest ,xnew)};

end if
return G′ = (V ′,E ′)

where

- Nearest(G,x) returns the nearest node in G to x according to a distance metric. In

this paper we will consider the Euclidean distance.

- Steer(x,y) simulates a motion from x to y considering the robot constraints and

returns the computed state after a fixed Δ t time. In this paper we will consider

holonomic wheeled robots in 2D environments able to turn and move forward in

any angle. Thus, the simulated motions can be considered as straight lines.

- ObstacleFree(x,y) returns true if the trajectory in straight line from x to y is free

of obstacles; f alse otherwise.

2.3 Numerical P systems

Numerical P systems (NPS) are P systems, see [10, 19], introduced in [16] to model

economical and business processes. In NPS, the concept of multisets of objects is re-

placed by numerical variables that evolve from initial values by means of production

functions and repartition protocols. A numerical P system is formally expressed by:

Π = (m,H,μ,(Var1,Pr1,Var1(0)), . . . ,(Varm,Prm,Varm(0)))

where

- m is the number of membranes; m ≥ 1;

- H is an alphabet of labels, containing m symbols;

- μ is the membrane structure;

- Vari is a set of variables for compartment i, being Vari(0) their initial values;

- Pri is a set of programs for compartment i. A program has the following syntax:

F(x1, . . . ,xk) → c1|v1 + . . .+ cn|vn

where

• The left-hand-side of the program is called production function and the right-

hand-side is called repartition protocol.
• F(x1, . . . ,xk) is a function Rk → R using variables x1, . . . ,xk.

• v1, . . . ,vn are output variables. The output value of F will be distributed among

the output variables according to the repartition protocol given by c1, . . . ,cn.

155

Solving the feasibility problem 5

• c1, . . . ,cn are numeric values representing the portion of the output which is

going to be assigned to the corresponding variable.

For the sake of simplicity, in the rest of this paper, we will use the next syntax:

F(x1, . . . ,xk) → v

when there is one and only one output variable in the repartition protocol.

2.4 Enzymatic numerical P systems

Enzimatic numerical P systems (ENPS) are an extension of NPS introduced in [11]

for modeling and simulation of membrane controllers for autonomous mobile robots.

The main difference of ENPS with respect to NPS is the concept of enzyme which is

used to write conditions related to programs. The formal definition of the ENPS is the

following:

Π = (m,H,μ,(Var1,E1,Pr1,Var1(0)), . . . ,(Varm,Em,Prm,Varm(0)))

where

- m, H, μ , Vari and Vari(0) have the same meaning than explained in Subsection 2.3.

- Ei is a set of variables Ei ⊆ Vari called enzymes.

- Pri is a set of programs for compartment i. The syntax of a program is the following:

F(x1, . . . ,xk)|Cond(e1,...,er) → c1|v1 + . . .+ cn|vn

where

- F(x1, . . . ,xk) and c1|v1 + . . .+ cn|vn have the same meaning than explained in

Subsection 2.3.

- Cond(e1, . . . ,er) is a condition function Rr → {true, f alse} using enzymes

e1, . . . ,er. The program is disabled when the output of such a function is f alse.

For the sake of simplicity, it is not necessary to write the condition function when

it is the constant function Cond() = true.

The membrane structure is designed to organize programs and variables in modules.

All the variables are considered global, i.e, any program can read or write a variable

regardless of the compartment where the variable is defined. The definition of variables

as well as their initial values is given by the syntax x[v] where x is a variable and v is a

numeric value. The reserved word input can be written instead of a numeric value for

v when the initial value should be read from external inputs, e.g, robot sensors. In this

paper, we will use the syntax a[b] in order to refer to variable ai where i is the value

stored in variable b.

156

6 I. Pérez-Hurtado et al.

3 An ENPS model for the RRT algorithm

In this section, an ENPS model is presented in order to simulate the behaviour of

the RRT algorithm taking advantage of the inherent parallelism level existing in the

membrane computing framework. We have divided the whole problem in the next sub-

problems:

– Find the nearest point to a given point according to the Euclidean distance.

– Determine if a given trajectory is obstacle free.

– Simulate the RRT algorithm.

3.1 Finding the nearest point

Given a set of points X = {(xi,yi)} : 1 ≤ i ≤ 2n and a target point (xt ,yt), find the nearest

point (x,y) in X to the target point according to the Euclidean distance.

Solution for n=3 The solution of the nearest point for n= 2 is shown in Figure 2 Where

min(a,b) =

{
a a < b
b a ≥ b

min∗(a,b,c,d) =

{
a c < d
b c ≥ d

The P system computes in one step of computation the squared Euclidean distance

for all the points in X to the target point. After that, a reduction operation is conducted

in 3 steps to compute the minimum distance as well as the nearest point in X . The

computation stops after 4 steps, then halt is set to 1 and the nearest point is stored in

(xnearest ,ynearest). Variable α is used as an step counter.

General solution The general solution, for n points is given in Figure 3

After n+1 steps, the nearest point is stored in (xnearest ,ynearest).

3.2 Obstacle free trajectories

Given a set of obstacle points O = {(ai,bi)} : 1 ≤ i ≤ 2m, a starting point (x0,y0) and an

ending point (x1,y1), determine if the trajectory following a straight line from (x0,y0)
to (x1,y1) is obstacle free. A trajectory is obstacle free if the distance from the nearest

obstacle to the trajectory is greater or equal than a given parameter ξ , see Figure 4.

With reference to Figure 4:

- pDist(cx,cy,ax,ay,bx,by) returns the squared Euclidean distance from the point

(cx,cy) to the segment [(ax,ay), (bx,by)].
- After m+1 steps, the variable collision contains a value equal or less than zero if

the trajectory is obstacle free.

157

Solving the feasibility problem 7

Nearest(3)

xi[input],yi[input],di[0],x′
i[0],y

′
i[0] : 1 ≤ i ≤ 8

xt [input],yt [input],xnearest [0],ynearest [0],α[1],halt[0]

(xi − xt)
2 +(yi − yt)

2|α=1 → di : 1 ≤ i ≤ 8

xi|α=1 → x′
i : 1 ≤ i ≤ 8

yi|α=1 → y′
i : 1 ≤ i ≤ 8

min(di,di+4)|α=2 → di : 1 ≤ i ≤ 4

min∗(x′
i,x

′
i+4,di,di+4)|α=2 → x′

i : 1 ≤ i ≤ 4

min∗(y′
i,y

′
i+4,di,di+4)|α=2 → y′

i : 1 ≤ i ≤ 4

min(di,di+2)|α=3 → di : 1 ≤ i ≤ 2

min∗(x′
i,x

′
i+2,di,di+2)|α=3 → x′

i : 1 ≤ i ≤ 2

min∗(y′
i,y

′
i+2,di,di+2)|α=3 → y′

i : 1 ≤ i ≤ 2

min(d1,d2)|α=4 → d1

min∗(x′
1,x

′
2,d1,d2)|α=4 → xnearest

min∗(y′
1,y

′
2,d1,d2)|α=4 → ynearest

α +1|halt=0 → α
1|α=4 → halt

Fig. 2: Nearest(3) procedure

Algorithm 3 shows the pseudocode of the pDist function.

The P system computes in one step of computation the squared Euclidean distance

for all the obstacles to the segment given by [(x0,y0),(x1,y1)]. After that, a reduction

operation is conducted in m steps of computation, obtaining the minimum distance. In

the last step, variables collision and halt are set.

3.3 The RRT algorithm

For the following set of parameters

- An initial robot position (x1,y1).
- A set of obstacle points {(ai,bi)} : 1 ≤ i ≤ 2m.

- The size (p,q) of the scenario.

- Parameter n, where the number of points in the RRT will be 2n.

- Parameter ξ as explained in subsection 3.2.

- Parameter δ giving the length of the edges in the RRT.

the RRT algorithm is illustrated in Figure 5.

The inner modules are defined as shown in Figures 6, 7, and 8 where

- random() returns a random number independent identically distributed (i.i.d.) in

[0,1]∩R
- rm(x,y) returns the remainder of the integer division between x and y.

- The coordinates of the RRT nodes will be {(xi,yi)} : 1 ≤ i ≤ 2n

158

8 I. Pérez-Hurtado et al.

Nearest(n)

xi[input],yi[input],di[0],x′
i[0],y

′
i[0] : 1 ≤ i ≤ 2n

xt [input],yt [input],xnearest [0],ynearest [0],α[1],halt[0]

(xi − xt)
2 +(yi − yt)

2|α=1 → di : 1 ≤ i ≤ 2n

xi|α=1 → x′
i : 1 ≤ i ≤ 2n

yi|α=1 → y′
i : 1 ≤ i ≤ 2n

min(di,di+2n− j)|α= j+1 → di : 1 ≤ i ≤ 2n− j ,1 ≤ j ≤ n

min∗(x′
i,x

′
2n− j ,di,d2n− j)|α= j+1 → x′

i : 1 ≤ i ≤ 2n− j ,1 ≤ j < n

min∗(y′
i,y

′
2n− j ,di,d2n− j)|α= j+1 → y′

i : 1 ≤ i ≤ 2n− j ,1 ≤ j < n

min∗(x′
1,x

′
2,d1,d2)|α=n+1 → xnearest

min∗(y′
1,y

′
2,d1,d2)|α=n+1 → ynearest

α +1|halt=0 → α
1|α=n+1 → halt

Fig. 3: General Nearest(n) procedure

Algorithm 3 pDist(cx,cy,ax,ay,bx,by)

u ← (cx − ax) · (bx − ax)+(cy − ay) · (by − ay);
u ← u/[(bx − ax)

2 +(by − ay)
2];

if u < 0 then
return (ax − cx)

2 +(ay − cy)
2

end if
if u > 1 then

return (bx − cx)
2 +(by − cy)

2

end if
px ← ax +u · (bx − ax);
py ← ay +u · (by − ay);
return (px − cx)

2 +(py − cy)
2

- The coordinates of the RRT parent nodes will be {(pxi, pyi)} : 2 ≤ i ≤ 2n

- The RRT is completely generated and the computation stops when halt = 1.

The P system generates the point (xrand ,yrand) in one step of computation, after that,

the module NearestRRT (n) computes the point (xnearest ,ynearest) in n+ 1 steps of com-

putation as explained in subsection 3.1. Then, the (xnew,ynew) point is computed accord-

ing to the δ parameter. The next module to be executed is the ObstacleFreeRRT (n,ξ)
module, see subsection 3.2, computing the squared Euclidean distance of the nearest

obstacle point to the segment [(xnearest ,ynearest),(xnew,ynew)], if this value is less than

ξ parameter, then the variable collision will contain a value greater than 0 after m+ 1

steps of computation. Finally, if the segment is obstacle free, the module Extend(n,m)
updates the RRT. In this way, each node is added to the RRT in m+n+6 computation

steps if the corresponding edge is obstacle free.

159

Solving the feasibility problem 9

ObstacleFree(m,ξ)

ai[input],bi[input],d′
i [0] : 1 ≤ i ≤ 2m

x0[input],y0[input],x1[input],y1[input]

collision[0],α[1],halt[0]

pDist(ai,bi,x0,y0,x1,y1)|α=1 → d′
i : 1 ≤ i ≤ 2m

min(d′
i ,d

′
i+2m− j)|α= j+1 → d′

i : 1 ≤ i ≤ 2m− j ,1 ≤ j < m

min(ξ − d′
1,ξ − d′

2)|α=m+1 → collision

α +1|halt=0 → α
1|α=m+1 → halt

Fig. 4: Procedure for the detection of an obstacle free trajectory

RRT(n,m,p,q,δ ,ξ)

x1[input],y1[input]

ai[input],bi[input] : 1 ≤ i ≤ 2m

xi[3 · p],yi[3 · q] : 2 ≤ i ≤ 2n

pxi[0], pyi[0] : 2 ≤ i ≤ 2n

xrand [0],yrand [0],xnew[0],ynew[0],

xnearest [0],ynearest [0],collision[0],α[1], index[2],halt[0]

0|α=1 → collision

p · random()|α=1 → xrand

q · random()|α=1 → yrand

xnearest +δ · (xrand −xnearest)√
d1

|α=n+3 → xnew

ynearest +δ · (yrand −ynearest)√
d1

|α=n+3 → ynew

rm(α,m+n+6)+1|collision≤0 → α
1|collision>0 → α
index+1|α=m+n+6 → index

1|index=2n+1 → halt

NearestRRT (n)

ObstacleFreeRRT (m,ξ)

ExtendRRT (n,m)

Fig. 5: Rapidly-exploring Random Tree

160

10 I. Pérez-Hurtado et al.

NearestRRT (n)

di[0],x′
i[0],y

′
i[0] : 1 ≤ i ≤ 2n

(xi − xrand)
2 +(yi − yrand)

2|α=2 → di : 1 ≤ i ≤ 2n

xi|α=2 → x′
i : 1 ≤ i ≤ 2n

yi|α=2 → y′
i : 1 ≤ i ≤ 2n

min(di,di+2n− j)|α= j+2 → di : 1 ≤ i ≤ 2n− j ,1 ≤ j ≤ n

min∗(x′
i,x

′
2n− j ,di,d2n− j)|α= j+2 → x′

i : 1 ≤ i ≤ 2n− j ,1 ≤ j < n

min∗(y′
i,y

′
2n− j ,di,d2n− j)|α= j+2 → y′

i : 1 ≤ i ≤ 2n− j ,1 ≤ j < n

min∗(x′
1,x

′
2,d1,d2)|α=n+2 → xnearest

min∗(y′
1,y

′
2,d1,d2)|α=n+2 → ynearest

Fig. 6: NearestRRT Procedure

ObstacleFreeRRT (m,ξ)

d′
i [0] : 1 ≤ i ≤ 2m

pDist(ai,bi,xnearest ,ynearest ,xnew,ynew)|α=n+4 → d′
i : 1 ≤ i ≤ 2m

min(d′
i ,d

′
i+2m− j)|α= j+n+4 → d′

i : 1 ≤ i ≤ 2m− j ,1 ≤ j < m

min(ξ − d′
1,ξ − d′

2)|α=m+n+4 → collision

Fig. 7: ObstacleFreeRRT Procedure

ExtendRRT (n,m)

xnew|α=m+n+6 → x[index]

ynew|α=m+n+6 → y[index]

xnearest |α=m+n+6 → px[index]

ynearest |α=m+n+6 → py[index]

Fig. 8: ExtendRRT Procedure

161

Solving the feasibility problem 11

4 Developed software

We have implemented a specific (ad-hoc) simulator using C++, which is able to simulate

the ENPS-RRT model described in section 3. Let us recall that a specific simulator aims

at simulating a certain P system model (as in this case), instead of simulating a whole

P system variant (i.e. a generic simulator) [8]. In a specific simulator, the developer

encode the P system directly in the source code, and can implement assumptions for

simplicity and efficiency. In any case, the simulator must simulate the model; that is,

there should be a way to know the state of the P system at any time.

The simulator is able to manage image files in PGM format defining the obstacle

maps, two predefined scenarios have been included with the software. For each one, a

PGM file is included along with a fixed initial position for the robot. The resolution for

all maps is 5cm2/pixel. In Figure 9, the two scenarios and their corresponding output

are shown.

The parameters of the models are fixed:

- n = 12, i.e, 212 RRT nodes will be generated.

- δ = 15cm, i.e, the RRT edges will have 15cm length.

- ε = 20cm, the robot radius.

- m, p,q depend on the specific PGM file.

The simulator uses data structures to store the value of the ENPS variables in run-

time and programming sentences in C++ in order to simulate the behaviour of the ENPS

programs.

5 Conclusions

In this work, we present an ENPS model emulating the computation of the RRT algo-

rithm in order to solve the feasibility problem for robotic motion planning. The ENPS

framework has been successfully used to design and simulate robot controllers, but

there is a lack of solutions for global path planning using the framework. An exten-

sion of ENPS, called Random Enzymatic Numerical P systems with Shared Memory

(RENPSM for short), was introduced in [13] to simulate for the first time RRT al-

gorithms but such an extension contains several new ingredients, on the contrary, the

model presented in this paper is based on the original ENPS framework, being compat-

ible with existing membrane computing robot controllers.

Several research lines are proposed as future work. We would like to study other

RRT algorithms, as the RRT* algorithm which provides an asymptotically-optimal so-

lution to the motion planning problem. We also would like to extend our current sim-

ulator to existing parallel hardware/software architectures such a CUDA, OpenMP or

FPGA in order to take advantage of the massively parallelism level in the model. Finally,

we would like to integrate our ENPS-RRT models with existing ENPS robot controllers

in order to get a navigation stack based on membrane computing for real robots.

162

12 I. Pérez-Hurtado et al.

(a) map1

(b) ccia h

(c) Output map1

(d) Output ccia h

Fig. 9: Maps employed in the experiments and the obtained outputs from the ENPS-

RRT model: (a) is map1 (a simple room), (b) is ccia h (scanned map of the computer

science department’s wing H at University of Seville), (c) is the output of map1, (d) is

the output of ccia h.

163

Solving the feasibility problem 13

Acknowledgements

This work is supported by the research project TIN2017-89842-P (MABICAP), co-

financed by Ministerio de Economı́a, Industria y Competitividad
(MINECO) of Spain, through the Agencia Estatal de Investigación (AEI), and by Fondo
Europeo de Desarrollo Regional (FEDER) of the European Union.

This work is supported by the National Natural Science Foundation of China (61972324,

61672437, 61702428), the New Generation Artificial Intelligence Science and Technol-

ogy Major Project of Sichuan Province (2018GZDZX0043) and the Sichuan Science

and Technology Program (2018GZ0185, 2018GZ0086) and Artificial Intelligence Key

Laboratory of Sichuan Province (2019RYJ06).

References

1. Barbuti, R., Bove, P., Milazzo, P., Pardini, G.: Minimal probabilistic P systems for

modelling ecological systems. Theoretical Computer Science 608, 36 – 56 (2015).

https://doi.org/10.1016/j.tcs.2015.07.035
2. Bialkowski, J., Karaman, S., Frazzoli, E.: Massively parallelizing the RRT and the RRT*.

In: Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and

Systems. pp. 3513–3518 (Sep 2011)
3. Colomer, M.A., Margalida, A., Pérez-Jiménez, M.J.: Population Dynamics P System (PDP)

Models: A Standardized Protocol for Describing and Applying Novel Bio-Inspired Comput-

ing Tools. PLOS ONE 8(5), e60698 (2013). https://doi.org/10.1371/journal.pone.0060698
4. Gheorghe, M., Krasnogor, N., Camara, M.: P systems applications to systems biology.

Biosystems 91(3), 435 – 437 (2008). https://doi.org/10.1016/j.biosystems.2007.07.002
5. LaValle, S.M.: Rapidly-exploring random trees: A new tool for path planning. Tech. rep.

(1998)
6. LaValle, S.M., Kuffner, J.J.: Randomized Kinodynamic Planning. The International Journal

of Robotics Research 20(5), 378–400 (2001)
7. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: A survey on

space complexity of P systems with active membranes. International Journal of Ad-

vances in Engineering Sciences and Applied Mathematics 10(3), 221–229 (2018).

https://doi.org/10.1007/s12572-018-0227-8
8. Martı́nez-del-Amor, M.Á., Orellana-Martı́n, D., Pérez-Hurtado, I., Valencia-Cabrera, L.,

Riscos-Núñez, A., Pérez-Jiménez, M.J.: Design of Specific P Systems Simulators on GPUs.

In: Hinze, T., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) Membrane Computing. Lec-

ture Notes in Computer Science, vol. 11399, pp. 202–207. Springer International Publishing

(2019). https://doi.org/10.1007/978-3-030-12797-8 14
9. Orellana-Martı́n, D., Valencia-Cabrera, L., Riscos-Núñez, A., Pérez-Jiménez, M.J.: A path

to computational efficiency through membrane computing. Theoretical Computer Science

777, 443 – 453 (2019). https://doi.org/10.1016/j.tcs.2018.12.024
10. Pan, L., Puaun, G., Zhang, G., Neri, F.: Spiking neural P systems with communication on

request. Int. J. Neural Syst. 27(8), 1–13 (2017)
11. Pavel, A., Arsene, O., Buiu, C.: Enzymatic numerical p systems - a new class of membrane

computing systems. In: 2010 IEEE Fifth International Conference on Bio-Inspired Comput-

ing: Theories and Applications (BIC-TA). pp. 1331–1336 (Sep 2010)
12. Pavel, A., Buiu, C.: Using enzymatic numerical p systems for modeling mobile robot

controllers. Natural Computing 11(3), 387–393 (2012). https://doi.org/10.1007/s11047-011-

9286-5

164

14 I. Pérez-Hurtado et al.

13. Pérez-Hurtado, I., Pérez-Jiménez, M.J., Zhang, G., Orellana-Martı́n, D.: Simulation of

Rapidly-Exploring Random Trees in Membrane Computing with P-Lingua and Automatic

Programming. International Journal of Computers, Communications and Control 13(6),

1007–1031 (2019)

14. Pérez-Jiménez, M.J., Riscos-Núñez, A., Valencia-Cabrera, L., Orellana-Martı́n, D.: Results

on Computational Complexity in Bio-inspired Computing, chap. 2, pp. 33–73. World Scien-

tific (2019). https://doi.org/10.1142/9789813143180 0002

15. Păun, Gh.: Computing with Membranes. Journal of Computer and System Sciences 61(1),

108 – 143 (2000). https://doi.org/10.1006/jcss.1999.1693

16. Păun, Gh., Păun, R.: Membrane Computing and Economics: Numerical P Systems. Funda-

menta Informaticae 73(1,2), 213–227 (2006)

17. Păun, Gh., Romero-Campero, F.J.: Membrane Computing as a modeling framework. Cellular

systems case studies. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) Formal Methods for

Computational Systems Biology, Lecture Notes in Computer Science, vol. 5016, pp. 168–

214. Springer Berlin Heidelberg (2008). https://doi.org/10.1007/978-3-540-68894-5 6

18. Wang, T., Zhang, G., Zhao, J., He, Z., Wang, J., Pérez-Jiménez, M.J.: Fault diagnosis of elec-

tric power systems based on fuzzy reasoning spiking neural p systems. IEEE Transactions

on Power Systems 30(3), 1182–1194 (2015)

19. Wu, T., Bı̂lbı̂e, F., Paun, A., Pan, L., Neri, F.: Simplified and yet turing universal spiking

neural P systems with communication on request. Int. J. Neural Syst. 28(8), 1850013 (2018)

20. Zhang, G., Pérez-Jiménez, M., Gheorghe, M.: Real-life Applications with Membrane Com-

puting, vol. 25. Springer (2017). https://doi.org/10.1007/978-3-319-55989-6

165

A survey of learning SNP systems and some new ideas

Yunhui Chen1, Gexiang Zhang2∗, Ying Chen1, Prithwineel Paul2, Tianbao Wu1, Xihai Zhang2, and
Haina Rong2

1 State Grid Sichuan Electric Power Company, Chengdu 610094, China
2 School of Electrical Engineering, Southwest Jiaotong University, Chengdu 611756, China

Abstract. In last few decades membrane computing has established itself as an important branch
of natural computing. Investigating computational power, complexity aspects and real-world ap-
plications of different variants of membrane computing models have been a successful direction of
research. In recent years with the invention of efficient learning algorithms, many researchers have
concentrated their research into construction of intelligent biological computing systems inspired
by the working of neurons in human brains to emulate human thinking. Spiking neural P systems
are such type of computing systems. In this paper we survey spiking neural P systems (i.e., neural-
like membrane computing models) with learning ability, their architecture, learning mechanism and
compare these models, discuss their advantages and disadvantages and application of these mod-
els in solving real-world problems. We further discuss learning mechanism of associative memory
network based on spiking neural P systems with white holes and weights. At the end, we discuss
about some new ideas to further extend the study of membrane computing models having learning
ability.

Keywords: Membrane computing · Spiking neural networks · Spiking neural P systems · Neural
plasticity · Structural plasticity · Machine learning.

1 Introduction

The science and engineering of creating intelligent machines is well-known as artificial intelligence. Intelli-
gent machines learn from their experience and this ability to learn is known as machine learning. Machine
learning is an integral part of artificial intelligence. In machine learning (ML) [20] the performance of the
computer systems for solving a specific task can be improved by studying the sample data set or training
data set. Machine learning algorithms also can make predictions or decisions even if the system is not
explicitly programmed to perform the task. It has been used in statistics, pattern recognition, neural net-
works, artificial intelligence, signal processing, control, data mining, email filtering, detection of network
intruders and computer vision. Learning algorithms in machine learning can be divided into mainly three
categories: supervised learning, unsupervised learning and reinforcement learning. Supervised learning
algorithms are popular for training artificial neural networks. The main purpose of supervised learning is
to learn functions to map an input to desired output by observing a set of input-output data. The main
purpose of unsupervised learning is to find the similarities between the given data.

Over the years machine learning and artificial intelligence have been used as one of the most important
tools to solve problems in industry as well as in academics. However until now no known efficient learning
algorithm has been introduced which can emulate human thinking and achieve human-level performance
at solving difficult tasks. P systems are powerful parallel and distributed computing models and these
systems have been used significantly in solving computationally hard problems [1] and many problems
in real-life applications [36]. Although the use of machine learning algorithms for training of artificial
neural networks is extensively studied, it is relatively new for training of membrane computing models.
Furthermore, spiking neural P systems are inspired by the structure and functioning of biological neurons.
So the construction of machine learning algorithms in spiking neural P systems framework which can
emulate human thinking and expansion of the scope of the membrane computing models for applications
in the areas such as pattern recognition, image processing, robot locomotion, computer vision, sequence
mining etc have become an important direction of research. The learning property is not a built-in feature
in P systems, however, formal language theory itself does not exclude such features. In fact, investigation
of the learning ability of the membrane computing models was listed as one of the open problems in [15]
by Gh. Păun.

166

2 Y. Chen, G. Zhang, et al.

In 1998 inspired by the structure and functioning of living cells, Gh. Păun initiated the study of
membrane computing. In last few decades, membrane computing has grown as a prominent branch of
natural computing and been a popular research area for researchers in computer science, mathematics,
biology, economics. Moreover, in 2003, the seminal paper by Păun [17] was mentioned by the Institute for
Scientific Information, ISI, as fast breaking in the area of computer science and membrane computing was
termed as Emerging Research Front in computer science. The fundamental component of membrane com-
puting models is a parallel and distributive computing model known as P systems. Since the introduction
of first model, different variants of P systems and their computing power, complexity aspects, real-life
applications have been studied extensively [1, 36]. These models have different membrane structures and
the objects inside the membranes can be also of different data structures such as multiset, strings, arrays
etc. These models also can mimic the working of the living cells and based on the membrane structure,
can be divided into three categories: cell-like, tissue-like and neural-like. Neural-like membrane computing
models have gained popularity among researchers in recent years because of its similarities with neural
networks and learning ability.

Artificial neural networks(ANNs) are computing models inspired from the structure and functioning
of biological neurons. Neural networks have been a very useful tool in processing data and with learning
mechanisms these models can make useful predictions. Based on the computational units, neural network
models can be classified into three categories: first generation, second generation and third generation.
Spiking neural networks(SNNs) are considered as third generation neural networks and SNNs are fun-
damentally different from first and second generation neural networks. However its functioning is more
closer to the working of biological neurons. The neurons in ANNs use non-linear continuous valued ac-
tivation functions to communicate with each other and a threshold is associated with the neurons such
that the transmission of signals is possible only if the threshold is crossed [20]. SNNs are computationally
more powerful and do not fire at each propagation cycle. Also in SNNs, neurons communicate with each
other with electrical pulses known as spikes and spikes are sent when the membrane potential of a neuron
is crossed [46]. Moreover, the neurons in ANNs are single, static and have continuous valued action. But
in biological neurons discrete spikes are used to compute and transmission of information. This idea of
spiking has been used in SNNs where the time of the spiking is more important than the spike rates. These
reasons help the working of SNNs to be more closer to biological neurons. Moreover, third generation
neural networks use the idea of individual spikes which is a property of biological neurons and are more
hardware friendly and energy efficient [58]. Inspired by the information processing and communication of
the neurons and features of spiking in spiking neural networks, Păun, Ionescu and Yokomori initiated the
study of spiking neural P systems (SNP systems) in [14]. Following this many variants of SNP systems
[38–41] have been introduced inspired from the features of neuroscience such as asynchronous systems in
[21], astrocytes in [22], rules on synapse in [24], thresholds in [25], communication on request in [26], and
synapses with schedules in [28]. Spiking neural P systems also have been used to solve computationally
hard problems [29–31]. Also, SN P systems and their variants have been used to solve problems in real-life
applications such as fuzzy reasoning SN P systems for fault diagnosis, image processing, fault diagnosis
of electric power systems, solving combinatorial optimization problems [32–35].

SN P systems have been very effective in solving problems in theory and application because some
important properties of SNNs have been incorporated into SNP systems within formal language theory
framework which helped these systems to be more powerful. Also, there exist some properties which dis-
tinguish them. Like SNNs, the individual spikes are considered in the SNP systems where it is represented
by an alphabet with single symbol. Moreover, the informations are encoded in the form of time difference
between the firing of a specified neuron which is called as output neuron. The major difference between
SNNs and SNPs is the rules present in the neurons of SNPs. The rules are written using the concepts
of formal language theory. In SNNs, the current activation level of a neuron is modeled by differential
equation [46]. Moreover, unlike SNNs, SNPs work as language generating and accepting device. These
models can have language generating and accepting power equivalent to Turing machines [38–40]. The
training of SNNs is considered very challenging. Although many supervised as well as unsupervised learn-
ing algorithms have been introduced for SNNs [46], still investigations regarding construction of training
algorithms is considered as an open area of research. The intrinsic similarities with the SNNs inspired
researchers to investigate the learning ability of the SNP systems. Followed by these many researchers
have introduced supervised and unsupervised learning algorithms for SNP systems in [2–5, 37].

Investigating learning mechanism of membrane computing models is relatively new and promising
branch of natural computing. The first model discussing the learning mechanism for membrane computing

167

A survey of learning SNP systems and some new ideas 3

models was introduced in 2008 by Gutiérrez-Naranjo and Pérez-Jiménez. In this model the rules in
presynaptic neurons having higher probability for firing of postsynaptic neuron is learnt for Hebbian SN
P unit [2]. Following this Adaptive SN P systems [3], Adaptive fuzzy SN P systems [4], SN P systems with
learning function [37] were introduced. Moreover SN P systems with Hebbian learning strategy has been
used for identification of nuclear export signals [11] and SN P systems with Hebbian learning function
has been used for recognition of digital English letters [37]. Also the Widrow-Hoff learning algorithm
introduced for AFSNP systems have been used to solve the fault diagnosis problem in power systems [5].
Although only very few learning models have been constructed in membrane computing, most of these
models are simple and not capable of solving complex problems. Hence it requires further investigation.

In recent years because of the increasing popularity and usefulness of machine learning algorithms
in solving complex problems, it became important to prepare a survey of the learning models discussing
the architecture of membrane computing learning models, study their comparisons, advantages and dis-
advantages and applications in solving real world problems. Followings are motivation for preparing this
survey:

1. Until now there has been no known survey on membrane computing models with learning ability.
This survey will help the researchers in membrane computing community to easily understand these
models along with their learning methods and application in solving real-world problems. Also will
be able to compare these models easily.

2. This survey extends the scope of study of machine learning for bio-computing models. Moreover,
researchers will be able to understand the difference between the learning in SNNs and SNPs having
completely different mathematical structures.

3. Address some new research problems in membrane computing and machine learning.

The contributions of this paper are as follows:

1. We survey all membrane computing models with learning mechanism and analyze them in detail.
Moreover, we do a throughout comparison of these models and discuss their advantages and disad-
vantages.

2. We discuss the real-world problems which can be solved using the membrane computing models and
their learning mechanism and compare the performance of these models with traditional models.

3. Discuss an example of learning in associative memory network based on extended spiking neural P
systems with white holes and weight (AMN-EWSNP).

4. Discuss future research direction by proposing methodology for extending the study of single layer
network to multilayer network for membrane computing models.

This article is organized in the following manner. In Section 2, we discuss about membrane computing
models with neural-like structure and their learning ability. Section 3 discusses the example of learning
in associative memory network based on extended spiking neural P systems with white holes and weights
(AMN-EWSNP). Section 4 discusses the conclusion and future directions of research.

P systems Neural like

ASNPS

AFSNPS

HSNPS

SNPSLF

Widrow-Hoff

Hebbian

Fig. 1: Membrane computing models with learning

168

4 Y. Chen, G. Zhang, et al.

2 Membrane computing models with learning

Most of the learning processes in the biologically motivated computing models are inspired from the
Hebbian learning rules. SNP systems are inspired from the structure and functioning of SNNs and hence
studying Hebbian learning in these systems was of primary importance. In this section, we discuss Hebbian
and Widrow-Hoff learning in Hebbian SN P system unit, adaptive SN P systems, and adaptive fuzzy SN
P systems and we also study comparisons, advantages and disadvantages of these models. We also discuss
the application of the Hebbian learning strategy in SN P systems for solving NES identification problem,
Widrow-Hoff learning algorithm for SN P systems for fault diagnosis of power systems and recognition
of English letters by SN P systems with Hebbian learning function. Moreover, we discuss these learning
models in SN P systems according to their year of inception. We start with learning in Hebbian SN P
systems unit [2] introduced in 2008. It is also the first known article discussing the concept of machine
learning in membrane computing.

2.1 Unsupervised (Hebbian) Learning with SN P systems:

Hebbian theory or Hebb’s postulate was introduced by D.O. Hebb in 1949 in his book The Organization
of Behavior [19]. In this theory, he claimed that the efficiency of the synapse increases when a presynaptic
cell is responsible for repeated and persistent stimulation of postsynaptic cells. This theory paved the way
for new learning algorithm called as “Hebbian learning algorithm”. In Hebbian learning the plasticity
between the presynaptic and postsynaptic neuron is taken into account. Also, the weight associated with
the synapse is updated according to the Hebbian rules in artificial neural networks. Although Hebb
introduced the idea, he did not mathematically formulated the concept. There exist several mathematical
formulation of Hebbian learning. Some of the popular mathematical formulation of Hebbian learning are
(1) Rate-based Hebbian learning [57]; (2) Spike-based models of Hebbian plasticity [57]. Also one of the
popular mathematical generalization of Hebb’s rule is as follows: Let {p1, t1}, {p2, t2}, . . . , {pn, tn}, be the
training data where pi ∈ Rd and the corresponding output of each input pattern is Oi = sgn(wTpi + b).
Then the weights are updated in the following manner until the weights converge:

w
′
= w +Δw;

Δw =

{
ηtipi if Oi �= ti

0 Otherwise

where η is the learning rate.
Hebbian learning is an unsupervised learning where good representations are learned from unlabelled

input data and it has different weight updating strategies. Naranjo and Pérez-Jiménez introduced the
idea of Hebbian learning with membrane computing in the year 2008 [2].

The Hebbian learning for SN P systems is discussed in [2] with the help of the computing device called
as Hebbian SN P systems unit. The main purpose of this device is transmission of the information. For
any given input if the device is able to send a spike to the environment, then the device has successfully
transmitted the information. Otherwise it has failed. The learning problem of the SN P system can
be formulated using the Hebbian SN P unit in the following manner. A Hebbian SN P system unit of
degree (m, k, p) [2] is a construct HΠ = (O, u1, . . . , um, v), where each decaying rule Rij is of the form
ak → (anij , S); dij where k ≥ nij ≥ 0 and dij ≥ 0. The decaying sequence S = (s1, s2, . . . , sr) is a finite
non increasing sequence of natural numbers where s1 = k and sr = 0.

The idea of decaying sequence associated with each spiking rule of Hebbian SN P systems unit is a new
concept. Moreover, after application of a rule E/ak → (ap, S); d where S = (s1, s2, . . . , sr), for the least l
such that p ≥ sl, the number of spikes sent to the connected neurons is sl. The idea of decaying sequence
is inspired from the biological behaviour of spikes, i.e., whenever any spike is reached to a neuron, the
potential of the neuron increases. Moreover, the spikes inside the neuron decay with time.

Now for an input x to the Hebbian SN P unit, the success and failure of the Hebbian SN P unit depend
on the non-deterministic selection of the rules present in the system. Some rules are better than the other
rules, i.e., applications of some rules are correlated with the successful computation in Hebbian SN P
unit. The learning problem is to identify these rules. In this model, a weight or efficacy is associated
with each rule of presynaptic neuron. The rule in presynaptic neuron is of the form ak → (anij , S); d
where S = (s1, s2, . . . , sr) and is associated with a weight wij . If the rule is triggered for a least l such

169

A survey of learning SNP systems and some new ideas 5

that nij × wij ≥ sl, then sl spikes are sent to the postsynaptic neuron after d time unit. If the time
difference between the firing of a presynaptic neuron and the firing of postsynaptic neuron is less, i.e., the
contribution of the presynaptic neuron initiates the firing of the postsynaptic neuron, then the efficacy
or weight of the rule is more and the rules with less efficacy or weight are removed from the system.

Remarks: (1) In the original definition of SNP systems, the decaying sequence is not added with the
firing rules. Also the idea of decay has not been used in the original definition of SN P systems and its
variants. In fact in the original definition, the spikes inside the neurons in SN P systems can stay for a
long period of time until consumed by a rule.

(2) The Hebbian learning strategy has been used to train a single layer neural network model in
[2] where m presynaptic neurons are associated with one postsynaptic neuron. Since single layer neural
networks can identify only linearly separable data, the extension of this model for complex multilayer
networks and training of these networks using same Hebbian learning strategy can be a topic of further
investigation.

(3) It is important to note that in this model the weights are not associated with the synapses
connecting presynaptic and postsynaptic neurons, instead weight of the rules are updated and rules with
less weights are removed from the system, i.e., most effective rules are learnt in this Hebbian learning
algorithm.

Following the introduction of Hebbian learning algorithms for spiking neural P systems, a supervised
learning algorithm, i.e., Widrow-Hoff learning algorithm for spiking neural P systems was introduced in
2010.

2.2 Supervised (Widrow-Hoff)Learning with spiking neural P systems:

Widrow-Hoff /LMS algorithm is a popular supervised learning algorithm. Least-mean square algorithm
(LMS) / Widrow-Hoff algorithm was introduced by Widrow and Hoff in 1960. It is also well-known as lin-
ear perceptron training algorithm and delta rule. LMS algorithms have very simple design and it operates
with single linear neuron model. Also LMS algorithms have applications in adaptive signal processing
and is popular in adaptive filtering because of low computational complexity, proof of convergence in
stationary environment etc [56].

In Widrow-Hoff algorithm the performance error of the system is measured by the cost function E(W),

i.e., E(W) = 1
2

∑p
k=1(d

(k) − ∑m
j=1 wjx

(k)
j)2

where the input is x
(k)
1 , x

(k)
2 , . . . , x

(k)
m and y(k) =

∑m
j=1 wjx

(k)
j , E(W) ≥ 0 and it approaches to 0 whenever

y(k) approaches to d(k) where k = 1, 2, . . . , p and p represents the number of applied patterns. The
LMS/Widrow-Hoff algorithm minimizes the cost function which is also known as mean square error.

In this section we discuss about Widrow-Hoff learning algorithms in membrane computing models. At
first we discuss about Widrow-Hoff learning algorithm for adaptive spiking neural P systems introduced
in 2010. Then we discuss Widrow-Hoff learning algorithm in adaptive fuzzy spiking neural P systems
framework which was introduced in 2013. We further compare these models and discuss their advantages
and disadvantages.

Adaptive spiking neural P systems: An ASN P system (adaptive spiking neural P systems) of degree
(m+ 1) [3], is a construct of the form Π = (A, σ1, . . . , σm, σm+1, syn, I, O) where

• A = {a} is the singleton alphabet (the object a is called spike);
• σ1, . . . , σm, σm+1 represent (m+ 1) neurons where each neuron σi = (αi, ωi, Ri) (i ∈ {1, . . . ,m+ 1})

has (i) αi(≥ 0) ∈ R, and it represents the value of the spikes contained in neuron i; (ii) ωi ∈ R and
it represents the weights on the synapses connecting the m input neurons and output neuron.
(iii) Ri represents the rules in the neuron i. In this model each neuron has a rule of the form
{an|n ≥ 1}/aα → aα where {an|n ≥ 1} is the firing condition of neuron σi.

• syn = {(σ1, σm+1), . . . , (σm, σm+1)}, represents the synaptic connection between neurons.
• I = {σ1, . . . , σm} represents the input neuron set and O = {σm+1} represents the output neuron set.

In this model,m neurons σ1, σ2, . . . , σm are connected with the neuron σm+1 and each synapse between
the neurons σ1, σ2, . . . , σm and σm+1 are associated with a weight ωi. Since the neurons only contains

170

6 Y. Chen, G. Zhang, et al.

firing rules of the form {an|n ≥ 1}/aα → aα along with the firing condition {an|n ≥ 1}, whenever the
inputs x1, x2, . . . , xm are given to the neuron σ1, σ2, . . . , σm respectively, all the neurons fire immediately.
Moreover, the inputs are multiplied by the weights of the synapses and reach the neuron σm+1 in the
next moment. Also, since the neuron σm+1 has a firing rule {an|n ≥ 1}/aα → aα, after receiving the
spikes with values ωixi(i = 1, 2, . . . ,m) through each synapse, the neuron will fire. The value of spike, i.e.,
ω1x1 +ω2x2 + . . .+ωnxn is considered as the output of the adaptive spiking neural P systems. Moreover
the output of the system helps to learn the weights ω1, ω2, . . . , ωn.

The learning problem of ASNP systems is associated with learning of the weights ω1, ω2, . . . , ωm

associated with the synapses connecting the input neurons and the output neuron from the training data.
Moreover Widrow-Hoff learning algorithm is used to learn the weights in a single layer network of spiking
neural P systems where m input neurons are connected with an output neuron and the learning process
is done by processing training data in the adaptive spiking neural P system framework. Note that unlike
in unsupervised learning, in supervised learning a function is trained to obtain desired output from the
available labeled input data. The learning of the weights of the synapses using the Widrow-Hoff learning
algorithm is done in the following manner:

Let x = (x1, x2, . . . , xm) ∈ Rm be the input to the neurons where each xi represents the input to
the neuron σi and the training data set is D = {((x(1), t(1)), (x(2), t(2)), . . . , (x(n), t(n))}, where the
output to the system is represented by the symbol t(i). Then, the Widrow-Hoff learning law is used to
update the weights using the following formulas: ωi(k+1) = ωi(k)+ 2δe(k)xi(k), and e(k) = t(k)− y(k),
i = 1, 2, . . . ,m where the desired output, original output and the learning rate are denoted by y(k), t(k)
and δ respectively.

Remarks: (1) The learning problem in ASNP systems is different from the learning problem of the
Hebbian SN P system unit where the weights are associated with the rules and the weights are learnt
using Widrow-Hoff algorithm.

(2) In ASNP systems, the firing rules are of the form E/aα → aα where E represents a firing condition
of the neuron instead of regular expression;

(3) In the original definition of SN P systems no synaptic weight is associated with the synapses
connecting the neurons unlike ASNP systems;

(4) The rules in ASNP systems do not have delay;

(5) In ASNP systems the content of the neurons are not represented by the number of spikes in the
neuron. Instead a real number is associated with the neurons which further represents the value of the
spikes in the neuron.

(6) In the above discussed models, Hebbian and Widrow-Hoff learning algorithm have been used
to train the single layer network. So the Widrow-Hoff learning algorithm in ASNP systems are only
be capable of solving simple problems. Hence expanding the use of supervised learning algorithms for
training of the multilayer network in ASNP systems framework can be a future direction of research.

Next we discuss learning in another variant of spiking neural P systems known as adaptive fuzzy
spiking neural P systems.

Adaptive fuzzy spiking neural P systems: Adaptive fuzzy spiking neural P systems were introduced
in 2013 by Wang and Peng with the motivation to solve learning problems in dynamic fuzzy knowledge
prevalent in many areas of application. It is a variant of SN P systems which is capable of modelling
fuzzy production rules. In [4], a dynamic fuzzy reasoning algorithm and learning algorithm using AFSN
P system was developed based on the firing mechanisms of the neurons.

An AFSN P system (of degree m ≥ 1) [4] is a 6-tuple of the form Π = (A,Np, Nr, syn, I, O),

where

• A = {a} is the alphabet;

• Np = {σp1, σp2, . . . , σpm} is the proposition neuron set. For each i(1 ≤ i ≤ m), the ith proposition
neuron, i.e., σpi can be associated with a fuzzy proposition in weighted fuzzy production rules. It
has the mathematical structure σpi = (αi,ωi, λi, ri) (1 ≤ i ≤ m) where (a) αi ∈ [0, 1] is called the
(potential) value of pulse contained in proposition neuron σpi. Moreover it is used to express fuzzy
truth value of the proposition associated with proposition neuron σpi;

171

A survey of learning SNP systems and some new ideas 7

(b) ωi = (ωi1, ωi2, . . . , ωisi) is the output weight vector of the neuron σpi. Each component ωij ∈
[0, 1](1 ≤ j ≤ si) represents the weight on the j th output synapse of the neuron. The number of all
output synapses of the neuron is represented by si;

(c) The firing/spiking rule ri is of the form E/aα → aα, where α ∈ [0, 1]. The firing condition is
E = {α ≥ λi}. It means that if α ≥ λi, then the firing rule will be applicable where λi ∈ [0, 1) is
called the firing threshold.

• Nr = {σr1, σr2, . . . , σrn} is the rule neuron set. The i-th rule neuron associated with a weighted fuzzy
production rule is denoted by σri = (αi, γi, τi, ri)(1 ≤ i ≤ n).

(a) αi ∈ [0, 1] represents the (potential) value of pulse contained in rule neuron σri ;

(b) γi ∈ [0, 1] represents the certainty factor. It represents the strength of belief of the weighted
fuzzy production rule associated with rule neuron σri and γi also represents the weight on the output
synapse of the neuron;

(c) ri is a firing/spiking rule, of the form E/aα → aβ , where α, β ∈ [0, 1]. E = {α ≥ τi} is called the
firing condition, that is, if α ≥ τi, then the firing rule will be enabled, where τi ∈ [0, 1) is called the
firing threshold.

• syn ⊆ (Np × Nr) ∪ (Nr × Np) represents the synaptic connection between proposition neurons and
rule neurons.

• I,O ⊆ Np represent input neuron set and output neuron set, respectively.

The learning problem in AFSNP systems deals with the weights associated with the synapses con-
necting proposition neurons with rule neurons. The synapses connecting the proposition neurons with
rule neurons are associated with weights wi. Also, weights are associated with each rule neuron. But
Widrow-Hoff learning learning algorithm is used in [4] only to update the weights connecting the propo-
sition neuron with rule neurons. Moreover, this learning problem in the framework of AFSNP systems
can be transformed into a learning problem in single layer neural networks. Also the division of the rules
in AFSNP systems help the learning problem to be divided into three structures which further reduces
the complexity of it.

Remarks: AFSN P systems have some properties which distinguish them from SNP systems, ASNP
systems and Hebbian SN P system unit:

(1) In ASNP systems and Hebbian SN P system unit input neurons are connected with an output
neuron. But AFSN P systems contain two types of neurons, i.e., proposition neurons and rule neurons.
Also there are no synaptic connection between any two proposition neurons or between any two rule
neurons;

(2) The proposition neuron of AFSNP systems contain firing rules of the form E/aα → aα, α ∈ [0, 1]
and firing rules in the rule neuron are of the form E/aα → aβ , α, β ∈ [0, 1] respectively where E represents
a firing threshold instead of regular expression. These rules are different from the rules present in the
original definition of SNP systems, ASNP systems and Hebbian SN P systems unit;

(3) Proposition neurons simulate the fuzzy truth values of the fuzzy production rules andAFSN P
systems are constructed by simulating weighted fuzzy production rules. Moreover in ASNP and AFSNP
systems the firing rules do not have any delay, and the neurons contain real numbers instead of the
number of spikes in the neuron, which further represents the potential of the spikes in the neuron.
Moreover mainly there exist three types of weighted fuzzy production rules, i.e., Type 1, Type 2 and
Type 3 rules. Accordingly the rules in AFSNP systems constructed in [4] are also divided into three
types;

(5) Unlike Hebbian SN P system unit, weights are associated with the synapses connecting the propo-
sition neuron and rule neuron.

(6) One of the biggest advantage of AFSNP systems in learning the weights is that it has the ability to
adjust automatically. Moreover even though the architecture of the network in the framework of AFSNP
systems are more complex than ASNP systems, the learning problem in this model can be turned into a
learning problem in single layer network. But it has not been investigated in [4], whether the weights of
the synapses connecting the rule neurons and proposition neurons can be learnt using the Widrow-Hoff
learning algorithms and the learning of the weights of the synapses connecting the proposition neuron
and rule neuron and rule neuron and proposition neuron can be done simultaneously. Investigation of
this problem can be interesting.

172

8 Y. Chen, G. Zhang, et al.

In the last few years researchers concentrated more on application of the learning models. Next we
discuss about the application of the learning strategies of the spiking neural P systems in solving problems
in real-world applications.

Types Network Structure Rules Algorithm

ASN P systems single layer E/aα → aα Supervised
(Widrow-Hoff)

AFSN P Systems single layer E/aα → aβ , Supervised
α, β ∈ [0, 1] (Widrow-Hoff)
E/aα → aα

α ∈ [0, 1]

Hebbian SN P single layer ak → (anij , S); dij Unsupervised
systems unit (Hebbian)

SNP systems apa∗/ap → a; 0 Unsupervised
with learning multilayer E/ac → a; d (Hebbian)
functions as → λ

Table 1: Neural-like Membrane computing models, rules and learning algorithms.

2.3 Application of Hebbian and Widrow-Hoff learning with SN P systems:

Both ASN P systems and AFSN P systems can be useful in solving real-world problems. In 2010 the
learning ability of adaptive spiking neural P systems was used for solving linear adaptive filtering problem
[3]. Also in 2013 a solution for the knowledge learning problem using ASN P systems was provided in
[4]. In 2014, a new fault diagnosis model for power systems using AFSN P system [5] was introduced by
Tu, Wang, Peng and Shi . This model has simple reasoning process followed by fast speed and learning
ability. Moreover, the results of fault diagnosis using AFSN P systems are further compared with existing
models in [5] and from the comparison, it is clear that this model is simple and faster and diagnosis
results are efficient because of the learning ability of AFSN P systems.

NES identification: In 2018, a novel computational approach was introduced by Chen, Zhang, Weng,
Shi, Wu, Zheng using spiking neural P systems to identify the nuclear targeting signals. Moreover, Hebbian
learning algorithms were used to update the information of the system and for identification of NES [11].

Remarks: (1) It is important to note that the learning strategy introduced in [11] is different from the
learning algorithm introduced in [2]. The SN P system with Hebbian learning strategy in [11] is divided
into two module: input and predict module where input neurons receive inputs from the environment and
the output neurons emit spikes to the environment.

(2) In [2], weights are associated with the firing rule and if the firing of the rules in the presynaptic
neuron influences the firing of postsynaptic neuron, then the weight associated with the rule increases.
Otherwise, the weight of the rule decreases and the rules with less weights are removed from the system.
But in [11], the weight of a synapse can be represented by a function which will increase depending on
the spikes passing along it, i.e., for each passing of spikes through a synapse, the weight of the synapse is
increased byΔw. So, if at any given moment, a particular neuron has spiked t times and spikes have passed
through the synapse t times, then the weight of the synapse is increased by tΔw. During computation the
weight of the synapses of the input module remains fixed but the weight of the synapses in the predict
module are updated depending on the number of spikes passed through the synapse.

(3) The learning algorithm introduced in [2] is used to train a single layer network containing presy-
naptic, i.e., input neurons and one posysynaptic, i.e. output neuron. But in [11] a multilayer network of
spiking neural P systems has been trained using Hebbian learning.

173

A survey of learning SNP systems and some new ideas 9

(4) In input module in [11], the input received by the input is in binary and the received spike train
is read by the input neurons bit by bit. The predict module contains the unique rule aa∗/a → a and
the initial weight of all the synapses in the predict module has weight 1. Also, unlike the input module,
the predict module has multilayer architecture containing inner, hidden and outmost layer. Again, the
weights of the synapses are updated using a Hebbian learning strategy. Along with it the topological
structure of the input module also remains fixed but the structure of the predict module changes because
of the weights of the synapses being updated.

(5) One of the main advantages of using Hebbian learning strategy for NES identification is (i) it
is simple; (ii) good results can be obtained. But it remains to be investigated whether other learning
algorithms can perform better in this network and also design of more complex learning strategy for large
scale networks can be considered as a future direction of research.

Types Similarities Differences

Hebbian SN single layer efficacy, rules with
P system decay and delay, learning

best rules, input
(time unit)

SN P systems multilayer Hebbian learning
with learning function, input(spike
functions train from environment),

function strengthen or
weaken neural connection,

weight of synapse
on input module
fixed, recognize

module increase by one

ASN single layer firing rule without,
P system delay, neurons contain

real numbers, weight
learning from data

AFSN single layer model weighted
P system fuzzy rules,

dynamic fuzzy
reasoning, proposition
neuron, rule neuron,
learning weight of
proposition neuron

Table 2: Similarities and differences

Recognize digital English letters: Recently in 2019, a new variant of spiking neural P systems
with Hebbian learning function is introduced in [37]. The SN P system with learning function model
has been used to recognize digital English letters and the performance has been compared with Back
Propagation (BP)and probabilistic neural networks. In fact, SN P systems with learning functions have
better performance than these models in the test cases with low, medium and high noise [37].

Remarks: (1) The new variant of SNP system introduced by Song, Pan, Wu, Pan, Wong, Rodŕıguez-
Patón is called as SN P system with learning function. In this model a Hebbian learning function is
associated with the SN P system. This function can strengthen or weaken the connection between the
neurons during the computation. This model has some similarities and differences with SN P system with
Hebbian learning strategy in [11] and the Hebbian SN P system unit in [2]:

174

10 Y. Chen, G. Zhang, et al.

(I) SN P systems with learning function has a multilayer architecture like the SN P system with
Hebbian learning strategy in [11]. Also in this model, the input neurons receive input from the environment
in the form of spike trains and the output neurons emit spikes to the environment.

(II) SN P system with Hebbian learning function contains two modules, i.e., input module and
recognize module. Similarly as in [11], weight of the synapses in the input module are fixed and they do
not change during computation. But whenever any neuron in the recognize module spikes, the weight
of the synapse starting from the current neuron is increased by one. Also the neurons in the recognize
module are arranged in three layers: innermost, middle and outermost. Moreover, the neurons in this
module receive spikes from the input module and from its neighbours. The topological structure of the
recognize module is complex. In recognize module, the information is transmitted from the neurons in
innermost layer to the neurons in outermost layer. Moreover, the spikes in the each layer is emitted to
four direction and neurons having same direction are connected with the neurons in the upper layer. But
there exists no connection if the direction is opposite.

(2) In SN P systems with Hebbian learning function, the function used to strengthen, rebuild and
weaken the connection between neurons are very simple in nature. So natural question arises whether
complex function can have better performance in solving the problems. Also can better performance be
obtained by using more complex networks in the framework of SN P systems? Moreover, investigations
regarding whether these models can solve other problems in real-world application can be a topic of
further research in this direction.

The learning algorithms and rules in the SNP systems have been summarized in Table 1. Table 2
summarizes similarities and differences of neural-like P system models with learning ability.

Next we give example of a network having spiking neural P systems with white holes and weights as
fundamental computing units which further expands the scope of creating membrane computing models
having the features of Hopfield networks and learning process of this network.

3 Example

In this section, we give an example of learning in a network constructed in the framework of spiking
neural P systems. This model is called associative memory network based on spiking neural P system
with white holes and weights(AMN-EWSNP). This example will further help the readers to understand
learning mechanism in membrane systems. Moreover, this network of membrane systems is an attempt
to incorporate the idea of Hopfield network in membrane computing framework. This model also initiates
the study of constructing new networks using membrane computing models by incorporating the concepts
of structure and functioning of traditional neural networks.

3.1 Structure of AMN-ESNPA

Hippocampus is a complex structure in brain which is important for forming new memories [43]. In Hip-
pocampus, memory generation is done through different forms of expressions by neurons [45]. Moreover,
in spite of advancements in the neuroscience in last few decades, the mechanism of complex interactions
between neurons is still not clear. One such example is that the CA3 region in the hippocampus, as Marr
proposed has a structure of recursion which can have associative memory [44] based on the biological
facts and some characteristics of Hopfield networks. Also, the network based on spiking neural P system
with white holes [22] and weights [23] can have associative memory. The structure of AMN-EWSNP,
shown in Fig.1 is described in the following manner

Π = (O, σ1, σ2, . . . , σm, syn, in, out) (1)

where:

• O = {a} is the alphabet (a is called spike);
• σ1, σ2, . . . , σn are neurons of the form σi = (ni, Ri), 1 ≤ i ≤ n, where (a) ni is the initial potential in

σi which represents the state of the pixels; (b) R is a finite set of spiking rules of form a∗/aall → a ,
where a∗ is a regular expression over a, all represents the total number of spikes in the neuron. After
application of this rule if the regular expression is satisfied, then all the spikes will be consumed and
one spike will be send to the neurons connected to the neuron where the rule is applied;

175

A survey of learning SNP systems and some new ideas 11

• syn ⊆ {1, 2, . . . , n} × {1, 2, . . . , n} × Rc are synapses between neurons, where i �= j, w �= 0, for each
(i, j, w) ∈ syn, the set of Rc ⊆ {−1, 1} and for each (i, j) ∈ {1, 2, . . . , n} × {1, 2, . . . , n} there exists
at most one synapse (i, j, w) ∈ syn;

• in(out) = {σq1, σq2, . . . , σqn} is the set of input as well as output neurons.

The neurons σ1, σ2, . . . , σn can send spikes to other neurons through synapses when the condition of
regular expression is met. Moreover the weights on the synapses remain fixed during the computation.
Note that whenever the neurons spike, it is multiplied by the weight on the synapses and sum of these
spikes is send to neurons according to the synaptic connections. Also whenever the condition in the form
of regular expression is satisfied, then all spikes in σi are consumed and only one spike is sent. Otherwise
no spikes will be sent. The above procedure is repeated until there is no change in the output or the
maximum number of execution steps is reached. Then the computation is halted and compared with the
original data.

a*/aall→a

y1 y2 yn

σ2 σn

a*/aall→a

σ1

y3

a*/aall→a a*/aall→a

σ3

Fig. 2: An example of AMN-EWSNP structure

3.2 Weights and energy function

The weights on synapses are specially designed for the above network. In this case, the storage prescription
in [53, 54] is employed to design the weights in the network. Suppose the set of states which wish to store
are xs, s = 1, . . . , n. Then, the weights are updated in the following manner

wij =
∑
s

(2xs
i − 1)(2xs

j − 1)(i �= j), wii = 0. (2)

The energy function is another important feature in the model. The role of energy function is to
estimate whether the system is stable or not. If the weights are designed by using the storage prescription,
the system will be stable at the end [55]. The energy function is as follows:

E = −1

2

∑
i

∑
j

wijxixj (3)

where E is the value of energy function, xi is the state of the output neuron.

176

12 Y. Chen, G. Zhang, et al.

3.3 Experiments and results

In this subsection, the binarized images of number one to three are encoded by 1/ − 1 and the weights
are devised through standard digital images in three levels of noise. Then AMN- EWSNP is constructed
to associate memory with the image of the number.

Weight design by standard number image: Each number is represented by a black-white image
in the size of 10× 10 pixels. The representation of “two”, for example, is shown in Fig.3. Each black and
white image can be represented by a 10 × 10 array, where the value of black block is 1, the other block
is −1.

Fig. 3: Representing number “two” by 10 × 10 pixels array

After acquiring the standard image of number from one to three, the weight matrix is obtained by
Hebb learning rule. Once a weight matrix is fixed, then the weight matrix is used to associate memory
with the image with noise.
The result of AMN-EWSNP: The number image with noise can be acquired by generating random
numbers to determine the need to modify the position of lattice [27]. In this paper, the distortion prob-
ability with 10%, 20%, 30% are employed to test the ability of AMN-EWSNP and the maximum number
of execution steps is 10. The result of the simulation and the energy function in this paper are shown in
Fig.3. It is not difficult to see that this network can identify the set of numbers effectively.

(a) Fig.3(a)

1 2 3 4 5 6 7 8 9 10

iter

-8500

-8000

-7500

-7000

-6500

-6000

-5500

-5000

-4500

-4000

-3500

en
er

gy

Number 1
Number 2
Number 3

(b) Fig.3(b)

177

A survey of learning SNP systems and some new ideas 13

(c) Fig.3(c)

1 2 3 4 5 6 7 8 9 10

iter

-9000

-8000

-7000

-6000

-5000

-4000

-3000

-2000

-1000

en
er

gy

Number 1
Number 2
Number 3

(d) Fig.3(d)

(e) Fig.3(e)

1 2 3 4 5 6 7 8 9 10

iter

-9000

-8000

-7000

-6000

-5000

-4000

-3000

-2000

-1000

0

en
er

gy

Number 1
Number 2
Number 3

(f) Fig.3(f)

Fig.3.(a),Fig.3.(c),Fig.3.(e) are the result of simulation with noise 10%, 20%, 30% respectively.
Fig.3.(b),Fig.3.(d),Fig.3.(f) are the energy function with noise 10%, 20%, 30% respectively.

The difference between the simulation result and the standard image is represented by the cosine of
the angle between the vectors. The rate of the similarity during the iterative process is shown in the
following figures.

1 2 3 4 5 6 7 8 9 10
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number 1
Number 2
Number 3

(g) Fig.4

1 2 3 4 5 6 7 8 9 10
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number 1
Number 2
Number 3

(h) Fig.5

Figs. 4, 5 and 6 represent the rate of the similarity during iteration with noisy of 10%, 20% and 30%
respectively. After running the program large number of times, it is easy to find out that if the difference
is small or there is no difference, the value of cosine will be greater than 0.95. Otherwise it will be less

178

14 Y. Chen, G. Zhang, et al.

1 2 3 4 5 6 7 8 9 10
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number 1
Number 2
Number 3

(i) Fig.6

1 2 3
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Noisy:10%
Noisy:20%
Noisy:30%

(j) Fig.7: average accuracy rate of the simulation

than 0.95. So the threshold of similarity rate is set as 0.95. It means that if the rate of the similarity
is greater than 0.95, then the result is believed to be recognized correctly, otherwise it is deemed to be
misidentified. In order to avoid the scenario, repeat the above simulation 100 times. The result of the
simulation is shown in Fig.7.

4 Conclusion and future research direction

In recent years, deep learning, i.e., research regarding the deep neural networks [47] has gained huge
interest from scientists and engineers because of its outstanding performance in machine learning and
artificial intelligence and different areas of applications. Deep neural networks(DNNs) are relatively new
variant of artificial neural networks with multiple layers between the input and the output layer which is
inspired from the hierarchies in cortical visual information processing. Also the availability of powerful
computing hardware, large amount of sample data and efficient learning algorithms have fostered the
success of deep neural networks. Moreover, brain inspired deep neural networks have achieved human
level performance in classifying images with natural scenes [51]. Also in many fields deep SNNs have been
employed to build new state of art technologies where the deep neural networks have even surpassed
the accuracy of the humans [52]. Following the success of DNNs in which the neurons have non-spiking
behaviours, some researchers have tried to construct more powerful computing device which can mimic
the working of the human brain more closely by incorporating the idea of multilayer architecture of deep
neural networks and information processing between the neurons as in spiking neural networks. These
models are known as deep spiking neural networks (deep SNNs) [48–50]. Moreover, in recent years one of
the challenging direction of research has been to investigate the comparison of the performance of spiking
deep networks and deep neural networks. Also training of deep SNNs is a challenging topic of research.

In this article we have discussed all the neural-like membrane computing models with learning ability.
We have already mentioned that the learning models in the framework of spiking neural P systems con-
sidered until now have very simple structure. Most of these models have either single layer neural network
or simple multilayer architecture and simple Hebbian learning algorithms in multilayer architecture have
been used to train multilayer networks in the SN P systems framework to solve NES identification and
digital English letter identification problems. But until now no supervised learning algorithm has been
introduced to train multilayer networks in the SN P systems framework.

Single layer neural networks are not capable of solving complex problems and only can identify linearly
separable data, the extension of the study of construction of new supervised and unsupervised learning
algorithms for training of multilayer networks in the SN P systems framework can be a topic of future
investigations. Moreover, multilayer perceptrons use a well-known supervised learning technique known
as backpropagation for training of the network. Since SN P systems have formal language theory frame-
work, it will be very interesting to construct the training algorithms like backpropagation algorithms for
multilayer SN P systems using the concepts of formal language theory. Now we discuss about another
important aspect of learning in the neurons, i.e., structural plasticity.

Neural plasticity is an important biological feature of SNNs. It mainly deals with the modifications
happening in biological neurons. Neural plasticity can be divided into two aspects: structural plasticity

179

A survey of learning SNP systems and some new ideas 15

and functional plasticity. Until now we have mainly focused on the functional plasticity for learning the
weights where the weight of the connecting synapses increases or decreases depending on the arrival of
the spikes from the presynaptic neurons. But in case of structural plasticity, the connectivity between
the neurons is modified by synapse deletion and creation.

SNPS Neural

plasticity

Structural

plasticity

Functional

plasticity

HSNP

SNP with
neuron division
and budding

SNPSP

WSNPSPM

ASNPSP

Fig. 4: SN P systems with structural plasticity and its variants

In SNNs, huge number of models have been constructed and these models have been used for learning
of the synaptic weight. But until now a little investigation has been towards the effect of structural
plasticity in the learning of the SNNs. Moreover, how the structural plasticity and STDP (spike-time-
dependent-plasticity) work together is also not has been investigated extensively. In [13], a large scale
model has been created to learn input encoding along with relation inputs and guessing the missing
inputs using leaky integrate and fire neurons, STDP, homeostasis, recurrent connections and structural
plasticity. Furthermore, in [13] Spiess and George have investigated the error and the amount of noise
occurring in the network’s responses with and without having structural plasticity. Also investigated the
impact of the structural plasticity in the learning speed of the network. The use of structural plasticity
in the learning process has been turned out to be useful. Moreover, the noise of the response can be
reduced significantly using structural plasticity. In fact, it prevents spikes with high error rates and the
time to learn the synaptic weights can be reduced by using structural plasticity with pruning. These
advantages of structural plasticity in spiking neural networks give us the motivation to investigate the
learning process in other computing models such as spiking neural P systems with structural plasticity.

The idea of structural plasticity for membrane computing models (SN P systems) was introduced
in [6]. Subsequently, many variants such as ASNPSP, WSNPSPM have been introduced and their com-
putational power have been investigated [7–10, 12, 42]. But until now no investigation has been initiated
towards the direction of learning ability of these models. So, learning ability of SN P systems with
structural plasticity and application of these models can be a direction of future research.

The process of synapse creation and deletion improves the learning speed in SNN models. The synapse
creation-deletion between the neurons in SN P systems with structural plasticity is controlled by the
plasticity rules in these models. So, it will be interesting to investigate, how synapse creation-deletion
mechanism using the plasticity rules affects the learning process of the weights associated with rules and
synapses in spiking neural P systems with structural plasticity. This investigation also can be further
extended for all the variants of spiking neural P systems with structural plasticity.

180

16 Y. Chen, G. Zhang, et al.

Acknowledgement

This work is supported by the National Natural Science Foundation of China (61972324, 61672437,
61702428), the New Generation Artificial Intelligence Science and Technology Major Project of Sichuan
Province (2018GZDZX0043) and the Sichuan Science and Technology Program (2018GZ0185, 2018GZ0086).

References

1. Gh. Păun, G. Rozenberg, A. Salomaa. The Oxford Handbook of Membrane Computing, 2010, ISBN
0199556679, 9780199556670, Oxford University Press, Inc., New York, NY, USA.

2. M.A. Gutierrez-Naranjo, M.J. Pérez-Jiménez: Hebbian learning from Spiking Neural P systems view, WMC9,
LNCS 5391, 217–230, 2008.

3. H. Peng, J. Wang: Adaptive spiking neural P systems, Sixth International Conference on Natural Computation,
ICNC 2010, 3008–3011, 2010.

4. H. Peng, J. Wang: Adaptive fuzzy spiking neural P systems for fuzzy inference and learning, International
Journal of Computer Mathematics, 90, 857–868,2013.

5. M. Tu, J. Wang, H. Peng, P. Shi: Application of adaptive fuzzy spiking neural P systems in fault diagnosis of
power systems, Chinese Journal of Electronics, 23(1), 87–92,2014.

6. F.G.C. Cabarle, H. N. Adorna, M. J. Pérez-Jiménez, T. Song: Spiking neural P systems with structural
plasticity, Neural Computing and Applications, 26, 1905–1917, 2015.

7. T. Song, L. Pan: A normal form of spiking neural P systems with structural plasticity, International Journal
of Swarm Intelligence, 1(4), 344–356,2015.

8. F.C.G. Cabarle, H. N. Adorna, M. J. Pérez-Jiménez: Asynchronous spiking neural P systems with structural
plasticity, Unconventional Computation and Natural Computation, UCNC 2015, LNCS 9252, 132–143, 2015.

9. F.C.G. Cabarle, R. T. A. D.L Cruz, X. Zhang, M. Jiang, X. Liu, X. Zeng: On string languages generated by
spiking neural P systems with structural plasticity, IEEE Transactions On Nanobioscience, 17(4), 560–566,
2018.

10. M. Sun, J. Qu: Weighted spiking neural P systems with structural plasticity working in sequential mode based
on maximal spike numbers, AIP Conf. Proc., 1890, 040049-1-4, 2017.

11. Z. Chen, P. Zhang, X. Weng, X. Shi, T. Wu, P. Zheng: A computational approach for nuclear export signals
identification using spiking neural P systems, Neural Computing and Applications, 29, 695–705, 2018.

12. F.G.C. Cabarle, H. N. Adorna, M. J. Pérez-Jiménez: Sequential spiking neural P systems with structural
plasticity based on max/min spike number, Neural computing and applications, 27, 1337–1347 ,2016.

13. R. Spiess, R. George, M. Cook, P. U. Diehl: Structural plasticity denoises responses and improves learning
speed, Frontiers in Computational Neuroscience, 10(98), 2016.

14. M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems, Fundamenta Informaticae, 71, 279–308, 2006.
15. Gh. Păun, Tracing some open problems in membrane computing, Romanian Journal of Information Science

and Technology, 10 (4), 303–314, 2007.
16. Gh. Păun, Twenty six research topics about spiking neural P systems, in: Proc. Fifth Brainstorming Week

on Membrane Computing, January, 263–280, 2007.
17. Gh. Păun, Computing with membranes: Journal of Computer and System Sciences 61 (1), 108–143, 2000.
18. Pico Caroni, Flavio Donato, Dominique Muller, Structural plasticity upon learning: regulation and functions,

Nature Reviews Neuroscience, 13, 478–490, 2012.
19. D.O. Hebb: The Organization of Behavior. Wiley, New York ,1949.
20. T. M. Mitchell: Machine Learning. McGraw-Hill, New York, 1997.
21. M. Cavaliere, O. Egecioglu, O.H. Ibarra, S. Woodworth, M. Ionescu, Gh. Păun: Asynchronous spiking neural

P systems: decidability and undecidability, in: M.H. Garzon, H. Yan (Eds.), Proc. 13th Int. Meeting on DNA
Computing, Memphis, USA, LNCS 4848, Springer, Berlin, 246–255, 2008.

22. L. Pan, J. Wang, H. Hoogeboom: Spiking neural P systems with astrocytes, Neural Computation, 24 (3),
805–825, 2012.

23. L. Pan, Gh. Păun : Spiking neural P systems with anti-spikes, International Journal of Computer, Commu-
nication and Control, 4, 273–282, 2009.

24. T. Song, L. Pan, Gh. Păun: Spiking neural P systems with rules on synapses. Theoretical Computer Science,
529, 82–95, 2014, https://doi.org/10.1016/j.tcs.2014.01.001.

25. F. Cabarle, H. Adorna, M. J. Pérez-Jiménez: Sequential spiking neural P systems with structural plasticity
based on max/min spike number, Neural Computing and Applications, 27 (5), 1337–1347, 2016.

26. T. Song, L. Pan, Spiking neural P systems with request rules, Neurocomputing, 193, 193–200, 2016.
27. T. Song, F. Gong, X. Liu, Y. Zhao, X. Zhang : Spiking neural P systems with white hole neurons, IEEE

Transactions on NanoBioscience, 15(7), 1-1, 2016.

181

A survey of learning SNP systems and some new ideas 17

28. F. G. C. Cabarle, H. N. Adorna, M. Jiang, X. Zeng: Spiking Neural P Systems With Scheduled Synapses,
IEEE Transactions on NanoBioscience, 16 (8), 2017.

29. L. Pan, G. Păun, M. J. Pérez-jiménez: Spiking neural P systems with neuron division and budding, Science
China Information Sciences, 54 (8), 1596–1607, 2011.

30. A. Leporati, G. Mauri, C. Zandron, Gh. Păun, M. J. Pérez-Jiménez: Uniform solutions to SAT and Subset
Sum by spiking neural P systems, Natural Computing, 8 (4), 681–702, 2009.

31. T.-O. Ishdorj, A. Leporati, L. Pan, X. Zeng, X. Zhang: Deterministic solutions to QSAT and Q3SAT by
spiking neural P systems with pre-computed resources, Theoretical Computer Science, 411 (25), 2345–2358,
2010.

32. H. Peng, J. Wang, M.J. Pérez-Jiménez, H. Wang, J. Shao, T. Wang: Fuzzy reasoning spiking neural P system
for fault diagnosis, Information Sciences, 235, 106–116, 2013.

33. T. Wang, G. Zhang, H. Rong, M.J. Pérez-Jiménez: Application of fuzzy reasoning spiking neural P systems
to fault diagnosis, International Journal of Computer, Communication and Control, 9 (6), 786–799, 2014.

34. T. Wang, G. Zhang, J. Zhao, Z. He, J. Wang, M. Pérez-Jiménez: Fault diagnosis of electric power systems
based on fuzzy reasoning spiking neural P systems, IEEE Transactions On Power Systems, 30 (3) , 1182–1194,
2015.

35. G. Zhang, H. Rong, F. Neri, M.J. Pérez-Jiménez: An optimization spiking neural P system for approximately
solving combinatorial optimization problems, International Journal of Neural Systems, 24 (5) , 1440006, 2014.

36. G. Zhang, M. J. Pérez-Jiémnez, , Gheorghe, M.: Real-life Applications with Membrane Computing. Emer-
gence, Complexity and Computation, Springer, 2017.

37. T. Song , L. Pan, T. Wu , Z. Pan, D. Wong, A. Rodŕıguez-Patón : Spiking neural P systems with learning
functions, IEEE Transactions On Nanobioscience, 2019.

38. T. Song, X. Zeng, P. Zheng, M. Jiang, A. Rodŕıguez-Patón: A Parallel Workflow Pattern Modelling Using
Spiking Neural P Systems with Colored Spikes, IEEE Transactions On Nanobioscience, 17(4), 474–484, 2018.

39. T. Song, A. Rodŕıguez-Patón, P. Zheng, X. Zeng: Spiking Neural P Systems with Colored Spikes, IEEE
Transactions on Cognitive and Developmental Systems, 10(4), 1106–1115, 2018. .

40. X. Zeng, L. Pan, M. J. Pérez-Jiménez: Small universal simple spiking neural P systems with weights, Science
China Information Sciences, 57(9), 1–11, 2014.

41. R. Freund, M. Ionescu, M. Oswald: Extended spiking neural P systems with decaying spikes and/or total
spiking, International Journal of Foundations of Computer Science, 19(5), 1223–1234, 2008.

42. F. G. C. Cabarle, R. Tristan, A. D. L. Cruz, X. Zhang, M. Jiang, X. Liu, X. Zeng: On String Languages
Generated by Spiking Neural P Systems With Structural Plasticity, IEEE Transactions On Nanobioscience,
17(4), 560–566, 2018.

43. R. J. Douglas: The hippocampus and behavior, Psychological bulletin, 67(6), 416, 1967.
44. D. Marr, D. Willshaw , B. McNaughton: Simple memory: a theory for archicortex. From the Retina to the

Neocortex, 59–128, Birkhäuser Boston, 1991.
45. Y. Zhang : The neural mechanisms of pain-related affect and memory. Progress in natural science, 16(4),

338–345, 2006.
46. W. Maass, Networks of spiking neurons: The third generation of neural network models. Neural Networks, 10

(9), 1659–1671. doi:10.1016/S0893-6080(97)00011-7. ISSN 0893-6080, 1997.
47. J. Schmidhuber : Deep Learning in Neural Networks: An Overview. Neural Networks. 61, 85–117.

arXiv:1404.7828,2015, doi:10.1016/j.neunet.2014.09.003.
48. M. Pfeiffer, T. Pfeil: Deep Learning With Spiking Neurons: Opportunities and Challenges. Frontier Neuro-

science, 12(774), PMID: 30410432, 2018, doi: 10.3389/fnins.2018.00774.
49. C. Lee, P. Panda, G. Srinivasan, K. Roy: Training Deep Spiking Convolutional Neural Networks With STDP-

Based Unsupervised Pre-training Followed by Supervised Fine-Tuning, Frontier Neuroscience, 12(435), PMID:
30123103, 2018, doi: 10.3389/fnins.2018.00435.

50. A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, A. Maida: Deep learning in spiking neural
networks. Neural Networks, 111, 47–63, 2019, doi: org/10.1016/j.neunet.2018.12.002.

51. A. Krizhevsky, I. Sutskever, G. E Hinton : ImageNet classification with deep convolutional neural networks,
In Advances in Neural Information Processing Systems, 1097–1105, 2012.

52. R. Geirhos, D. H. J. Janssen, H. H. Schútt, J. Rauber, M. Bethge, F. A. Wichmann: Comparing deep neural
networks against humans: object recognition when the signal gets weaker, arXiv:1706.06969v2 [cs.CV] 11 Dec
2018.

53. L. N. Cooper: A possible organization of animal memory and learning. In: Lundqvist B, Lundqvist S (eds)
Proceeding of the Nobel symposium on collective of physical systems. Academic Press, New York, 252–264,1973.

54. L. N. Cooper, F. Liberman, E. Oja: A theory for the acquisition and loss of neuron specificity in visual cortex,
Biological Cybernetics, 33(9), 1979, doi: org/10.1007/BF00337414.

55. J. J. Hopfield : Neural networks and physical systems with emergent collective computational abilities. Pro-
ceedings of the national academy of sciences, 79(8), 2554–2558, 1982.

56. S. S. Haykin, B. Widrow (Editor): Least-Mean-Square Adaptive Filters, Wiley, 2003, ISBN 0-471-21570-8.

182

18 Y. Chen, G. Zhang, et al.

57. W. Gerstner, W. M. Kistler: Mathematical formulations of Hebbian learning, Biological Cybernetics, 87,
404–415, 2002. doi: 10.1007/s00422-002-0353-y.

58. M. Mozafari, M. Ganjtabesh, A. Nowzari-Dalini, T. Masquelier: SpykeTorch: Efficient Simulation of Convo-
lutional Spiking Neural Networks With at Most One Spike per Neuron, Frontiers in Neuroscience, 13(625),
2019, doi: 10.3389/fnins.2019.00625.

183

FPGA Implementation of Robot Obstacle
Avoidance Controller based on Enzymatic

Numerical P Systems

Zeyi Shang1,2, Sergey Verlan2, Gexiang Zhang1�, and Ignacio Pérez-Hurtado3

1 School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan,
China; zeyi.shang@lacl.fr, zhgxdylan@126.com

2 Laboratoire d’Algorithmique, Complexité et Logique, Université Paris Est Créteil,
Créteil, France; verlan@u-pec.fr

3 Research Group on Natural Computing, Department of Computer Science and
Artificial Intelligence, University of Seville, Seville, Spain; perezh@us.es

Abstract. It is a long-cherished wish to implement numerical P sys-
tems (NPS) on a parallel architecture so that its large scale parallelism
can be exploited to speedup computation tremendously. FPGA is a re-
configurable hardware in which operations are triggered so synchronized
by edge or level of activating signals, making it an eligible platform to
implement NPS and its variant, enzymatic numerical P system (ENPS).
In this article, a NPS and a ENPS designed as robot controllers are im-
plemented in FPGA, achieving a speedup of 105 comparing to software
simulation. FPGA hardened NPS in this research can be regarded as a
heterogeneous multicore processor since membranes inside work as pro-
cessing units which possess different functions. FPGA hardened NPS is
imparted universal asynchronous receiver/transmitter (UART) commu-
nication ability to push it closer to real-life application. FPGA hardened
ENPS consume less hardware resources and power for less complicate
membrane structures and processes.

Keywords: Membrane Computing, numerical P system, enzymatic numerical
P system, Field Programmable Gate Array (FPGA), robot membrane controller,
universal asynchronous receiver/transmitter (UART)

1 Introduction

As a new branch of nature computing, the research of membrane computing
practical application can not keep pace with its fruitful achievements in theo-
retical aspect. This situation was taken seriously by membrane community and
some scholars have engaged in applications of P systems ever since a long time
ago. Keeping in mind the biological background of membrane computing, using
P systems as modeling framework for biological processes and ecosystems were

� Corresponding author

184

the early explorations to apply membrane computing, referring [11][22] [23]. As
a newly research progress in ecosystem modeling for P system application, the
Catalan Pyrenees bearded vulture ecosystem is modeled with P systems which
were simulated by CUDA-enabled GPUs [9]. By resorting to P systems as mod-
eling framework, Giant panda population dynamics modeling is another target
under research. It is noted here that the non-determinism of P systems is a
valuable nature for biological and ecological system modeling. Nevertheless, for
engineering applications, non-determinism is the property trying to avert. Be-
ginning from 2015, several variants of fuzzy spiking neural P systems (FSNP)
have been used in power system fault diagnosis [27] [19] [5] [31], setting a new
direction for P system applications. By setting one rule per membrane, the non-
determinism of FSNP is removed. The large scale parallelism of P systems turned
out to be quite favorable for real life applications.

A special cell-like P system whose objects are not symbols but real num-
ber variables, numerical P system (NPS), was initiated in 2006 [21], aiming at
using P systems to the potential applications in economics. In a NPS, if every
membrane contains only 1 program, then the computing process and its result
are deterministic, for there are no any other possibilities of programs to use.
In contrary, if one membrane contains multiple programs, one has to be chose
randomly to use, bringing in the non-determinism to NPS. While for most real
life applications, the output of a computing device should be deterministic, so
that it can be used as a key parameter to exert influences on industry processes
or actuators. At least under this circumstance, the non-determinism of P sys-
tems should be avoided. In order to improving the space efficiency, simplifying
the membrane structures while keeping the determinism, enzymatic numerical P
system (ENPS) was introduced in 2010 [16] on the basis of NPS. The catalytic
function of enzyme variables allow multiple programs contained and executed in
parallel in one membrane. This is done by judging the usability of each program
by comparing the quantity of every variant to the quantity of enzyme involved in
the same program, namely, if the amount of enzyme is lager than the minimum
value of all variables located in the left-hand-side of a program, then this pro-
gram is active and can take place. Otherwise it is inactive and will not carry out.
For the filtering function of enzyme variables, the computation process of ENPS
is deterministic, so as the results. For performing the same function, ENPS has
much simpler membrane structures than NPS, making ENPS more practical to
modeling complex functional components.

Researchers began to investigate the computational power and special at-
tributes of NPS and ENPS after these two models were presented. NPSs with
migrating variables were studied in [34] while NPSs with production thresholds
were analyzed in [13]. Universal ENPSs with small number of enzymatic vari-
ables are discussed in [35]. String languages generated by sequential NPSs were
deliberated in [33]. In [14], NPSs with production thresholds was considered.
In [12], four recent research topics on numerical P systems were summarized.
In [26], universality of ENPSs was examined. Enzymatic numerical P systems
using elementary arithmetic operations were investigated in [6]. The computa-

185

tional power of ENPSs working in the sequential mode was studied in[32]. A
parallel bio-inspired framework for numerical calculations using ENPS with an
enzymatic environment was constructed in [15]. ENPSs for basic operations and
sorting were designed in [8]. The ways of how to improving the universality re-
sults of ENPS were researched in [25]. The pole balancing problem with ENPS
was discussed in[7].

Since 2011, adopting NPS and ENPS to model autonomous mobile robots
controller has been another research highlight of P system applications. As the
first case putting NPS to real life application, in [4], three NPSs are developed as
the controllers for Khepera III and e-puck robots to perform obstacle avoidance,
wall following and following leader behaviors. These three NPSs are simulated by
a software called SNUPS, which is designed as Java servlet. When running the
robot, it invokes the SNUPS engine. After computing, the results will be returned
to robot to control motors’ speeds, performing specific behaviors. Both experi-
ments on simulated robots and real robots were conducted to verify the control
effect of NPS. The first ENPS robot controller performing obstacle avoidance
behavior was proposed in [17]. It is a general controller not targeting particular
robots. While no experiments were conducted by the ENPS software simulator
eSNUPS [16], which is an extended version of SNUPS. The portability of NPS
and ENPS robot controllers was validated in [24] by adapting the control law and
the number and placement of sensors, and the dimension parameters of robots.
ENPSs with different functionality were developed later on, expanding the utiliz-
ing range of ENPS besides robot motion control. For instance, an ENPS do the
robot localization was presented in [18]. Robot trajectory tracking ENPS was
designed in [28]. Particle swarm optimization based robot path planning ENPS
was introduced in [29]. ENPSs performing image edge detecting were proposed
and validated in GPU [30].

The notion of P systems’ simulation and implementation should be clarified
explicitly in the context of this paper, so that what had been done can be better
expounded. When speaking of software simulation of P systems, the simulation
means that although expected results are obtained, the way how to compute
is different from the exactly theoretical procedures of P systems. Specifically,
employing the NPS software designed by high level programming language, like
C++ or Java, to compute a result, when the software running, the codes inside
are executed line by line. This operating mode lost the large scale parallelism
for all the applicable rules written in high level programming language should
actuate concurrently, according to the parallelism of P systems. In short, it is
formally correct to simulation P systems with software on CPU. Keeping in
mind that digital integrated circuits in CPU perform the operations in reality,
designing and manufacturing parallel circuits, then running P systems on these
circuits is the best way to simulate P systems. Therefore, running P systems
on parallel circuits so that these circuits perform parallelism just as P systems
do is defined as implementation of P systems. From a hardware perspective,
the software simulation of P systems is CPU simulation of P systems actually,

186

for it tries to simulate P systems with partial parallel circuits (multi/many-core
architecture CPU/GPU).

The purpose of this paper is to implement robot obstacle avoidance mem-
brane controllers based on (enzymatic) numerical P systems in FPGA, providing
the procedure & methodology of FPGA implementation of (E)NPS. Then add
universal asynchronous receiver/transmitter (UART) communication to target
NPS so it can be used to replace on-board computer to control target robot in the
future. The experiments together with performance comparison between CPU
simulation (software simulation) and FPGA implementation are given in details.
Contents are organized as follows: Section 2 presents definition of (E)NPS. Sec-
tion 3 and Section 4 describes the design of target NPS and ENPS RTL model
respectively. Section 5 introduces FPGA implementation flow and calculation
speedup achieved by FPGA hardened (E)NPS. Section 6 compares several qual-
ity attributes of FPGA hardened target NPS and ENPS. Section 7 expounds
how to impart UART communication ability to target FPGA NPS. Conclusions
are drawn in Section 8.

2 Numerical P system and enzymatic numerical P system

The formal definition of a numerical P system was presented in [21] and para-
phrased here for a better understanding of NPS. While the motivation of raising
NPS is to deal with potential applications in economic domain in which involves
large scale real number variables, NPS was put to use in robot motivation control
at first. The numerical P system is called NPS for short and enzymatic numerical
P system is abbreviated as ENPS hereinafter.

Definition 1. A numerical P system is the construct

Π = (m,H, μ, (V ar1, P r1, V ar1(0)), . . . , (V arm, P rm, V arm(0)))

where

1. m > 0 is the number of membranes (the system degree);
2. H is the membrane label set storing the labels of each membrane;
3. μ is the membrane structure;
4. V ari, Pri, V ari(0) are variables, programs and initial values of variables in

membrane i, 1 ≤ i ≤ m.

Comparing to the multiset rewriting rules in classical symbol object P sys-
tems, the programs are quite unusual with production function in the left hand
side and repartition protocol in the right hand side, taking on the form

Pli : Fli(x1i, . . . , xkii) → cl1|v1 + · · · + clni |vni

where x1i, . . . , xkii are variables in membrane i, Fli is the production function,
1 ≤ l ≤ n is the number of programs in membrane i. v1, . . . , vni

are variables in

187

membrane i or in the upper immediate or lower immediate membrane of mem-
brane i. cl1, . . . , clni

are the distribution coefficients. The result of production
function is distributed as Formula 1.⎧⎪⎪⎪⎨

⎪⎪⎪⎩
v1 =

cl1×Fli(x1i,...,xkii
)

∑ni
t=1 clt

...

vni
=

clni
×Fli(x1i,...,xkii

)
∑ni

t=1 clt

(1)

If a variable only appears in a production function, after the execution of
current computation step, the former value is consumed and its new value is 0.
For variables arising in both sides of the same program, their former values are
overwritten by newly distributed values according to repartition protocols. If a
variable appears merely in several repartition protocols of different programs, its
new value is the sum of all distributed values plus its former value. On condition
that variables arise in both sides of several programs, their new value after the
computation step is the sum of all distributed values that overwrite their former
values. Since every program is applicable and executes in parallel, in case of mul-
tiple programs populating in one membrane, one program is selected randomly
to execute. This randomness imparts the non-determinism to NPS, bringing on
a negative impact on robot motivation control for the control law is determin-
istic and the results of each computation step of NPS should also be definite.
For the sake of avoiding this non-determinism of NPS, only one program is as-
signed to every membrane to eliminate the random selection process, obtaining
a deterministic NPS as a result. The membrane controller in Figure 2 was de-
signed in line with this deterministic requirement, containing one program each
membrane.

Although the determinism is guaranteed by the one to one correspondence of
membranes and programs, the membrane structure tends to complex and its effi-
ciency declines. This drawback becomes more obvious for modeling sophisticated
algorithms which need plenty of membranes to distribute operations. Enzymatic
numerical P systems introduced in [16] can contain multiple programs in one
membrane, adopting enzyme-like variables to decide the usability of programs.
Specifically, for a program with enzyme to catalyze, if the value of a enzyme is
greater than the minimum value of all the variables involved in the program,
this program is applicable and will execute. The biological base for this crite-
rion is that the concentration of a enzyme should large than that of a reactant.
Different with the catalyst used in classical symbol object P systems, enzymes
can be consumed or produced, and their amounts matter. For programs without
enzymes, these programs are applicable automatically. The definition of ENPS
is quoted bellow.

Definition 2. A enzymatic numerical P system is the construct

Π = (m,H, μ, (V ar1, E1, P r1, V ar1(0)), . . . , (V arm, Em, P rm, V arm(0)))

where

188

1. m > 0 is the number of membranes (the system degree);
2. H is the membrane label set storing the labels of each membrane;
3. μ is the membrane structure;
4. V ari, Pri, V ari(0) are variables, programs and initial values of variables in

membrane i, 1 ≤ i ≤ m.
5. Ei, 1 ≤ i ≤ m, are the enzyme variables in membrane i;

The form of a program with enzyme in a ENPS is little different from NPS
programs as shown bellow,

Pli : Fli(x1i, . . . , xkii)(ej,i →)cl1|v1 + · · · + clni |vni

where ej,i ∈ Ei (j is the mark number), is the enzyme catalyzing this program.
The computation procedures of ENPS is identical to that of the NPS, except
that a set of programs, instead of a single program, are executed in a membrane.
The function of enzymes greatly simplifies the membrane structures, making
ENPS more practicable to model engineering applications. This assertion will
be demonstrated later in this paper.

3 Register transfer level model design of target NPS

The FPGA was invented as a platform for prototype developing of large scale
digital circuits [10] for its reconfiguration. The schema that clocks trigger or drive
operations imparts the parallel processing ability to FPGA, because as many as
operations can be triggered by one clock so executing simultaneously provided
that there are enough hardware resources in the FPGA chip. With the digital
circuit scale increases rapidly after the invention of transistors in Bell labora-
tory in 1947, drawing the schematic to design large scale circuits is infeasible.
Characterizing the functionality of circuitry with hardware description language
then compiling this characterization to schematic is the core task of electronic
design automation (EDA). With EDA technology, designing large scale digital
circuits in a relatively short period had became reality. After designing, the
circuits should be tested to verify achieving required function, performance, re-
source expenditure, power consumption and other requirements. Then the mass
production can be put on the agenda. While for scientific research, the prototype
circuits are quite enough to realize novelty.

A increasingly popular but not conspicuous trend is that industrial circles
are aware of the great flexibility of FPGA prototype circuits, because for some
vital but individual applications, FPGA prototype circuits are the reliable and
economical solutions. One essential matter should be clarified here that although
circuit schematics can be generated by FPGA developing software, the prototype
circuits in FPGA is not the schematics obtained. The look-up tables and flip-flops
imitate the generated schematics, so that FPGA takes on the same functionality.
For digital circuits, the input value of each basic gate port has two possibilities,
0 or 1. All the possible combinations of outcomes are computed and enumerated
in a big table, specific results are looked up in the table according to input

189

values, then output the searched results. The flip-flop is a memory element,
storing values computed in last clock cycle. It is used to construct sequential
logic components [2].

The first obstacle avoidance NPS controller was proposed in [4], targeting
e-puck robot, which equips 8 infrared sensors around the body. As stated above,
the software simulation of NPS by invoking SNUPS engine in e-puck lost its par-
allelism. Running NPS on parallel hardware circuits is the real implementation
of it. The obstacle avoidance control law depicted in Formula 2 and Formula 3 is
not such complicated that it is suitable to be a start point for FPGA implement-
ing. The target robot of FPGA implementation research is Pioneer 3 DX with
16 sonar sensors arranged in 2 arrays, whose placements are shown in Figure 1.

The obstacle avoidance NPS to be implemented is adapted on the basis of the
first NPS in [4] according to the number of sensors of Pioneer 3 DX robot, since
both the infrared sensors in e-puck and sonar sensors in Pioneer 3 DX return
the distances between the robot and obstacles. But the property of Pioneer
3 DX sonar sensors make this adaption not so straightforwardly. Particularly,
the difference of two distances sampled by these 2 robots lays in that e-puck’s
infrared sensors return value 0 when there are no obstacles and the reading of
sensors increase as the distances decrease, while Pioneer 3 DX’s sonar sensors
return the distances of the robot to obstacles, the reading of sensors decrease as
the distances decrease. The maximum detection range of Pioneer 3 DX is 5000
mm. The control law was designed in line with the e-puck sensors’ nature. The
transformation given in Formula 4 was done to the readings of Pioneer 3 DX
sensors so that the same control law can be adopted. The revised NPS to be
implemented is illustrated in Figure 2.

lw = CruiseSpeedLeft+
16∑
i=1

si ∗ weithtLefti (2)

rw = CruiseSpeedRight+
16∑
i=1

si ∗ weithtRighti (3)

si = −xi +M (4)

In Formula 2, lw is the speed value accepted by left motor as the required
speed to follow. CruiseSpeedLeft is the cruise speed, the speed when no obstacles
are detected. si is the transformed sensor reading in line with 4. weithtLefti are
the weight values of sensors placed in the left-hand-side of robot. Variables in
Formula 3 are the counterparts of those in Formula 2. xi is the original readings
of sensors, while M is a constant having value of 1000. i takes values from 0 to
15, corresponding to the numbers of sensors.

Digital systems consist of sequential logic components which contain regis-
ters, clocks and their control mechanisms. Flip-flops comprise a register which
can perform elementary operations including load, count and shift operations.
These operations are executed concurrently in system. Register transfer opera-
tions refer to operations aiming at data stored in registers. If a digital system

190

0

1
2

3 4
5

6
7

8

9
10

1112
13

14
15

Front

Rear

Sonar Sensors

Hinged Deck

Fig. 1. This is a plan view of Pioneer 3 robot which is covered by a hinged deck on
the top. The 16 rectangles in light blue are the sonar sensors surrounding the robot,
just beneath the hinged deck. Sensors are arranged in two arrays in the front and in
the rear. The layout of sensors in two arrays is identical, as shown explicitly.

191

WeightRighti

weightRighti[input]

i iweightRight weightLeft

WeightLefti

weightLefti[input]
1|i iweightLeft w

Sensori

si[input]
2 1| 1|i i is s sval

Computei, i=0,1, ,15.
svali[0] wi[0]

* 1|i isval w rw

CruiseSpeedRight
cruiseSpeedRight[input]

1|cruiseSpeedRight cruiseSpeedLeft

CruiseSpeedLeft
cruiseSpeedLeft[input]

1|cruiseSpeedLeft cruiseSpeed

CruiseSpeed
cruiseSpeed[0]

1|cruiseSpeed rw

SpeedRight

rw[0]

1|rw lw

SpeedRight lw[0]

Fig. 2. This numerical P system derives from Figure 7: Membrane controller for the
obstacle avoidance behaviour in which there are 8 infrared sensors around the target
robot in [4]. The adaption here is in a straightforward way by incrementing the num-
ber of sensor to 16. Their values should be transformed in line with Formula 4. This
numerical P system is called NPS1 below.

is designed by registers, involving register transfer operations and control pro-
cedures to these operations, then the digital system is illustrated at register
transfer level and a register transfer level model is obtained consequently. Regis-
ter transfer level has a higher abstraction than gate level, which specifies models
in the form of schematics. As the scale of digital circuits increase dramatically,
obeying the Moore’s laws loosely in the past decades, register transfer level ab-
straction became a potent instrument to cope with super large-scale integration
with super complicated functions.

The impractical of designing large scale circuits with schematics does not
mean that schematics are not important. If fact, schematics of circuits are the
ultimate goal of design specification phase. After the verification of circuits, the
schematics will be used to manufacture hardware integrated circuits in silicon
wafers. A compilation process from register transfer level to schematic level is
responsible for the automatically drawing of schematics. A jargon called synthesis
is assigned to this compilation process in electronic design automation (EDA)
field. RTL models are reliably synthesizable inputs for synthesis tools supplied by
a variety of venders. Elaborating the corresponding RTL model of NPS in Figure
2 is the start point and the RTL model will be the objective for downstream
operations in FPGA implementation.

RTL models are specified by hardware description language (HDL) such as
VHDL and Verilog. This research employs Verilog as the HDL to design the

192

RTL model. Verilog, initiated by Phil Moorby in 1985, is a IEEE standard HDL
since 1995. The basic functional unit in Verilog is module. The functionality of a
system is distributed among nested modules, for a module can instantiate others
modules to incorporate them [3]. A module is a functional block with input and
output ports through which it receiving data and sending outcomes to other
modules. Intuitively, a membrane can be represented as a module since that a
membrane can be regarded as a functional unit in P systems. As a matter of
fact, this is the perspective conceived to fabricate the RTL model of target NPS.

The most appealing part of FPGA implementation of P systems is how to deal
with membranes, which designate the unique character of membrane computing.
Indeed, there are no compartments in FPGA to accommodate variable and pro-
grams. To overcome this challenge, we should come back to membrane computing
theory that reveal the essence of membranes. As stated in [20], membranes do not
have internal structures and substance concentrations. Their shapes and sizes are
unimportant. The primary function of membranes is to build distributed space
so that rules inside can take place simultaneously. So, if all the rules/programs
in the RTL models are manipulated in accordance with the computation steps
of P systems, how to treat membranes is not important. In this research, mem-
branes are represented implicitly by synchronizing the execution of programs in
different membranes. In fact, different rules/programs will be mapped to differ-
ent hardware resources in FPGA automatically so that the distributive nature
of P systems is achieved without membrane structures.

For the sake of easily distinguishing variables, membranes and modules de-
scribed bellow, italics denote variables, boldfaced italics indicate membranes and
boldface signifies modules. In Figure 2, variables weightLefti and weightRighti
(i = 1, . . . , 16) are sensors’ weights whose values reflect the influences of sensors
on different positions to the speed of left and right wheel. Supposing a obstacle
is detected on the left side, the speed of left wheel should be larger than the
speed of right wheel so that robot can turn right to avoid this obstacle. Based
on this assumption, taking Formula 3 in account, the weight values of sensor 0,
1, 2, 3, 15 should impose negative effects to right wheel speed in order that right
wheel speed is diminished. On the contrary, sensor 0, 1, 2, 3, 15 should impose
positive effects to left wheel speed in order to raise its speed. Similarly, sensor 4,
5, 6, 7, 8 impose negative effect to left wheel but positive effect to right wheel.
Sensors located in the rear part of the robot are unhelpful for detecting obstacles
in front, so their weight values are set to zero.

Consequently, the weight values of 16 sensors, namely, variables weightLefti
and weightRighti have inverse values to manifest the positive and negative ef-
fects. Pioneer 3 should be calibrated to determine the values of weightLefti and
weightRighti. The general calibration process can be stated as follows: use con-
trol law given in Formula 2 to 4, assigning some initial value to weightLefti and
weightRighti then running Pioneer 3. If it bumps into obstacles, altering initial
values of these two arrays to some extent in line with the collision severity until
it no longer rams any obstacles. The corresponding values of these two variable
arrays are shown in Table 1.

193

Table 1. The calibrated values of weightLefti and weightRighti, along with a set of
sampled sensors reading data which will be utilized to verify the correctness of RTL
model.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

weightLefti 0.1 0.4 0.6 0.8 -0.8 -0.6 -0.4 -0.1 -0.1 0 0 0 0 0 0 0.1

weightRighti -0.1 -0.4 -0.6 -0.8 0.8 0.6 0.4 0.1 0.1 0 0 0 0 0 0 -0.1

si 277 0 0 0 0 0 17 208 190 576 704 745 733 659 451 296

Membranes of NPS1 can be classified into two types according to their
functions: delivery membranes and computing membranes. WeightRighti,
WeightLefti, Sensori (i = 1, . . . , 16),CruiseSpeedRight ,CruiseSpeedLeft
and SpeedRight are delivery membranes whose duties are transmitting value
of variable to another. For instance, values of variables weightRighti are sent
to variables weightLefti, which are transferred to variables wi that used in
membrane Computei furthermore. Membranes Computei (i = 1, . . . , 16) and
CruiseSpeed are computing membranes to calculate new value of variable rw.
Computations performed by computing membranes should be synchronized to
reflect the parallelism of NPS. Keep in mind that NPS1 should compute three
steps to get results in such a cycle: after the first step finished, rw = 0, lw = 0;
for the second step, rw obtained the left wheel speed value which will be as-
signed to lw in step 3 and lw = 0; in the next step rw acquires the expected
right wheel speed value and lw attains the second step value of rw. This pro-
cess repeats if computing proceeds. The root cause of this cycle stems from the
delivery membranes, specifically, the value transfer process.

In digital electronics, a clock is a signal oscillating between high and low
electrical level. In low-cost electronic product like an ordinary micro-controller,
clock signal, commonly called as clock, is generated by a resistance capacitance
oscillator (the well known RC resonator). While for high-end IC products like
an FPGA, clock starts off with a quartz crystal resonator, which is a small
slice of quartz crystal combined with integral amplifier circuits. The oscillating
frequency of a quartz crystal is determined by the shape and size of the crystal
slice. The main advantage of this quartz crystal is its tolerability to temperature
variation, outputting more stable frequency when temperature highs and lows
comparing to RC oscillator.

The importance of clocks is that it is the signal employed as a kind of
metronome to trigger so to synchronize operations in circuits. There are two
types of trigger modes in digital circuits: edge trigger and level trigger. Edge
means the transition from high level to low level and vice versa, correspond-
ing to falling edge and rising edge respectively. Level trigger is more intelligible
that operations are executed when the voltage is high level or low level. The
time interval between two rising (or falling) edge is called clock cycle, which is
a time constant numbered by the previous rising edge’s sequence number. Then
the clock cycle adjacent before and after nth rising edge are the (n-1)th and nth
time cycle. Variables keep their values during a clock cycle. It is emphasized here

194

that all the operations in RTL model are synchronized (triggered) by the rising
edge of clock.

To coordinate the value transfer process in delivery membranes, counters
are adopted aiming at this action. Taking the value transfer in WeightRighti
and WeightLefti as an example, the initial values of variables weightRighti,
weightLefti and counter are zeros. counter counts in a loop from 0 to 2, to
correspond computing step 1 to step 3. At the first rising edge of clock, assign
the values in Table 1 to weightRighti and weightLefti. At the second rising edge
of clock, the values of weightRighti are back to zeros and keep these values until
the end of the third clock cycle since their values are consumed by production
functions and they do not appear in any repartition protocols. The values of
weightRighti loop in accordance with counter value loop. However weightRighti
should transfer their values to weightLefti in the second cycle according to
programs in membrane WeightLefti. During a loop of counter, weightRighti
equal zero from the second cycle, so weightLefti also have values zeros in the
third cycle. Whether this arrangement is correct or not can be deduced from
timing diagram in the form of waveform of variables, which will be detailed as
follows.

Membranes Sensori are omitted in RTL model by substituting programs
svali ∗ wi → 1|rw in membrane Computei with si ∗ weightLefti → 1|rw. Be-
cause the effect of program 2si → 1|si + svali in Sensori is to assign sensors’
readings to svali and program weightLefti → 1|wi inWeightLefti is to trans-
fer the valus of weightLefti to wi, executing programs in Sensori will cost 1
more clock cycle which can be reduced by performing si ∗ weightLefti → 1|rw.
Assuming that variables si have the sonar sensors’ readings as initial values,
computing membranes (Computei and CruiseSpeed) are triggered to com-
pute rw at rising edge of clock. In the first clock cycle, rw = 0 for the initial
values of weightLefti are zeros. In the second cycle, rw obtains the speed of
left wheel because weightLefti got their exact values during second cycle. In
the third cycle, rw acquires the speed of right wheel because weightLefti got
the valus of weightLefti in the first cycle, which are transferred during the sec-
ond cycle. Hence the arrangement of transferring and computing can achieve
the computation procedures of NPS1 accurately which computes 3 steps to get
results. The whole processes of transfer and computing should perform as the
timing diagram depicted in Figure 3.

Two types of Verilog HDL modules are designed to carry out value transfer
and computing operations described above. WeightRight assigns right weight
values (in Table 1) of sensors to variables weightRighti, while WeightLeft as-
signs left weight values of sensors and transfers the values of weightRighti to
weightLefti. Analogously, moduleCruiseSpeedRight andCruiseSpeedRight
do the same thing to variables cruiseSpeedRight and cruiseSpeedLeft. Cruis-
eSpeed transfers the value of cruiseSpeedLeft to cruiseSpeed. Module Com-
pute is designed to conduct parallel computations originated from Computei.
SpeedLeft passes the value of rw to lw. No module corresponds to membrane
SpeedRight for there are no programs whithin it. The value loop of counter to-

195

1 2 3 4 5 6 7 8 9 10 11

clock

counter 0 1 2 0 1 2 0 1 2 0 1

weightRight1 0 -0.1 0 -0.1 0 -0.1 0 -0.1

weightRight2 0 -0.4 0 -0.4 0 -0.4 0 -0.4

...

weightRight16 0 -0.1 0 -0.1 0 -0.1 0 -0.1

weightLeft1 0 0.1 -0.1 0 0.1 -0.1 0 0.1 -0.1 0 0.1

weightLeft2 0 0.4 -0.4 0 0.4 -0.4 0 0.4 -0.4 0 0.4

...

weightLeft16 0 0.1 -0.1 0 0.1 -0.1 0 0.1 -0.1 0 0.1

s1 sensor reading 1

s2 sensor reading 2

...

s16 sensor reading 16

rw 0 0 slw srw 0 slw srw 0 slw srw 0

lw 0 slw srw 0 slw srw 0 slw srw

a

b

c

t d m

e n

f p

w g h

k s

Fig. 3. This is the desired timing diagram of RTL model of NPS1. At the first rising
edge of clock, transfer and computation operations are triggered simultaneously. After
the rising edge (and during the first clock cycle), weightRighti and weightLefti are
delivered values given in Table 1. The outcomes obtained are 0s for the initial values
of weightLefti are 0s, although sensor variables have readings. After the second rising
edge, rw gets the speed of left wheel (denoted by “slw”) for weightLefti is delivered
left wheel weight values. The same reason why rw attains the speed of right wheel
(denoted by “srw”) after the third rising edge. Red lines indicate value transfers from
weightRighti to weightLefti and from rw to lw. Blue lines signifies parallel computing
of programs in associated membranes.

196

gether with rising edge guaranteed the whole processes are controlled accurately.
Modules are connected to be an entirety according to signals’ input-output rela-
tionships, for example, the output of WeightRight is the input of WeightLeft.

From Figure 2, it is obvious that membranes are organized in nested struc-
ture. Nevertheless, modules in RTL model are not nested but are independent
with each other. Another notable feature of the RTL model is that the function
of modules does not conform to the function of membranes. There are no one to
one correspondence between membranes and modules. In spite of these differ-
ences, the behaviors of RTL model and NPS1 are identical: at each computation
step, the value of each variable and computing outcome are the same. The iden-
tity of computation steps between NPS and its RTL model reflects the validity
and rationality of the RLT model. The RLT model composed of models is shown
in Figure 4 in which the input-out ports and their connection relationships of
modules are clarified as well.

RTL model of NPS1 should be verified after its design. In Verilog, a special
module named testbench is designed to validate RTL models by instantiating
RTL models and imposing specific input signals and then analyzing outcomes
to determine the accuracy of designed RTL models. The instantiation of a RTL
model is accomplished by declaring the name of RTL model and connecting
ports of RTL model to some variables (signals). Then assign initial values to
input variables of RTL model and define the clock cycle. The number of running
clock cycle should also be declared. It is remarked that testbench just perform
software simulation of RTL models, which means the execution of RTL model is
conducted by CPU of host computer rather than the adopted FPGA. Testbench
simulations are also called behavioral simulations. This simulation neglects the
latency when signals pass through logic gates so that results are obtained at the
trigger time, i.e., at the rising edge of clock. It is not the case when variables
are processed by real digital circuits in FPGA where operations are triggered by
rising (or falling) edges and complete after some time intervals.

As can be seen in Table 1, variables are real numbers. Unfortunately, real
numbers cannot be represented in digital circuits directly. In fact, real numbers
are represented in some forms of integers–fixed point number or float point
number. In this research, real numbers are transformed to fixed point numbers
which are easy to deal with. To be specific, each variable is assigned a 24-bit
register. Allocate the first 11 bits to integer part and the following 13 bits to
fraction part of a variable value. This bits’ manipulation creates a range of
[−(211 − 1), (210 − 1)] ([−2047, 1023] in decimal) which includes the value range
of sensors’ reading [0,1000]. Each real number should be transformed to fixed
point number before running the RTL model so that results obtained are also in
fixed point representation. Consequently, an inverse transformation is necessary
to get decimal results.

NPS and ENPS can be simulated by a software named PeP which is invented
by Florea and Buiu. Software simulation results of NPS1 are the benchmarks of
its hardware implementation which provide fair reference results. PeP can also
offer elapsed time (in seconds) used to compute some predefined steps. From a

197

clk weightRight1

state

WeightRight

weightRight2

weightRight16

clk

weightRight1

state

WeightLe�

weightRight1

weightRight16

weightLeft1

weightLeft2

weightLeft16

clk
cruiseSpeedRightstate

CruiseSpeedRight

clk

cruiseSpeedRight
state

CruiseSpeedLe�
cruiseSpeedLeft

clk

cruiseSpeedLeft
state

CruiseSpeed
cruiseSpeed

clk

s1

state

Compute

s2

s16

weightLeft1
weightLeft2

weightLeft16

rw

cruiseSpeed

clk

rw
state

SpeedLe�

lw

clock

state

Sensors

Reading

rw_out

lw_out

output

output

Fig. 4. RTL model of NPS1 consists of 7 modules, although NPS1 has 69 membranes.
There is a one to one one-to-one correspondence between membranes and programs.
This correspondence transforms the implementing of a membrane in a NPS to imple-
menting a program inside. Programs can be synchronized in one module with parallel
constructs of Verilog. This is the reason why the number of modules can be reduced
substantially. Add a state port to NPS1 so that it possesses idle and busy state.

198

hardware point of view, the software simulation is a CPU implementation of a
algorithm. As a result, this returned time reflects the performance of the CPU
in host computer. Further more, this CPU implementation time is indispensable
to compute the speedup of FPGA implementation of NPS.

The host computer is a Dell Latitude equipped with a Intel Core i7-7820HQ
and 16 GB RAM. Target FPGA of this research is Xilinx Artix-7 xc7a35t-
1cpg236c which is the core part of BASYS 3 FPGA developing board, a prod-
uct of Digilent company. FPGA developing software employed is Xilinx Vivado
2018.2 which is a new generation software dedicated to develop 7 series and Ultra-
Scale FPGAs. The testbench of NPS1 RTL model is designed to verify whether
it performs as what NPS1 should do. As can be seen in Figure 5 which shows
the behavioral simulation waveform obtained in Vivado 2018.2, in the first three
cycles, rw-out which corresponds rw holds value 0, 310.6953125, 289.3046875,
behaving exactly as the computing process of NPS1 that computes three steps
to get results.

Fig. 5. Waveform of behavioral simulation of NPS1. The values of weightLefti alter-
nate as expected when counter loops its value. Sensors’ readings si take the value in
the last row of Table 1 which are abridged from waveform for the sake of taking a
screenshot including computing results rw-out and lw-out.

Simulation results of RTL model are real numbers with long fractional tails.
This appearance of results stems from the treatment of real number representa-
tion in FPGA, the fixed point representation. There are deviations when some
constant bits are assigned to fractions. This inaccuracy can be acceptable if de-
viations are small enough to meet some error criterion. To validate the rightness
of RTL model, input NPS1 to PeP and compute three steps, Figure 6 shows
the outcomes. It costs 0.011703 seconds to compute 3 steps of NPS1, output-
ing rw = 289.3 and lw = 310.7. The errors between software simulation and

199

FPGA implementation is given in 5. Errors’ order of magnitude are 10−5, which
is miniature for engineering applications like robot control. Data accuracy can
be improved by assigning more bits to fractional part of a real number variable.

{
erw = | 289.3−289.3046875

289.3 | = 1.6203 × 10−5

elw = 310.7−310.6953125
310.7 = 1.5087 × 10−5

(5)

Fig. 6. Results of PeP simulation of NPS1. PeP runs in Windows Command Prompt
for it does not have a GUI. Computation results together with computing steps and time
costs are printed on screen to show users. (E)NPS should be described in a particular
format that meets the requirements of PeP before running simulation.

In the testbench of NPS1 RTL model, clock cycle is set to 10 nanoseconds,
but it is too early to assert that harden NPS1 costs 30 nanoseconds to complete
3 steps of computation. Because the harden NPS1 is a digital circuit which takes
a period of time to calculate results after one feed of 16 sensors’ reading. This
period of time should be smaller than the cycle of clock so that one calcula-
tion finishes before the beginning of next clock cycle, otherwise the operations
of harden NPS1 is disordered and it is impossible to get right results. This pe-
riod of time can be measured inaccurately during post implementation timing
simulation which will be expounded in section 5.

4 Register transfer level model design of target ENPS

ENPS allows multiple programs which will be executed concurrently contained
in one membrane, imparting a feature that can simplify membrane structures
greatly. ENPS1 illustrated in Figure 7 has the same function as NPS1 illustrated
in 2, but composed of much less membranes. 17 membranes (69 membrans in
NPS1). More importantly, ENPS1 computes only one step to get result, improv-
ing performance by three times comparing to NPS1 which calculates three steps.
Performance improvement is achieved by getting rid of delivery membranes and
the speed of left wheel and right wheel are calculated at the same time, not in
sequential as what NPS1 does.

Each programs involves a conditional statement and its consequential judg-
ment determines the enforceability of every program in ENPS1. Whereas, the

200

Avoid
leftSpeed[0] rigthSpeed[0] cruiseSpeed[input] e[2] f [1]

1,Pr : ()1|Avoid f cruiseSpeed e leftSpeed

2,Pr : ()1|Avoid f cruiseSpeed e rightSpeed

si[input]

Sensori, i=1, ,16

weightLefti[input] weightRighti[input] ei[2]

1,Pr : ()1|
iSensor i i iweightLeft s e leftSpeed

2,Pr : ()1|
iSensor i i iweightRight s e rightSpeed

Fig. 7. Target enzymatic numerical P system ENPS1. The value of enzyme e is larger
than that of f in membrane Avoid , so these two programs can take place. Enzymes ei
have greater values than si so the 16 programs in membrane Sensori can execute in
parallel.

values of associated enzymes are tuned so that all the programs can carry out si-
multaneously. Accordingly, conditional statements are ignored in the RTL model
of ENPS1 to save hardware resources such as registers and logic gates. ENPS1
RTLmodel contains one module namedEnps to perform the behavior of ENPS1.
The behavioral simulation waveform of Enps is depicted in 8. PeP simulation
results of ENPS1 is given in Figure 9.

5 FPGA implementation flow

If the outcomes are satisfactory after the behavioral simulation of RTL models,
there are a serial of procedures ahead to proceed to accomplish FPGA imple-
mentation of (E)NPSs. FPGA implementation flow of Vivado 2018.2 is sketched
in this section to present a whole implementation process.

Synthesis. RTL models are portrayed in HDL while the corresponding digital
circuits are required for Place & Route in later procedures, so a compilation
process is need to transform RTL models to digital circuits. The terminology
synthesis is referred to this compilation. After Synthesis, a circuit possessing the
same functionality of RTL model is generated. Be noted that this circuit is not
the one to be placed and routed on FPGA during this step, for it is built from
theoretical perspective without consideration of hardware resources of target
FPGA.

Setting up physical constraints and timing constraints are the two subsequent
procedures after synthesizing RTL models. Physical constraints assign ports in

201

Fig. 8. Waveform of behavioral simulation of ENPS1. Left and right wheel speed vari-
ables gain their expected values after the first rising edge.

Fig. 9. PeP simulation results of ENPS1. Performance is improved for the reduction
of computing steps by assigning sensors’ weight values and readings to corresponding
variables directly and calculating concurrently.

202

RTL model to FPGA pins so that signal input & output course can carry out on
real circuits. Timing constraints set the period of clock source (a RC oscillator or
a quartz crystal resonator), and signal input & output delay so that a real clock
with specified cycle will be produced. The package view of target FPGA which
list all the available pins can be opened under I/O Planning view of Vivado.
The assignment of pins is illustrated in Figure 10 in which gray circles (normal
input-output pins) and light blue hexagons (clock capable pins) with orange bars
inside are pins mapped to RTL model ports. For vector ports (more than one
bit), each bit should be assigned a pin. For instance, the output of NPS1 RTL
model, rw, is a 24-bit variable used as one output port, so 24 pins are allocated
to it. Clock signal is a 1-bit scalar which demands one pin.

Fig. 10. The assignment of package pins of NPS1. RTL model of NPS1 has one 1-
bit input port clock and two 24-bit output ports rw and rw, so totally 49 pins are
distributed to these three ports.

Implementation. Theoretical schematic compiled in synthesis step is fabricated
in Implementation step according to hardware resources in FPGA to generate
a more fine-grained schematic. A important simulation after implementing is
post implementation timing simulation which reflects the real elapsed time of
physical circuit running since the time delay of logic elements and data paths are
taken into account to build the fine-grained schematic. The underlying cause is
that clock cycle is not the running time of circuits but a special time container
with trigger pip to accommodate running time so that the running order is not
chaotic. Static timing analysis finding the critical path would be impossible for
large scale circuits, then post implementation timing simulation is a reasonable
and convenient method to estimate circuit running time. The margin between
clock cycle and running time is a significant parameter related to performance
and should be evaluated prudently. It might also be noted that only Verilog HDL
is supported for post implementation timing simulation.

203

Post implementation timing simulation waveform of NPS1 and ENPS1 are
shown in Figure 11. In Figure 11(a), a rising edge appears at 105 ns and the
steady value of left wheel speed advents at 107.025 ns, while right wheel steady
speed value arises even earlier. This implies that the computing results can be
obtained within 5 ns, so the clock period of ENPS1 RTL model can be reduced
to 5 ns to hold the running time of harden ENPS1. In Figure 11(b), for a rising
edge at 115 ns, steady value of right wheel speed arises at 123.34 ns. The period
time of clock for NPS1 can not be reduced by half for the running time of
hardened NPS1 is larger than half clock cycle, but it is enough to hold the
running time. Clock period instead of running time is used to calculate speedup
because circuits hold after running time to wait for another clock trigger edge.
Software simulation time for NPS1 and ENPS1 are 0.011703 s and 0.00293 s,
which is 1.1703 × 107 ns and 2.993 × 106 respectively. The speedup of FPGA
implementation of NPS1 and ENPS1 can be computed intuitively as given in
Fomular 6 and 7, in which exhibits a speedup as high as a remarkable order of
magnitude of 106. It’s pointed out that the computing speed of FPGA hardened
NPS1 and ENPS1 is 108 step per second because clock period is 10 ns, or its
frequency is 100 MHz.

1.1703 × 107

30
= 3.901 × 105 (6)

2.993 × 106

5
= 5.986 × 105 (7)

(a) Post implementation timing simulation waveform of ENPS1.

(b) Post implementation timing simulation waveform of NPS1.

Fig. 11. The outcomes settle out gradually. Running time of ENPS1 is shorter than
that of NPS1, indicating that the performance of harden ENPS1 is better than its
counterpart of NPS1.

Place & Route planning is carried through in this step as well. In Vivado
Device view, structures and interconnections of hardened RTL model can be

204

observed, as shown in Figure 12. This planning will be written into bitstream
file which is produced in next step.

Fig. 12. Part of Place & Route planning of NPS1 RTL model, in which green lines con-
nect luminous gates to construct interconnections which will be established in FPGA.

Program and debug. If post implementation timing simulation meets design re-
quirements, FPGA configuration file, bitstream file, can be generated in Program
and debug procedure of Vivado. Bitstream file contains all the design contents
and will be downloaded to FPGA to program it, i.e., performing physical Place &
Route operation and setting up constraints. After programing of target FPGA,
FPGA implementation flow terminates and yields a real hardened NPS.

To examine the results of FPGA is not straightforward but involving a tech-
nical procedure, hardware debug. Indeed, not matter how precise results post
implementation simulation can provide, it is just a simulation. On the contrary,
hardware debug procedure can penetrate the results stored in registers of FPGA.
If a signal needs to be debugged, it should be marked after synthesis. Vivado
will probe these marked signals and show their values via integrated logical an-
alyzer, a virtual software logical analyzer. By performing hardware debug, the
real outcomes of design can be verified. Results of FPGA hardened ENPS1 is
shown in the integrated logical analyzer window in Figure 13 in which values are
in hexadecimal. Hexadecimal 26d640 and 2429c0 are decimal 310.6953125 and
289.3046875 which are expected values of left wheel and right wheel speed.

6 Comparisons of FPGA hardened NPS and ENPS

There are three quality attributes related to FPGA implementation of NPS:
performance, hardware resources utilization and power consumption. The per-
formance of FPGA ENPS1 is 6 times faster than that of FPGA NPS1 since the
clock period of ENPS1 is 5 ns and it costs one cycle to compute results while

205

Fig. 13. Hardware debug results of ENPS1 shown in integrated logical analyzer. Values
of variables are in hexadecimal instead of decimal. The reason why using hexadecimal
will be revealed in Section 7.

NPS1 clock period is 10 ns and takes three cycles (30 ns) to get results. Vivado
utilization report provides hardware resources costs of FPGA NPS1 and ENPS1
which are listed in Table 2 and 3. Contrasting these two tables, ENPS1 dose not
use any LUT as Logic and LUT Flip Flop Pairs, and the cost of Slice only takes
up less than one quarter than that of NPS1.

Power consumption is an increasingly important attribute with the popular-
ity of mobile devices. Vivado evaluate power consumption of FPGA NPS1 and
ENPS1, shown in Figure 14. As can be seen, power consumption of FPGA NPS1
is twice as larger as that of the FPGA ENPS1.

(a) Power consumption of FPGA
NPS1 is 0.151 w.

(b) Power consumption of FPGA
ENPS1 is 0.069 w.

Fig. 14. Total power consumption is the sum of device static power and dynamic
power.

7 UART communication of NPS

Substituting the on-board computer of Pioneer 3 DX with FPGA NPS to control
this robot is the ultimate objective, but before achieving this objective, how to
replace should be considered. Pioneer 3 is controlled directly by dedicated robot
motion controller which is a microcontroller [1] while computing operations are

206

Table 2. Hardware resources utilization of NPS1

Site Type Used Available Utilized %

Slice 67 8150 0.82
SLICEL 27
SLICEM 40

LUT as Logic 179 20800 0.86
using O5 output only 0
using O6 output only 107
using O5 and O6 72

LUT Flip Flop Pairs 32 20800 0.15
fully used LUT-FF pairs 2
LUT-FF pairs with one unused LUT output 27
LUT-FF pairs with one unused Flip Flop 28

DSPs 16 90 17.78
DSP48E1 only 16

Bonded IOB 49 106 46.23
IOB Master Pads 24
IOB Slave Pads 24

BUFGCTRL 1 32 3.13

Table 3. Hardware resources utilization of ENPS1

Site Type Used Available Utilized %

Slice 15 8150 0.82
SLICEL 15
SLICEM 0

LUT as Logic 0 20800 0

LUT Flip Flop Pairs 0 20800 0

DSPs 0 90 0

Bonded IOB 49 106 46.23
IOB Master Pads 25
IOB Slave Pads 23

BUFGCTRL 1 32 3.13

207

executed by on-board computer. The microcontroller samples reading of sen-
sors and sends them to on-board computer in line with RS232 communication
electrical standard protocol. After computation finished, results are transmitted
back to microcontroller to control wheel motors. Thereupon, FPGA NPS should
have receiver and transmitter device to receive sensors reading and to send com-
putation results. Universal asynchronous receiver/transmitter (UART) is such
a device meeting RS232 protocol which is employed to design communication
devices of FPGA NPS.

The data transferring speed of Pioneer 3 is 115200 baud (nearly 115200 Hz),
which should be the working rate of UART receiver and transmitter. While the
clock frequency of BASYS 3 FPGA developing board is 100 MHz, a module
named frequency splitting is designed to generate required clock frequency
according to Formula 8, where fo is desired frequency, fr is source clock fre-
quency, K is frequency control word, N is the number of bits assigned to a
counter inside this module. To ensure transmission accuracy, it is better to sam-
ple data at the midst of bit width because that it is in the most steady state. For
this purpose, generate another clock frequency which is 16 times (115200 × 16
Hz) faster than UART frequency. A sampling counter counts the cycle number
of the 16 times frequency. When sampling counter increments to 7 or 8, module
receiver sample the sensors reading from microcontroller, at the frequency of
115200 Hz for it just sample at the same value of sampling counter.

K =
fo × 2N

fr
(8)

UART receiver can only receive 8-bit data while a sensor reading is a 24-bit
data. Therefore it is a triple receiving operation to receive a sensor reading. A
register is assigned to store received 8-bit data so that 48 registers are needed to
store sixteen 24-bit data. Values in three adjacent register are concatenated to
form a 24-bit binary value which is a input data to NPS1. NPS1 has two operat-
ing state: idle and busy state. Before NPS1 receiving all the sensor reading, it is
in idle otherwise it is in busy after fed to full. The storing rate is 1

10 of receiving
frequency for 10 bits are sent sequentially while computing frequency should be
1
30 of receiving frequency since it performs 3 times of receiving operation to get a
entire sensor reading. The working frequency of UART transmitter equals to the
storing rate for it sends 10 serial bits to microcontroller which works in 115200
Hz. The RTL model of UART NPS1 is illustrated in Figure 15.

According to the computational process of NPS1, the first output of rw is zero
and the latter two outputs are expected values. UART transmitter should skip
zero and begin to transmit when the first valid value arise. So transmitter stays
in idle before rw is nonzero. Wheel speed values to be transmitted are 24-bit
data, but each time the transmitter can send only 8 bits. Hence the transmitter
sends six times successively to transmit 48 bits in total. UART communication
experiment between host computer and BASYS 3 is conducted to verify proposed
design method. In this experiment, host computer sends sixteen 24-bit sensor
readings to BASYS 3 via integrated UART transmitting port within it and

208

clk
frequency splitting

edge detection

clk
rx_data

rx_flag
rx

clock_re

clk

rw_out

state

clock

100MHz

115200*16Hz

a a a a...

clk frequency splitting

edge detection

3840Hz

clk

txtx_en

clock_tr

tx_data [7:0]

state

PC

frequency spli�ng 1

receiver

register1 register2 register3 register47

NPS1

transmi�er
On-board PC

s1

s2

s16

lw_out

concatena�on

compute

state

clk frequency splitting

edge detection

11520Hz

frequency spli�ng 2

frequency spli�ng 3

On-board PC

transmit

state

Fig. 15. RTL model of UART NPS1. Three frequency splitting modules are utilized
to generate three different clock frequencies. The working frequencies of UART receiver
and transmitter are unequal due to the opposite data flow.

209

BASYS 3 receives these data into forty eight 8-bit registers. Every three 8-bit
registers are concatenated to construct a 24-bit register so that data inside can
be 24-bit. After computation of FPGA NPS1, BASYS 3 transmits results to host
computer and these values can be observed on the screen. Realterm is the serial
debugging software adopted to configure ports setting and display data from
BASYS 3. It is obvious that FPGA NPS1 computes and transmits correctly
according to Figure 16 which shows the experiment result.

Fig. 16. Numbers are in hexadecimal for real numbers are represented in fixed point
binary numbers. These data repeats 00 00 00, 26 D6 40 and 24 29 C0. Two digits of
hexadecimal correspond to 8 bits in binary so three dual hexadecimal pairs comprise
a 24-bit binary number. These three repeated data strings are 0, 310.6953125 and
289.3046875 in decimal, which are the desired three outcomes of rw of NPS1.

A notable phenomenon can be found in Figure 16 is that UART transmitter
does not stop transmitting so data strings repeat. The transmitting counter
will enter infinite loop if clock does not stop. Indeed, the clock never stop once
beginning to work. In effect, any counter will loop forever unless it is related
to some limited signals. Input signals are limited because they will stop at a
time. Transmitting counter should come into play to count from 0 only after all
sensor readings are received and stop counting when it counts to 5. By this way,
transmitting counter will not loop and transmitter sends six 8-bit binary data.
The effectiveness of this strategy is demonstrated by the simulation waveform
of UART-NPS1 RTL model in Figure 17.

210

Fig. 17. When input counter counts from 0 to 47, sensor readings are received into
NPS1. Computing signal cmp-state converts from 0 to 1 to trigger computing. When
left wheel speed are outputted, transmitting signal tr-state shifts from 0 to 1 to trigger
transmitting. At the time when transmitting counter signal tr-clken-cnt has value of
5, tr-state switches its value to terminate transmitting.

8 Conclusions

Based on the research results of this article, comparing to software simulation
of P systems, FPGA implementation of P systems can achieve a remarkable
speedup which can be as high as 106 in the case of NPS and ENPS in which
non-determinism does not exist. A NPS and an ENPS which are used as robot
controllers are implemented in FPGA. NPS with UART communication ability
which has the potential to substitute on-board computer of Pioneer 3 robot is
designed and implemented as well. To the best of authors’ knowledge, it is the
first time that (E)NPSs are hardened in FPGA. The large scale parallelism of
(E)NPS is gained and has the potential to be exploited to control autonomous
robots.

Differentiating from software simulation, FPGA implementation of (E)NPS
fabricates hardware circuits inside which work as a parallel architecture to ex-
ecute associated processes. The development process of FPGA implementation
is much more sophisticated than software simulation since behavioral simula-
tions of RTL model never guarantee the correctness of real circuits. It costs a
lot of labor to do post implementation simulation and hardware debug to verify
RTL models. FPGA ENPS1 is in the lead comparing FPGA NPS1 for its better
performance, lower hardware resources and power consumption.

An FPGA hardened (E)NPS work as a controller/processor to control robots
or other engineering objects, for instance a drone or a tool machine. In the per-
spective of processor, FPGA (E)NPS is a multicore processor in which a set of
programs in a membrane play the role of a core. FPGA NPS1 implemented in this
research is a heterogeneous multicore processor for cores have two types of func-
tion: transferring and computing. This research is the first step to manufacture
a high performance (E)NPS chip because its prototype circuits are fabricated in
FPGA.

There are two important questions should be figure out before replacing
on-board computer of Pioneer 3. Firstly, how to extract sensors’ reading from
data package sampled by microcontroller. Secondly, the data format of sensors’
reading should be ascertained. This will cause the serious modification of RTL

211

models. These information is not mentioned in operation manual so only ex-
periments can help. The spectacular performance of FPGA (E)NPS is ideal for
real-time processing like robot path planning, image and video processing, which
will be the future research directions.

Acknowledgments

This work is supported by the National Natural Science Foundation of China
(61972324, 61672437, 61702428), the New Generation Artificial Intelligence Sci-
ence and Technology Major Project of Sichuan Province (2018GZDZX0044),
the Sichuan Science and Technology Program (2018GZ0185, 2018GZ0086)and
Artificial Intelligence Key Laboratory of Sichuan Province (2019RYJ06).

References

1. O. Adept. Pioneer 3 Operations Manual. Omron Adept MobileRobots LLC., 10
Columbia Dr. Amherst, NH, 03031 USA, revision 6.5 edition, Apr. 2017.

2. P. M. Aiken Pang. Beginning FPGA: Programming Metal. Apress, 2017.

3. J. Bhasker. A Verilog HDL Primer. Star Galaxy Publishing, 1058 Treeline Drive,
Allentawn, PA 18103, second edition, 1999.

4. C. Buiu, C. I. Vasile, and O. Arsene. Development of membrane controllers for
mobile robots. Inf. Sci., 187:33–51, 2012.

5. K. Huang, G. Zhang, X. Wei, H. Rong, Y. He, and T. Wang. Fault classification
of power transmission lines using fuzzy reasoning spiking neural p systems. Bio-
inspired Computing Theories and Applications, Jan. 2016.

6. A. Leporati, G. Mauri, A. E. Porreca, and C. Zandron. Enzymatic numerical
P systems using elementary arithmetic operations. In A. Alhazov, S. Cojocaru,
M. Gheorghe, Y. Rogozhin, G. Rozenberg, and A. Salomaa, editors, Membrane
Computing - 14th International Conference, CMC 2013, Chişinău, Republic of
Moldova, August 20-23, 2013, Revised Selected Papers, volume 8340 of Lecture
Notes in Computer Science, pages 249–264. Springer, 2013.

7. D. Llorente-Rivera and M. A. Gutiérrez-Naranjo. The pole balancing problem with
enzymatic numerical p systems. In Proceedings of the Thirteenth Brainstorming
Week on Membrane Computing, pages 195–206, Feb. 2015.

8. S. Maeda and A. Fujiwara. Enzymatic numerical P systems for basic operations
and sorting. In 2014 Joint 7th International Conference on Soft Computing and
Intelligent Systems (SCIS) and 15th International Symposium on Advanced Intel-
ligent Systems (ISIS), Kita-Kyushu, Japan, December 3-6, 2014, pages 1333–1338.
IEEE, 2014.

9. M. A. Mart́ınez-del-Amor, L. F. Maćıas-Ramos, L. Valencia-Cabrera, and M. J.
Pérez-Jiménez. Parallel simulation of population dynamics P systems: updates and
roadmap. Natural Computing, 15(4):565–573, 2016.

10. C. Maxfield, editor. FPGAs World Class Designs. Elsevier, 2009.

11. T. Y. Nishida. A membrane computing model of photosynthesis. In G. Ciobanu,
M. J. Pérez-Jiménez, and G. Paun, editors, Applications of Membrane Computing,
Natural Computing Series, pages 181–202. Springer, 2006.

212

12. L. Pan, G. Păun, T. Wu, and Z. Zhang. Four recent research topics on numerical
and spiking neural p systems. Romanian Journal of Information Science and
Technology, 19(1-2):5–16, 2016.

13. L. Pan, Z. Zhang, T. Wu, and J. Xu. Numerical P systems with production
thresholds. Theor. Comput. Sci., 673:30–41, 2017.

14. L. Pan, Z. Zhang, T. Wu, and J. Xu. Numerical P systems with production
thresholds. Theor. Comput. Sci., 673:30–41, 2017.

15. S. Pang, T. Ding, A. Rodŕıguez-Patón, T. Song, and Z. Phen. A parallel bioinspired
framework for numerical calculations using enzymatic P system with an enzymatic
environment. IEEE Access, 6:65548–65556, 2018.

16. A. Pavel, O. Arsene, and C. Buiu. Enzymatic numerical P systems - a new class of
membrane computing systems. In Fifth International Conference on Bio-Inspired
Computing: Theories and Applications, BIC-TA 2010, University of Hunan, Liv-
erpool Hope University, Liverpool, United Kingdom / Changsha, China, September
8-10 and September 23-26, 2010, pages 1331–1336. IEEE, 2010.

17. A. B. Pavel and C. Buiu. Using enzymatic numerical P systems for modeling
mobile robot controllers. Natural Computing, 11(3):387–393, 2012.

18. A. B. Pavel, C. I. Vasile, and I. Dumitrache. Robot localization implemented with
enzymatic numerical P systems. In T. J. Prescott, N. F. Lepora, A. Mura, and P. F.
M. J. Verschure, editors, Biomimetic and Biohybrid Systems - First International
Conference, Living Machines 2012, Barcelona, Spain, July 9-12, 2012. Proceedings,
volume 7375 of Lecture Notes in Computer Science, pages 204–215. Springer, 2012.

19. H. Peng, J. Wang, J. Ming, P. Shi, M. J. Prez-Jimnez, W. Yu, and C. Tao. Fault
diagnosis of power systems using intuitionistic fuzzy spiking neural p systems.
IEEE Transactions on Smart Grid, 9(5):4777–4784, Sept. 2018.

20. G. Păun. Membrane Computing: An Introduction. Springer, 2002.
21. G. Păun and R. A. Păun. Membrane computing and economics: Numerical P

systems. Fundam. Inform., 73(1-2):213–227, 2006.
22. Y. Suzuki, Y. Fujiwara, J. Takabayashi, and H. Tanaka. Artificial life applications

of a class of P systems: Abstract rewriting systems on multisets. In C. Calude,
G. Paun, G. Rozenberg, and A. Salomaa, editors, Multiset Processing, Mathemat-
ical, Computer Science, and Molecular Computing Points of View [Workshop on
Multiset Processing, WMP 2000, Curtea de Arges, Romania, August 21-25, 2000],
volume 2235 of Lecture Notes in Computer Science, pages 299–346. Springer, 2000.

23. Y. Suzuki and H. Tanaka. Modeling p53 signaling pathways by using multiset pro-
cessing. In G. Ciobanu, M. J. Pérez-Jiménez, and G. Paun, editors, Applications of
Membrane Computing, Natural Computing Series, pages 203–214. Springer, 2006.

24. C. Vasile, A. Pavel, I. Dumitrache, and et al. Implementing obstacle avoidance
and follower behaviors on koala robots using numerical p systems, 2012.

25. C. I. Vasile, A. B. Pavel, and I. Dumitrache. Improving the universality results of
enzymatic numerical p systems. In Proceedings of the Tenth Brainstorming Week
on Membrane Computing, volume 2, pages 207–214, Feb. 2012.

26. C. I. Vasile, A. B. Pavel, and I. Dumitrache. Universality of enzymatic numerical
P systems. Int. J. Comput. Math., 90(4):869–879, 2013.

27. T. Wang, G. Zhang, J. Zhao, Z. He, J. Wang, and M. J. Prez-Jimnez. Fault diag-
nosis of electric power systems based on fuzzy reasoning spiking neural p systems.
IEEE Transactions on Power Systems, 30(3):1182–1194, May 2015.

28. X. Wang, G. Zhang, F. Neri, T. Jiang, J. Zhao, M. Gheorghe, F. Ipate, and R. Left-
icaru. Design and implementation of membrane controllers for trajectory tracking
of nonholonomic wheeled mobile robots. Integrated Computer-Aided Engineering,
23(1):15–30, 2016.

213

29. X. Wang, G. Zhang, J. Zhao, H. Rong, F. Ipate, and R. Lefticaru. a modified
membrane inspired algorithm based on particle swarm optimization for mobile
robot path planning. International Journal of Computers, 6:732–745, Oct. 2015.

30. J. Yuan, D. Guo, G. Zhang, P. Paul, M. Zhu, and Q. Yang. A resolution-free
parallel algorithm for image edge detection within the framework of enzymatic
numerical p systems. Molecules, Mar. 2019.

31. G. Zhang, M. J. Prez-Jimnez, and M. Gheorghe. Electric power system fault diag-
nosis with membrane systems. Real-life Applications with Membrane Computing,
Jan. 2017.

32. Z. Zhang, Y. Su, and L. Pan. The computational power of enzymatic numerical P
systems working in the sequential mode. Theor. Comput. Sci., 724:3–12, 2018.

33. Z. Zhang, T. Wu, and L. Pan. On string languages generated by sequential nu-
merical P systems. Fundam. Inform., 145(4):485–509, 2016.

34. Z. Zhang, T. Wu, A. Paun, and L. Pan. Numerical P systems with migrating
variables. Theor. Comput. Sci., 641:85–108, 2016.

35. Z. Zhang, T. Wu, A. Paun, and L. Pan. Universal enzymatic numerical P sys-
tems with small number of enzymatic variables. SCIENCE CHINA Information
Sciences, 61(9):092103:1–092103:12, 2018.

214

1 1 � 2 3 1

1

2 &

3

�

215

&

216

W
A

R

p =
W

n∑
j=1

Aj

j

pj =

s∑
i=1

Wij

s∑
i=1

Aij

q =

n∑
j=1

Aj

R
× 100%

j

qj =

s∑
i=1

Aij

s∑
i=1

Rij

× 100%

n
i

s

217

218

Create database

Determining evaluation indicators

Data preprocessing

Establish a fitted simulation model for evaluating the standard
values

Classify data by processing scale

Fitting the simulation model to obtain the evaluation standard
value

The evaluation indicator is combined with the evaluation
standard value to obtain an evaluation system

d

219

Establish a database of the enterprises to be
evaluated

Building an enterprise data optimization model

Enterprise processing data preprocessing and optimization

Classify and use the fitted simulation model to calculate the
evaluation index

The evaluation index value is compared with the evaluation
standard value in the evaluation system

Complete the evaluation of the enterprise to be evaluated
based on the symbolic size of the deviation value of the

comparison result

Based on the results of the assessment, in-
depth enterprise diagnosis

f th

f

220

W
A

R
p
q

i
j Aij j

221

pj
j

qj j
Wi

min

s∑
i=1

(
6∑

j=1

Aij · pj−Wi)

2

pj > 0

min

s∑
i=1

(
6∑

j=1

(
Aij

qj
− Ri))

2

qj > 0

222

s

1
qj

Qj

W
A

R
p
q

i
j Aij j

pj
j

qj
Wi

Wij

i j

min

6∑
j=1

(
Wij

Aij
− pj)

2

223

6∑
i=1

wij = Wi

min

6∑
j=1

(rij · qj − Aij)

2

6∑
i=1

rij = Ri

224

225

226

227

228

229

230

231

Formal Approach to cP System Verification

Yezhou Liu �, Radu Nicolescu, and Jing Sun

The University of Auckland, Auckland, New Zealand
yliu442@aucklanduni.ac.nz, r.nicolescu@auckland.ac.nz,

jing.sun@auckland.ac.nz

Abstract. As a recently proposed membrane computing model, cP sys-
tems are capable of solving computational hard and distributed prob-
lems. Although several membrane systems were formally verified in pre-
vious research, none of their approaches was applicable to cP systems.
To formally verify the safety and liveness properties of cP systems, we
solve a famous NPC problem – the subset sum problem in cP systems
and use the PAT3 and ProB model checkers to verify the solution. Our
cP solution outperforms previous work in time complexity and uses fewer
rules. To perform model checking in cP systems, we define several map-
ping rules from cP notation to formal verification languages CSP# and
B. This work is the first study on formal verification of cP systems, our
study showed that cP solutions can be effectively transformed into model
checking problems and verified automatically.

Keywords: Formal Verification · Model Checking · cP systems · P sys-
tems · Subset Sum Problem

1 Introduction

Since membrane computing was proposed in 1998 [1], many variants of mem-
brane systems (P systems) have been published, which include P systems with
active membranes [2], tissue P systems [3], Spiking Neural P systems [4], ker-
nel P systems [5] and P systems with complex objects (cP systems) [6]. Major
P system variants share two fundamental features: computational completeness
and computational efficiency. P systems have equivalent computational power to
Turing machines and can create exponential workspace like cell division in real
life [7]. By using P systems, many computational hard problems can be solved
in polynomial or linear time/steps.

To verify P systems, formal approaches including model checking and theo-
rem proving are used. One of the earliest P verification work simulated P systems
by communicating X-machines [8]. Later, many model checking tools were used
to verify P systems including Omega [9], SPIN [9–13], NuSMV [13–15], ProB [16],
UPPAAL [17], PRISM [15] and kPWorkbench [13, 15]. Besides model checking,
theorem proving was also used to formally verify P system variants [9, 14, 18–20].

By combining features from both cell-like P systems and tissue P systems,
cP systems are capable of solving computational hard and distributed problems.

232

2 Y. Liu et al.

Many NPC or NP-hard problems were solved in cP systems over the past few
years, which include the Hamiltonian cycle problem [21], travelling salesman
problem [21] and the propositional satisfiability problem [6]. With the develop-
ment of cP systems, it is important to simulate cP systems and formally prove
their safety and liveness properties.

In this study, we propose a subset sum solution in cP systems with a ruleset
of five rules, which can solve the problem in at most n+2 steps. To verify the cP
solution, we define two mapping guidelines from cP system specifications into
CSP# and B notation. We model check the properties of our cP solution by
using PAT3 [22] and ProB [23] and illustrate how to design cP rules to improve
the model checking efficiency.

As an extensible framework, PAT3 is suitable for verifying distributed and
concurrent systems. Compare to other model checking tools, PAT3 can perform
competitively in terms of both running time and extensibility [22]. When mod-
elling cP systems in PAT3, both communication among multiple top-cells and
manipulations of sub-cells can be simulated by using events and processes. PAT3
also can simulate non-deterministic and probabilistic choices in cP systems. An-
other model checker we choose in this study is ProB, which was successfully
used in a previous P system research [16]. ProB supports state-space visualiza-
tion and a rich set of data operations, which is especially suitable for simulating
cP sub-cell manipulations.

The paper is organized as follows. In Section 2, we include the background
of cP systems, the existing P solution to the subset sum problem and the in-
troduction of PAT3 and ProB. In Section 3, we introduce the cP notation and
the solution to the subset sum problem. We illustrate how to transform cP sys-
tem descriptions into formal verification problems in Section 4. A case study
and evaluation are shown in Section 5. Section 6 concludes the work with future
directions.

2 Background

Inspired by traditional P systems (tree-based, like a single cell) and tissue P sys-
tems (graph-based, multiple cells communicate through protein channels [3]),
cP systems consist of networks of top-cells, where each top-cell can contain
multiple nested sub-cells. Only top-cells in cP systems have high-level multiset
rewriting rules, sub-cells are often treated as local datasets. Compare to other
P system variants, cP systems often can effciently solve a computational difficult
problem or represent a proper algorithm with a small number of high-level rules.

The fundamental design of a cP system includes Prolog style compound
terms, high-level multiset rewriting rules and optional constraints – promoters
and inhibitors. cP rules can be extended by communication constructs inspired
from CSP and actor models [24]. In this study, to solve the subset sum problem,
we use a simple version of cP systems, which only has one top-cell with multiple
sub-cells.

233

Formal Approach to cP System Verification 3

In the rest of Section 2, we review the previous works on solving the subset
sum problem by using P system variants and introduce the model checkers PAT3
and ProB.

2.1 P solutions to the subset sum problem

As a special case of Knapsack problem, the subset sum problem is NP com-
plete. Many P system variants were used to solve the problem and compared to
each other. An early work was published in 2004, where P systems with active
membranes were used to solve the subset sum problem [25] and the Knapsack
problem [26]. In the P solution, solving the problem could be linear, while the
pre-computing required polynomial time [25]. Later, another linear solution to
the subset sum problem was presented, which used P systems with membrane
creation rules to solve the problem in at most 2n + 2k + 12 steps, where n is the
number of elements in the initial set and k is the constant to be reached [27].
Besides traditional P systems, other P system variants were also used to solve
the problem in different research works (Table 1).

2.2 PAT3 and ProB

The first version of PAT (Process Analysis Toolkit) model checker was proposed
in 2008 [34], which aimed to analyze event-based compositional systems. An
extended version of communicating sequential processes (CSP) language which
called CSP# was proposed in PAT to describe system specifications, which can
help refinement checking, LTL(Linear Temporal Logic) checking and system
simulation. A fully automatic approach on checking fairness properties using
PAT was presented later by Sun et al. [35]. The second main release of PAT
was focused on handling system analysis under fairness [36]. The latest version
of PAT is PAT3, which has a four-layer structure: modeling layer, abstraction
layer, intermediate representation layer and analysis layer. The four layers con-
tain domain specific components, abstraction and reduction techniques, semantic
models and model checking algorithms, respectively [22]. PAT3 can be extended
with custom modeling languages, model checking algorithms and reduction tech-
niques.

Two ways of system analysis are supported in PAT3: simulation and model
checking. In the PAT3 simulator, we can trace how cP rules were used non-
deterministically in different processes and track global state variables of the
system. The model checker of PAT3 has several verification options, such as
deadlock-freeness, nonterminating, divergence-freeness, deterministic, reachabil-
ity, refinement, safety-LTL properties and liveness properties checking.

Similar to PAT3, ProB also contains a model checker and a refinement
checker [37]. Two main proof activities in ProB are consistency checking and
refinement checking. The consistency checking monitors if the invariants are
preserved during different operations, the refinement checking is used to check
if a machine is a refinement of another [23].

234

4 Y. Liu et al.

P system variants
Number of
rules

Number of
Steps

Comments

P systems with active mem-
branes [25]

5n + 5k + 18 2n + 2k + 2
polynomial pre-
computing time

P systems with membrane
creation [27]

12n + 4k + 49 2n + 2k + 12

P systems with active mem-
branes [28]

2n + 48
3n + 2 ∗
min(k, ω(A)) +
19

ω is the weight
function

P systems with active
membranes and dissolution
rules [29]

6n + 3k + 14 O(n) semi-uniform

P systems with active mem-
branes, weak division, disso-
lution and without polariza-
tion [30]

O(n2 + log(k))
2n+2∗ log(k)+
20

Spiking Neural P systems
by exploiting nondetermin-
ism [31]

2n + 2 O(1)

semi-uniform,
exponential time
to build the SN
P systems

Spiking Neural P systems
using maximum parallelism,
exploiting nondetermin-
ism [32]

2n + 2 O(1)

an improved ver-
sion of [31], the
initializing time
of the SN P sys-
tems was reduced
to polynomial.

Tissue P systems with cell
division [33]

n∗ log(k +1)+5n+
2 ∗ log(k + 1) + 3 ∗
log(n) + 26

n + log(n) +
log(k + 1) + 12

cP systems (This work) 5 n + 2
Table 1: P solutions to the subset sum problem. In the figure, a semi-uniform setting
means that for each instance of the subset sum problem, a specific P system is built
to solve that instance.

ProB can work as both an animator and a model checker of cP systems. When
simulating a cP model, the whole state-space of the system can be visualized and
the shortest trace could be tracked. B language has built-in operations on logical
predicates, numbers, sets, sequences, relations and functions, which is helpful on
modelling cP sub-cells. In addition to B language, ProB also supports other
modeling languages including Event-B, Z, TLA+ and CSP. Deadlock-freeness,
invariant violations, reachability, LTL/CTL assertions and other errors can be
checked in ProB.

235

Formal Approach to cP System Verification 5

3 Methodology

This section includes two parts: the introduction to the cP notation and our cP
solution to the subset sum problem. We first introduce the cP syntaxes by using
a couple of examples; then explain our solution to the problem and discuss how
to expand cP rules to reduce the state-space for model checking.

3.1 cP system notation

cP notation includes compound terms and multiset rewriting rules, we only
introduce a part of syntaxes related to our solution (Fig. 1), other examples of
cP syntaxes can be found in previous papers [21, 38, 24, 39]. cP notation supports
one-way first-order syntactic unification, which is similar to pattern matching in
functional programming languages.

< simple − term > ::= < atom > | < variable >
< compound − term > ::= < f unctor > (< argument >)
< f unctor > ::= < atom >
< argument > ::= < term > ...
< rule > ::= < lhs >→α< rhs >< promoters >
< lhs > ::= < state >< term > ...
< rhs > ::= < state >< term > ...
< promoters > ::= (| < term − or − eq >)...

Fig. 1: cP system grammar (lhs = left-hand-side, rhs = right-hand-side)

Simple cP terms consist of atoms and variables. Similar to Prolog, lower-
case letters are used to present atoms and upper-case letters are used to declare
variables. Ground terms in cP systems include a(λ), b(1), c(11), d(13), e(b) and
f (b2c3); terms containing variables include a(X), b(X1), c(XY) and d(X). In cP
terms, a(λ) ≡ a(0), 1 is the unity symbol, a(13) ≡ a(111) ≡ a(3) and denotes
anonymous variable. By using pattern matching, the term a(X) can be matched
to a(λ), a(1), a(11), a(13) or any other terms.

Compound terms in cP systems are like first-order terms in Prolog, that are
recursively built from simple terms. Compound terms include a(b(X)), a(b(c)d(Y))
and a(b(X) fY). When a compound term is not grounded, its variables can be
matched to different terms. For example, by matching a(XY1) = a(111), we could
get (X,Y = 1, 1), (X,Y = λ, 11) or (X,Y = 11, λ).

Rules in cP systems are used to describe the rewriting of multisets. By ap-
plying a cP rule, the lhs is consumed and the rhs is produced. The α in cP rules
represents the application model. There are two application models in cP sys-
tems, which are exactly-once (1) and max-parallel (+). Suppose we have three

236

6 Y. Liu et al.

terms a(12), a(13), a(13) and a rewriting rule S1 a(1X) →1 S2 a(X), the rule can
be unified in different ways to each terms including S1 a(11) →1 S2 a(1) and
S1 a(112) →1 S2 a(12). Since the application model here is exactly-once, the
rule would be non-deterministically applied to exact one term – a(12), a(13) or
a(13), we could finally get a computation result of a(1), a(13), a(13) or a(12),
a(12), a(13). If a similar rule is running in the max-parallel model, which is
S1 a(1X) →+ S2 a(X), the system would apply the rule to a(12), a(13) and a(13)
in a maximum parallel manner, the computation result will be a(1), a(12), a(12).

cP rules can represent mathematic operations and comparisons. For example,
x := y + z ≡ y(Y) z(Z) →1 x(Y Z), x := y − z ≡ →1 x(X) | y(X Z) z(Z) and
x ≤ y ≡ x(X) y(XY). The explanations of these rules are straight forward. The
rule y(Y) z(Z) →1 x(Y Z) means “the value of y is Y , the value of z is Z, the
system consumes one copy of term y and one copy of term z to produce one
copy of term x, which value is Y + Z, written as x(Y Z)”, which is a destructive
version of x = y + z. The term x(X) y(XY) can be explained as “term x contains
X, y contains X and some Y , where in cP systems Y is non-negative, so we have
x ≤ y”. The subtraction rule has a promoter, which is | y(X Z) z(Z). To apply
a rule with a promoter, the promoter must exist in the system, but will not
be consumed during the computation. Following the subtraction rule, nothing
would be consumed in the system, since the lhs of the rule is empty; term x(X)
will be produced when term y(X Z) and z(Z) exist in the system. This subtraction
rule is non-destructive, after producing a copy of term x(X), terms y(X Z) and
z(Z) would not be consumed.

3.2 cP system solution to the subset sum problem

By using the multiset rewriting rules, we build our cP system solution to the
subset sum problem. The subset sum problem is defined as follow.
INST ANCE: a set S = {i1, i2, ..., in} of positive integers and a target integer T .
QUEST ION: is there a subset A ⊆ S such that

∑
x∈A x = T ?

We solve the subset problem using five rules (Fig. 2), the algorithm is a
layer-by-layer search over all subsets of S, finding out if there exists a subset A
satisfies

∑
x∈A x = T . In the cP rules, m(M) denotes the original set S, t(T) denotes

the target integer T , o(O) is the final output of the system and p(P) refers to a
path of the layer-by-layer search, which stores the used/visited elements u(U),
unused/unvisited elements n(N) and the sum of used elements s(S). The terms
| m(M), | p(u(X) s(T)) t(T), | p(u(X)n(m(Y)Z)s(S)) and | p(n(λ)) are promoters.

There are four possible cP states in the system, which is different from states
in the state-space of model checkers. The initial cP state of the system is S0,
by applying rule (1) once, it creates a path term from the original set S, which
contains u(λ), n(M) and s(λ) – all elements in S are marked as unused, the sum
of the path/subset is 0. After rule (1) being used, the cP state of the system will
be changed to S1, then the rest of rules will be available.

Rule (2), (3), (4) and (5) start in S1, the cP system would choose them
following a weak priority order. Since rule (2) is written before rule (3), (4) and
(5), in state S1, the cP system would always consider rule (2) as the first option.

237

Formal Approach to cP System Verification 7

S0 →1 S1 p(u(λ) n(M) s(λ)) | m(M) (1)
S1 →1 S2 o(X) | p(u(X) s(T)) t(T) (2)
S1 →1 S3 | p(n(λ)) (3)
S1 →+ S1 p(u(Xm(Y)) n(Z) s(SY)) | p(u(X) n(m(Y)Z) s(S)) (4)
S1 p() →+ S1 (5)

Fig. 2: cP ruleset to solve the subset sum problem

Once rule (2) was tried and the system state is still in S1, the system would move
to rule (3), and so on. In the ruleset, rule (1), (2) and (3) run in exactly-once
mode and rule (4) and (5) run in max-parallel mode.

Rule (2) describes a termination of the cP system – if the system could find a
path/subset which sum of elements equals to T , the cP system would change its
state to S2 and output the subset elements. In S2, none of these rules is applicable,
so the cP system halts. After checked all subsets of S, if the cP system could not
find any subset A satisfies

∑
x∈A x = T , it would reach another terminating state

S3 after applying rule (3) exactly-once.

In the definition of cP systems, both rule (4) and (5) commit to change
the cP state to S1, thus they can be used in one cP step following the weak
priority order. By using rule (4), the system creates new paths by move one
element from unused set u(U) to used set n(N) and recompute the sum s(S). The
products created by cP rules are not available in the same step – we can consider
the products are sent to a “product membrane” temporarily, which will only be
activated in the next step.

After rule (4) being used, in the same cP step, rule (5) will clean all path
terms except new generated ones. Rule (5) can save a huge amount of memory
in the real-life implementation of cP systems, although theoretically cP systems
have unlimited workspace and can trade memory to time.

The cP solution solves the subset sum problem in at most n+ 2 steps – when
∑

x∈S x = T or �A, A ⊆ S,
∑

x∈A x = T . By removing rule (5) from the ruleset,
we can get a theoretically shorter cP solution with only four rules, but it has a
severe memory issue in real-life simulations, which may cause the model checkers
cannot finish checking the cP system in a reasonable time. Without rule (5), the
system would not delete old path terms after produced new path terms by using
rule (4). Since the old path terms are still in the system, they can apply rule (4)
again and again and keep generating same path terms until the system halts.

To further improve the state-space for model checking, it is necessary to re-
move duplicate path terms. In the cP solution, multiple copies of same paths
could be generated. For example, when S = {1, 2, 3, 4}, T = 10, three copies of
p(u(m(1)m(2)m(3)) n(m(4)) s(6)) can be generated from three different path terms
p(u(m(1)m(2)) n(m(3)m(4)) s(3)), p(u(m(1)m(3)) n(m(2)m(4)) s(4)) and p(u(m(2)m(3))
n(m(1)m(4)) s(5)) by applying rule (4).

238

8 Y. Liu et al.

Rule (b) in Fig. 3 needs logarithmic time to remove duplicate term copies,
which can be used in our solution to help the model checkers getting rid of
memory explosion.

S4 p(X) p(X) →+ S4 p(X) (b)

Fig. 3: cP ruleset to remove duplicate paths O(log(N))

A modified cP solution is shown in Fig. 4. By adding rules (a) (b) and (c)
to the solution, we introduce a new cP state S4, which is used to remove the
duplicate term copies. If multiple copies of p(X) exist in the system, the system
state would be changed from S1 to S4 (rule (a)); then the cP system will keep
removing these copies (rule (b)), until there is no duplicate p(X) anymore; then
the system state will change back to S1 (rule (c)) and the rest of rules can be
applied.

S0 →1 S1 p(u(λ) n(M) s(λ)) | m(M) (1)
S1 →1 S4 | p(X) p(X) (a)
S4 p(X) p(X) →+ S4 p(X) (b)
S4 →1 S1 (c)
S1 →1 S2 o(X) | p(u(X) s(T)) t(T) (2)
S1 →1 S3 | p(n(λ)) (3)
S1 →+ S1 p(u(Xm(Y)) n(Z) s(SY)) | p(u(X) n(m(Y)Z) s(S)) (4)
S1 p() →+ S1 (5)

Fig. 4: cP solution with duplicate paths removing rules

4 Transformation of cP descriptions into CSP# and B

To verify our cP solution to the subset sum problem and to check if the cP system
meets its requirements, we need to model the cP system in formal languages.
Instead of manually translate the cP system to the target formal model indi-
vidually, we propose a set of mapping guidelines from cP rules to CSP# and
B, which can be used as a set of translation rules for future formal verification
studies in cP systems. Ideally, a translation tool could be developed to automate
the transformation process.

239

Formal Approach to cP System Verification 9

4.1 Translating cP systems to CSP#

In CSP#, most of cP system terms need to be modeled into processes. Multisets
and sets in cP systems could be modelled as array structures in CSP#. The
rewriting can be modelled as expression in events and processes. cP states can
be modelled as global variables. cP terms can be modelled as global variables
including constants, containers and integers. Promoters could be modelled as
conditions. The set of mapping guidelines is shown in Table 2.

cP component cP notation CSP# Expression Example

grounded term t(10) marco #define t 10;

variable term a(X) variable var a;

multiset, set a(1, 1, 2, 3) array var a = [1,1,2,3];

cP state S1 global variable var state = 1;

promoter | x(X) y(X) condition if(x == y)...

rewriting
→1

x(Y Z) | y(Y) z(Z)
statement x = y + z;

Table 2: Mapping guidelines for transforming cP systems into CSP#

Following the guidelines, we can translate cP rules in Fig. 2 to CSP# (Fig. 5).
In the translation, we use fixed-size array to model cP multisets, an alternative
is to use C# lists in the CSP#, which have variable-length and are more flexible
than fixed-size arrays. Rule (5) does not need to be translated, because CSP#
uses events to simulate cP systems, after an event was performed, its process
would automatically move to execute the next event, the previous path terms
would not exist in the system anymore. If we need to simulate the cP system
without the consuming rule, we can achieve it by generating path term processes
in each computation round. The system output is the solution subset of the
problem or [-1,-1,-1,-1].

On transforming cP systems to CSP#, integer arrays are used to repre-
sent multisets m(M), u(U) and n(N), integer variables are used to model single-
ton sets s(S) and the cP state. Both state change and rewriting are translated
to statements inside of events. One challenge here is to model the nested cP
multisets p(P), there is no suitable data structure in CSP# can achieve it. In
this case, we implicitly model it by using a group of arrays and variables to-
gether. Compare to rule (4), the translations of rule (1), (2) and (3) are quite
straight forward. In the second line of the rule (4) translation, the system cre-
ates processes by using CSP# notation []i : 0..(N − 1)@rule4..., which is a syntax
sugar of P(1)[]P(2)...[]P(N − 1), where [] is the choice operator. The translation
means either P(1) or P(2)... or P(N − 1) may execute, which simulates the non-
deterministical generation of path terms in the cP system.

240

10 Y. Liu et al.

Fig. 5 mapping cP subset sum solution to CSP#

4.2 Translating cP systems to B

Compare to CSP#, B language has a rich set of built-in set and sequence op-
erators, which could be used to model cP sub-cells. Our mapping guidelines for
translating cP systems to B is shown in Table 3.

cP component cP notation B expression Example

grounded term t(10) constant CONSTANT t

variable term a(X) variable VARIABLES a

multiset a(1, 1, 2, 3) sequence a := [1,1,2,3];

set a(1, 2, 3, 4) sequence a := {1,2,3,4};
cP state S1 global variable state := 1;

promoter | x(X) y(X) predicate PRE x = y THEN

rewriting
→1

x(Y Z) | y(Y) z(Z)
statement x := y + z;

Table 3: Mapping guidelines for transforming cP systems into B

When modelling cP sets in B, we use set operators. For example, we have two
sets a(X) and b(Y) and we want to add them together to get a new set c(XY), we
should use the set union operator c := a\/b instead of the summation operator
c := a + b. Similarly, to compute the difference of cP sets a(XY) and b(Y), we
could translate the cP rule to c := a − b, where − is the set difference operator.
Since sets in B cannot contain duplicate elements, cP terms including a(1, 12, 12)
and a(b(1)b(1)c(12)d(13)) need to be translated to sequences in B.

Following the guidelines, we can translate cP rules in Fig. 2 to B (Fig. 6).
Similar to CSP#, the consuming rule can be handled by ProB automatically. In

241

Formal Approach to cP System Verification 11

the translation example, if no solution could be found, the system simply output
an [−1] to the environment.

Fig. 6 Mapping cP subset sum solution to B

In the translation, B uses sets and sequences to simulate cP multisets and
use constants and integer variables to model cP singleton sets. cP outputs are
modelled by operation outputs, promoters and inhibitors are translated to predi-
cates. The rewriting and state change are transformed into operation statements.
Rule (4), the path generation rule, is different from other rules – to model the
non-deterministic generation of path terms, a parameter x is used. ProB will
check all possible x values satisfying x ∈ n(N), which simulates the max-parallel
mode of cP systems.

4.3 Limitations of simulating cP systems using CSP# and B

To completely simulate cP systems in model checkers is difficult. As a membrane
computing model, all available cP rules can be appiled at same time (in the
same cP step), which can create an exponential state-space in a small number of
steps. Model checkers work in a different way, they explore the state-space state
by state to check system properties. To deal with the memory explosion issue,
some model checkers including PAT3 can generate their workspace on the fly,
dynamically check the system properties.

Some operations in cP systems are hard to be simulated in CSP# and B.
For example, in the destructive summation rule: S1 x(X)y(Y) →1 S2 z(Z), except
translating the main rewriting logic x + y = z to CSP#, we also need to simulate
the consumption of x and y. After this rule being applied, x and y will not exist
in the system anymore. To release the memory of x and y is an option, which
currently cannot be achieved in CSP# and B.

Another challenging of translating cP systems into programming languages
is: multiple copies of term a(X) can exist in a cP system, while in programming
languages including CSP# and B, the identifier “a”, which is used to represent

242

12 Y. Liu et al.

this term, only can have one value at a time. To declare multiple variables with
the same identifier is also not supported.

There is no built-in variable-length array in CSP#, when modelling a cP sys-
tem, we need to allocate a size for each multiset manually or use external C#
lists, which will make the automatic translation from cP systems to PAT3 lan-
guages more complex. As mentioned, CSP# does not support generic containers,
only integer arrays or integers can be used in modelling cP terms – when mod-
elling nested multisets, we need to create multiple integer arrays and variables
to store information and put them together to represent the nested multiset,
to track the relationship among these variables could be challenging, which will
also make the translation hard to read and easy to make mistakes.

When using B sequences to model cP multiset terms, adding two multisets
together can be achieved by iteratively using the sequence functions “front(s)”
and “tail(s)”, but to compute the difference of two sequences (cP multisets) is
complex and inefficient in B. To improve the efficiency on modelling cP multisets
in B, a support library with a number of functions need to be implemented.

Although there are some challenges on simulating cP systems in formal lan-
guages, most of system properties can be verified by model checkers. Without
generating the full state-space at once, model checkers still can check all system
states and try to find counterexamples for given specifications.

5 Evaluation

In this section, we explain our cP system solution in detail by using an example
and introduce our formal verification results.

5.1 Simulation and translation of the cP solution

Suppose we need to solve a subset sum problem where S = {1, 2, 3, 4} and T = 10,
recall the ruleset in Fig. 2, the cP systems starts in S0, with a target number
t(10) and elements in set S – m(m(1)m(2)m(3)m(4)). By applying rule (1) once,
we could get a path term p(u(λ) n(m(1)m(2)m(3)m(4)) s(λ)) and the system state
would be changed to S1.

In the next step, the path term p(u(λ) n(m(1)m(2)m(3)m(4)) s(λ)) is avail-
able, and the system state is S1. Rule(2) and (3) cannot be used, because their
promoters do not exist in the system. The system will run rule (4) – using
p(u(λ) n(m(1)m(2)m(3)m(4)) s(λ)) to create new path terms in a maximum par-
allel manner without changing the system state. After applying rule (4), in the
same step, rule (5) will clean all path terms in the system except new generated
ones.

The cP system will keep checking and computing the rules step by step, until
a final state – S2 or S3 is reached. A manual simulation can be seen in Fig. 7. We
mark unavailable terms using grey colour in the table. As mentioned in Section
3, some path variables may have multiple copies.

243

Formal Approach to cP System Verification 13

Fig. 7 A step by step manual simulation of the subset sum cP solution

One solution subset was found in step 6, which is {1, 2, 3, 4}. If multiple solu-
tions exist, the system state will be changed to S2 right after the first solution
is found, then the cP system will stop, since none of the rules has a lhs with
state S2. If there is no solution satisfy the problem, for instance T = 11 and
S = {1, 2, 3, 4}, the system will terminate in state S3 with empty output (Fig. 8).

Fig. 8 A snapshot of the final state – solution not found

By performing the table simulation, we can observe that in our solution, the
worst-case running steps is n + 2, when

∑
x∈S x = T or �A, A ⊆ S,

∑
x∈A x = T . To

verify this, we modelled the cP system in CSP# and B following the mapping
rules defined in Section 4 and checked its features by using PAT3 and ProB.

244

14 Y. Liu et al.

5.2 Model checking result from PAT3 and B

To check the effectiveness of the cP solution, we chose a medium size problem,
where S = {1, 2, 4, 55, 56, 57, 119}, and checked the cP rules with different T values
(Fig. 9). Both model checkers verified that our cP system can find solutions to the
subset sum problem. On choosing different heuristics to traverse the state-space,
sometimes different solution subsets could be found by the model checkers.

Fig. 9 Verification of the cP solution when n = 7

The feature checking of the cP system is shown in Fig. 10. Features in-
cluding deadlockfree (safety, weak-liveness), terminating (safety), divergencefree
(safety), invariant violation (safety), reachability (liveness) and LTL properties
(liveness) are verified. Some of the property checking results depend on S and T .
For instance, state S2 only can be reached when the answer to the subset sum
problem is “yes”, meanwhile, S3 could not be reached. From the results we can
find that the general running time of PAT3 is less than ProB, especially when the
problem size is large. Deadlock-freeness and divergence-freeness checking are of-
ten slower than checking other properties, since more states and transitions need
to be checked. The subset sum problem is NP-complete, the state-space grows
significantly with the increase of the problem size. ProB’s state-space contains
18743 states when n = 7 and 13492904 states when n = 10.

When checking deadlocks in ProB, “pseudo deadlocks” need to be distin-
guished from deadlocks. Any state which has no outgoing edge is a sink, ProB
would treat a sink as a deadlock. In the cP solution, after applied rule (2) or
rule (3), the system’s cP state would be changed to S2 or S3, which may cause
sinks. Since no rule can be used in S2 or S3, ProB would treat them as deadlock
states. In our experiments, sinks in cP systems are not counted as deadlocks.

Checking the cP solution with a large-size problem is time consuming. To
check all features, when n = 10, the running time of PAT3 is around 2300s and
ProB is more that 3000s. It is still acceptable, but it is better to make some
changes in the cP rules to speed up the model checking. In this example, we
could add duplicate path terms removing rules to the solution following Fig. 4 –
although it is probably unnecessary in a theoretical cP system, it could be very
helpful in practice. We re-modelled the system using C# set in PAT3 and set

245

Formal Approach to cP System Verification 15

Fig. 10 Model checking results – cP solution without removing duplicate terms

in ProB to remove duplicate path terms. By doing so, the state-space of n = 7
decreased to 132 and n = 10 decreased to 1028 in ProB. The checking results
are shown in Fig. 11, which we obtained same property checking results of the
system with less running time.

246

16 Y. Liu et al.

Fig. 11 Model checking results – cP solution with rules to remove duplicate terms

5.3 Discussion

We showed that it is possible to verify a cP system’s features effectively by using
model checking. In addition to feature checking, model checking also can help
finding design errors in cP rules. Considering the rules in Fig. 12 which has a
critical error, after adding an element m(Y) from the unused term n(m(Y)Z) to
the used term u(Xm(Y)), the system does not remove m(Y) from unused term
n(m(Y)Z), which means one element in S can be used multiple times when con-
structing a subset. By model this ruleset in the model checkers with the problem
that S = {1, 2, 3, 4} and T = 16, both PAT3 and ProB can easily find a solution
subset {4, 4, 4, 4}, which violates the definition of the subset sum problem.

S0 →1 S1 p(u(λ) n(M) s(λ)) | m(M) (1)
S1 →1 S2 o(X) | p(u(X) s(T)) t(T) (2)
S1 →1 S3 | p(n(λ)) (3)
S1 →+ S1 p(u(Xm(Y)) n(m(Y)Z) s(SY)) | p(u(X) n(m(Y)Z) s(S)) (4)
S1 p() →+ S1 (5)

Fig. 12: cP ruleset with a design error

247

Formal Approach to cP System Verification 17

PAT3 with CSP# does not have an actual state-space, since it is event-based.
To visualize the simulation, PAT3 can display an event transition diagram. Com-
pare to PAT3, ProB can show its state-space after checking a system model. In
a cP system, if its state-space can be controlled well by designing cP rules or
choosing a suitable problem size, ProB is a great option to perform model check-
ing, since its visualization tool is especially useful in finding algorithm errors of
the cP rules. If the problem size is large or the communication of cP top-cells
is involved, PAT3 could be a better choice, since its performance is better and
CSP# is designed for modelling distributed, concurrent systems. For verifying
async cP systems, we would also recommend PAT3, which supports real-time
system modelling. Finally, to design and develop a cP system verifier, PAT3 and
ProB can be combined in a back-end, a user interface can be implemented on top
of it, which accepts cP system models as inputs. Some example cP verification
results of PAT3 and ProB can be found in the appendix.

6 Conclusion

Since cP systems become increasingly important on solving computational hard
problems and distribute problems, it is meaningful to formally verify cP systems.
In this study, we solved the subset sum problem in cP systems and verified the
solution by using model checking tools PAT3 and ProB. Our cP solution only
contains one top-cell with five rules, which can solve the problem in at most
n + 2 steps. We checked safety and liveness properties of the system, illustrated
how to find out design errors in cP systems by using model checking. By verified
different cP rulesets to the same problem, we demonstrated it is possible to
improve model checking efficiency with additional cP rules. This work will have
a significant impact on formal verification of cP systems and can assist the
practice use of cP solutions.

As the first formal verification work in cP systems, we proposed two mapping
guidelines to transform cP systems to verification problems in CSP# and B. Our
future cP system formal verification work includes three main directions: 1) to
formally verify multi-cell cP systems which solve sync/async distributed com-
putational hard problems; 2) to implement cP systems in theorem provers and
to prove cP theorem and lemmas; 3) to design a formal programming language
for cP systems, which supports automatically translation from cP language to
different verification languages, thus all the cP models can be checked automat-
ically.

References

1. G. Păun, “Computing with membranes,” Journal of Computer and System Sci-
ences, vol. 61, no. 1, pp. 108 – 143, 2000.

2. A. Păun, “On P systems with active membranes,” in Unconventional Models of
Computation, UMC2K, pp. 187–201, Springer, 2001.

248

18 Y. Liu et al.

3. C. Mart́ın-Vide, G. Păun, J. Pazos, and A. Rodŕıguez-Patón, “Tissue P systems,”
Theoretical Computer Science, vol. 296, no. 2, pp. 295–326, 2003.

4. M. Ionescu, G. Păun, and T. Yokomori, “Spiking neural P systems,” Fundamenta
informaticae, vol. 71, no. 2, 3, pp. 279–308, 2006.

5. M. Gheorgue, F. Ipate, C. Dragomir, L. Mierla, L. Valencia Cabrera,
M. Garćıa Quismondo, and M. d. J. Pérez Jiménez, “Kernel P systems-version
1,” Proceedings of the Eleventh Brainstorming Week on Membrane Computing,
97-124. Sevilla, ETS de Ingenieŕıa Informática, 4-8 de Febrero, 2013,, 2013.

6. R. Nicolescu, F. Ipate, and H. Wu, “Programming P systems with complex
objects,” in International Conference on Membrane Computing, pp. 280–300,
Springer, 2013.

7. G. Păun, “Introduction to membrane computing,” in Applications of Membrane
Computing, pp. 1–42, Springer, 2006.

8. J. Aguado, T. Balanescu, T. Cowling, M. Gheorghe, M. Holcombe, and F. Ipate, “P
systems with replicated rewriting and stream X-machines (Eilenberg machines),”
Fundamenta Informaticae, vol. 49, no. 1-3, pp. 17–33, 2002.

9. Z. Dang, O. H. Ibarra, C. Li, and G. Xie, “On the decidability of model-checking
for P systems,” Journal of Automata, Languages and Combinatorics, vol. 11, no. 3,
pp. 279–298, 2006.

10. F. Ipate, R. Lefticaru, and C. Tudose, “Formal verification of P systems using
Spin,” International Journal of Foundations of Computer Science, vol. 22, no. 01,
pp. 133–142, 2011.

11. R. Lefticaru, C. Tudose, and F. Ipate, “Towards automated verification of P sys-
tems using Spin,” International Journal of Natural Computing Research (IJNCR),
vol. 2, no. 3, pp. 1–12, 2011.

12. M. Gheorghe, F. Ipate, R. Lefticaru, M. J. Pérez-Jiménez, A. Ţurcanu, L. Valen-
cia Cabrera, M. Garćıa-Quismondo, and L. Mierlă, “3-col problem modelling using
simple kernel P systems,” International Journal of Computer Mathematics, vol. 90,
no. 4, pp. 816–830, 2013.

13. M. Gheorghe, R. Ceterchi, F. Ipate, S. Konur, and R. Lefticaru, “Kernel P systems:
from modelling to verification and testing,” Theoretical Computer Science, vol. 724,
pp. 45–60, 2018.

14. F. Ipate, M. Gheorghe, and R. Lefticaru, “Test generation from P systems using
model checking,” The Journal of Logic and Algebraic Programming, vol. 79, no. 6,
pp. 350–362, 2010.

15. M. Gheorghe, S. Konur, and F. Ipate, “Kernel P systems and stochastic P sys-
tems for modelling and formal verification of genetic logic gates,” in Advances in
Unconventional Computing, pp. 661–675, Springer, 2017.

16. F. Ipate and A. Turcanu, “Modeling, verification and testing of P systems using
Rodin and ProB,” Proceedings of the Ninth Brainstorming Week on Membrane
Computing, 209-219. Sevilla, ETS de Ingenieŕıa Informática, 31 de enero-4 de
febrero, 2011, 2011.

17. B. Aman and G. Ciobanu, “Modelling and verification of weighted spiking neural
systems,” Theoretical Computer Science, vol. 623, pp. 92–102, 2016.

18. M. A. Mart́ınez-del Amor, I. Pérez-Hurtado, M. J. Pérez-Jiménez, A. Riscos-Núñez,
and F. Sancho-Caparrini, “A simulation algorithm for multienvironment proba-
bilistic P systems: A formal verification,” International Journal of Foundations of
Computer Science, vol. 22, no. 01, pp. 107–118, 2011.

19. B. Aman and G. Ciobanu, “Verification of membrane systems with delays via Petri
nets with delays,” Theoretical Computer Science, vol. 598, pp. 87–101, 2015.

249

Formal Approach to cP System Verification 19

20. W. Yuan, G. Zhang, M. J. Pérez-Jiménez, T. Wang, and Z. Huang, “P systems
based computing polynomials: design and formal verification,” Natural Computing,
vol. 15, no. 4, pp. 591–596, 2016.

21. J. Cooper and R. Nicolescu, “The Hamiltonian cycle and travelling salesman prob-
lems in cP systems,” Fundamenta Informaticae, vol. 164, no. 2-3, pp. 157–180,
2019.

22. Y. Liu, J. Sun, and J. S. Dong, “PAT 3: An extensible architecture for building
multi-domain model checkers,” in 2011 IEEE 22nd International Symposium on
Software Reliability Engineering, pp. 190–199, IEEE, 2011.

23. M. Leuschel and M. Butler, “Prob: A model checker for B,” in International Sym-
posium of Formal Methods Europe, pp. 855–874, Springer, 2003.

24. A. Henderson and R. Nicolescu, “Actor-like cP systems,” in International Confer-
ence on Membrane Computing, pp. 160–187, Springer, 2018.

25. M. J. P. Jiménez and A. R. Núñez, “Solving the subset-sum problem by P systems
with active membranes,” New Generation Computing, vol. 23, no. 4, pp. 339–356,
2005.

26. M. J. Pérez-Jiménez and A. Riscos-Núnez, “A linear-time solution to the knapsack
problem using P systems with active membranes,” in International Workshop on
Membrane Computing, pp. 250–268, Springer, 2003.

27. M. A. Gutiérrez-Naranjo, M. J. Pérez-Jiménez, and F. J. Romero-Campero, “A lin-
ear solution of subset sum problem by using membrane creation,” in International
Work-Conference on the Interplay Between Natural and Artificial Computation,
pp. 258–267, Springer, 2005.

28. C. Graciani-Dı́az and A. Riscos-Núñez, “Looking for simple common schemes to
design recognizer P systems with active membranes that solve numerical decision
problems,” in International Conference on Unconventional Computation, pp. 94–
104, Springer, 2005.

29. M. A. Gutiérrez-Naranjo, M. J. Pérez-Jiménez, A. Riscos-Núñez, and F. J. Romero-
Campero, “On the power of dissolution in P systems with active membranes,” in
International Workshop on Membrane Computing, pp. 224–240, Springer, 2005.

30. D. Dı́az-Pernil, M. A. Gutiérrez-Naranjo, M. J. Pérez-Jiménez, and A. Riscos-
Núñez, “A logarithmic bound for solving subset sum with P systems,” in Interna-
tional Workshop on Membrane Computing, pp. 257–270, Springer, 2007.

31. A. Leporati, C. Zandron, C. Ferretti, and G. Mauri, “On the computational power
of spiking neural P systems,” Proceedings of the Fifth Brainstorming Week on
Membrane Computing, 227-245. Sevilla, ETS de Ingenieŕıa Informática, 29 de
Enero-2 de Febrero, 2007, 2007.

32. A. Leporati, C. Zandron, C. Ferretti, and G. Mauri, “Solving numerical NP-
complete problems with spiking neural P systems,” in International Workshop
on Membrane Computing, pp. 336–352, Springer, 2007.

33. D. Dı́az-Pernil, M. A. Gutiérrez-Naranjo, M. J. Pérez-Jiménez, and A. Riscos-
Núñez, “Solving subset sum in linear time by using tissue P systems with cell
division,” in International Work-Conference on the Interplay Between Natural and
Artificial Computation, pp. 170–179, Springer, 2007.

34. J. Sun, Y. Liu, and J. S. Dong, “Model checking CSP revisited: Introducing a
process analysis toolkit,” in International symposium on leveraging applications of
formal methods, verification and validation, pp. 307–322, Springer, 2008.

35. J. Sun, Y. Liu, A. Roychoudhury, S. Liu, and J. S. Dong, “Fair model checking
with process counter abstraction,” in International Symposium on Formal Methods,
pp. 123–139, Springer, 2009.

250

20 Y. Liu et al.

36. J. Sun, Y. Liu, J. S. Dong, and J. Pang, “PAT: Towards flexible verification under
fairness,” in International Conference on Computer Aided Verification, pp. 709–
714, Springer, 2009.

37. M. Leuschel and M. Butler, “ProB: an automated analysis toolset for the B
method,” International Journal on Software Tools for Technology Transfer, vol. 10,
no. 2, pp. 185–203, 2008.

38. R. Nicolescu and A. Henderson, “An introduction to cP systems,” in Enjoying
Natural Computing, pp. 204–227, Springer, 2018.

39. R. Nicolescu, “Most common words–a cP systems solution,” in International Con-
ference on Membrane Computing, pp. 214–229, Springer, 2017.

251

Formal Approach to cP System Verification 21

A Verification results of the model checking tools

A.1 An example of PAT3 event transition diagram

PAT3 simulator tracks all transitions, all the events including if-else condi-
tion, rule checking and state checking are tracked. PAT3 does not visualize the
search state-space of the cP solution to the subset sum problem.

252

22 Y. Liu et al.

A.2 A state-space comparison between removing and do not
removing duplicate terms

In the cP solution, adding cP rules to remove duplicate path terms can
significantly reduce the model checking state-space. In this example, n = 4, by
removing duplicate path term copies, the number of states in the ProB state-
space decreased from 90 to 20.

253

Formal Approach to cP System Verification 23

A.3 A closer view of ProB state-space

By visualizing the state-space in ProB, all the state variables and operations
can be tracked, which is useful on checking algorithm and design errors in cP
systems.

254

24 Y. Liu et al.

A.4 An example of PAT3 model checking result

Here is an example of the PAT3 verification result, when S = {1, 2, 3, 4},
T = 10. Detailed information including trace, searching heuristics, visited states,
running time and memory used could be displayed.

255

Formal Approach to cP System Verification 25

A.5 An example of ProB model checking result

Here is an example of ProB model checking result, when n = 10 and the
answer to the subset sum problem is “no”. Compare to PAT3, less build-in
features can be checked in ProB, but LTL/CTL features could be used to describe
custom features.

256

Notes on Improved Normal Forms of Spiking
Neural P Systems and Variants

Ivan Cedric H. Macababayao1, Francis George C. Cabarle1,2�, Ren Tristan A.
de la Cruz1, Henry N. Adorna1, Xiangxiang Zeng3

1Algorithms & Complexity
Dept. of Computer Science, University of the Philippines Diliman

Diliman 1101 Quezon City, Philippines.
2Shenzhen Research Institute of Xiamen University

Xiamen University, Shenzhen 518000, Guangdong, China.
3School of Information Science and Engineering
Hunan university 410082, Changsha, China.

Abstract. Spiking Neural P Systems (SNP) are membrane computing
systems that abstracts the function and communications between biolog-
ical neurons. One variant of SNP, called Spiking Neural P Systems with
Structural Plasticity (SNPSP) add the concept of dynamic synapses,
that is, dynamic connections between the neurons. For both SNP and
SNPSP, synapses (or edges) are used for sending and receiving spikes
between neurons, while rules govern the sending of these spikes, and in
the case of SNPSP, the creation and/or deletion of synapses. This paper
investigates on normal forms for SNP and SNPSP, by adding and modi-
fying restrictions set in both systems. In particular, this paper (1) fixes a
programming bug in a previous SNP normal form, (2) reduces the types
of regular expressions in both SNP and SNPSP normal forms, and (3)
reduces the number of rules per neuron in the SNPSP normal form.

Key words: Membrane computing, Spiking neural P systems, Structural plas-
ticity

1 Introduction

Membrane computing is a branch of natural computing that is inspired by the
massive parallelism of living cells [11,1]. The general goal of membrane comput-
ing is to design computing models that abstract concepts from biology – from
cells or groups of cells, to more complex organs like the brain. These computing
models are called P systems, and have three main types, namely: (1) cell-like P
systems, (2) tissue-like P systems, and (3) neural-like P systems. Cell-like P sys-
tems take advantage of the hierarchical structure of biological cells, tissue-like P
systems take advantage of the way cells communicate and connect to each other
(usually represented as nodes in graphs), while neural P systems take advantage

� corresponding author fccabarle@up.edu.ph

257

2 I.C.H. Macababayao et al

of the structure and functions of brain cells. This paper will focus on a specific
kind of neural P system, which is the Spiking Neural P System, and its variant
Spiking Neural P Systems with Structural Plasticity.

Spiking Neural P Systems (SNP for short) were first introduced in [6]. SNP
abstract neurons. Specifically, SNP imitate the communication process between
neurons, in which instructions or information are being derived by sending and
receiving spikes between each other through the use of synapses. This paper
will also work with a variant of SNP, which is the Spiking Neural P System with
Structural Plasticity (SNPSP, for short), first introduced in [4], which introduces
synapse creation and deletion as opposed to static synapses.

SNPSP work in almost the same way as SNP, with one notable difference:
SNPSP allow synaptogenesis and synapse deletion, which means that neurons are
able to create and/or delete synapses by themselves. This added feature opens
up a lot of possibilities – most of which are still unexplored. Other variants of
SNP with (implied) dynamism for synapses or edges between neurons exist, e.g.
the generalised eSNP systems in [2], SNP that can create new neurons in [9], and
more recently adding schedules in synapses in [3]. Works on SNPSP, along with
[3], are focused in computations that explicitly involve dynamism with synapses.

Both SNP and SNPSP systems have been shown to be Turing complete.
In addition, there is an active line of research that involves proving that SNP
are still complete even with additional restrictions that seek to simplify the
system. These are called normal forms. Results with regards to SNP normal
forms include [5], [13], and [8]. Examples of restrictions in SNP are not using
delays and/or forgetting rules, reducing the number of rules per neuron, and
many others. Normal forms are also being investigated with respect to SNPSP,
with largely the same goal. Examples of SNPSP normal forms can be found in
[12], [7].

This work improves on results presented in [8], as well as answer an open
problem formulated there. Specifically, this work investigates on whether the
number of regular expressions in an SNP normal form be reduced from three,
while keeping the other restrictions in the original normal form (e.g. each neuron
can have a maximum of two rules). Note that in [8] the authors state that
they believe it is not the case that there is a universal SNP, without forgetting
rules and delays, that uses less than three regular expressions. This work also
improves on the results in [7] by adding more restrictions and making some of
its restrictions even stricter. In particular, we try to limit the SNPSP to only
one rule per neuron, and also restrict the number of regular expressions that can
be used. This is done without violating the prior restrictions introduced in [7].

The approach to these open problems will be by simulating register machines
using SNP and SNPSP systems that follow the restrictions stated above. In
particular, we provide modules of SNPSP configurations to simulate the ADD,
SUB, and HALT instructions of register machines.

In sections 2 we briefly introduce the concepts of SNP and its variant SNPSP.
In section 3 we show updates and improvements on the normal forms for both

258

Notes on Improved Normal Forms of SN P Systems and Variants 3

SNP and SNPSP. This section shows the main results in this paper. In section
4 we give the final remarks.

2 SNP and SNPSP

2.1 SNP

Spiking neural P systems (SNP) [6] have the following construct:

Π = (O, σ1, ..., σm, syn, in, out)

where:

1. O = {a} is the singleton alphabet, and a is called the spike
2. σ1, ..., σm are neurons of the form σi = (ni, Ri) with 1 ≤ i ≤ m, where

(a) ni indicates the initial number of spikes in σi

(b) Ri is the finite set of rules of σi, having the form: E/ac → a, where E is
a regular expression over O, c ≥ 1

3. syn ⊆ {1, ..,m} × {1, ..,m} with (i, i) �∈ syn for 1 ≤ i ≤ m, is the set of
synapses between neurons

4. in, out ∈ {1, ..,m} indicate the input and output neurons

2.2 SNPSP

An SNPSP is a P system with the following construct [4]:

Π = (O, σ1, ..., σm, syn, in, out)

where:

1. O = {a} is the singleton alphabet, and a is called the spike
2. σ1, ..., σm are neurons of the form σi = (ni, Ri) with 1 ≤ i ≤ m, where

(a) ni indicates the initial number of spikes in σi

(b) Ri is the finite set of rules of σi, and each rule can have either of the
following forms:
i. Spiking Rule: E/ac → a, where E is a regular expression over O,

c ≥ 1
ii. Plasticity Rule: E/ac → α(β,K,Nj), where E is a regular expression

over O, c ≥ 1, α ∈ {+,−,±,∓}, β ∈ {a, λ}, K ≥ 0, Nj ⊆ {1, ...,m}
3. syn ⊆ {1, ..,m} × {1, ..,m} with (i, i) �∈ syn for 1 ≤ i ≤ m, is the set of

synapses between neurons
4. in, out ∈ {1, ..,m} indicate the input and output neurons

For any neuron σi, we denote the set of neurons which has σi as their presy-
naptic neuron as pres(i), so that pres(i) = {σj |(i, j) ∈ syn}. Similarly, we denote
the set of neurons which has σi as their postsynaptic neuron as pos(i), so that
pos(i) = {σj |(j, i) ∈ syn}.

259

4 I.C.H. Macababayao et al

Spiking Rules, having the form E/ac → a, are applied as follows: If the
neuron σi contains k spikes and ak ∈ L(E) and k ≥ c, then the rule E/ac → a
is applied. This means that the neuron σi fires, consuming c spikes from σi such
that only k− c spikes remain, while also emitting (sending) c spikes to all of σi’s
presynaptic neurons. For cases where the rule is E/ac → a and E = ac, then
the rules is usually simplified to the form ac → a (For example, a2/a2 → a is
simplified to a2 → a).

On the other hand, Plasticity Rules, of the form E/ac → α(β,K,Nj) are
applied as follows: If the neuron σi contains k spikes and ak ∈ L(E) and k ≥ c,
then the rule E/ac → α(β,K,Nj) is applied. The set Nj is a collection of neurons
that σi can either connect to or disconnect from, depending on the configuration
of the rule. Like spiking rules, plasticity rules will also consume c spikes such
that only k − c spikes remain. At the same time, one of the following cases will
apply, depending on the values of α:

1. α = +: neuron σi creates synapses to at most K neurons from Nj . If |Nj −
pres(i)| ≤ K, deterministically create a synapse to all available neurons
in Nj − pres(i). If |Nj − pres(i)| > K, then nondeterministically select K
neurons from Nj − pres(i) and create synapses to these selected neurons.

2. α = −: neuron σi deletes synapses from at most K neurons from Nj . If
|pres(i)| ≤ K, deterministically delete synapses from all available neurons
in pres(i). If |pres(i)| > K, then nondeterministically select K neurons from
pres(i) and delete the synapses from these selected neurons.

3. α = ±: at time t, neuron σi first attempts to create synapses to at most K
neurons from Nj , following the procedure for when α = +. Then, at time
t+ 1, neuron σi deletes K synapses.

4. α = ∓: at time t, neuron σi first attempts to delete synapses from at most
K neurons from Nj , following the procedure for when α = −. Then, at time
t+ 1, neuron σi creates K synapses.

Note that for α ∈ {±,∓}, only the priority between creation or deletion is
changed, but the application is similar to α ∈ {+,−}. Hence, synapses that were
created (or deleted) at time t will not necessarily be deleted (or created) at time
t+ 1.

The result of a computation is denoted to be the difference between the first
two firings of the neuron σout. This difference, t2 − t1, is said to be the number
that is computed byΠ. The set of all numbers computed byΠ using this method
is denoted as N2(Π).

Whenever a neuron creates a synapse (when α ∈ {+,±,∓}), an embedded
spike is always sent to the receiver of the synapse. This embedded spike is sent at
the time the synapse is created. Thus, when a plasticity rule with α ∈ {+,±,∓}
is applied, a destination neuron receives one spike at the step when a synapse is
created.

Both SNP and SNPSP are largely similar in syntax and function. Notable
differences are: (1) SNPSP has the capability to create and delete synapses, and
(2) SNPSP does not allow the use of delays and forgetting rules.

260

Notes on Improved Normal Forms of SN P Systems and Variants 5

3 Updates on Normal Forms of SNP and SNPSP

An improved normal form for SNP was given in [8], which restricted the SNP to
a maximum of two rules per neuron and used at most three regular expressions
a(aa)∗, a(aaa)∗, and a2 ∪ a.

An improved normal form for SNPSP was given in [7]. This normal form
contained the following restrictions: (1) only a ∈ {±} is used for all plasticity
rules, (2) only plasticity rules are used, (3) there are no synapses both in the
initial and final configuration of the SNPSP. This normal form used a maximum
of three rules per neuron.

In this section we do two things. First we update the improved SNP normal
form from [8] to fix an interference issue in its SUB module. Next we further
improve the SNPSP normal form from [7], by adding the following additional
restrictions: (1) all neurons will only have one rule each, and (2) it only uses
three types of regular expressions.

We construct SNP and SNPSP systems that simulate a register machine. A
register machine is a construct M = (m, I, l0, lh, R), where m is the number of
registers, I is the set of instruction labels, l0 is the start label, lh is the halt
label, and R is the set of instructions, where every label in I only labels one
instruction in R. The instructions are ADD, SUB, and HALT , where:

1. li : (ADD(r), lj , lk): the value in register r is increased by 1, then nondeter-
ministically go to either instruction lj or lk

2. li : (SUB(r), lj , lk): if the value in register r is nonzero, then subtract 1 from
r and go to instruction lj , otherwise do not modify the value in r then go to
instruction lk

3. lh : HALT : the halt instruction

It is possible for ADD and SUB modules to modify the value of the same
register. It is also possible for two or more ADD’s or two or more SUB’s to
modify the value of a single register. However, note that the neuron 1 was never
involved in any SUB module [6]. Hence the register associated with the HALT
module will not contain the rule of neuron r from the SUB module.

3.1 SNP Improved Normal Form from [8]

The results in [8] showed that there exists a normal form for SNP where:

1. there is a maximum of two rules per neuron, and
2. the system only uses at most three kinds of regular expressions in its rules.

We will be using these results later in showing a similar normal form for SNPSP.
There is, however, an interference issue in the SUB module from [8]. In par-

ticular, we look at the case when at least two SUB modules are operating at
some point (not necessarily at the same time) on the same register r. Looking at
Figure 6 (see appendix) will show the following. Suppose that there are at least
two SUB modules that are connected to the neuron r, and that the neuron r

261

6 I.C.H. Macababayao et al

initially contains more than two spikes (and hence, the subtraction will succeed).
Then assume that the neuron li receives a single spike at time t. Notice that at
time t+2, not only will the neuron r send a spike to the neuron li3 belonging to
the current SUB module being simulated, but it will also send spikes to all other
neurons li3 belonging to the other SUB modules that are not being simulated
at the moment. This means that at time t + 5, at least one module will fire
”spontaneously” due to the stray spike.

�� �

�� �

�� �

���� � � ��� �
�

�� � �� �

���� � � ��� �
����� ��� ���

�� �

��

�

����

���

���
������

��� ���

���

���

�� �

�� �

��	

Fig. 1. Theorem 1; SNP: Edited Module SUB simulating li : (SUB(r), lj , lk)

We provide a minor fix to this issue. The new SUB module is seen in Figure 1.
Notice that: (1) no new regular expressions were added, and that (2) all the neu-
rons introduced contains only a single rule. Thus the restrictions of the normal
form from [8] are not violated. Moreover, the regular expression a(aaa)∗ from
the original configuration is no longer used in this system. And, since this regular
expression is also not used in the ADD and FIN (HALT) modules presented in
[8] (see Figures 5 and 7 in the appendix for the ADD and FIN(HALT) from [8]),
the number of regular expressions used is effectively reduced to 2. These regular
expressions are a ∪ a2 and a(aa)∗.

262

Notes on Improved Normal Forms of SN P Systems and Variants 7

Let us denote by N2SNP (ruleek) the families of all sets N2(Π) computed by
SNP systems, where each neuron in the system has at most k rules, and all rules
have at most e distinct regular expressions [8].

Theorem 1. N2SNP (rule22) = NRE.

Proof. The edited SUB module (Figure 1) runs as follows. Assume that the
register r is connected to at least two SUB modules, and that the register r
contains more than two spikes. Further assume that the neuron li receives a
single spike at time t. Then at time t+ 1, the neuron li will send a spike to the
neuron r, as well as to another neuron li1 . Following the trail of spikes up until
li3 will show that the ”correct” li7 will receive three spikes (thereby allowing it to
fire in the next step), while the li7 ’s of other SUB modules will only receive two
spikes (preventing them from firing in the next step). Also notice that number of
spikes in the li7 ’s of other SUB modules are not offset, since it will stay an even
number. In the same way, the neuron li6 will also not fire since it will receive
exactly two spikes (one from i5 and another from li7 , both at the same time).
Thus only lj will fire as the next instruction.

In the event that the SUB fails (i.e. the neuron r does not contain any spikes
to subtract from), then the following will happen: At time t + 1 the neuron li
will send a spike to both neurons r and li1 . At this point, r will only have a
single spike, and thus will not have enough spikes to consume to be able to fire.
The neuron li1 will fire as usual. Following the spike from li1 , notice that it will
”go through” neurons li2 , li5 , and li6 until finally arriving at lk, from which the
next module starts. Notice also that the neuron li6 also sends spikes to li8 and
li9 , which will in turn send one spike each to r. This will cause r to fire and
”flush out” the spikes it received in this SUB module (recall that it originally
had none). The spikes from r fired in this way will eventually be swallowed by
li7 , which will not fire in the next step due to having an even number of spikes.

The modules ADD and HALT which are part of the proof remain unchanged
from [8], and are shown in the Appendix, Figures 5 and 7. #$

3.2 An improvement to the SNPSP normal form

The improved normal form for SNPSP from [7] used the following restrictions:

1. a ∈ {±} for all plasticity rules.
2. The set of synapses is empty in the initial configuration and final configura-

tion of the system
3. Spiking rules will not be used in any of the neurons
4. Each neuron can have at most three rules

The system shown in [7] used five regular expressions, namely: a, a2, a3,
a(a2)+, and a3(a2)+. Thus the SNPSP normal form from [7] showed that:

Theorem 2. N2SNPSP ({±}, rule53, syninit∅, synhalt∅, pplas) = NRE.

We aim to further improve this normal form, borrowing techniques used in
[8]. We add the following restrictions:

263

8 I.C.H. Macababayao et al

1. Each neuron can have only one rule
2. Only two types of regular expressions can be used in the system

Note that the first restriction stated is actually an improvement of an already
existing three-rule restriction.

Theorem 3. N2SNPSP ({±}, rule21, syninit∅, synhalt∅, pplas) = NRE.

Proof. To prove Theorem 3, we only need to prove thatNRE ⊆ N2SNPSP ({±},
rule31, syninit∅, synhalt∅, pplas), since the other direction of the inclusion is al-
ready shown in [10]. Thus, we construct an SNPSP system Π that simulates
a given register machine M and Π satisfies the conditions of the theorem. For
each register r in M , there is an associated neuron in Π, which is denoted by
σr. This neuron σr contains 2n spikes, where n is the value stored in register r.
Simulating an instruction li : (OP (r) : lj , lk) in M means that its equivalent in
Π, σli has one spike and is activated to perform OP ∈ {ADD,SUB} and that
afterwards it sends one spike to either σlj or σlk to begin simulating the next
instruction. When M executes lh, which is the HALT instruction, then Π termi-
nates the computation of M . For Π, this means that σout fires twice, with the
time step difference between the two firings corresponds to the number stored
in register 1 in M .

Module ADD simulating li : (ADD(r), lj , lk) is shown in Figure 2.

� � � ��� �� � � ���
�

��� ���

��

� � � ��� �� ��� ���
�

��� � � � ��� �� ��� ���
�

���

� � � ��� �� � � ���
�

�� ��

��� ���

����

�� ��

Fig. 2. Theorem 3; SNPSP: Module ADD simulating li : (ADD(r), lj , lk)

Module ADD works as follows. Assume that at time t, σli has one spike
and no other neuron in the module has any spike, except for the neuron σr

which represents the register r. Then at time t, neuron li applies its only rule
a∪a2 → (a, 2, {l1i , l2i }), which creates synapses to neurons l1i and l2i (and therefore

264

Notes on Improved Normal Forms of SN P Systems and Variants 9

also sends one embedded spike each). At time t+1, neuron li deletes its synapses
to l1i and l2i . At the same time, neurons l1i and l2i , both having one spike, apply
their rules. These rules will create synapses to neurons r and l3i , thus sending
two embedded spikes to neurons r and l3i . At this point, σr now has 2n + 2
spikes. At time t+ 2, neurons l1i and l2i delete their synapses from r and l3i . At
the same time, the neuron l3i , now having 2 spikes, will apply its rule. This will
cause neuron l3i to create a synapse to either lj or lk, with the choice being done
nondeterministically. This ends the simulation of module ADD, and at time t+3,
either σlj or σlk will begin its instruction.

Module SUB simulating li : (SUB(r), lj , lk) is shown in Figure 3.

�� ��� �� � � ������

�� ��� �� � �����

�� ��� �� � � ����� ���

���� � � ��� �� � � ���� �
�

��� ���

�� ��� �� � ����� �� ��� �� � �����

���� � � ��� �� � � ���� �
�

��� ������ ��� ��� 	� � � � � ���� ��� ��� ��	 ��

�� ��� �� ����

��

�

����

���

���

������

��� ���

���

��	

�� ��� �� ����

�� ��� �� � �����

���

Fig. 3. Theorem 3; SNPSP: Module SUB simulating li : (SUB(r), lj , lk)

First, notice that the structure of Figure 3 is very similar to that of Figure
1. They run in the same fashion. The only big differences are that instead of
the synapses in Figure 1, the SNPSP version uses plasticity rules in their place,
and that the SNPSP version has less neurons to work with. Secondly, note that
following the example from [8] and also for the sake of brevity, the regular ex-
pression a ∪ a2 is abbreviated to just a in this module. Inspecting Figure 3 will
show that all neurons with this type of rule will only ever receive one spike at a
time. This abbreviation also applies in the HALT module.

Module SUB works as follows. This module will start to work when a single
spike is received by the neuron li. If li receives the spike at time t, then at t+ 1

265

10 I.C.H. Macababayao et al

it will create synapses and send a spike to neurons r and li1 . In the event that r
contains 2 spikes or more, then it should now have 2n + 1 spikes. It will follow
that r sends spikes to li3 and li4 , which will in turn send spikes to li7 . Neuron li7
will also receive a third spike from li2 , which will make sure that no interference
occurs. At time t+4, neuron lj will fire. In the event that the neuron r contains
no spikes, then the following will happen. Neuron r will receive a spike but will
not do anything. Meanwhile, li1 will receive a spike and then sends it to li2 . The
spike will continue down from li2 to li5 , and at this point li7 will also receive a
spike but will not do anything. The neuron li6 will send spikes to the following
neurons: li7 to keep its spike count to an even number, li8 and li9 which will
keep the neuron r to its original spike count, and finally to lk to execute the
next instruction. Thus at time t + 5 the next instruction will run. In the same
time step, li8 and li9 sends a spike each to the neuron r. In the next two time
steps, the neuron r will start a trail of spikes up to li7 , from which the spike
count will be even.

Module HALT is shown in Figure 4

�� ��� �� ��� ���������

���� � � ��� 	� � �������� �
�

���

��

�

���� ��� ��� �� ��������

���

�� ��� �� ������

���

Fig. 4. Theorem 3; SNPSP: Module HALT

Module HALT works as follows. It starts when the neuron lh receives a single
spike, say at time t. At time t+1, lh will send create synapses to neurons 1, lh1 ,
and out. At time t+ 2, the first spike to the environment is fired. Also, starting
from time t + 2 up until neuron 1 is left with only one spike, the following will
happen: both 1 and lh1

will create a synapse (and send an embedded spike) to
out, and neuron 1 also creates one to lh1

. The synapses created are then deleted
in the next step. Thus, neuron out receives 2 spikes every two steps, and neuron
1 loses two spikes every two steps as well. Eventually, neuron 1 will be only left
with a single spike. At this step, only neuron lh1

will be able to fire. The neuron
out receives only one spike, thereby leaving it with odd-numbered spikes. In the
next step, neuron out fires into the environment for the second time. The time
difference between the first and second spikes to the environment is 2n.

266

Notes on Improved Normal Forms of SN P Systems and Variants 11

By the constructions of the modules ADD, SUB, and HALT above, it can
be seen that Π correctly simulates the register machine M . Therefore, N(M) ⊆
N(Π). #$

4 Final remarks

In this work we fixed an interference issue in the improved normal form for SNP
presented in [8], by modifying the SUB module from that system. The fix was
done without breaking the restriction set in the normal form. In this fix, the
number of regular expressions used is also reduced to two. Hence, the conjecture
in [8], that there will be no universal SNP without forgetting rules and delays
that also uses less than three regular expressions, is answered in the negative.
This result was then used to further improve the improved normal form for
SNPSP presented in [7]. The main improvement is that (1) we were able to
reduce the maximum number of rules per neuron to one (previously three), and
also we were able to limit the types of regular expressions to only two. These
regular expressions are a ∪ a2 and a(aa)∗.

This gives answer to open problems formulated in [8], and [7].

It remains an open problem whether the number of regular expressions of
the same type of SNP can further be reduced. That is, is it possible to have a
system that only uses one type of regular expression? In the event that it is, can
the one-rule-per-neuron restriction be maintained?

Acknowledgements

I.C.H. Macababayao and R.T.A. de la Cruz are supported by graduate schol-
arships from the DOST-ERDT project. F.G.C. Cabarle thanks DOST-ERDT
project research grant; the Dean Ruben A. Garcia PCA AY2018–2019, an RLC
AY2018–2019 grant, and Project No. 191904 ORG (2019–2020) of the OVCRD in
UP Diliman. H.N. Adorna is supported by the Semirara Mining Corp Professorial
Chair for Computer Science, RLC grant from UPD OVCRD, and DOST-ERDT
research grant. The work was supported by the National Natural Science Foun-
dation of China (Grant Nos. 61472333, 61772441, 61472335, 61672033, 61425002,
61872309, 61771331), Project of marine economic innovation and development
in Xiamen (No. 16PFW034SF02), Natural Science Foundation of the Higher Ed-
ucation Institutions of Fujian Province (No. JZ160400), Natural Science Foun-
dation of Fujian Province(No. 2017J01099), Basic Research Program of Science
and Technology of Shenzhen (JCYJ20180306172637807).

References

1. The P systems web page, http://ppage.psystems.eu/.

267

12 I.C.H. Macababayao et al

2. Alhazov, A., Freund, R., Oswald, M., Slavkovik, M.: Extended spiking neural P
systems. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds.) Mem-
brane Computing LNCS vol 4361, pp. 123–134. Springer Berlin Heidelberg, Berlin,
Heidelberg (2006)

3. Cabarle, F.G.C., Adorna, H.N., Jiang, M., Zeng, X.: Spiking neural P systems with
scheduled synapses. IEEE Transactions on Nanobioscience 16(8), 792–801 (2017)

4. Cabarle, F.G.C., Adorna, H.N., Pérez-Jiménez, M.J., Song, T.: Spiking neural
P systems with structural plasticity. Neural Computing and Applications 26(8),
1905–1917 (2015)

5. Ibarra, O.H., Păun, A., Păun, G., Rodŕıguez-Patón, A., Sośık, P., Woodworth, S.:
Normal forms for spiking neural P systems. Theoretical Computer Science 372(2-
3), 196–217 (2007)

6. Ionescu, M., Păun, Gh., Yokomori, T.: Spiking Neural P Systems. Fundam. Inf.
71(2,3), 279–308 (2006)

7. Macababayao, I.C.H., Cabarle, F.G.C., de la Cruz, R.T.A., Adorna, H.N., Xiangx-
iang, Z.: An improved normal form for spiking neural p systems with structural
plasticity. In: Păun, G. (ed.) Proceedings of the 20th International Conference on
Membrane Computing, CMC20. pp. 429–438. Bibliostar (2019)

8. Pan, L., Păun, G.: Spiking neural P systems: an improved normal form. Theoretical
Computer Science 411(6), 906–918 (2010)

9. Pan, L., Păun, G., Pérez-Jiménez, M.J.: Spiking neural P systems with neuron
division and budding. Science China Information Sciences 54(8), 1596 (2011)

10. Păun, A., Păun, G.: Small universal spiking neural p systems. BioSystems 90(1),
48–60 (2007)

11. Păun, G.: Membrane Computing: An Introduction. Springer Berlin Heidelberg
(2002)

12. Song, T., Pan, L.: A normal form of spiking neural P systems with structural
plasticity. International Journal of Swarm Intelligence 1(4), 344–357 (2015)

13. Song, T., Pan, L., Jiang, K., Song, B., Chen, W.: Normal forms for some classes of
sequential spiking neural P systems. IEEE Transactions on Nanobioscience 12(3),
255–264 (2013)

A Appendix

The following are the ADD module, SUB module, and FIN (HALT) module of
the improved SNP normal form presented in [8].

Module ADD simulating li : (ADD(r), lj , lk) is shown in Figure 5.
Module SUB simulating li : (SUB(r), lj , lk) is shown in Figure 6.
Module HALT is shown in Figure 7

268

Notes on Improved Normal Forms of SN P Systems and Variants 13

�� �

�� �

�� �

�� � � � ��� � ��
�

�
�

� � ����� ��
�

�� �

���� ��� ��� ���� ��� ���

Fig. 5. SNP: Module ADD simulating li : (ADD(r), lj , lk)

269

14 I.C.H. Macababayao et al

�� �

�� �

���� � � ��� �
�

���� ��� ������� ��� ���

�� � �� �

�� �

�� �

�� �

�� �

����� ��� ��� ����� ��� ���

�� �

�� �

��

�

����

���

Fig. 6. SNP: Module SUB simulating li : (SUB(r), lj , lk)

�� �

�� ����� � � ��� �
�

���� � � ��� �
�

Fig. 7. SNPSP: Module HALT

270

A Framework for Evolving Spiking Neural P
Systems

Lovely Joy Casauay1, Ivan Cedric H. Macababayao1, Francis George C.
Cabarle1,2�, Ren Tristan A. de la Cruz1, Henry N. Adorna1, Xiangxiang Zeng3,

Miguel Ángel Mart́ınez-del-Amor4

1Algorithms & Complexity
Dept. of Computer Science, University of the Philippines Diliman

Diliman 1101 Quezon City, Philippines.
2Shenzhen Research Institute of Xiamen University

Xiamen University, Shenzhen 518000, Guangdong, China.
3School of Information Science and Engineering
Hunan university 410082, Changsha, China.

4Research Group on Natural Computing, Dept. Computer Science and AI,
University of Seville, Seville, Spain

Abstract. In current literature, there is a lack of research on the opti-
mization of spiking neural P systems (SN P systems) and, consequently,
also a lack of automation to do this process of optimization. We address
this gap by designing a genetic algorithm (GA) framework that trans-
forms an initial SN P system Πinit, designed to approximate a function
f(w, x, y, . . .) = z, into a smaller or more precise system Πfinal that also
approximates the output z given the same input/s w, x, y,
The design of the GA framework is constrained by evolving Πinit only
through its topology. The rules inside the neurons must stay constant,
while the synapses and neurons may vary.
The results of the experiments conducted show that evolving the topol-
ogy of a designed Πinit using genetic algorithms does not only lessen
its number of neurons and synapses, but also helps it achieve a higher
precision. The GA framework is especially effective on Πinit’s containing
the subgraph of an already better SN P system that computes f.

Keywords: Spiking neural P system · Membrane computing · Neural comput-
ing · Genetic algorithm · Evolutionary computing

1 Introduction

Nature is a great influence on the way we perceive computation, and this per-
ception influences the manner in which we address problems with natural com-
puting.

We begin with the following quote from Gross [1998]:

� corresponding author fccabarle@up.edu.ph

271

2 L. Casauay et al

“Life is computation. Every single living cell reads information from a
memory, rewrites it, receives data input (information about the state of
its environment), processes the data and acts according to the results of
all this computation. Globally, the zillions of cells populating the bio-
sphere certainly perform more computation steps per unit of time than
all man made computers put together.” [11]

In this study, three branches of natural computing are considered.

The first one is neural computing, which is inspired by the way the human
brain computes. Neural computing has shown a lot of advances in recent years,
specifically with the use of artificial neural networks (ANNs) in the field of
artificial intelligence (AI). The application of ANNs has been successful in a
wide array of modern-day applications including, but not limited to, the fields
of medicine, transportation, robotics, and music.

The second relevant branch of natural computing was introduced by Gheo-
rghe Păun in [21], and he called this membrane computing. The new comput-
ing device Păun designed, called P system, is based on the notion of a membrane
structure. Although membrane computing is a relatively new field of study, it
is, nonetheless, very interesting because of its Turing-completeness and inher-
ent parallelism. Within 6 years of its introduction, membrane computing had
known applications in computer security, NP-complete optimization problems
(and other computationally hard problems), computer graphics, biology, and
linguistics as seen in [3].

The last branch we will discuss is evolutionary computing, a research area
inspired by the process of natural evolution based on Darwinian principles. The
general idea behind evolutionary computing is that given an environment filled
with a population of candidate solutions, the quality of these solutions (i.e. how
well they can solve the problem) determines the rate in which they will survive
within the environment and be kept for constructing further candidate solutions
[6].

Combining some of the different branches of natural computing has become
a common approach in literature for solving problems. A particularly interest-
ing and popular research direction is the application of evolutionary computing
algorithms to neural computing and membrane computing, which resulted in
neuroevolution (NE), membrane-inspired evolutionary algorithms (MIEA), and
automated design of membrane computing models (ADMCM) [8] [28].

In this study, we investigate the application of one of the main paradigms of
evolutionary computing called genetic algorithm (GA) on a recently developed
computing model called spiking neural P system, an interplay between the con-
cepts of spiking neural networks and P systems. Ideas from this study were first
given in a presentation during BWMC2018 in https://www.gcn.us.es/files/

bwmc2018-evolsnp-present.pdf.

272

A Framework for Evolving SN P Systems 3

2 Preliminaries

2.1 Spiking Neural P Systems

In this section, we discuss a relatively new kind of P system called Spiking Neural
P systems, a.k.a. SN P systems, introduced in [15].

Before the introduction of SN P systems, neural-like P systems were intro-
duced in [18]. This kind of P system was inspired by neurobiology and incorpo-
rated ideas such as: the replication of impulses in the case of multiple synapses,
linking neurons to several neighboring neurons, the state of a neuron, among
others. The fact that most neural impulses are almost identical, however, was
not incorporated. This is the part where Ionescu et al. [15] took inspiration from
spiking neural networks (SNNs), a.k.a. the third generation of neural networks.

a → a

σ2

a → a

σ1

a → a
a2 → λ
a3 → a

σ5

a → λ
a2 → a
a3 → a

σ3

a → λ
a2 → a
a3 → a

σ4

Fig. 1: An example of an SN P system. It sim-
ulates the binary addition function. σ1 and σ2

are the input neurons, while σ5 is the output
neuron. See table 1 for a sample run.

Ionescu et al. [15] took the fun-
damental characteristic of SNNs,
which is the use of pulse encod-
ing, and described their frame-
work as such: “...in this frame-
work, time is (also) a data sup-
port; it is not (only) a computing
resource as in usual complexity
theory, but a way to encode infor-
mation”. This means that instead
of having the information encoded
in a sequence of different symbols,
it is encoded in the sequence of
moments in which a spike occurs,
represented by a unique symbol.

Table 1: A sample run of the SN P sys-
tem presented in figure 1. This system
simulates the binary addition function:
a represents 1 and λ represents 0. The
input spike trains in1 and in2 corre-
spond to what is received by the input
neurons σ1 and σ2, respectively. In this
example, in1 = 111 and in2 = 101,
thus the output spike train must be
out = 1100.

time in1 in2 σ1 σ2 σ3 σ4 σ5 out

0 aaa aλa - - - - - λ

1 aa aλ a a - - - λλ

2 a a a λ a2 a2 a2 λλλ

3 - - a a a2 a2 a2 λ λλλ

4 - - - - a3 a3 a3 λλ λλλ

5 - - - - a a a aλλ λλλ

6 - - - - - - - aaλλ λλλ

In the same paper, Ionescu et al.
showed that SN P systems are Turing-
complete both in accepting and genera-
tive mode. In accepting mode (spikes can
be received from the environment), deter-
ministic SN P systems are sufficient, while
in generative mode (spikes cannot be re-
ceived from the environment), SN P sys-
tems of only one neuron behaving non-
deterministically are sufficient. Addition-
ally, non-deterministic systems have been
demonstrated to solve NP-complete prob-
lems, such as SUBSET SUM and 3SAT, in
constant time [17]. This display of compu-
tational power makes SN P systems one of
the most intriguing and promising types
of membrane systems.

273

4 L. Casauay et al

Refer to [22] for the formal definition of SN P systems in a general form and in
the extended (i.e. the rules are able to produce more than one spike) computing
(i.e. the system is able to take an input and provide an output) version.

2.2 Genetic Algorithms

Genetic algorithm (GA) was introduced by John Holland in his book called
Adaptation and Natural Systems [14]. His work became one of the major foun-
dations of later studies and applications of what we now know as evolutionary
computing. Although optimization was not the main focus of Holland’s work
on adaptive systems, the work of his graduate students in [5] and [9] explored
the application of GA in this area of study, and later served as a strong basis
and motivation for future work. To present day, the use of GAs for optimization
continues to be popular and is frequently successful in real applications [23].

Define the fitness function;
Select GA parameters

Generate initial population

Decode chromosomes

Calculate the fitness of
each chromosome

Selection Crossover Mutation

Check convergence Done

Fig. 2: Canonical genetic algorithm flowchart. This is
a slightly modified version of the binary genetic algo-
rithm flowchart in [13], wherein we replaced “cost”,
“select mates”, and “mating” with “fitness”, “selec-
tion, and “crossover”, respectively.

In figure 2, we see the
process of how a canoni-
cal (i.e. binary) genetic algo-
rithm works. We start with
designing the GA by defin-
ing the fitness function that
will guide the selection oper-
ator later, as well as select-
ing the GA parameters. The
evolution starts by generating
the initial population of bi-
nary strings [27], also known
as genotypes [14] or chromo-
somes [24]. For our purposes,
we will use the latter termi-
nology.

Next, we decode the chro-
mosomes. In canonical GA where the chromosomes are binary strings and the
fitness function, in most cases, computes with continuous (i.e. real-valued) in-
puts, the chromosomes must be decoded into continuous values for calculating
their fitness1 [13].

1 Although the terms evaluation and fitness can be used interchangeably in litera-
ture, there is still a slight distinction between them as explained in [27]. Evaluation
functions compute the output for each chromosome independently from other chro-
mosomes, whereas fitness functions compute the output for each chromosome with
respect to the other chromosomes in the current population. This is important to
note since an evaluation function is used in this study to implement the design of
the genetic algorithm function, which will be discussed in section 5. Moreover, the
term “precision” shall be used to denote the output of an evaluation function in
succeeding parts of this paper, while we will continue to use the term “fitness” for
the output of a fitness function.

274

A Framework for Evolving SN P Systems 5

A fitness function may be a mathematical function, an experiment, or a game.
The goal is to find the chromosome representing an appropriate solution in the
population to get a desired output from the fitness function. The fitness of a
chromosome is calculated by getting the distance between the desired and the
actual output value of the fitness function—the smaller this distance is, the fitter
the chromosome [13].

Below are some of the ways a fitness function can be defined [27]:

1. In canonical GA, fitness is equal to fi/f̄ where fi is the fitness of chromo-
some i and f̄ is the average fitness of all the chromosomes in the current
population;

2. In [1] and [26], they calculated the fitness based on the rank of a chromosome
in the current population, and;

3. In [10], they employed tournament selection as a sampling method.

Once the fitness is calculated, the intermediate population is formed through
selection. The probability that a chromosome will be copied and placed in the
intermediate population is proportional to its fitness. One of the ways selection
can be done is by using remainder stochastic sampling, wherein a chromosome
of fitness fi/f̄ = 1.48 places 1 copy in the intermediate population and has a
0.48 chance to place a second copy, and a chromosome of fitness fi/f̄ = 0.17 will
have a 0.17 chance to place a copy [27].

After the selection, crossover and mutation operators are applied to form
the next population. During the execution of the GA, a generation starts from
the current population up to when the next population is formed.

Crossover is applied to random pairs of chromosomes, which are also referred
to as parents. Crossover is regarded as the main feature of GA that distinguishes
it from other evolutionary algorithms, as it uses the concept of genetic recom-
bination wherein child chromosomes are formed using a combination of their
parents’ traits, represented by segments of bits [20] [23]. These child chromo-
somes are then placed in the next population. Mutation is done canonically
by randomly flipping the bits of a chromosome, thus introducing new genetic
material into the population to get out of the local minimum.

After fitness calculation, selection, crossover, and mutation are done, we re-
peat the process of evolution until a predefined condition for convergence is met
or the maximum number of generations is reached.

3 Chromosome Representation

As mentioned in section 2.2, evolution in genetic algorithms starts by gener-
ating an initial population of chromosomes. We use chromosomes to represent
a solution, i.e. an SN P system, within a population. An SN P system Π can
be encoded into a chromosome, formally defined below. See [22] for the formal
definition of SN P systems which is used throughout this section.

275

6 L. Casauay et al

Definition 1 (Chromosome)

A chromosome is a construct of the form

chrom = (num nrns, spikes, rules,

input nrns, output nrns, syn matrix,

presicion, fitness, active nrns,

connected nrns, connected to input nrns,

connected to output nrns),

where:

1. num nrns = m + 1, where m
is the degree, i.e. number of neu-
rons, of Π. The environment is
counted as a neuron in a chromo-
some, hence we refer to nrnm+1 as the
environment neuron;

2. spikes = {n′
1, . . . , n

′
m+1}, where n′

i ≥
0 is the number of initial spikes con-
tained in σi, where σi is a neuron in
Π;

3. rules = {R′
1, . . . , R

′
m+1}, where R′

i is
a finite set of rules contained in σi of
the same form as Ri:

4. input nrns = {index1, . . . , index|in|},
where indexj = i and nrni is an input
neuron, i ∈ in;

5. output nrns = {m + 1}, where
nrnm+1 is the environment neuron;

6. syn matrix = {syn row1, . . . ,
syn rowm+1}, where syn rowi =
{syn col1, . . . , syn colm+1} and
syn colj ∈ {0, 1}. syn matrix[i][j] =
0 and syn matrix[i][j] = 1 signify
the absence and presence of a synapse
from nrni to neuron j, respectively;

7. precision = p, where 0 ≤ p ≤ 1;

8. fitness = f , where 0 ≤ f ≤ 1;

9. active nrns = {index1, . . . , indexk}
with k ≥ 0, where indexj = i and
nrni is an active neuron;

10. connected nrns = {index1, . . . ,
indexk}, with k ≥ 0, where indexj = i
and nrni is a connected neuron;

11. connected to input nrns = {index1,
. . . , indexk}, with k ≥ 0, where
indexj = i and there is a path from
at least one of the input neurons to
nrni;

12. connected to output nrns =
{index1, . . . , indexk}, with k ≥ 0,
where indexj = i and there is a path
from nrni to the environment neuron;

The concept of active and connected neurons is discussed in section 5.5. Below
is the formal definition of the SN P system that simulates the binary addition
function in figure 1. Again, this based on the definition from [22]:

Πbin add = (O, σ1, σ2, σ3, σ4, σ5,
syn, in, out),

where:

1. O = {a}
2. σ1 = (0, {a → a})

σ2 = (0, {a → a})

σ3 = (0, {a → λ, a2 → a, a3 → a})
σ4 = (0, {a → λ, a2 → a, a3 → a})
σ5 = (0, {a → a, a2 → λ, a3 → a})

3. {(1, 3), (1, 4), (1, 5), (2, 3), (2, 4),
(2, 5), (3, 4), (4, 3), (4, 5)}

4. in = {1, 2}
out = {5}

A chromosome is implemented as a Python object with each set implemented
as a list. Πbin add can be encoded into a chromosome chrombin add with the
following attribute values:

1. num nrns = 6

2. spikes = [0, 0, 0, 0, 0, 0]

3. rules = [
[a → a],
[a → a],
[a → λ, a2 → a, a3 → a],
[a → λ, a2 → a, a3 → a],
[a → a, a2 → λ, a3 → a],
[]

]

276

A Framework for Evolving SN P Systems 7

4. input nrns = [1, 2]
5. output nrns = [6]
6. syn matrix = [

[0, 0, 1, 1, 1, 0],
[0, 0, 1, 1, 1, 0],
[0, 0, 0, 1, 0, 0],
[0, 0, 1, 0, 1, 0],
[0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0],

]

7. precision = 1
8. fitness = 1
9. active nrns = [1, 2, 3, 4, 5, 6]

10. connected nrns = [1, 2, 3, 4, 5, 6]
11. connected to input nrns = [1, 2, 3, 4, 5, 6]
12. connected to output nrns = [1, 2, 3, 4, 5, 6]

The precision of this SN P system is 100% according to the experiments
conducted. Fitness is computed by dividing the precision of a chromosome by
the average precision in the population, thus its fitness is also 100% given that
it’s the only chromosome in a population.

4 Genetic Algorithm Framework

Πinit

iter = 0

chrominit

Genetic
Algorithm
Function

chromfinal

chrominit = chromfinal

iter = iter + 1

chromfinal

=
chrominit?

chromfinal

.precision
≥

precision
threshold?

iter = ρ?

Πfinal

Legends:

Encode SN P Systems
from P-Lingua format
to chromosomes

Transform chromfinal

before assigning to
chrominit

Encode chromosomes
to P-Lingua format

No

Y
es

N
o

No

Yes

Yes

Fig. 3: Genetic algorithm framework. ρ is the maximum number of inner loops per-
formed within an outer loop. This is a parameter set by the user. All chromosomes
are implemented as Python objects that have a precision attribute, see section 3. The
precision threshold is a parameter set by the user which halts the genetic algorithm
framework when it is reached.

In this section, we discuss the main output of this study: a genetic algorithm
framework that transforms an initial SN P systemΠinit, designed to approximate
a function f(w, x, y, . . .) = z, into a smaller or more precise system Πfinal that
also approximates the output z given the same input/s a, b, c,

Figure 3 provides a visual representation of the GA framework. As denoted
by the red square, we begin by encoding the initial SN P system that we want to

277

8 L. Casauay et al

evolve, called Πinit, from its P-Lingua23 format into a chromosome chrominit

that can be processed by the framework. After encoding Πinit, the variable iter
is set to zero and chrominit is inputted to the Genetic Algorithm Function. As
can be seen in the figure, the GA framework contains two loops: an outer and
an inner loop.

The outer loop checks whether the chromfinal outputted by the GA func-
tion is the same as chrominit or not. If it is not, chromfinal is transformed before
being set as chrominit for the next loop. Note that if chromfinal is not the same
as chrominit, it is sure to be a better SN P System because of how the GA
function’s Selection operator is implemented. This is discussed in section 5.2.

We use outer loops in our implementation of the GA framework for a num-
ber of reasons. First, they reduce the supervision needed during execution as
evolution continues as long as a better solution, i.e. SN P System, is achieved.
They automate the need for a user to execute the framework again using a
previous output as input. Second, they act as checkpoints that provide a clear
insight on the state of an experiment by giving the user an ability to compare
the chromfinal’s of each outer loop. With this, it is possible to see what is re-
moved or added in an SN P System that made it better from its previous form,
and by how much it has improved. Last, and most importantly, they allow the
transformation of chromfinal’s before setting them as the new chrominit’s to
achieve better results in future evolutions. This transformation is denoted by
the purple square.

In our case, we can delete either inactive or disconnected neurons from the
chromfinal’s to prevent them from being reconnected back later on. See sections
5.5, 5.6, and 6.2 for more information.

The inner loop is dependent on whether the variable iter has reached its
maximum value ρ. The constant ρ is a parameter set before executing the frame-
work and signifies the maximum number of evolutions the framework can make
within one outer loop.

The inner loop is an important and necessary part of the framework as it
addresses one of the key characteristics of genetic algorithms. GA is a heuristic
that depends on the quality of its initial population of solutions. The probability
of converging to a better final solution increases as the quality of the initial pop-
ulation increases. As such, if the GA function has failed to produce a chromfinal

better than the current chrominit to start a new outer loop, and chromfinal has
not yet reached the precision threshold set by the user, iter is incremented by 1
and the GA function is called once again to pseudo-randomly generate another
initial population. Once the framework has reached the maximum number of
evolutions ρ in one outer loop, the GA framework halts. The current chrominit

is encoded into P-Lingua format, as denoted by the blue square. It is then out-
putted as Πfinal.

2 http://www.p-lingua.org/wiki/index.php/Main_Page/
3 P-Lingua is a programming language which aims to be a standard in defining P
systems. We use its current latest version: version 4.0. Figure 7 shows the P-Lingua
format used for the SN P system in figure 1.

278

A Framework for Evolving SN P Systems 9

5 Genetic Algorithm Function

Now that we are done discussing the overall design of the genetic algorithm
framework, in this section, we will talk about the design and implementation of
the major components of the genetic algorithm function used by the framework.
Let us look at figure 4 for the visual representation of the genetic algorithm
function.

Repeated
for many
iterations

Mutation

Simulator

Evaluation
Function

Selection

Crossover

ch
ro
m

in
it

ch
ro
m

f
in

a
l

S

S′

ai

Fig. 4: Design of the genetic algorithm
function. ai is from S = {(a1, b1),
(a2, b2), . . . , (ak, bk)}, where k ≥ 1 is
the number of fitness cases, ai is a
set of input spike trains {αi,1, . . . αi,j},
j = |in|, and bi is the ideal output spike
train with respect to ai. S

′ contains ai

and b′i, wherein the latter is the set of
actual output spike trains. See figure
5 for the SN P System Simulator, de-
noted by the green square.

After receiving chrominit as input,
the initial population of chromosomes,
chrom pop0 = {chrom0,1, chrom0,2, . . . ,
chrom0,r}, is formed with the mutations
of chrominit. Once the initial population
is generated, chrom pop0 is sent to the SN
P system simulator, along with ai from
S = {(a1, b1), (a2, b2), . . . , (ak, bk)}, where
k ≥ 1 is the number of fitness cases, ai is
a set of input spike trains {αi,1, . . . αi,j},
j = |in|, and bi is the ideal output spike
train with respect to ai. The algorithms
presented in [2] guided the simulator’s im-
plementation.

In figure 5, we see that the SN P sim-
ulator first translates each of the chro-
mosomes in chrom pop0 into their cor-
responding P-lingua formats. The SN
P systems are simulated in this for-
mat to produce S′ = {S′

1, S
′
2, . . . , S

′
r},

where r = |chrom pop0|, S′
u = {(a1, b′1),

(a2, b
′
2), . . . , (ak, b

′
k)}, and b′i,u is the ac-

tual output spike train of the mutated chromosome chrom0,u. After the simula-
tion, S and S′ are both sent to the evaluation function to compute the precision
of all chrom0,u’s. This is done by comparing the value of each actual output
spike train b′i,u with its corresponding ideal output spike train bi.

Simulate SN P
systems

Encode
chromosomes to
P-lingua format

ch
r o
m

p
op

g

ch
r o
m

p
op

g

a
i

S
′

Fig. 5: SN P system simulator. The simula-
tor translates the chromosomes to their P-
lingua format, and outputs the same set of
chromosomes that were inputted. b′i’s which
will form the S′ output are generated with
the ai input. chrom popg is the population
of chromosomes at generation g.

The set containing the preci-
sion of each chromosome prec0
is sent to the selection operator,
along with chrom pop0. The par-
ent chromosomes are selected for the
crossover operator. Chromosomes re-
sulting from the crossover undergo
mutation, forming the new population
chrom pop1.

The cycle of evolution continues
until a predefined halting condition
is met and the fittest chromosome
chromfinal is selected.

279

10 L. Casauay et al

5.1 Mutation

In all succeeding generations after the first, each chromosome in the population
has a chance to be mutated according to the mutation rate parameter, which is
set before the execution of the GA framework. Once a chromosome is tagged for
mutation, the function pseudo-randomly chooses between the following methods
of mutation4, i.e. all three have equal chances of getting chosen:

1. disc nrn(): This method is used for pseudo-randomly choosing any neuron
within a chromosome to be disconnected, aside from input neurons, the en-
vironment neuron5, or already disconnected neurons. The chosen neuron is
disconnected by first creating synapses from all pre-synaptic neurons of its
in-going synapses to all post-synaptic neurons of its outgoing synapses, and
then deleting all of its in- and outgoing synapses.

2. del syn(): This method is used for pseudo-randomly choosing a synapse to
delete within a chromosome.

3. add syn(): This method is used for pseudo-randomly choosing a synapse to
be added, with the condition that the environment neuron cannot be used as
a pre-synaptic nor post-synaptic neuron. Note that the environment neuron
cannot supply spikes to any other neuron. Previously disconnected neurons
may be reconnected using this method.

5.2 Selection

In our implementation, the selection operator not only selects the chromosomes
that will be placed in the next generations, but also checks for convergence at
the end of every generation. The following details its implementation:

1. Check for convergence every generation. At the start of evolution, chrominit

is set as chrombest. Evolution is immediately halted at generation g if the
population contains a chromosome chromi that fulfills one of the following
conditions:

(a) chromi is more precise than chrominit, or;

(b) chromi is as precise as chrominit and has fewer neurons than chrominit.

If such a chromi does exist, the GA function outputs it as chromfinal.
Otherwise, a chromosome chromj is set as the new chrombest if it is as
precise as the current chrombest and has fewer neurons or synapses. Upon
reaching the maximum number of generations, the GA function outputs
chrombest as chromfinal. Note that the GA function only outputs either a
better chromosome than chrominit or chrominit itself.

4 Pseudo-random selections of one element within a defined set are done using the
method randint of a Python library called random

5 The environment is counted as a neuron in the chromosome definition of an SN P
system. See section 3.

280

A Framework for Evolving SN P Systems 11

2. Select chromosomes for the next generation. If the GA function did not con-
verge nor reach the maximum number of generations, the Selection operator
will then rank the population according to their fitness and get a number of
highest ranking chromosomes, as in [4]. The amount of chromosomes selected
are dependent on the selection rate parameter set by the user. The fitness
of a chromosome is calculated by dividing its precision with the average pre-
cision in the population. The precision of a chromosome is outputted by the
evaluation function.

5.3 Crossover

The crossover operator is inspired by the one used in [19].

Crossover is done by pseudo-randomly selecting two chromosomes, chrom1

and chrom2 in the population as parents and a neuron nrni contained by both
chromosomes. If the set of post-synaptic neurons connected to the outgoing
synapses of chrom1 and chrom2 are different, these sets are swapped. This is
implemented by interchanging the ith row of the corresponding synapse matrices
of the chosen pair of chromosomes.

If the current population size is less than what is set as parameter6, all
of the chromosomes are automatically added to the next population. A pair
chromosomes are then pseudo-randomly selected as parents and crossed-over to
produce two new chromosomes. This is done until the next population is full.

Otherwise, if the current population size is equal to what is required, each
chosen pair of chromosome in the population has a chance to be crossed-over
depending on the crossover rate parameter. Chromosomes that were not selected
for crossover, i.e. not parents, are added to the next population as is. Those that
were successfully crossed-over are discarded, and the resulting chromosomes are
placed in the next population, instead. In other words, successful parents are
never carried over to the next population.

5.4 Evaluation Function

The evaluation function used to compute precision of each chromosome is im-
plemented by finding the longest common substring (LCS) between the ideal
and actual output spike trains. This is the chosen method to eliminate error in
computation that is caused by the unnecessary padding in actual output spike
trains. For example, if the ideal output spike train is “101100” and the actual
output spike train is “1110110000”, using LCS for the evaluation function gives
us a precision of 100% because the latter contains all of 6 characters of the ideal
spike train: “1110110000”. Directly comparing the two binary strings would
only give us a precision of 1/6 = 16.67% as their second characters do not match

6 This happens when the selection rate is less than 100%, since the Selection operator
would only be placing the highest-ranking chromosomes from the last population to
the current one.

281

12 L. Casauay et al

anymore. Note that the padding in the actual output spike train varies depending
on the rules and topology of an SN P system.

Algorithm 1 describes the implementation of the evaluation function in pseu-
docode form. Although not used here, it is important to note that according to
Gusfield [12], the longest common substring between two strings can be found
in linear time by using a generalized suffix tree. We leave this optimization as
part of our future work.

5.5 Inactive vs. Disconnected Neurons

To properly understand the validations used in the GA function discussed later
in this section and the experiment setup discussed in section 6, we must first
talk about the difference between an inactive vs. disconnected neuron.

A neuron is inactive if it is connected by at least one synapse to the rest
of the SN P System, but renders no effect on the resulting spike train. During
validation, it is checked if there is a path from a neuron to the environment. If
yes, then it is checked if there is a path from one of the input neurons to the
neuron in question. If there is, then the neuron is active. Otherwise, it is checked
if the neuron has any initial spikes and it has a corresponding rule to use. If yes,
then the neuron is active, otherwise it is inactive.

A neuron is disconnected if it doesn’t have a path from any of the in-
put neurons nor to the environment. For example, a neuron that has does not
have any in-going or outgoing synapses (other than a self-loop) is considered
disconnected. A group of neurons that are connected to each other but are not
connected to the rest of the system are also considered disconnected.

The set of disconnected neurons in an SN P System is a subset of the set
of inactive neurons. Likewise, the set of active neurons in an SN P System is a
subset of the set of connected neurons.

5.6 Validations Used in the GA Function

There are a total of 6 validations used in the GA function. The following four
(4) remain consistent for all the GA function variants:

1. Only active neurons must be counted during the comparison of the chromo-
somes.

2. Every time either mutation or crossover is performed, the resulting chro-
mosome must always have a path from at least one of the input neurons
to the environment. If it does not, the output spike train produced by the
corresponding SN P System would not be dependent on any of the input
spike trains, making it an invalid solution. The untransformed chromosome
is kept.

3. If a resulting chromosome from either mutation or crossover is the same as
the input to the current outer loop, then it is invalid and the untransformed
chromosome is kept for the next generation.

282

A Framework for Evolving SN P Systems 13

4. The resulting SN P System Πfinal from the GA framework must never
have a self-loop. Before outputting the SN P System, a method named re-
move self loops() is called first on the corresponding chromosome. Section
5.7 details the logic behind and implementation of the method.

The following two are changed in the other variants of the GA function in
section 6.2.

1. The formation of self-loops is not allowed. Self-loops could result from the
following methods:

(a) add syn() - by picking the same neuron as both the pre-synaptic and
post-synaptic neuron, or;

(b) disc nrn() - by disconnecting a neuron that has synapses to and from
the same neuron.

2. Inactive neurons must be deleted after the end of each outer loop. The result
of an outer loop is always better than its input, otherwise, the evolution
stops. With this, we can delete all inactive neurons, making it impossible for
them to get reconnected in the next outer loop via add syn().

5.7 Removing Self-Loops

chromold:

a
a+/a → a; 0

chromnew:

a
a+/a → a; 0

a
a+/a → a; 0

Fig. 6: Removing a self-loop. In
this figure, chromold is trans-
formed into chromnew by using
the procedure described in sec-
tion 5.7. In chromold, nrnorig is
used as an auxiliary neuron that
constantly consumes and produces
one spike regardless of whether its
pre-synaptic neuron spikes or not.
chromnew utilizes both nrnorig

and nrndupl in the same way. A
similar mechanism can be found
in one of Păun’s SN P Systems in
[22]. The system is for “Computing
a Boolean function of three vari-
ables”.

The following procedure was observed to yield
derived chromosome without self-loops that
produces the same results as the chromosome
containing self-loops it is derived from. We
will refer to these as chromnew and chromold,
respectively.

This procedure is repeated for all neu-
rons nrni that has a self-synapse, i.e.
syn matrix[i][i] = 1.

1. A neuron that has a self-synapse is dupli-
cated. We will refer to this neuron and its
duplicate as nrnorig and nrndupl, respec-
tively.

2. The self-synapse of nrnorig is removed
from the synapse matrix, i.e.
syn matrix[orig][orig] = 0.

3. All in-going synapses to nrnorig must
be replicated to nrndupl such that
∀nrni, syn matrix[i][dupl] = 1 if
syn matrix[i][orig] = 1, where i =
1, 2, 3...m and m is the number of neurons in the SN P System.

4. Lastly, there must be a synapse from nrnorig to nrndupl and vice versa, i.e.
syn matrix[orig][dupl] = 1 and syn matrix[dupl][orig] = 1.

283

14 L. Casauay et al

The procedure works by ensuring that both nrnorig and nrndupl have the
same amount of spikes at all times, and the nature of the self-loop is preserved
by adding a two-way connection between the neurons. Figure 6 shows a simple
application of this procedure.

6 Experiments and Results

In this section, we discuss the experiment setup and results of this study.

6.1 Input Design

As discussed in section 4, the genetic algorithm framework is designed to trans-
form an initial SN P System Πinit. The GA framework can only accept deter-
ministic SN P systems, thus 7 in total were designed to approximate the binary
addition and binary subtraction functions, and will serve as Πinit’s.

There are three categories of Πinit’s: baseline, original, and adversarial. See
table 2 for the general description of each Πinit. Figures 8a to 10b provide visual
representations for each, and are direct outputs from the Graphviz library7 used
with Python. Note that figures 1 and 8a both represent the same SN P system.

Table 2: Characteristics of the initial SN P Systems, Πinit’s, used in the experiments.

Binary Addition Binary Subtraction
Baseline Original Adversarial Baseline Original Original v2 Adversarial

Precision 100% 75.138375% 31.05496% 100% 38.60768% 26.04025% 60.45469%

Number of Neurons 5 11 8 8 32 33 16

Number of Synapses 10 14 19 15 38 41 59

6.1.1 Baseline category The Πinit’s under this category are the smallest
designs with the closest approximations. Figures 8a and 8b show the baseline
Πinit’s for binary addition and binary subtraction, respectively.

6.1.2 Original category The Πinit’s under this category were the first to be
designed in this study, and are significantly larger and less precise than the ones
under the baseline category. The set of neurons for the binary addition Πinit in
this category is a superset of its baseline counterpart.

For binary subtraction, there are two Πinit versions in this category. After
designing version 1, which we will refer to as original v1, we noticed that while
it’s set of neurons is larger than its baseline counterpart, it still lacked one. That
is, given the set of neurons for original v1 O1 = {σ0,O1

, ..., σx,O1
} and for baseline

B = {σ0,B , ..., σy,B}, where x > y, we have: B − Bn ⊂ O1 and Bn �⊂ O1, where
Bn = {σn,O1}.

With this, a new version was designed, which we will refer to as original v2.
In this version, the missing neuron is added to the original v1 Πinit by directly
adding synapses from all input neurons and a synapse to the output neuron,
making it an active8 neuron. The hypothesis is that the average precision of

7 https://pypi.org/project/graphviz/
8 See section 5.5

284

A Framework for Evolving SN P Systems 15

original v2 would be higher than original v1 ’s because the former contains all
the neurons from the baseline, which already has a 100% precision as seen in
table 2.

Figures 8c show the baseline Πinit for binary addition. Figures 9a and 9b
show the baseline Πinit’s of versions 1 and 2 for binary subtraction, respectively.

6.1.3 Adversarial category The Πinit’s under this category follow the de-
signs of their baseline counterparts but with m additional neurons, where m is
the degree of the baseline Πinit

9, making the degree of the adversarial Πinit

equal to 2m. These added neurons, which contain pseudo-randomly generated
rules and initial spikes, are connected pseudo-randomly.

The added neurons were allowed to have at least one up to five of the following
rules: a → a, a2/a → a, a3/a → a, a4/a → a, a5/a → a, a/a → λ, a2/a → λ,
a3/a → λ, a4/a → λ, and a5/a → λ. Note that by definition, if a firing rule
is applicable, then no forgetting rule is applicable, and vice versa. Thus, in the
implementation, it was made sure that if a firing rule with E1 and a forgetting
rule with E2 were chosen to be in the same neuron, and L(E1)∩L(E2) �= ∅, only
the firing rule is tagged as applicable and can be used by the neuron.

Figures 10a and 10b show the baseline Πinit’s for binary addition and binary
subtraction, respectively.

6.2 Variants of the Genetic Algorithm Function

Table 3: Variants of the Genetic Algorithm function
The “self-loops” mentioned in this table refer only to
the self-loops during evolution. Moreover, regardless
of whether a GA function variant incorporates self-
loops during evolution or not, its output will never
have a self-loop. This is explained further in section
5.6. The deletion of inactive and disconnected neu-
rons referenced in this table is only with regards to
the transformation of the resulting chromosome af-
ter the current outer loop and before the beginning
of a new one.

Self-loops
not allowed

Self-loops
allowed

Inactive neurons
are deleted

Disconnected neurons
are deleted

Variant 1 � �

Variant 2 � �

Variant 3 � �

Variant 4 � �

In section 5.6, we discussed
the validations used by the
GA function. We recall the
two validations below which
are used in variant 1 and
are changed in the succeeding
variants:

1. The formation of self-
loops is not allowed.

2. Inactive neurons must be
deleted after the end of
each outer loop.

Table 3 details the differ-
ences between the four variants of the GA function. There are two hypotheses:

1. Allowing self-loops during evolution would improve the precision of the re-
sulting Πfinal’s by allowing the addition of duplicate neurons that may be
used to escape a local maximum. Thus, variants that allow self-loops, i.e. 3
and 4, would have higher average precision values than the other variants.10

9 Refer to [22] for the formal definition of an SN P system.
10 We leave the study on the correlation between the amount of self-loops within an

SN P system and its precision for future work.

285

16 L. Casauay et al

2. Deleting disconnected neurons instead of inactive neurons would improve
the precision of the resulting Πfinal’s as it would prevent the GA framework
from deleting possibly important neurons that are inactive but still connected
from the former chromfinal which would be the new chrominit.

6.3 Experiment Setup
Table 4: Population size set for the initial SN P Sys-
tems, Πinit’s, used in the experiments.

Binary Addition Binary Subtraction

Baseline Original Adversarial Baseline Original Original v2 Adversarial

15 40 40 20 80 80 40

We generated the set of fit-
ness cases S, |S| = 100 for the
binary addition and subtrac-
tion functions. The set of fit-
ness cases used is the same for all of the Πinit’s for each function.

The GA framework is run five times for each of the 7 Πinit’s that were
designed (3 binary addition + 4 binary subtraction) to get an insight on the
average behavior of each variant of the GA function. Since we have 4 variants of
the GA function, that gives us a total of 140 experiments.

The following is a list of the default parameters:

1. Maximum number of inner loops, ρ: 10
2. Maximum number of generations per

inner loop: 75
3. Mutation rate: 50%

4. Crossover rate: 30%
5. Selection rate: 60%
6. Population size: 80
7. Precision threshold: 100%

All of the default parameters were used consistently for all of the runs in the
experiment, except for the population size parameter. This was set differently
for each Πinit depending on its number of neurons, as can be seen in table 4.

6.4 Results and Discussion

After running the experiments described in section 6.3, we summarized the re-
sults for the binary addition function in table 5, the binary subtraction function
in table 6, and the general results in table 7.

Below is the definition for each descriptor used in the results tables:

1. Average Precision. This is the aver-
age precision of the 5 Πfinal that were
outputted by the GA framework.

2. Average Number of Neurons. This is
the average number neurons of the 5
Πfinal that were outputted by the GA
framework.

3. Average Number of Synapses. This is
the average number synapses of the 5
Πfinal that were outputted by the GA
framework.

4. Average Number of Outer Loops. This
is the average number of outer loops

done by each of the 5 GA framework
runs.

5. Average Number of Inner Loops. This
is the average number of inner loops
loops executed in each outer loop,
done by each of the 5 GA framework
runs.

6. Average Number of Generations. This
is the average number of generations
executed in each inner loop, executed
in each outer loop, done by each of the
5 GA framework runs.

286

A Framework for Evolving SN P Systems 17

7. Average Runtime (s). This is the av-
erage runtime in seconds of each in-
ner loop, executed in each outer loop,

done by each of the 5 GA framework
runs.

Comparing the data between tables 2 and 5, it can be seen that the GA
framework introduced in section 4 was able to successfully produce a Πfinal’s
of similar structure with the baseline Πinit for binary addition, with 5 neurons
and 10 synapses. It was also able to maintain the initial precision of 100%.

As for the baseline Πinit for binary subtraction, we turn to table 6 and see
that the GA framework was also able to maintain the initial precision of 100%.
It was able to produce Πfinal’s with an unexpectedly better topology, containing
an average of 7.15 neurons and 14.15 synapses, as opposed to the 8 neurons and
15 synapses of the input.

The GA framework significantly improved the adversarial Πinit’s for both
binary addition and subtraction, having an average final precision of 100% from
the initial precision of 31.05496% and 60.45469%, respectively. It also reduced
the initial number of neurons from 8 to an average of 5.1 for binary addition,
and from 16 to an average of 7.15 for binary subtraction. Lastly, it also reduced
the initial number of synapses from 19 to an average of 10.4 for binary addition,
and from 59 to an average of 14.45 for binary subtraction.

For the original category, the GA framework did have better results, although
not as significant as the two previous categories.

The precision for the binary addition went up from 75.13838% to an average
of 87.57182%. The number of neurons went down from 11 to an average of 5.2,
and the number of synapses from 14 to an average of 9.85.

For binary subtraction, original v1 had an initial precision of 38.60768%
which went up to an average of 62.54856%, while original v2’s precision went
from 26.04025% up to an average of 57.77093%. The number of neurons and
synapses for original v1 went down from 32 to an average of 13.2, and from 38
to an average of 16.65, respectively. As for original v2, its number of neurons and
synapses went down from 33 to an average of 6.75, and from 41 to an average of
9.5, respectively.

The average precision of original v2 is lower than that of original v1’s, the
size of its topology was significantly reduced. This goes against the hypothesis
that original v2 would have a higher average precision (i.e. closer to baseline’s)
because it contains all of the neurons from the baseline category, which has
a 100% precision. Given that the average size of the resulting topologies from
original v2 is significantly smaller than that of original v1 ’s, the theory thus
far is that the former kept on getting trapped in one of its local maximum
in terms of precision. Since the precision can no longer be increased and the
only other criteria for evolution is the size of the topology, the GA framework
started shrinking it down while maintaining the same precision. Due to the time
constraints of this study, however, as well as our scope’s limitations, we cannot
test this theory and know why the GA framework is possibly being trapped at
a local maximum by replicating the experiments.

287

18 L. Casauay et al

The results from tables 5 and 6 show that all variants of the GA function
were able to significantly improve the average precision and size of the topology
for each input Πinit.

The summarized results in table 7 show that variant 3 yielded the highest
average precision of 89.39876%, with an average of 6.65714 neurons and 11.88571
synapses. It is a close second to variant 2 in terms of topology size, having only a
difference of 0.17143 and 0.45714 in average neurons and synapses, respectively.
Furthermore, only variant 3 was able to evolve Πinit from the original v1 cate-
gory of the binary subtraction function to get a 100% precision in its fifth run.
Figure 11 provides a visual representation for this SN P system.

Given the above information, as well as the fact that variant 3 significantly
produced more precise SN P systems compared to variant 2 with a difference
of 4.71486% in average precision, the former is considered to produce the best
results.

Variant 3 allows self-loops during evolution along with variant 4, and these
variants produced higher average precision values compared to variant 1 and
variants 2, respectively. The former variants were also able to achieve 100%
precision for the original category of the binary addition function. In other words
they increased the precision with average of 24.86163%, while the latter variants
only increased the precision with an average of 0.00526%. These results support
the hypothesis that allowing self-loops during evolution can improve precision
by allowing the addition of duplicate neurons that may be used to escape a local
maximum of the system.

Considering that variants 1 and 3 of the GA function are set to delete inactive
neurons, the results show that this configuration yielded higher average precision
values compared to variants 2 and 4, respectively. This doesn’t support the
hypothesis that deleting disconnected neurons instead would result to a higher
average precision, as it would prevent the GA framework from deleting possibly
important neurons that are inactive but still connected in the Πinit used in the
current outer loop. This finding is subject to future experimentation since it is
not part of the scope and limitations of this study.

The results are inconclusive as to how allowing self-loops during evolution,
deleting inactive neurons, or deleting disconnected neurons affect the average
size of the resulting topologies.

7 Final Remarks

The use of genetic algorithms is an effective way to transform an initial spiking
neural P system (SN P system), Πinit. Evolving the topology of Πinit does not
only lessen the number of its neurons and synapses, but also helps it achieve a
higher precision.

The results also show that allowing self-loops helped in evolving the SN P
systems, as it acts as a way to add duplicate neurons that might be used by
the system to escape one of its local maximum for precision. The algorithm
introduced in section 5.7 transformed the SN P systems back to a valid format

288

A Framework for Evolving SN P Systems 19

successfully, i.e. without self-loops, after incurring self-loops during evolution. It
was also shown that deleting inactive neurons yielded higher average precision
values over deleting disconnected neurons.

Out of the four variants of the GA function design, variant 3, which was con-
figured to allow self-loops during evolution and delete inactive neurons, produced
the overall best results.

The results are inconclusive as to how allowing self-loops during evolution,
deleting inactive neurons, or deleting disconnected neurons affect the average
size of the resulting topologies.

The experiments done in this study were mainly focused on the design of
the GA framework and comparing the effects of using different validations. The
following are some recommendations for future studies that may be done using
the genetic algorithm framework introduced in section 4.

1. Investigate the use of different values
for parameters such as the mutation,
selection, and crossover rates;

2. Try other ways of implementing the
selection operator. Here are a couple
of recommended approaches: 1. the
Roulette Wheel approach used in [7]
and [16], and; 2. remainder stochas-
tic sampling mentioned in section 2.2
[27];

3. Try other ways of implementing the
mutation operator. Weights could be
applied such that each of the muta-
tion methods have different chances of
being chosen. More mutation opera-
tors could also be incorporated, such
as one that adds neurons;

4. Try other ways of implementing
the crossover operator. An n-point
crossover could be applied like 5-point
crossover implemented in [7]. It can
also be implemented by forming a
child chromosome that contains either
the intersection or union of the sets of

neurons and synapses from its parents
[25];

5. Create a derived GA framework from
the one introduced here which does
not require an initial SN P System
Πinit to produce its initial population;

6. Include the rules in evolving SN P
Systems, not just the topology;

7. Test the use of other viable algorithms
for the evaluation function;

8. Figure out if and why the GA frame-
work is getting trapped at a local
maximum. This can be replicated by
running one of its variants and us-
ing the binary subtraction function’s
Πinit in the original v2 category as
input. Use the same fitness cases, as
well as the parameter values enumer-
ated in section 6.3;

9. Improve the GA framework by adding
the functionality to evaluate Πinit be-
fore inputting it to the GA function
for evolution.

As mentioned in section 5.4, the optimisation of the GA framework by using
a generalized suffix tree to find the longest common substring is left for future
work. The study on the correlation between the amount of self-loops within an
SN P system and its precision is left for future work, as well.

Acknowledgements

I.C.H. Macababayao, R.T.A. de la Cruz, F.G.C. Cabarle, and H.N. Adorna ac-
knowledge support by grants from the DOST-ERDT project. F.G.C. Cabarle ac-

289

20 L. Casauay et al

knowledges support from the Dean Ruben A. Garcia PCA AY2018–2019, an RLC
AY2018–2019 grant, and Project No. 191904 ORG (2019–2020) of the OVCRD
in UP Diliman. H.N. Adorna is supported by the Semirara Mining Corp Pro-
fessorial Chair for Computer Science, and RLC grant from UPD OVCRD. M.A.
Mart́ınez-del-Amor acknowledges the support of the research project TIN2017-
89842-P (MABICAP), co-financed byMinisterio de Economı́a, Industria y Com-
petitividad (MINECO) of Spain, through the Agencia Estatal de Investigación
(AEI), and by Fondo Europeo de Desarrollo Regional (FEDER) of the Euro-
pean Union. The work was supported by the National Natural Science Founda-
tion of China (Grant Nos. 61472333, 61772441, 61472335, 61672033, 61425002,
61872309, 61771331), Project of marine economic innovation and development
in Xiamen (No. 16PFW034SF02), Natural Science Foundation of the Higher Ed-
ucation Institutions of Fujian Province (No. JZ160400), Natural Science Foun-
dation of Fujian Province(No. 2017J01099), Basic Research Program of Science
and Technology of Shenzhen (JCYJ20180306172637807).

290

Bibliography

[1] Baker, J.E.: Adaptive selection methods for genetic algorithms. In: Pro-
ceedings of an International Conference on Genetic Algorithms and Their
Applications. pp. 101–111. Hillsdale, New Jersey (1985)

[2] Carandang, J., Villaflores, J.M.B., Cabarle, F.G.C., Adorna, H.N.,
Martinez-del Amor, M.A.: Cusnp: Spiking neural p systems simulators in
cuda. Romanian Journal of Information Science and Technology 20(1), 57–
70 (2017)

[3] Ciobanu, G., Păun, G., Pérez-Jiménez, M.J.: Applications of Membrane
Computing, vol. 17. Springer (2006)

[4] David, O.E., Greental, I.: Genetic algorithms for evolving deep neural net-
works. In: Proceedings of the Companion Publication of the 2014 An-
nual Conference on Genetic and Evolutionary Computation. pp. 1451–1452.
ACM (2014)

[5] De Jong, K.A.: Analysis of the behavior of a class of genetic adaptive sys-
tems. dept. Computer and Communication Sciences, University of Michi-
gan, Ann Arbor (1975)

[6] Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing, vol. 53.
Springer (2003)

[7] Eskandari, E., Ahmadi, A., Gomar, S., Ahmadi, M., Saif, M.: Evolving
spiking neural networks of artificial creatures using genetic algorithm. In:
Neural Networks (IJCNN), 2016 International Joint Conference on. pp. 411–
418. IEEE (2016)

[8] Floreano, D., Dürr, P., Mattiussi, C.: Neuroevolution: From architectures
to learning. Evolutionary Intelligence 1(1), 47–62 (2008)

[9] Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley (1989)

[10] Goldberg, D.E.: A note on boltzmann tournament selection for genetic al-
gorithms and population-oriented simulated annealing. Complex Systems
4(4), 445–460 (1990)

[11] Groß, M.: Molecular computation. In: Gramß, T., Bornholdt, S., Groß, M.,
Mitchell, M., Pellizzari, T. (eds.) Non–Standard Computation. Wiley–VCH,
Weinheim (1998)

[12] Gusfield, D.: Algorithms on Strings, Trees and Sequences: Computer Science
and Computational biology. Cambridge University Press (1997)

[13] Haupt, R.L., Haupt, S.E.: Practical Genetic Algorithms, vol. 2. Wiley New
York (1998)

[14] Holland, J.: Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Application to Biology. University of Michigan Press (1975)

[15] Ionescu, M., Păun, G., Yokomori, T.: Spiking neural p systems. Fundamenta
Informaticae 71(2, 3), 279–308 (2006)

291

22 L. Casauay et al

[16] Khan, Q.S.U., Li, J., Zhao, S.: Training deep autoencoder via vlc-genetic
algorithm. In: International Conference on Neural Information Processing.
pp. 13–22. Springer (2017)

[17] Leporati, A., Zandron, C., Ferretti, C., Mauri, G.: On the computational
power of spiking neural p systems. Proceedings of the Fifth Brainstorm-
ing Week on Membrane Computing, 227-245. Sevilla, ETS de Ingenieŕıa
Informática, 29 de Enero-2 de Febrero, 2007 (2007)

[18] Martin-Vide, C., Pazos, J., Păun, G., Rodŕıguez-Patón, A.: A new class of
symbolic abstract neural nets: Tissue p systems. In: International Comput-
ing and Combinatorics Conference. pp. 290–299. Springer (2002)

[19] Miller, G.F., Todd, P.M., Hegde, S.U.: Designing neural networks using
genetic algorithms. In: ICGA. vol. 89, pp. 379–384 (1989)

[20] Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press (1999)
[21] Păun, G.: Computing with membranes. Journal of Computer and System

Sciences 61(1), 108–143 (2000)
[22] Păun, G.: Spiking neural p systems. a tutorial. Bulletin of the European

Association for Theoretical Computer Science (2007)
[23] Reeves, C.: Genetic algorithms. In: Handbook of Metaheuristics, pp. 55–82.

Springer (2003)
[24] Schaffer, J.D.: Some effects of selection procedures on hyperplane sampling

by genetic algorithms. Genetic Algorithms and Simulated Annealing pp.
89–103 (1987)

[25] Stanley, K.O., Miikkulainen, R.: Evolving neural networks through aug-
menting topologies. Evolutionary Computation 10(2), 99–127 (2002)

[26] Whitely, D.: The genitor algorithm and selective pressure proceedings of
the 3rd international conference on genetic algorithms (1989)

[27] Whitley, D.: A genetic algorithm tutorial. Statistics and Computing 4(2),
65–85 (1994)

[28] Zhang, G., Gheorghe, M., Pan, L., Pérez-Jiménez, M.J.: Evolutionary mem-
brane computing: A comprehensive survey and new results. Information
Sciences 279, 528–551 (2014)

Appendix A P-Lingua File Example

292

A Framework for Evolving SN P Systems 23

1: @mu = in1, in2, 1, aux1, aux2, out
2: @marcs = (in1, 1)
3: @marcs += (in1, aux1)
4: @marcs += (in1, aux2)
5: @marcs += (in2, 1)
6: @marcs += (in2, aux1)
7: @marcs += (in2, aux2)
8: @marcs += (aux1, aux2)
9: @marcs += (aux2, aux1)
10: @marcs += (aux2, 1)
11: @marcs += (1, out)
12: @min = in1, in2

13: @mout = out
14: [a → a]′in1
15: [a → a]′in2
16: [a → a]′1
17: [a ∗ 2 → #]′1
18: [a ∗ 3 → a]′1
19: [a → #]′aux1
20: [a ∗ 2 → a]′aux1
21: [a ∗ 3 → a]′aux1
22: [a → #]′aux2
23: [a ∗ 2 → a]′aux2
24: [a ∗ 3 → a]′aux2

bin-add baseline.pli

Fig. 7: P-Lingua format used for the SN P system in figure 1. The GA framework only
parses the neuron, spike, synapse, and rule declarations in a P-Lingua file and ignores
the rest of the lines.

Appendix B Evaluation Function Algorithm

Algorithm 1 Evaluation function using LCS

1: function GetLCSLength(actual sptr, ideal sptr)
2: LCS ← empty string
3: while len(actual sptr) > len(LCS) do
4: suffix ← actual sptr
5: if len(LCS) > 0 then
6: prefix ← suffix[0 : len(LCS)]
7: suffix ← suffix[len(LCS) :

len(suffix)]
8: else
9: prefix ← suffix[0 : 1]
10: suffix ← suffix[1 : len(suffix)]

11: while prefix in ideal sptr and
len(suffix)
= 0 do

12: prefix.append(suffix[0])

13: suffix ← suffix[1 : len(suffix)]

14: if prefix not in ideal sptr then
15: prefix ← prefix[0 : len(prefix)− 1]

16: if len(prefix) > len(LCS) then
17: LCS ← prefix

18: actual sptr ← actual sptr[1 :
len(actual sptr)]

19: return len(LCS)

20: function GetPrecision(actual sptr, ideal sptr)
21: LCSLength ← GetLCSLength(actual sptr,

ideal sptr)
22: precision ← LCSLength/len(ideal sptr)
23: return precision

Appendix C Initial SN P Systems

293

24 L. Casauay et al

(a) Πinit for the binary addition function:
baseline category.

(b) Πinit for the binary subtraction func-
tion: baseline category.

(c) Initial SN P System Πinit for
the binary addition function: orig-
inal category.

Fig. 8: Initial SN P systems Πinit’s under the baseline category and the binary addition
Πinit under the original category.

294

A Framework for Evolving SN P Systems 25

(a) Πinit for the binary subtraction func-
tion: original, version 1 category.

(b) Πinit for the binary subtraction
function: original, version 2 cate-
gory.

Fig. 9: Two (2) versions of initial SN P systems Πinit’s for binary subtraction under
the original category.

295

26 L. Casauay et al

(a) Initial SN P System Πinit for the binary addition function: adversarial category.

(b) Initial SN P System Πinit for the binary subtraction function: adversarial category.

Fig. 10: Initial SN P systems Πinit’s under the adversarial category.

296

A Framework for Evolving SN P Systems 27

Appendix D Final SN P System Example

Fig. 11: Final SN P System Πfinal outputted in the fifth run of the GA framework
using variant 3 of the GA function. The Πinit for the binary subtraction function in
the original v1 category was supplied as input. This has a precision of 100%.

Appendix E Experiment Results in Tabular Form
Table 5: Binary Addition Results

Variant 1 Variant 2 Variant 3 Variant 4

B
a
se
li
n
e

Ave. Precision 100% 100% 100% 100%
Ave. Number of Neurons 5 5 5 5
Ave. Number of Synapses 10 10 10 10

Ave. Number of Outer Loops 1 1 2 2
Ave. Number of Inner Loops 1 1 1 1
Ave. Number of Generations 75 75 38 38

Ave. Runtime (s) 127.3124 133.79615 51.58424 50.17064

O
ri
g
in
a
l

Ave. Precision 75.13837% 75.1489% 100% 100%
Ave. Number of Neurons 5.4 5.4 5 5
Ave. Number of Synapses 9.8 9.6 10 10

Ave. Number of Outer Loops 4.8 5.4 5.6 5.6
Ave. Number of Inner Loops 3.91 3.453333 1.17714 1.19714
Ave. Number of Generations 34.11065 28.31717 25.98381 25.02762

Ave. Runtime (s) 182.77748 260.15345 119.30703 115.56649

A
d
v
er
sa
ri
a
l

Ave. Precision 100% 100% 100% 100%
Ave. Number of Neurons 5.4 5 5 5
Ave. Number of Synapses 11.6 10 10 10

Ave. Number of Outer Loops 4 4 5 4.4
Ave. Number of Inner Loops 1 1 1 1
Ave. Number of Generations 34.73667 26.71 20.48 20.07

Ave. Runtime (s) 171.00478 139.75218 84.54192 77.45007

297

28 L. Casauay et al

Table 6: Binary Subtraction Results

Variant 1 Variant 2 Variant 3 Variant 4

B
a
se
li
n
e

Ave. Precision 100% 100% 100% 100%
Ave. Number of Neurons 7 7 7.2 7.4
Ave. Number of Synapses 14 14 14.2 14.4

Ave. Number of Outer Loops 2 2 3.8 3.6
Ave. Number of Inner Loops 1 1 1 1
Ave. Number of Generations 38 38 20.73334 21.96667

Ave. Runtime (s) 124.28844 150.43626 47.09733 56.51845

O
ri
g
in
a
l
v
1

Ave. Precision 62.5326% 59.6779% 68.45752% 59.5262%
Ave. Number of Neurons 14 9 11.6 18.2
Ave. Number of Synapses 11.8 11.8 18 25

Ave. Number of Outer Loops 13.4 16.6 15.6 13.8
Ave. Number of Inner Loops 1.88721 1.88285 1.66441 2.00065
Ave. Number of Generations 23.39129 17.58746 25.68916 24.57917

Ave. Runtime (s) 1114.59989 1129.22675 1047.03467 1684.42416

O
ri
g
in
a
l
v
2

Ave. Precision 57.56825% 57.96051% 57.33382% 58.22112%
Ave. Number of Neurons 5 6.8 5.8 9.4
Ave. Number of Synapses 6.4 9.6 7 15

Ave. Number of Outer Loops 14.2 16 16.4 17.8
Ave. Number of Inner Loops 1.69372 1.63318 1.57468 1.81486
Ave. Number of Generations 12.49539 14.73186 9.73649 20.37585

Ave. Runtime (s) 144.49061 299.61667 166.09787 465.59094

A
d
v
er
sa
ri
a
l

Ave. Precision 100% 100% 100% 100%
Ave. Number of Neurons 7.4 7.2 7 7
Ave. Number of Synapses 14.8 15 14 14

Ave. Number of Outer Loops 11.6 11.8 11.8 12.4
Ave. Number of Inner Loops 1 1 1 1
Ave. Number of Generations 29.83683 30.82398 20.19793 23.5539

Ave. Runtime (s) 323.39028 349.18024 141.60848 182.41118

Table 7: Average of all results for each GA function variant

Variant 1 Variant 2 Variant 3 Variant 4

Ave. Precision 85.03418% 84.6839% 89.39876% 88.24962%

Ave. Number of Neurons 7.02857 6.48571 6.65714 8.14286

Ave. Number of Synapses 12.28571 11.42857 11.88571 14.05714

Ave. Number of Outer Loops 7.28571 8.11429 8.6 8.51429

Ave. Number of Inner Loops 1.64156 1.56705 1.20232 1.28752

Ave. Number of Generations 35.36726 33.02435 22.97439 24.79617

Ave. Runtime (s) 312.55199 351.73739 236.75308 376.01885

298

A Framework for Evolving Spiking Neural P
Systems with Rules on Synapses

Celine Anne A. Moredo1, Ryan Chester J. Supelana1, Dionne Peter Cailipan1,
Francis George C. Cabarle1,2, Ren Tristan A. de la Cruz1, Henry N. Adorna1,

Xiangxiang Zeng3, Miguel Ángel Mart́ınez-del-Amor4

1Algorithms & Complexity, Dept. of Computer Science,
University of the Philippines Diliman
Diliman 1101 Quezon City, Philippines.

2Shenzhen Research Institute of Xiamen University
Xiamen University, Shenzhen 518000, Guangdong, China.

3School of Information Science and Engineering
Hunan university 410082, Changsha, China.

4Research Group on Natural Computing, Dept. Computer Science and AI,
University of Seville, Seville, Spain

Abstract. In this paper, we present a genetic algorithm framework for
evolving Spiking Neural P Systems with rules on synapses (RSSNP sys-
tems, for short). Starting with an initial RSSNP system, we use the ge-
netic algorithm framework to obtain a derived RSSNP system with fewer
resources (fewer and simpler rules, fewer synapses, less initial spikes) that
can still produce the expected output spike trains. Different methods in
the selection of parents and in the calculation of fitness are incorporated.
We also try the framework on 5 RSSNP systems that compute bitwise
AND, OR, NOT , ADD, and SUB respectively to gather data on how
the framework behaves. Lastly, we discuss the asymptotic complexity of
the algorithm and its effectiveness in generating fitter RSSNP systems
based on which methods were used.

Keywords: Membrane Computing · Spiking Neural P Systems ·Genetic
Algorithm.

1 Introduction

People encounter different types of problems every day and in order to progress
through their lives, and they need to learn how to solve those problems. Al-
though most everyday problems, like cooking or fixing your bed, can be solved
without the means of a computer, many classic problems in computer science
are continuing to be solved with new algorithms or computing models.

Computer scientists from around the world have proposed several unique
solutions (or algorithms) to solve computationally hard problems such as the
traveling salesman problem. Many of them base their algorithms using the Turing
Machine, which our modern computers took inspiration from. While many of

299

2 C. Moredo et al.

these are elegant, it is, more often than not, difficult and time-consuming to
construct them. Having a system that could design a minimized version of a
candidate solution could let us easily save a significant amount of resources
when solving problems.

[13] started the study of incorporating the nature of cells into computing
and calls this field as Membrane Computing. His work catapulted numer-
ous different studies on the field, and eventually, [7] introduced a new model of
computation that is Turing-complete, the Spiking Neural P System. This
mathematical model is interesting because it closely resembles the third gener-
ation of neural networks, Spiking Neural Networks, which is commonly used for
many applications in Machine Learning. It has also been shown that a variant
of this new model, specifically Spiking Neural P Systems with Neuron Division
and Budding can be used to solve the SAT problem by creating an exponential
workspace in linear time [12].

Many Spiking Neural P Systems have already been proposed to solve some
of the problems today. As mentioned above, if it is possible to design a simpler
solution (in this case, a Spiking Neural P System) to reduce the amount of
resources needed to solve a problem, we may be able to save a significant amount
of time when using applications that use this model.

In this work, we will first discuss the variation of the SNP systems called
Spiking Neural P Systems with rules on synapses (RSSNP systems, for short).
We will then discuss the genetic algorithm framework, and how we applied it
to the RSSNP systems. This includes our method of initializing the population,
calculating the fitness, selecting the parents, crossover methods and mutation
rate, offspring validity checking, and termination. Next, we discuss our imple-
mentation and experiments. Lastly, we show the results, our analysis, and the
discussion on possible future works. We note that ideas from this work were
first given in a presentation during BWMC2018 in https://www.gcn.us.es/files/
bwmc2018-evolsnp-present.pdf.

2 Preliminaries

2.1 Spiking Neural P Systems with Rules on Synapses

For this study, we will be dealing with a specific type of SNP system called
Spiking Neural P Systems with Rules on Synapses (RSSNP) [15]. The
main difference between SNP systems and RSSNP systems is that the rules are
on the synapses and not on the neurons, which allows the system to use different
mechanisms for the spike consumption.

Definition 1 (RSSNP system). A Spiking Neural P System with Rules on
Synapses, of degree m ≥ 1, is a construct of the form

Π = (O, σ1, . . . , σm, syn, in, out),

where:

300

A Framework for Evolving RSSNP Systems 3

��
��1

��
��2

��
��3

��
��4

��
��5

�

�

�

�

�
�
�
����

�
�
���

������

					

�

a → a

a → a

a→
a

a
→
a

a(a 2
) ∗
/a →

a

a 2→
λ

a →
a

a
2 → λ

a → a
a2 → a

a2

Fig. 1: An RSSNP system ΠXOR that simulates the XOR gate.

1. O = {a} is the singleton alphabet that is also called spike;
2. σ1, . . . , σm are the neurons of form σi = (ni), where ni ≥ 0 is the initial

number of spikes contained in σi, 1 ≤ i ≤ m;
3. syn, the set of synapses; each element is a pair ((i, j), R(i,j)), where:

(a) (i, j) indicates the indices of the neurons the synapse is connecting with
1 ≤ i,j ≤ m, and i �= j;

(b) R(i,j) is the set of rules on the synapse, which can be of the following
forms:
i. E/ac → ap; d where E is a regular expression over O, c ≥ p ≥ 1,

d ≥ 0;
ii. as → λ where s ≥ 1 and for each rule E/ac → ap; d, of type i. from

any R(i,j), a
s �∈ L(E);

4. in, out ⊆ {1, 2, ...,m} indicate the sets of the input and output neurons,
respectively.

Extended spiking rules are of the form E/ac → ap; d with p ≥ 1. If p = 1,
it is called a standard spiking rule. If L(E) = ac, the rule can be written as
ac → ap; d, or if d = 1, the rule can be simplified by not writing d.

Spiking rules are applied as follows: a rule is enabled if a synapse is connected
to a neuron σi that contains k spikes where k ≥ c and ak ∈ L(E). By applying
the rule, c spikes are consumed, so only (k − c) spikes are now contained. There
are cases in which a neuron satisfies rules on different synapses, and with it,
different processing mechanisms can be applied. For E1/a

c1 → ap1 on synapse
(i, j) and E2/a

c2 → ap2 on synapse (i, k), assuming σi contains k spikes, where
ak ∈ L(E1) ∩ L(E2), p1 ≤ c1 ≤ k, p2 ≤ c2 ≤ k:

1. If c1 = c2 = c, equal spike consumption strategy is used, so only c spikes are
consumed, and p1 and p2 spikes are generated in (i, j) and (i, k), respectively.
Note that it doesn’t matter if c1 + c2 > k;

2. If c1 �= c2, maximum spike consumption strategy is used, so max(c1, c2)
spikes are consumed, and p1 and p2 spikes are generated in (i, j) and (i, k),
respectively.

Rules of the form as → λ with s ≥ 1 are called forgetting rules and are
applied as follows: if neuron σi contains exactly s spikes, and no firing rule is
enabled, the rule is used and s spikes are consumed.

301

4 C. Moredo et al.

Similar to SNP systems, a global timer exists which marks the time for each
neuron and synapse. For cases wherein a neuron satisfies two different rules on
the same synapse, the system will non-deterministically choose which of the
enabled rules to apply.

A configuration of a system is defined to be the number of spikes in each
neuron and the number of steps until each synapse becomes open, so the initial
configuration of a system is 〈n1, n2, . . . , nm, 0, 0, . . . , 0〉 where all synapses are
open and n1, n2, . . . , nm is the initial number of spikes contained in neurons
σ1, σ2, . . . , σm.

A computation is a series of transitions starting from the initial configuration.
A computation ends when the system reaches a configuration in which no rule
can be applied on any synapse. The result of a computation can be defined in
various ways —it can be the number of spikes sent to the environment, the time
interval between two spikes, etc.

The system may or may not have an input neuron or output neuron defined.
In doing so, we obtain a system working in the accepting or the generating mode,
respectively.

Consider an RSSNP ΠXOR that simulates the XOR gate shown in Fig-
ure 1. We have σ1 = σ2 = σ4 = σ5 = {0}, σ3 = {2}, syn = {((1, 3), {a →
a}), ((1, 4), {a → a}), ((2, 3), {a → a}), ((2, 4), {a → a}), ((3, 5), {a(a2)∗/a →
a, a2 → λ}), ((4, 5), {a → a, a2 → λ}), ((5, env), {a → a, a2 → a})}, in = {1, 2},
and out = {5}.

As shown in Table 1, putting one spike each to neurons σ1 and σ2 at the
beginning of the computation, ΠXOR operates as follows: At time step t0, the
rule a2 → λ is activated due to the initial spikes in σ3, but no spikes are sent to
neurons nor to the environment. Due to the inputs, σ1 and σ2 contain 1 spike
each and the rule a → a on synapses (1, 3), (1, 4), (2, 3), and(2, 4) are activated
at time step t1. σ3 and σ4 contain 2 spikes each, which causes to activate the rule
a2 → λ on synapses (3, 5) and (4, 5) at time step t2. Afterwards, the computation
halts without sending any spike to the environment because there are no longer
any rules that can be activated and all synapses are open.

If, however, ΠXOR is given one spike only to σ1, it would operate as shown
in Table 2: The rule a2 → λ is activated due to the initial spikes in σ3 and no
spikes are still sent to neurons nor to the environment at time step t0, but at
time step t1, only σ1 will contain a spike, so the rule a → a will only be activated
on synapses (1, 3) and (1, 4). At time step t2, σ3 and σ4 contain one spike each,
so the rule a → a on synapse (4, 5) and rule a(a2)∗/a → a on on synapse (3, 5)
will be activated. σ5 receives one spike each from σ3 and σ4, so it will send 2
spikes to the environment due to the rule a2a∗/a2 → a on synapse (5, env). The
computation then halts because there are no longer any applicable rules and all
synapses are open.

Upon studying the behaviour of this system, it can be observed that the spikes
in σ3 and the rule a2 → λ from its outgoing synapse can together be omitted.
This is to be noted as we will later on discuss simplifying RSSNP systems in the
succeeding sections.

302

A Framework for Evolving RSSNP Systems 5

Time Step σ1 σ2 σ3 σ4 σ5

t0 0 0 2 0 0

t1 1 1 0 0 0

t2 0 0 2 2 0

Table 1: Computation of ΠXOR Computing 1 XOR 1

Time Step σ1 σ2 σ3 σ4 σ5

t0 0 0 2 0 0

t1 1 0 0 0 0

t2 0 0 1 1 0

t3 0 0 0 0 2

Table 2: Computation of ΠXOR Computing 1 XOR 0

2.2 Genetic Algorithm

The Genetic Algorithm, which stems from the principles of genetics and natural
selection, is a method for solving optimization and search problems. The ge-
netic algorithm starts by generating a random population of candidate solutions
(called individuals), with each iteration called a generation. Each individual has
a set of properties or attributes that define it, called the chromosome. In each
generation, a fitness function, defined at the start, is used to assess how fit each
individual is. The population will then undergo the process of selection. Here
only some of the individuals will be chosen. The probability of an individual
being selected is based on its fitness score. The selected individuals will produce
offsprings which will form the next generation through the process of crossover
or reproduction in Biology. After the offspring have been created, there is a prob-
ability that the offspring will undergo mutation. The entire process is repeated
until the stopping condition, which is defined at the start, has been met [10].

3 Problem Statement

Extensive research has already been conducted to artificial neural networks
(ANN, for short) and likewise, the idea of an evolving ANN for optimizing its
performance (faster execution times or higher accuracy in classification prob-
lems, etc.) is nothing new. [9] and [8] have proposed methods for encoding feed-
forward neural networks, namely direct and grammatical encoding, to evolve
them using genetic algorithm. Many similar studies like [6] and [16] use different
methods but ultimately have the same goal.

It is a different case for RSSNP systems. The concept of performance in an
RSSNP system has some differences from ANNs. The output of a deterministic
RSSNP will always be the same if given the same input. Just like a mathematical
function, we would prefer an RSSNP system that outputs the expected set of bits
to the environment rather than random and unexpected bits. To quantify this

303

6 C. Moredo et al.

Start

Create PopulationX

Determine fitness of each individual in the population

Good enough individual? End

Select parents from the population

Breed parents to form offspring

Randomly undergo mutation

X

Yes

No

Fig. 2: General flowchart of a Genetic Algorithm

idea of performance, let there be an input and output pair (x, y). When an
RSSNP accepts x and exactly produces y, then it has produced an expected
output so it has good performance. If the output is not exactly y, then the
RSSNP has a lower performance for each bit that is incorrect. Although RSSNP
systems and ANNs are similar as both were inspired by the human brain, no
formal study has been conducted to evolve RSSNP systems in a similar fashion
to that of neural networks.

A possible first step to evolve RSSNP systems is by reducing the resources
(neurons and the initial number of spikes in the system, rules and their parame-
ters, synapses). An RSSNP system with fewer resources would most likely result
in faster execution time since fewer steps will have to be taken before the sys-
tem halts. Smaller RSSNP systems also consume less memory space which is
another advantage. It might also be possible to find a desired RSSNP system
that outputs the expected bitstrings within a larger RSSNP system.

In this study, we want to answer the question:

304

A Framework for Evolving RSSNP Systems 7

– How do we reduce a given RSSNP Πinit to an RSSNP with fewer resources
Π ′

init, but still consistently produces an expected output?

4 Objectives of the Study

The goal of the study is to design a genetic algorithm framework for reducing
the number of rules and synapses of a given RSSNP system.

More specifically, the main goal is to create a framework wherein given:

1. a finite set of input-output spike train pairs S={(a1, b1), (a2, b2), . . . , (an, bn)}
where each set of input spike train ai = {αi1, αi2, . . . , αij} for j = |in| and
αik, bi ∈ {0, 1}+ for 1 ≤ k ≤ j,

2. an RSSNP system Πinit = (O, σ1, . . . , σm, syn, in, out) that produces an
output spike train that matches with bi when fed with ai with an error rate
of ε.

We can obtain Πfinal = (O′, σ′
1, . . . , σ

′
m, syn′, in′, out′) with the following char-

acteristics:

1. produces an output spike train that matches with bi when fed with ai with
an error rate of ε′ where ε′ ≤ ε.

2. |syn′| ≤ |syn|
3. The total number of rules in Πfinal is less than or equal to the total number

of rules in Πinit

4. The maximum number of spikes consumed in any rule in Πfinal is at most
the maximum number of spikes consumed in any rule in Πinit

5 Scope and Limitations of the Study

The scope of the study will be limited to a specific type of P System called Spik-
ing Neural P Systems with Rules on Synapses, also known as RSSNP, wherein
the following restrictions would be used:

1. Deterministic Systems. A synapse in the system should not contain any
two rules R1 = (E1, c1, p1, d1) and R2 = (E2, c2, p2, d2) such that L(E1) ∩
L(E2) �= ∅ and R1 �= R2. It should also not contain any synapses S1 =
((i1, j1), R(i1,j1)) with rule R3 = (E3, c3, p3, d3) and S2 = ((i2, j2), R(i2,j2))
with rule R3 = (E4, c5, p5, d6) where i1 = i2, j1 �= j2, L(E3) ∩ L(E4) �= ∅,
and c3 �= c4.

2. Equal Spike Consumption. The RSSNP we will be dealing with will
consume equal amounts of spike when handling rules enabled on different
synapses coming from the same neuron. Given E1/a

c1 → ap1 ; d1 on synapse
(i, j) and E2/a

c2 → ap2 ; d2 on synapse (i, k), assuming σi contains n spikes,
where an ∈ L(E1) ∩ (E2), p1 ≤ c1 ≤ n, p2 ≤ c2 ≤ n, d1, d2 ≥ 0, we will only
handle cases in which c1 = c2.

305

8 C. Moredo et al.

3. Constant Neurons. The number of neurons in the system is constant such
that no neuron is added or removed in the system while it is undergoing
evolution.

4. Synchronous mode. The system operates under a global timer which
marks the time for all neurons and synapses.

5. Regular Expression. The regular expression to be used when expressing
a rule on a synapse should only be in the form of ai(aj)∗ where i ≥ 0, j ≥ 0
and i+ j ≥ 0. Rules of other forms will not be accepted.

6. No delays. The rules on the synapses in the system should not contain any
delays. Given rules of the form E/ac → ap; d in the system, all rules should
have d = 0.

6 Related Work

6.1 Evolving Neural Networks

[6] compares the results of using evolutionary programming to evolve neural net-
works against using the back-propagation algorithm. In the experiments with
evolutionary programming, the networks had a fixed number of neurons and the
edges connecting the neurons remained constant, but only evolved the weights of
the network. His experiments included evolving multilayer perceptrons to solve
the XOR problem and the Gasoline Blending problem. Evolutionary program-
ming ”solved” the XOR problem and Gasoline Blending problem before the 40th
and 100th generation respectively, as compared to 240 and 400 to 500 generations
(epochs) for back-propagation.

[10] suggests that it is possible to apply the genetic algorithm to evolve
neural networks. One possible strategy was to apply a genetic algorithm to a
fixed network and only evolving the weights as done by [11]. They represented
an individual in the population as a vector containing the weights of the network
when reading off from left to right and top to bottom. The fitness of an individual
was determined by using its chromosomes (or properties) as the weights of the
network and taking the sum of the squares of the errors after running the network
on a specific training set. The crossover operation was done by selecting incoming
links from parents randomly and copying those weights to the offspring. Another
way to apply a genetic algorithm to evolve neural networks is done in [9]. A
network was encoded as an adjacency matrix and offspring were created by
selecting a random row index and swapping the corresponding rows between two
parent matrices. This method for genetic algorithm allowed for neural networks
with low error rate but its problems in performance are apparent in larger and
more complex networks. [8] proposes another method for applying a genetic
algorithm to a neural network that does not greatly affect performance for larger
networks. The paper uses grammatical encoding wherein a set of rules, called a
grammar, is used to generate a network.

306

A Framework for Evolving RSSNP Systems 9

6.2 Matrix Representation of RSSNP Systems

[2] presents a matrix representation of SNP systems in order to simulate these
systems on graphics processing units (or GPU, for short) and further improved
their work in [3] by implementing a computation simulation algorithm for SNP
systems on GPUs.

[4] proposes an algorithm for simulating RSSNP systems. Their work includes
an extension of the matrix representation mentioned previously as well as pseu-
docodes for simulating the RSSNP continuously during consecutive time steps.
The algorithm is also able to handle non-determinism which will be useful for
future research on the topic of this study.

7 Algorithm

Initial

RSSNP

Genetic Algorithm

Set of

input-output

pairs

(Initial)

Population

Calculate

Fitness

Parent

Selection

Crossover/

Mutation

Derived

RSSNP

Good enough?

Not yet

Fig. 3: Overview of the Genetic Algorithm Framework

The main framework will take an RSSNP system and a set of input-output
spike train pairs as input. The genetic algorithm framework will then create
an initial population of RSSNP systems that have resources less than or equal
to the input RSSNP system as described in Section 7.1. The fitness of each
RSSNP system in the population will be calculated by comparing the generated
output of each system with the given input-output spike train pairs using the

307

10 C. Moredo et al.

methods in Section 7.2. A low error means high fitness. RSSNP systems will
then be selected using methods described in Section 7.3 to reproduce. Selected
RSSNP systems will be bread to create offspring which will replace the previous
generation as stated in Section 7.4. Each offspring will then be mutated with a
chance as described in Section 7.5. An overview of the framework is illustrated
in Figure 3.

7.1 Initializing Population

Given an initial RSSNP Πinit = {O, σ1, σ2, . . . , σm, syn, in, out} and population
size popsize, we create popsize individuals by randomizing the resources of Πinit

except rules connected to an input neuron or the output neuron. We can do this
by applying the mutation function, which consists of the following operations,
to Πinit:

1. Delete rule. For every rule in the system, there is a probability that it will
be deleted.

2. Change connected synapses. For every synapse in the system, there is a
probability that its source or destination neuron will change.

3. Change the regular expression. For every rule in the system, there is a
probability that its regular expression will change.

4. Decrease consumed spikes. For every rule in the system, there is a prob-
ability that its consumed spikes will decrease.

5. Decrease produced spikes. For every rule in the system, there is a prob-
ability that its produced spikes will decrease.

6. Decrease initial number of spikes. For every neuron in the same, there
is a probability that its initial number of spikes will decrease.

During this step only, each of the aforementioned operations has a 50% chance
of being applied to a rule. In other words, the mutation rate is set to 50%.

For example, using the RSSNP shown in Figure 4, we can derive the following
RSSNPs displayed in Figure 6. In Figure 5a, method (1) is applied and rule
a2(a2)∗/a2 → a on synapse (6, 5) is deleted, while in Figure 5b, due to 2, the rule
a3 → λ, which used to be on synapse (4, 6), is now on synapse (4, 7) because the
synapse outgoing from σ4 to σ6 is now going outgoing from σ4 to σ6. Applying 3,
the regular expression of the rule a2(a2)∗/a2 → a on synapse (6, 5) in Figure 5c
changed from a2(a2)∗ to a2(a)∗. Figures 5d and 6a show the same rule a2 → a2

on synapse (5, 4) being altered by methods (4) and (5), respectively. Method (6)
is shown to be applied in Figure 6b where the initial number of spikes in σ3 is 0.

Given Πinit has r rules, the time complexity of this step is O(r ·popsize). The
time it takes to mutate Πinit is O(r) because applying each mutation method
in 7.1 to a rule only takes O(1), and it is repeated r times. Πinit is mutated
popsize times to populate the population.

308

A Framework for Evolving RSSNP Systems 11

��
��1

��
��2

��
��3

��
��4

��
��5

��
��6

��
��7

��
��8

�

�

� �

�

�

�

�
�
�
����

�
�
���

�

�
�
�
��

�
�

�
���

�

�

�

a→
a

a → a

a → a
a2 → λ

a→
a

a
→
a a

→
a

a
2 →

a
2

a3 → λ

a→
a

a
→

a

a
2
→

a
2

a
→

a

a→
a

a
2(a

2) ∗/
a
2→

a

a → a

a
→

a
a
2
→

λ

a3

a2

Fig. 4: RSSNP that does not compute anything

7.2 Calculating Fitness

Once the population P = {Π ′
1, Π

′
2, . . . , Π

′
popsize} is created and given a finite set

of input-output spike train pairs S =
{(a1, b1), (a2, b2), . . . , (an, bn)} where each ai = {αi1, αi2,
. . . , αij} for j = |in| and αik, bi ∈ {0, 1}+ for 1 ≤ k ≤ j, we feed each ai to
every individual Π ′

j and produce an output spike train b′i, that is, we perform

Π ′
j(ai) = b′i for every Π ′

j in P . Once |b′i| = 3 · |bi|1, we stop the computation of
Π ′

j(ai). Then, we evaluate each generated output spike train b′i produced by Π ′
j .

To do this, we compare b′i with bi using a string matching method f and the

score of b′i is the ratio of the output of f over the length of bi or scorei =
f(bi,b

′
i)

|bi| .

If the computation of Π ′
j(ai) was halted or in other words, b′i ≥ 3 · |bi|, then

scorei is further halved. For this study, the following methods are selected as f :

1. Longest Common Substring. Returns the length of the longest spike train
from b′i that is a sub string of bi. Using this method has the advantage of
determining if the RSSNP is able to output the expected bits consecutively. If
such RSSNP is found (can consecutively output all of the expected bits), then
it will receive 100% fitness rating. Though, this method will generally give a
lower fitness than Method (2) due to the problem having more constraints.

2. Longest Common Subsequence. Returns the length of the longest sub-
sequence common to b′i and bi. Using this method allows us to see if the
RSSNP can produce the expected bits in order, even if not consecutively.

1 It is to be noted that the upper bound 3 · |bi| is used for the system to be given
enough time to (1) process the input spike train and (2) release the output spike
train.

309

12 C. Moredo et al.

��
��1

��
��2

��
��3

��
��4

��
��5

��
��6

��
��7

��
��8

�

�

� �

�

�

�

�
�
�
����

�
�
���

�

�
�
�
��

�
�

�
���

�

�

�

a→
a

a → a

a → a
a2 → λ

a→
a

a
→
a a

→
a

a
2 →

a
2

a3 → λ

a→
a

a
→

a

a
2
→

a
2

a
→

a

a→
a

a → a

a
→

a
a
2
→

λ

a3

a2

(a) Rule a2(a2)∗/a2 → a on synapse (6, 5)
is deleted

��
��1

��
��2

��
��3

��
��4

��
��5

��
��6

��
��7

��
��8

�

�

�

�

�

�

�
�
�
����

�
�
���

�

�
�
�
��

�
�

�
���

�

�

�

a→
a

a → a

a → a
a2 → λ

a→
a

a
→
a a

→
a

a
2 →

a
2

a→
a

a 3→
λ

a
→

a

a
2
→

a
2

a
→

a

a→
a

a
2(a

2) ∗/
a
2→

a

a → a
a
→

a
a
2
→

λ

a3

a2

(b) Outgoing neuron of rule a3 → λ
changed from σ6 to σ7

��
��1

��
��2

��
��3

��
��4

��
��5

��
��6

��
��7

��
��8

�

�

� �

�

�

�

�
�
�
����

�
�
���

�

�
�
�
��

�
�

�
���

�

�

�

a→
a

a → a

a → a
a2 → λ

a→
a

a
→
a a

→
a

a
2 →

a
2

a3 → λ

a→
a

a
→

a

a
2
→

a
2

a
→

a

a→
a

a
2(a

) ∗/
a
2→

a

a → a

a
→

a
a
2
→

λ

a3

a2

(c) Regular expression of rule
a2(a2)∗/a2 → a on synapse (6, 5) changed

to a2(a)∗

��
��1

��
��2

��
��3

��
��4

��
��5

��
��6

��
��7

��
��8

�

�

� �

�

�

�

�
�
�
����

�
�
���

�

�
�
�
��

�
�

�
���

�

�

�

a→
a

a → a

a → a
a2 → λ

a→
a

a
→
a a

→
a

a
2 /a

→
a
2

a3 → λ

a→
a

a
→

a

a
2
→

a
2

a
→

a

a→
a

a
2(a

2) ∗/
a
2→

a

a → a

a
→

a
a
2
→

λ

a3

a2

(d) Number of spikes consumed by rule
a2 → a2 on synapse (5, 4) decreased from 2

to 1

310

A Framework for Evolving RSSNP Systems 13

��
��1

��
��2

��
��3

��
��4

��
��5

��
��6

��
��7

��
��8

�

�

� �

�

�

�

�
�
�
����

�
�
���

�

�
�
�
��

�
�

�
���

�

�

�

a→
a

a → a

a → a
a2 → λ

a→
a

a
→
a a

→
a

a
2 →

a

a3 → λ

a→
a

a
→

a

a
2
→

a
2

a
→

a

a→
a

a
2(a

2) ∗/
a
2→

a

a → a

a
→

a
a
2
→

λ

a3

a2

(a) Number of spikes produced by rule
a2 → a2 on synapse (5, 4) decreased from 2

to 1

��
��1

��
��2

��
��3

��
��4

��
��5

��
��6

��
��7

��
��8

�

�

� �

�

�

�

�
�
�
����

�
�
���

�

�
�
�
��

�
�

�
���

�

�

�

a→
a

a → a

a → a
a2 → λ

a→
a

a
→
a a

→
a

a
2 →

a
2

a3 → λ

a→
a

a
→

a

a
2
→

a
2

a
→

a

a→
a

a
2(a

2) ∗/
a
2→

a

a → a

a
→

a
a
2
→

λ

a3

(b) Initial number of spikes in σ5

decreased from 2 to 0

Fig. 6: RSSNPs derived from Figure 1 using the Delete Rule Operation in Section
1, Change Connected Synapses operation in Section 2, Change Regular Expres-
sion operation in Section 3, Decrease Consumed Spikes operation in Section 4,
Decrease Produced Spikes operation in Section 5, and Decrease Initial Number
of Spikes in Section 6

This can give us deeper information on the structure of the RSSNP (if there
are extra neurons or synapses that delay spikes to the environment, etc.).

Once each b′i has its corresponding scorei, the fitness of Π ′
j is calculated as

the average of all the scores of b′i or fitnessj =
score1+score2+...+scoren

n .

A higher fitness means lower error ε. So we achieve Π ′
j with a lower error by

attaining RSSNPs with higher fitness, thus achieving the first bullet defined in
Section 4.

Given bmax = max(b1, b2, . . . , bn) and n is the number of input-output spike
train pairs, the time complexity of this step is O(bmax

2 ·n ·popsize). According
to [5] and [17], Longest Common Substring and Longest Common Subsequence’s
time complexity is both O(n · m), where n and m are the length of the strings
being compared. We can assume n = m = 3 · bmax because the maximum length
of the strings to be compared is 3·bmax, so methods (1) and (2)’s time complexity
is O(3 ·bmax

2) or O(bmax
2), and we repeat this n times for all input-output spike

train pairs. We perform this for all Π ′
j in P .

311

14 C. Moredo et al.

7.3 Parent Selection

After determining the fitness of every Π ′
j , we sort P by descending fitness. Suit-

able parents are then chosen to produce offspring that will be included in the
succeeding population. For this study, there are 3 methods used to select parents:

1. Top 50% of the population. The first half of the population are selected as
parents. We use this selection method because it is simple and can easily be
implemented. Also, there is always a high probability of having individuals
with high fitness to become parents. A disadvantage is that this method is
prone to getting stuck at an undesired solution. This is due to its nature of
trying to converge to a solution at the start rather than looking for other
possible solutions [14].

2. 25% of the population based on fitness. We take the fitness of every
individual Π ′

j in the population and calculate their sum
∑n

j=1 fitnessj . The

probability of each individual Π ′
j to be selected as a parent is

fitnessj∑n
j=1 fitnessj

.

After calculating the probability of each individual, we select 25% of the
population to be parents based on their probabilities; the higher its proba-
bility, the more likely it is to become a parent. Unlike in method (1), using
this method lets the framework introduce diversity of RSSNP systems. This,
in turn, will allow us to see a variety of individuals.

3. Top 25% of the population + 25% of the population based on fit-
ness. A hybrid of the other methods. It is similar to method (1), but only
the first quarter of the population is selected. Then, we calculate the proba-
bility of being selected as a parent to the other 75% of the population using
the same method in (2). After calculating the probability of each individual
from the remaining 75%, we select popsize

4 individuals to become parents
based on their probabilities. Combining methods (1) and (2) allows us to
take advantage of the qualities of both methods.

RSSNP Fitness

1 87.85%
2 85%
3 84.3%
4 80%
5 77.45%
6 73%
7 68.23%
8 65.05%

Table 3: Example of a population of popsize = 8

To give a better understanding, assume a population of popsize = 8 with
fitness of individuals defined in Table 3. Using method (1), the probability of

312

A Framework for Evolving RSSNP Systems 15

each RSSNP being a parent is shown in Table 4a. The top 4 RSSNPs with the
highest fitness are sure to be parents of the next generation while the rest have
no chance. On the other hand, using method (2) gives all RSSNPs a chance to
become a parent as shown in Table 4b. In Table 4c, it can be seen that method
(3) automatically entails the top 25% of the population to be parents while the
rest have a probability dependent on their fitness.

RSSNP Fitness Probability of Being a Parent

1 87.85% 100%
2 85% 100%
3 84.3% 100%
4 80% 100%
5 77.45% 0%
6 73% 0%
7 68.23% 0%
8 65.05% 0%

(a) Top 50% of the Population

RSSNP Fitness Probability of Being a Parent

1 87.85% 14.15%
2 85% 13.69%
3 84.3% 13.58%
4 80% 12.88%
5 77.45% 12.47%
6 73% 11.76%
7 68.23% 10.99%
8 65.05% 10.48%

(b) 25% of the Population Based on Fitness

RSSNP Fitness Probability of Being a Parent

1 87.85% 100%
2 85% 100%
3 84.3% 18.82%
4 80% 17.86%
5 77.45% 17.29%
6 73% 16.29%
7 68.23% 15.23%
8 65.05% 14.52%

(c) Top 25% of the Population + 25% of the Population Based on Fitness

Table 4: Application of selection method to Table 3

313

16 C. Moredo et al.

Only one selection method is used throughout the whole framework at a time.
Meaning, for every generation in a run, the same selection method is employed
to select the parents of the next generation.

After selecting the parents, the top 50% of the population in the current
generation will be included in the population of the next generation regardless
of whichever method was used to select parents. This is to ensure that the highest
fitness in the population will be maintained in the succeeding generations.

Regardless of which method is selected, the time complexity for this step is
O(popsize · log popsize). Before any method is applied, P is sorted by descending
fitness. From [1], Timsort’s time complexity is O(n log n), where n is the number
of elements. Since there are popsize elements in P , sorting it using Timsort would
take O(popsize ·log popsize). Method (1)’s time complexity is just O(1), while
methods (2) and (3)’s is O(n). Adding the time complexity of the method chosen
will still result to O(popsize · log popsize).

7.4 Crossover

Once the parents are selected, we group the parents into pairs and perform
crossover to produce offspring that share qualities with their parents.

For each pair of parents, we select a rule from each parent randomly and
interchange them with one another. In other words, we swap the selected rules
of the parents, thus creating two new individuals. Using this method, we can see
that two offspring will be produced for each pair of parents.

For example, consider Figure 5a and Figure 5b as a pair of parents. The rules
chosen are a3 → λ on synapse (4, 6) and a2(a2)∗/a2 → a on synapse (6, 5) from
Figures 5b and 5c, respectively. We obtain the RSSNPs shown in Figure 7 as
offspring.

We perform crossover until popsize
2 new invdividuals or offspring are created

to fill up the population.
The time complexity of this step is just O(popsize) since swapping the se-

lected rules of the parents only takes O(1) and it is only repeated at most popsize
times.

7.5 Mutation

Given a mutation rate ratem and the set of newly created offspring P ′ =
{Π ′′

popsize
2 +1

, . . . , Π ′′
popsize}, we randomize the resources of each Π ′′

j except rules

connected to an input neuron or the output neuron. We can do this by applying
the following operations enumerated in Section 7.1.

Similar to Section 7.1, the time complexity of this is step is also O(r·popsize),
where r is the number of rules in Πinit since the same process is applied, but
this time to the newly created offspring.

7.6 Checking if the offspring is valid

After creating an offspring, we need to make sure that it is valid. An RSSNP is
considered valid for this study if it exhibits all of the following qualities:

314

A Framework for Evolving RSSNP Systems 17

��
��1

��
��2

��
��3

��
��4

��
��5

��
��6

��
��7

��
��8

�

�

�
�

�

�
�
�
����

�
�
���

�

�
�
�
��

�
�

�
���

�

�

�

a→
a

a → a

a → a
a2 → λ

a→
a

a
→
a a

→
a

a
2 →

a
2

a→
a

a
→

a

a
2
→

a
2

a
→

a

a→
a

a
2(a

2) ∗/
a
2→

a

a → a

a
→

a
a
2
→

λ

a3

a2

(a) Rule a3 → λ on synapse (4, 6) is
swapped with rule a2(a2)∗/a2 → a on

synapse (6, 5)

��
��1

��
��2

��
��3

��
��4

��
��5

��
��6

��
��7

��
��8

�

�

� �

�

�

�

�
�
�
����

�
�
���

�

�
�
�
��

�
�

�
���

�

�

�

a→
a

a → a

a → a
a2 → λ

a→
a

a
→
a a

→
a

a
2 →

a
2

a3 → λ

a→
a

a 3→
λ

a
→

a

a
2
→

a
2

a
→

a

a→
a

a → a

a
→

a
a
2
→

λ

a3

a2

(b) Rule a2(a2)∗/a2 → a on synapse (6, 5)
is swapped with rule a3 → λ on synapse

(4, 6)

Fig. 7: Crossover of Figure 5a and Figure 5b

1. All input neurons are connected to the output neuron. There must
exist a path from all of the input neurons to the output neuron.

2. No non-determinism. All synapses in the system must not contain two or
more rules with intersecting regular expressions. Rules contained in different
synapses but from the same source neuron must not have different consumed
spikes.

For example, Figure 8a is an invalid RSSNP because a path from the input
neuron σ1 to the output neuron σ8 does not exist. On the other hand, Figure 8b
is also invalid because the regular expression of the rules a → a and a → λ on
synapse (3, 5) have an intersection making the system to be non-deterministic.

If at least one of the qualities above are not followed by a produced offspring,
it will be deleted and new offspring will be created by going back to Section 7.4.

After the population is restored to its original size of popsize, the algorithm
will proceed to Section 7.2 and will cycle through the algorithm again.

The time complexity for this step is O(r2) where r is the number of rules
in the system. To check if all the input neurons are connected to the output
neuron, the Breadth-first search, which has a time complexity of O(|V | + |E|),
where V is the number of vertices and E is the number of edges in the graph,
is employed. Thus, method (1) has a time complexity of O(|in|+ |syn|). On the
other hand, method (2) takes O(r2) since we compare the rules with each other.
Combining both methods, the time complexity is O(|V | + |E| + r2) or O(r2).

315

18 C. Moredo et al.

��
��1

��
��2

��
��3

��
��4

��
��5

��
��6

��
��7

��
��8

�

�

� �

�

�

�
�
�
���

�

�
�
�
��

�
�

�
���

�

�

�

a → a

a → a
a2 → λ

a
→
a a

→
a

a
2 →

a
2

a3 → λ

a→
a

a
→

a

a
2
→

a
2

a
→

a

a→
a

a
2(a

2) ∗/
a
2→

a

a → a

a
→

a
a
2
→

λ

a3

a2

(a) Example of an RSSNP where a path
from an input neuron to the output

neuron does not exist

��
��1

��
��2

��
��3

��
��4

��
��5

��
��6

��
��7

��
��8

�

�

� �

�

�

�

�
�
�
����

�
�
���

�

�
�
�
��

�
�

�
���

�

�

�

a→
a

a → a

a → a
a → λ

a→
a

a
→
a a

→
a

a
2 →

a
2

a3 → λ

a→
a

a
→

a

a
2
→

a
2

a
→

a

a→
a

a
2(a

2) ∗/
a
2→

a

a → a

a
→

a
a
2
→

λ

a3

a2

(b) Example of a Non-Deterministic
RSSNP

Fig. 8: Example of invalid RSSNPs

7.7 Termination

The algorithm halts when the specified number of generations have been reached.
There are no stopping criteria to give the framework more opportunities to
reduce the number of resources of the ”fittest” RSSNP system.

8 Implementation

To simulate this algorithm on a computer, the programming language Python
version 3 was used.

A problem arises when simulating how the output neurons will send spikes to
the environment. For the purpose of this experiment, we created an additional
neuron σenv to represent the environment. This neuron does not have outgoing
synapses and has incoming synapses from the output neurons that are supposedly
connected to the environment.

Before we begin the algorithm, the input RSSNP Πinit and the set of input-
output spike trains S must be properly represented in the selected programming
language. Below is the representation of the RSSNP shown in Figure 1 which is
modelled similarly to [4].

Listing 1.1: RSSNP representation

example rssnp = {
’ neurons ’ : 9 ,

316

A Framework for Evolving RSSNP Systems 19

’ synapses ’ : 13 ,
’ r u l e s ’ : [

[0 , 1 , (1 , 0) , 1 , 1 , 0] ,
[0 , 3 , (1 , 0) , 1 , 1 , 0] ,
[1 , 2 , (1 , 0) , 1 , 1 , 0] ,
[1 , 3 , (1 , 0) , 1 , 1 , 0] ,
[2 , 4 , (1 , 0) , 1 , 1 , 0] ,
[2 , 4 , (2 , 0) , 2 , 0 , 0] ,
[3 , 5 , (3 , 0) , 3 , 0 , 0] ,
[3 , 6 , (1 , 0) , 1 , 1 , 0] ,
[3 , 7 , (1 , 0) , 1 , 1 , 0] ,
[3 , 7 , (2 , 0) , 2 , 2 , 0] ,
[4 , 3 , (1 , 0) , 1 , 1 , 0] ,
[4 , 3 , (2 , 0) , 2 , 2 , 0] ,
[5 , 4 , (1 , 0) , 1 , 1 , 0] ,
[5 , 4 , (2 , 2) , 2 , 1 , 0] ,
[6 , 5 , (1 , 0) , 1 , 1 , 0] ,
[6 , 7 , (1 , 0) , 1 , 1 , 0] ,
[7 , 8 , (1 , 0) , 1 , 1 , 0] ,
[7 , 8 , (2 , 0) , 2 , 0 , 0]

] ,
’ i n i t c o n f i g ’ : [0 , 0 , 0 , 3 , 2 , 0 , 0 , 0 , 0] ,
’ r u l e s t a t u s ’ : [−1 for x in range (1 8)] ,
’ input neurons ’ : [0 , 1] ,
’ environment ’ : 8

}
As seen in Listing 8, to represent an RSSNP, a dictionary with the following

keys is used:

1. neurons: Indicates the number of neurons (including the environment) in
the system

2. synapses: Indicates the number of synapses in the system
3. rules: Contains the rule vector lists as defined by [4] of the system
4. init_config: Contains the rule status as defined by [4] of the system
5. input_neurons: Indicates the index of the input neurons of the system
6. environment: Indicates the index of the neuron which will act as the envi-

ronment

To represent the input and output spike trains, an array of Python dictionar-
ies is used. Each dictionary contains the keys inputs and out. out contains the
expected output spike train from the RSSNP. inputs is an array of dictionary
consisting only of two keys index and input. index indicates the index of the
input neuron which the input spike train in input will be put. The input spike
train is inserted from left to right, meaning the most significant bit is the first
one to be added and then the least significant bit is the last. An example of this
can be seen in Listing 8 where the list of input and output spike trains represents
that of expected of an RSSNP that simulates the XOR gate.

317

20 C. Moredo et al.

Listing 1.2: Input and Output spike trains representation

’ i n o u t p a i r s = [
{

’ i nputs ’ : [
{ ’ index ’ : 0 , ’ input ’ : ’ 0101010 ’ } ,
{ ’ index ’ : 1 , ’ input ’ : ’ 1010101 ’ }

] ,
’ out ’ : ’ 11111111 ’

} ,
{

’ i nputs ’ : [
{ ’ index ’ : 0 , ’ input ’ : ’ 111111111111 ’ } ,
{ ’ index ’ : 1 , ’ input ’ : ’ 001010001001 ’ }

] ,
’ out ’ : ’ 110101110110 ’

} ,
. . .

]

To be able to accommodate input spike trains and get the number of spikes
produced per time step, we made a few modifications to [4]’s algorithm as seen
in Algorithm 1. We defined an Input Vector IN = [in1, . . . , ind, . . . , inp],
where p is the number of input neurons in the system, and ind is the index of
an input neuron and for each ine in P \ {ind}, ind �= ine. An Input Spike Train
Vector IS is also defined to list all the incoming spikes of the p input neurons.
It is defined as IS = [is1, . . . , isd, . . . , isp], where isd is the spike train for input
neuron σind

. A spike train isd is represented as isd = [isd1
, . . . , isdb

, . . . , isds
],

where s is the length of the input spike train, and is1b ∈ {0, 1} is the input at
time b. Along with the previous inputs SS(0) and RL, the algorithm requires
IN and IS as inputs. Lines 16-18 are added so that for every input neuron ind,
its corresponding input isindt

at time step t is added.

Instead of returning the UnexploredStates, the algorithm now returns the
output spike train OS. OS is defined as OS = [os1, . . . , ose, . . . , osq], where
ose ∈ {0, 1} is the output of the system at time e − 1.

The Configuration Vector CF (t) is also extended to include a special neuron

σenv that will act as the environment. CF (t) is now defined as CF (t) = [cf
(t)
1 , . . . ,

cf
(t)
i , . . . , cf

(t)
n , cf

(t)
env], where cf

(t)
i for 1 ≥ i ≤ n is the number of spikes in σi at

time t, and cf
(
envt) is the output of the system at time t − 1, where t �= 0. Line

14 shows that after computing for the next System State SS(t+1,w), cf
(t+1)
env is

appended to OS to record the output for time step (t). It is then reinitialized
to 0 since we want to get the number of spikes produced per time step, not the
sum of the number of spikes produced by that time step.

We also added another condition for adding SS(t,w) to the list of unexplored
states UnexploredStates as shown by line 20. If at time step t, there is still an
input, regardless of SS(t,w) ∈ ExploredStates ∪ UnexploredStates, it is still

318

A Framework for Evolving RSSNP Systems 21

added to UnexploredStates. This is to ensure that the output spike produced
by the inputs isindt

are still recorded.

To prevent the algorithm from running into an infinite loop, we define a
maximum number of time steps MaxStep for the computation. MaxStep is
defined to be 3 · |OS′|, where |OS′| is the expected output spike train produced.
We also set a counter Step which tracks the current time step of the computation.
It can be seen in lines 25-28 that if Step > MaxStep, the computation halts.

Algorithm 1: Main Simulation Algorithm

Input: SS(0), RL, IN , IS,MaxStep
Output: OS

1 UnexploredStates ← {SS(0)};
2 ExploredStates ← {};
3 OS ← {};
4 Step ← 0;
5 while UnexploredStates is not empty do

6 Get SS(t) from UnexploredStates;

7 CF (t), RS(t) ← SS(t);

8 SY (t) ← SynapseStatus(RS(t), RL);

9 AP (t) ← RuleApplicability(CF (t), SY (t), RL);

10 AM (t) ← ActivationV ectors(AP (t), RL);

11 RM ′(t), LM (t) ← ApplyRules(AM (t), RS(t), RL);

12 CM (t+1), RM (t+1) ← NextState(CF (t), RM ′(t), LM (t), RL);

13 for each (CF (t+1,w), RS(t+1,w)) do

14 Append cf
(t+1,w)
env to OS;

15 cf
(t+1,w)
env ← 0;

16 for each ind do
17 cfind ← cfind + isindt+1

18 end

19 SS(t+1,w) = (CF (t+1,w), RS(t+1,w));

20 if SS(t+1,w)
∈ (ExploredStates ∪ UnexploredStates) or
Step ≤ max(|is1|, . . . , |isp|)) then

21 Add SS(t+1,w) to UnexploredStates list;
22 end

23 end

24 Put SS(t) in ExploredStates list;
25 Step ← Step+ 1;
26 if Step ≤ MaxSteps then
27 break;
28 end

29 end
30 return OS

319

22 C. Moredo et al.

9 Experiments

To test the algorithm, we created RSSNP systems that have extra rules and
neurons for every function. We did this by adding extraneous rules, neurons, and
synapses to the already existing RSSNP that performs that function. Extraneous
rules are modifications of existing rules put into other synapses. Extraneous
synapses were added to connect existing neurons to the extraneous ones and
extraneous neurons to the existing ones. We also modified some of the original
rules in the system to ensure that the system still computes the intended output.
Due to limited memory space in the testing computer used, we only added 3 extra
neurons for each RSSNP. Doing so, we wanted to check whether the algorithm
we created is be able to delete the extraneous rules and remove the synapses
connecting the extraneous neurons. We also wanted to check whether the rules
we modified would return to its original form.

The RSSNP systems used are listed in Table 5 and diagrams of the RSSNP
systems (generated by the graphviz library in Python) are shown in Figures 9
through 13. In each diagram, the input neurons, as defined in 5, are represented
by the round, triangular-shaped neurons while the environment shown in 6 is
represented by the double-circle. Each rule is represented by a string of the form
(i, j)/c− > p where i and j refer to the regular expression in the rule as discussed
in Section 5 and c refers to the number of spikes consumed when the rule is fired
and c indicates how many spikes will be produced.

Using the RSSNPs mentioned previously, we executed the experiments shown
in Table 6 using the different selection methods enumerated in Section 7.3. Each
experiment was run 5 times and the average of the highest fitness in each run
was recorded which is shown in Figures 14 until 18.

RSSNP Function
Fitness

Figure
Longest Common Substring Longest Common Subsequence

and adversarial AND 59% 84% 9

or adversarial OR 74% 97% 10

not adversarial NOT 64% 95% 11

add adversarial ADD 48 % 72% 12

sub adversarial SUB 60% 79% 13

Table 5: List of RSSNP systems used

10 Analysis and Discussion

Firstly, the RSSNP systems that were created by the framework do satisfy the
constraints given in Section 4. During the last generations of each run, the

320

A Framework for Evolving RSSNP Systems 23

Table 6: List of experiments for varying selection methods
Experiment No. Population Size Mutation Rate Fitness Function No. of Generations

1 12 1% Longest Common Substring 20
2 12 1% Longest Common Subsequence 20
3 12 1% Longest Common Substring 50
4 12 1% Longest Common Subsequence 50
5 12 2% Longest Common Substring 20
6 12 2% Longest Common Subsequence 20
7 24 1% Longest Common Substring 20
8 24 1% Longest Common Subsequence 20
9 24 2% Longest Common Substring 20
10 24 2% Longest Common Subsequence 20
11 12 2% Longest Common Substring 50
12 12 2% Longest Common Subsequence 50
13 24 1% Longest Common Substring 50
14 24 1% Longest Common Subsequence 50
15 24 2% Longest Common Substring 50
16 24 2% Longest Common Subsequence 50

RSSNP with the highest fitness always had less than or equal resources to the ini-
tial RSSNP. This is due to the nature of the algorithm that never adds resources
to a system that already exists in each generation. All operations discussed in
Section 7.1 only deleted or decreased. The crossover function explained in Section
7.4 had 2 parent RSSNPs swap rules, which means neither of the two RSSNPs
will gain resources ”for free.” With that said, the GA framework is successful in
creating RSSNP systems with less resources. The question now is whether or not
those RSSNP systems can produce the expected output spike trains correctly.

It can be seen from Figure 14 to Figure 18 that using the selection method
(1) rarely yields the highest average fitness. Table 7 shows a run of Experiment
1 using selection method (1) with add adversarial as the initial RSSNP. In the
table, it can be seen that the highest fitness of the population stopped increasing
at Generation 8. Upon observing the population per generation of that run, the
top 50% s with highest fitness of the population started looking similar at Gen-
eration 8. After every generation, the RSSNPs in the population started looking
similar, and by Generation 13, the top 50% of the population with highest fitness
are all the same RSSNPs. As a result, performing crossover became meaningless
since the parents have the same configurations, so the results offspring would
just end up being a copy of its parents.

These results support the evaluation of selection methods used in GA by [14].
For this GA framework, the same scenario applies wherein the search space for
generating candidate solutions becomes limited at a very early generation. With
this, method (1) is inefficient in solving the problem stated in 3.

On the other hand, we can see that using selection method (2) yields the
highest average fitness most of the time. A possible reason for this is because
instead of exploiting the qualities of the top s, this method gives every individual

321

24 C. Moredo et al.

Generation Highest Fitness

1 53%
2 53%
3 57%
4 57%
5 65%
6 65%
7 65%
8 69%
9 69%
10 69%
11 69%
12 69%
13 69%
14 69%
15 69%
16 69%
17 69%
18 69%
19 69%
20 69%

Table 7: Highest fitness per generation of Run 3, Experiment 1 of add adversarial

in the population a chance to be a parent. This gives a diverse offspring, where
a better-fit can be found. Hence, we can say selection method (2) is effective in
finding solutions to the problem stated in 3.

Comparing Figure 19 to Figure 23, we can see that the boxes of Longest
Common Substring are shorter and relatively closer with one another in Figure
23. This means that the fitness of the resulting RSSNPs from sub adversarial
do not vary regardless of different mutation rate, selection method, number of
generations, and population size. The boxes’ medians can also be seen to be
almost equal. This implies that whichever selection method is chosen, the fitness
of the resulting RSSNP from sub adversarial is likely to be the same if a different
selection method is chosen.

Using fitness method (1), sub adversarial has an initial fitness of 60% but
still yielded the lowest resulting fitness compared to the other RSSNPs with
lower initial fitness such as add adversarial. This is shown in Figure 18 where
the average fitness at the last generation of experiments that used method (1)
(odd-numbered experiments) did not reach 90%.

It is worth noting that sub adversarial is relatively large compared to the
other RSSNPs in Table 5. Whereas the other RSSNPs have 6-7 neurons, 10-13
synapses, and 10-15 rules, sub adversarial has 14 neurons, 26 synapses, and 32
rules. This may be the reason why Figure 23 is different compared to others. It
is a fact that it takes longer for the algorithm to mutate larger RSSNPs, which is
why it is possible that a higher number of generations is required before we see

322

A Framework for Evolving RSSNP Systems 25

obvious differences and for sub adversarial to yield a higher fitness using method
(1).

It can also be observed that it was easy for the framework to find an RSSNP
that has 100% fitness when handling the NOT function compared to the others.
This could be due to its nature of being a unary operation as compared to
the others which are binary. This could imply that the framework is effective in
giving RSSNPs that compute unary problems with high fitness.

On the other hand, the GA framework had difficulty in finding RSSNPs that
computes the ADD (addition) and SUB (subtraction) functions. When using
Longest Common Substring in computing fitness, it was uncommon for the GA
framework to find an RSSNP with a fitness of at least 90% (4/64 instances) while
handling the ADD function while no RSSNP with at least 90% fitness was found
for SUB (highest fitness is 88%). Since the initial ADD RSSNP had a fitness of
48% and 81% for SUB, there were some improvements. The poor results from
the aforementioned functions could be caused by the greater number of rules and
existence of more complex rules (rules that consume or produce a greater number
of spikes, more complex regular expressions) than the other initial RSSNPs. This
suggests that the complexity of rules in the initial system can greatly affect the
rate of growth of fitness.

11 Final Remarks

Overall, the use of a genetic algorithm to solve the problem stated in Section 3 is
a feasible approach. In an exhaustive and deterministic algorithm, the maximum
number of configurations needed to be checked is O(2nmlijcp) where

– n = number of neurons
– m = number of rules
– l = number of synapses
– i, j = max{coefficients of the regular expressions,1}
– c = maximum number of spikes consumed in a rule
– p = max{number of spikes produced in a rule,1}

A genetic algorithm has the advantage of not needing to check every possible
combination of resources and would require a maximum of O(gen · popsize)
(where gen = the specified number of generations, and popsize = the population
size) configurations to be generated, which is still large but significantly lower
than the exponentially massive value of the aforementioned method.

We have seen that the RSSNP systems created by the genetic algorithm
framework still have a long way to go before they can produce the desired out-
put spike trains perfectly. But we have introduced a new method for designing
RSSNP systems using a genetic algorithm. Depending on which methods in the
genetic algorithm framework were used, the results may differ significantly.

This work only touches the surface of what can be done to evolve RSSNP
systems. For one thing, genetic algorithms should be suitable for any type of
RSSNP system, but we have yet to see its potential for more difficult functions.

323

26 C. Moredo et al.

Another problem is that only reducing the resources might not be enough for
more complex RSSNP systems. In any case, this is a good first step. The existence
of a genetic algorithm framework for evolving RSSNPs may prove to be beneficial
for similar developments in the future.

To check if the genetic algorithm framework can still be improved such that
it can find a better solution with fewer generations, a different selection method
can be used. This is to check if there is a better way of selecting parents for
the next generation. A different method of crossover between parents can also
be performed to see if the offsprings produced can be improved. Another fit-
ness function that evaluates the number of resources in the RSSNP can also be
incorporated into the system so that the size of the system can also be consid-
ered when evaluating. Lastly, suitable stopping criteria may be incorporated to
further improve the outputs of the framework.

The genetic algorithm framework can also be extended to support RSSNPs
that are non-deterministic and have delays.

Acknowledgements

I.C.H. Macababayao, R.T.A. de la Cruz, F.G.C. Cabarle, and H.N. Adorna ac-
knowledge support by grants from the DOST-ERDT project. F.G.C. Cabarle ac-
knowledges support from the Dean Ruben A. Garcia PCA AY2018–2019, an RLC
AY2018–2019 grant, and Project No. 191904 ORG (2019–2020) of the OVCRD
in UP Diliman. H.N. Adorna is supported by the Semirara Mining Corp Pro-
fessorial Chair for Computer Science, and RLC grant from UPD OVCRD. M.A.
Mart́ınez-del-Amor acknowledges the support of the research project TIN2017-
89842-P (MABICAP), co-financed byMinisterio de Economı́a, Industria y Com-
petitividad (MINECO) of Spain, through the Agencia Estatal de Investigación
(AEI), and by Fondo Europeo de Desarrollo Regional (FEDER) of the Euro-
pean Union. The work was supported by the National Natural Science Founda-
tion of China (Grant Nos. 61472333, 61772441, 61472335, 61672033, 61425002,
61872309, 61771331), Project of marine economic innovation and development
in Xiamen (No. 16PFW034SF02), Natural Science Foundation of the Higher Ed-
ucation Institutions of Fujian Province (No. JZ160400), Natural Science Foun-
dation of Fujian Province(No. 2017J01099), Basic Research Program of Science
and Technology of Shenzhen (JCYJ20180306172637807).

References

1. Auger, N., Nicaud, C., Pivoteau, C.: Merge strategies: from merge sort to timsort
(2015)

2. Cabarle, F., Adorna, H., Martinez-del Amor, M.A.: Simulating spiking neural p
systems without delays using gpus. International Journal of Natural Computing
Research (IJNCR) 2(2), 19–31 (2011)

3. Cabarle, F.G.C., Adorna, H., Martinez-Del-Amor, M.A., Perez-Jimenez, M.J.: Im-
proving GPU Simulations of Spiking Neural P Systems. Romanian Journal
of Information Science and Technology 15(1), 5–20 (2012)

324

A Framework for Evolving RSSNP Systems 27

4. Cabarle, F.G.C., de la Cruz, R.T.A., Cailipan, D.P.P., Zhang,
D., Liu, X., Zeng, X.: On solutions and representations of spik-
ing neural p systems with rules on synapses. Information Sci-
ences (2019). https://doi.org/https://doi.org/10.1016/j.ins.2019.05.070,
http://www.sciencedirect.com/science/article/pii/S0020025519304876

5. Flouri, T., Giaquinta, E., Kobert, K., Ukkonen, E.: Longest common substrings
with k mismatches. Information Processing Letters 115(6-8), 643–647 (2015)

6. Fogel, D.B., Fogel, L.J., Porto, V.: Evolving Neural Networks. Biological cybernet-
ics 63(6), 487–493 (1990)

7. Ionescu, M., Păun, G., Yokomori, T.: Spiking neural P systems. Fundamenta
informaticae 71(2, 3), 279–308 (2006)

8. Kitano, H.: Designing neural networks using genetic algorithms with graph gener-
ation system. Complex systems 4(4), 461–476 (1990)

9. Miller, G.F., Todd, P.M., Hegde, S.U.: Designing Neural Networks using Genetic
Algorithms. In: ICGA. vol. 89, pp. 379–384 (1989)

10. Mitchell, M.: An introduction to genetic algorithms. MIT press (1998)
11. Montana, D.J., Davis, L.: Training Feedforward Neural Networks Using Genetic

Algorithms. In: IJCAI. vol. 89, pp. 762–767 (1989)
12. Pan, L., Păun, G., Pérez-Jiménez, M.J.: Spiking Neural P systems with Neuron

Division and Budding. Science China Information Sciences 54(8), 1596 (2011)
13. Păun, G.: From cells to (silicon) computers, and back. In: New computational

paradigms, pp. 343–371. Springer (2008)
14. Saini, N.: Review of selection methods in genetic algorithms. International Journal

Of Engineering And Computer Science 6(12), 22261–22263 (2017)
15. Song, T., Pan, L., Păun, G.: Spiking neural P systems with rules on synapses.

Theoretical Computer Science 529, 82–95 (2014)
16. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting

topologies. Evolutionary computation 10(2), 99–127 (2002)
17. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J.

ACM 21(1), 168–173 (Jan 1974). https://doi.org/10.1145/321796.321811,
http://doi.acm.org/10.1145/321796.321811

325

28 C. Moredo et al.

Fig. 9: and adversarial

Fig. 10: or adversarial

326

A Framework for Evolving RSSNP Systems 29

Fig. 11: not adversarial

Fig. 12: add adversarial

327

30 C. Moredo et al.

Fig. 13: sub adversarial

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

20

40

60

80

100

Experiment Number

F
it
n
es
s

Top 50% of the Population

25% of the Population based on Fitness

Top 25% of the population + 25% of the Population based on Fitness

Fig. 14: Average Fitness Value of and adversarial at the last generation

328

A Framework for Evolving RSSNP Systems 31

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

20

40

60

80

100

Experiment Number

F
it
n
es
s

Top 50% of the Population

25% of the Population based on Fitness

Top 25% of the population + 25% of the Population based on Fitness

Fig. 15: Average Fitness Value of or adversarial at the last generation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

20

40

60

80

100

Experiment Number

F
it
n
es
s

Top 50% of the Population

25% of the Population based on Fitness

Top 25% of the population + 25% of the Population based on Fitness

Fig. 16: Average Fitness Value of not adversarial at the last generation

329

32 C. Moredo et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

20

40

60

80

100

Experiment Number

F
it
n
es
s

Top 50% of the Population

25% of the Population based on Fitness

Top 25% of the population + 25% of the Population based on Fitness

Fig. 17: Average Fitness Value of add adversarial at the last generation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

20

40

60

80

100

Experiment Number

F
it
n
es
s

Top 50% of the Population

25% of the Population based on Fitness

Top 25% of the population + 25% of the Population based on Fitness

Fig. 18: Average Fitness Value of sub adversarial at the last generation

330

A Framework for Evolving RSSNP Systems 33

80 82 84 86 88 90 92 94 96 98 100

Method 1

Method2

Method 3

Longest Common Substring

Longest Common Subsequence

Fig. 19: Average Fitness Value of and adversarial at the last generation according
to the selection method used

80 82 84 86 88 90 92 94 96 98 100

Method 1

Method 2

Method 3

Longest Common Substring

Longest Common Subsequence

Fig. 20: Average Fitness Value of or adversarial at the last generation according
to the selection method used

80 82 84 86 88 90 92 94 96 98 100

Method 1

Method 2

Method 3

Longest Common Substring

Longest Common Subsequence

Fig. 21: Average Fitness Value of not adversarial at the last generation according
to the selection method used

331

34 C. Moredo et al.

70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100

Method 1

Method 2

Method 3

Longest Common Substring

Longest Common Subsequence

Fig. 22: Average Fitness Value of add adversarial at the last generation according
to the selection method used

80 82 84 86 88 90 92 94 96 98 100

Method 1

Method 2

Method 3

Longest Common Substring

Longest Common Subsequence

Fig. 23: Average Fitness Value of sub adversarial at the last generation according
to the selection method used

332

1∗ 1 2∗ 1

1

1

2

− (V − I)

V − I

V −I

small− sample

333

user′s

334

335

small − sample

336

337

8

338

339

C

340

ρX,Y =

n∑
i=1

(Xi − X̄)(Yi − Ȳ)√
n∑

i=1

(Xi − X̄)
2

√
n∑

i=1

(Yi − Ȳ)
2

=
(X,Y)

σXσY

341

ρX,Y

[0.0 0.3]

[0.3 0.5]

[0.5 0.8]

[0.8 1.0]

m× n

y = kx+ b1

342

x y

k b1

y = kx+ b1

{
y1 = kx+ b1 − b

y2 = kx+ b1 + b

b

y1

y2

p

343

p

p0

p0

y1 y2

b

b

b

p b b

p b

344

(CNN)

(referredtoasZFNet9)

345

346

Img

m × n

Img P1(x1, yi), P1(x2, yi), · · ·, P1(x , yi),

P1(x1, yi) P2(x , yi)

(x − x1)

347

RPA =

n∑
i=1

(x − x)|y=yi

m × n

m n

Img x1

i− th x

i − th

348

p0

b

349

350

ZFNet9 (improvedZFNet)

5000

ZFNet9

ZFNet9

351

ZFNet9

352

AlexNetTL

353

354

b

355

356

357

Optimizing the Green Open Vehicle Routing
Problem by Membrane-Inspired Hybrid

Heuristic Algorithm

Yunyun Niu1, Zehua Yang1, and Jianhua Xiao2�

1 School of Information Engineering,
China University of Geosciences in Beijing,

Beijing 100083, China
2 The Research Center of Logistics, Nankai University,

Tianjin 300071, China
jhxiao@nankai.edu.cn

Abstract. In this work, a membrane-inspired hybrid heuristic algorith-
m, MIHA, is proposed to deal with the green open vehicle routing prob-
lem with time windows (GOVRPTW). The MIHA has a cell-like and
three-level nested membrane structure. Tabu search, genetic algorithm
and neighborhood search algorithms were used as sub-algorithms of MI-
HA. Elementary membranes added extra attractors to tabu search. Ge-
netic algorithm, especially the crossover operator, was designed to retain
good gene segments of solutions. Tabu search helped genetic algorithm
escape from local optimal solutions. They were combined in the frame-
work of membrane system. Computational experiments were performed
on realistic instances based on the real road conditions of Beijing, China.
Experimental results showed that our algorithm was more competitive
than peer algorithms.

Keywords: membrane computing, P system, open vehicle routing prob-
lem, carbon emission, tabu search

1 Introduction

The most widely studied and used model for route planning is the vehicle routing
problem (VRP) introduced by Dantzig and Ramser in 1959 [1]. In short, VRP
is the determination of the optimal set of routes to be performed by a fleet
of vehicles, in order to satisfy the demand of a given set of customers. Several
variants of this problem have been formulated and studied. In particular the
vehicle routing problem with time windows (VRPTW) is used for its practical
applications. In this variant customers must be served in a specific time interval,
which are included as time windows constraints [2]. In other problems vehicles
need not return to the depot after delivering goods to customers, and instead go
to other locations. This variant of VRP, in which vehicles do not return to the

� Corresponding author

358

2

depot is called the open vehicle routing problem (OVRP) [3] or the open vehicle
routing problem with time windows (OVRPTW) when time windows constraints
are specified [4].

In 1983, Bodin et al. [5] proposed the first solution approach for the OVRP.
From then on, several researchers have used various heuristics and meta heuris-
tics to solve the OVRP. The most common meta heuristics are based on search,
such as tabu search [6–9], neighbourhood-based search [10–13], or threshold
accepting algorithm [14, 15]. Other researchers have applied bio-inspired and
populations-based meta heuristics, such as particle swarm optimization [16–18],
ant colony optimization [19, 20] or genetic and evolutionary computing [21–23].

Outsourcing logistics operations to third party logistics would reduce costs
by better resources utilization and operations efficiency in freight transportation.
Companies hire vehicles from other companies for delivering their goods. The ve-
hicles will not be supposed to return to the company as usual. The problem can
be modeled as a variant of the OVRP. Nowadays green road freight transporta-
tion has become a hot topic all over the world. The logistics industry is under
the pressure of reducing carbon emission. Green open vehicle routing problems
(GOVRPs) were proposed based on fuel consumption models [24]. These prob-
lems are NP-hard which makes them intractable with large instance problems.
Until now, there have been few solving methods. Lots of work needs to be done
in this area.

Membrane computing is a branch of natural computing. It provides a parallel
distributed computing model called P system [25, 26]. Some types of P systems
have been used as modeling notations for ecosystems and pedestrian behavior
[27–30]. Moreover, P systems have provided nondeterministic frameworks and
distributed parallel for computing or optimizing that have been applied in various
aspects of engineering [31–37]. Readers can find circumstantial evaluations of
miscellaneous P systems in the literature [38–41].

In this work, a membrane-inspired hybrid heuristic algorithm, MIHA, was
proposed to deal with the green open vehicle routing problem (GOVRPTW).
The MIHA has a cell-like and three-level nested membrane structure, see Figure
1. Skin membrane is the first level, where genetic algorithm (GA) is implemented.
The adjacent inner membranes labeled by 1, . . . , 6 are the second level, where
tentative solutions can be found by different tabu algorithms. In each level-2
membrane, there is an elementary membrane called a level-3 membrane, where
neighborhood search operations will be done to help adjust the search direc-
tion of corresponding level-2 membrane. There are also communication channels
between skin membrane and level-2 membranes. On the one hand, the GA op-
erators, especially the crossover operator, were designed to retain good gene
segments. On the other hand, tabu search algorithms with different attractors
help GA escape from local optimal solutions. Experimental results proved our
opinions very well. Comparing with peer algorithms, the MIHA turned out to
be more competitive.

359

3

GA

TS TS TS

TS TS TS

0

1 2 3

4 5 6

7 8 9

10 11 12

Fig. 1: Three subsystems of MIMOA

2 Fuel Consumption Model of Open Vehicle Routing
Problem

The green open vehicle routing problem (GOVRPTW) is defined on a complete
directed graph G = (N,A) where N = {0, . . . , n} is the set of nodes, A = {(i, j) :
i, j ∈ N, i �= j, j �= 0} is the set of arcs, and node 0 corresponds to the depot. The
customer set is N0 = N \{0}, and each customer i has a positive demand qi. The
distance from i to j is denoted by dij . Variable fij is the total amount of flow on
each arc (i, j) ∈ A. Let w be the weight of a vehicle. Therefore, the total load of
vehicle on arc (i, j) is w+fij . The binary variable xij is equal to 1 if and only if a
vehicle travels on arc (i, j) ∈ A. The binary variable zrhij is equal to 1 if and only
if a vehicle travels on arc (i, j) ∈ A at speed vr, r = 1, . . . , R. Furthermore, ti
corresponds to the service time of node i ∈ N0, which must start within the time
window [ai, bi]. If a vehicle arrives at customer i before ai, it will wait until ai
before servicing the node. yj is the service start time at j ∈ N0. The total time
spent on a route in which j ∈ N0 is the last visited node before returning to the
depot is defined by sj . As vehicles are hired from other companies, they depart
from the depot at different times y0i ∈ [a0, b0]. Vehicles do not come back to
the depot after serving customers. We used the comprehensive emissions model
of Barth et al. (2005), Scora and Barth (2006), and Barth and Boriboonsomsin
(2008) to estimate fuel consumption and emissions for a given time instant [42–
44]. The mathematical model of GOVRPTW is defined as follows.

Minimize
∑

(i,j)∈A

λfckNV dij

R∑
r=1

zrij/v
r (1)

+
∑

(i,j)∈A

λfcγαijdij(wxij + fij) (2)

360

4

+
∑

(i,j)∈A

λfcβγdij

R∑
r=1

(vr)2zrij (3)

+
∑
j∈N0

fdsj (4)

subject to ∑
j∈N0

x0j ≤ |N0| (5)

∑
i∈N

xij = 1, ∀j ∈ N0 (6)

∑
j∈N

xij ≤ 1, ∀i ∈ N0 (7)

n∑
i=1

xi0 = 0 (8)

∑
j∈N

fij −
∑
j∈N

fji = qi, ∀i ∈ N0 (9)

qjxij ≤ fij ≤ (Q − qi)xij , ∀(i, j) ∈ A (10)

yi − yj + ti +

R∑
r=1

dijz
r
ij/v

r ≤ Mij(1 − xij), ∀i ∈ N, j ∈ N0, i �= j (11)

ai ≤ yi ≤ bi, ∀i ∈ N0 (12)

R∑
r=1

zrij = xij , ∀(i, j) ∈ A (13)

xij ∈ {0, 1}, ∀(i, j) ∈ A (14)

zrij ∈ {0, 1}, ∀(i, j) ∈ A, r = 1, . . . , R (15)

fij ≥ 0, ∀(i, j) ∈ A (16)

yi ≥ 0, ∀i ∈ N0 (17)

The objective of the GOVRPTW is to minimize the total cost of fuel con-
sumption, CO2 emissions, and the total driver wage. The first three terms of
the objective function represent the cost of fuel consumption and of CO2 emis-
sions. In particular, term (1) computes the cost induced by the engine module,
term (2) reflects the cost induced by the weight module and term (3) measures
the cost induced by the speed module, where λ = ξ/κψ, γh = 1/1000ntfη and
α = τ + gsinθ + gCrcosθ are constants, and β = 0.5CdρA is a vehicle-specific
constant. Finally, term (4) computes the total driver wage. A list of and values
for parameters for light-duty vehicles is given in Table 1.

361

5

Table 1: Vehicle parameters.
Notation Description Typical values

ξ Fuel-to-air mass ratio 1

g Gravitational constant (m/s2) 9.81

ρ Air density (kg/m3) 1.2041

Cr Coefficient of rolling resistance 0.01

η Efficiency parameter for diesel engines 0.45

fc Fuel and CO2 emissions cost (£/liter) 1.4

fd Driver wage (£/s) 0.0022

κ Heating value of a typical diesel fuel (kj/g) 44

ψ Conversion factor (g/s to L/s) 737

ntf Vehicle drive train efficiency 0.45

vl Lower speed limit (m/s) 5.5 (or 20 km/h)

vu Upper speed limit (m/s) 27.8 (or 100 km/h)

θ Road angle 0

τ Acceleration (m/s2) 0

w Curb weight (kg) 3500

Q Maximum payload (kg) 4000

f Vehicle fixed cost (£/ day) 42

k Engine friction factor (kj/rev/liter) 0.25

N Engine speed (rev/s) 38.34

V Engine displacement (liter) 4.5

Cd Coefficient of aerodynamics drag 0.6

A Frontal surface area (m2) 7.0

The maximum number of vehicles available for each type is imposed by con-
straints (5). We consider an unlimited number of vehicles. Constraints (6)—(8)
ensure that each customer is visited exactly once, and the vehicles do not need to
return to the depot. Constraints (9) and (10) define the flows. Constraints (11)
and (12) are time window constraints, where Mij = max{0, bi+si+dij/v

r −aj}.
Constraints (13) means that there is only one speed level for each arc.

3 Algorithm

In this section, a membrane-inspired hybrid heuristic algorithm, MIHA, is pro-
posed to deal with the GOVRPTW. The MIHA has a cell-like and three-level
nested membrane structure, see Figure 1. Skin membrane is the first level; and
the adjacent inner membranes labeled by 1, . . . , 6 are the second level. In each
level-2 membrane, there is a elementary membrane called level-3 membrane.
Level-2 membranes can send tentative solutions to the skin membrane through
unidirectional channels. However, the communication channels between level-2
membranes to the corresponding level-3 membranes are bi-directional.

The main procedure of the MIHA is described in Algorithm 1. In initialization
stage, initial solutions are generated in six level-2 membranes by using different

362

6

operators, then initial population is formed in the skin membrane. Searching pro-
cesses in level-2 membranes are guided by tabu search algorithm, while evolution
in the skin membrane is according to genetic operators. After every Iguide steps,
archive solutions of each level-2 membrane can be sent to the skin membrane
and help to update the current population P .

Algorithm 1 Main framework of MIHA

Require: maximum number of iterations Imax, Tabu-list size T , Archive size Ar,
iteration number before sending archive solutions to the skin membrane Iguide,
and population size P .

Ensure: xbest.
1: Initialization
2: for i = 1 to Imax do
3: for j = 1 to 6 do
4: Execute TS in level-2 membrane
5: Execute GA in the skin membrane
6: if i mod Iguide == 0 then
7: for i = 1 to 6 do
8: Send solutions in Archive to the skin membrane
9: Update current population

10: Evaluate current population, and select the best solution xbest

3.1 Initialization

In level-2 membranes, six different operators are used to generate different initial
solutions. These operators are listed as follows.

(1) Random: Randomly choose routes which satisfy constraints (5)–(17).
(2) Nearest neighborhood heuristic (NNH): It creates a set of routes according

to the distance from current node. The first route begins with an unrouted
customer x0, which is nearest to the depot. Then choose an unrouted cus-
tomer x1, which is nearest to x0. Continue this process in the same way until
no customer can be assigned to the route. Start a new route unless all the
customers are routed.

(3) Modified nearest neighborhood heuristic (mNNH): It creates a set of routes
according to both distance from current node and demand of the next
customer. In a delivery system, a vehicle can reduce qj payload after ser-
vicing customer j. Let’s define Δfij = qj/dij , i ∈ N, j ∈ Nucs, where
Nucs is defined as the unrouted customer set. The mNNH creates a set
of routes sequentially. The first route begins with an unrouted customer
r = argmaxj∈Nucs{|Δf0j |}. Then, calculate Δfij between the current node
r and the other unrouted nodes. Choose the node with the greatest current
Δfij value as the next node if the node does not violate any of the con-
straints. Then, update the current node r and search for the next node in

363

7

the same way. When no customer can be assigned to the route, a new route
is started. If all the customers are already routed, the process stops.

(4) Insert I1 algorithm: Customer u∗ is selected by using Equation 18 as follows
based on the insertion heuristics I1 [45]. The best possible position for node
u is also calculated by Equation 20.

c2(i
∗, u∗, j∗) = optimum[c2(i, u, j)] (18)

c2(i, u, j) = λd0u − c1(i, u, j), λ ≥ 0 (19)

c1(i
∗, u, j∗) = min[c1(i, u, j)], (20)

c1(i, u, j) = α1(diu + duj − μdij) + α2(yju − yj), μ, α1, α2 ≥ 0, α1 + α2 = 1
(21)

(5) Earliest deadline first: Customers are selected according to earliest deadline.
This operator tries to choose the customer with earliest close time in each
step.

(6) Shortest waiting time first: This operator tries to select customers with short-
est waiting time.

After initialization, neighborhood search algorithm are used in each level-2
membrane to generate 20 neighbors. The total 120 neighbors will be sent to the
skin membrane to form the initial population for the genetic algorithm.

3.2 Neighborhood search algorithm

Three neighborhood search algorithms are used in our MIHA method.

(1) Random operator: It selects two nodes randomly from the solution and ran-
domly finds possible positions for them.

(2) High-cost-node improvement operator: The operator tries to reassign the
high cost node u∗ = argmaxu∈N{diu + duj}, where i is the preceding node,
and j is the following node.

(3) Long-wait-time improvement operator: The operator tries to reassign the
node with long wait time u∗ = argmaxu∈N{au−eu}, where eu is the arriving
time at customer u.

3.3 Tabu search in level-2 membrane

After initialization, tabu search is implemented in each level-2 membrane, see
Algorithm 2. First, use current solution to create neighbors. If any neighbor so-
lution is better than others in archive, replace the worse one. Randomly choose
one solution from the archive and send it to the inner membrane. Use this solu-
tion to create neighbors in the corresponding level-3 membrane. Compare each
of these neighbor solutions to solutions in archive. If it is better than some solu-
tion in archive, it will replace that solution. Then select the best solution which
is in the archive but not in tabu list at the same time, and update the current
solution. Finally, add current solution into the tabu list.

364

8

Algorithm 2 Tabu search in level-2 membrane

1: neighbors =NeighborSearch(xi)
2: UpdateArchive(Archive, neighbors)
3: neighbors = InnerMembrane(neighbors)
4: UpdateArchive(Archive, neighbors)
5: xi =SelectCurrentSolution(Archive, TabuList)
6: UpdateTabuList(TabuList, xi)

3.4 Evolution in skin membrane

After initialization, population in skin membrane evolve according to the GA.
The binary tournament is adopted to choose parent chromosomes for genetic
operators. A pair of chromosomes are chosen randomly, and the one with lower
fitness value is picked out for reproduction. This process will be repeated until
sufficient parent chromosomes are obtained. Route-exchange crossover [46] is
used to retain better gene segment. Sequences of routes in one chromosome are
reproduced and shared with other chromosomes. When a route is inserted to
another chromosome as a new route, duplicated customers are deleted from the
original route to ensure feasibility of the chromosome. Single point mutation is
used as mutation operator in the skin membrane.

3.5 Communication with skin membrane

After every Iguide steps, archive solutions of each level-2 membrane can be sent
to the skin membrane and help update the current population. They are merged
with current individuals in skin membrane. The best P solutions are selected and
combined to be a new population. GA operators implemented in skin membrane,
especially the crossover operator, is designed to retain good gene segments of
solutions found by tabu search in level-2 membrane. Moreover, various solutions
obtained by tabu algorithms with different attractors help GA escape from local
optimal solutions.

4 Computational Results

In this section, we tested the proposed algorithm on a set of real-world instances.
We took the real road of Beijing city as the research background, and used the
locations contains the urban zones of Beijing and suburban areas as experimental
data [24].

The presented algorithm is coded in Matlab and was tested on a PC with an
Intel Core 2.4 GHz processor, 8G RAM, and the Microsoft Windows 7 operating
system. Parameters involved in our algorithm are listed in table 2.

Our algorithm is tested on 10 customer sets including 60 nodes to minimize
the total cost. For each instance, the results collected over 20 runs are reported.
Table 3–Table 6 are used to prove the effects of different parts in our algorithm.
The columns display the best solution (BS), mean solution (MS), the worst
solution (WS), standard deviation (STD), and elapsed time (ET).

365

9

Table 2: Parameters.

Notation Description Typical values

Imax The maximum iteration number 500

Iguide Iteration number before communicating with skin membrane 50

Ar Archive size 100

Ns Neighborhood size 100

L Tabu-list size 30

(α1, α2, μ, λ) Insertion parameters (0.5, 0.5, 1, 1)

P Population size 100

p1 crossover rate 1

p2 mutation rate 0.1

4.1 Effect of search in level-3 membranes

In this subsection, the effect of search in level-3 membranes was analyzed. Exper-
iments were conducted on the 60-node instances considering the use of light-duty
vehicles. Level-3 membranes can provide another attractor to tabu searching pro-
cess, and make it easier to obtain better solutions. The MIHA without level-3
membranes can be denoted as MIHA−level3 for convenience. In Table 3, we com-
pared the experimental results of MIHA and MIHA−level3. It is proved that the
level-3 membranes have great advantages in finding solutions with smaller total
cost.

4.2 Effect of GA in skin membrane

In this subsection, we analyzed the effect of genetic algorithm in skin membrane.
The MIHA without genetic algorithm can be denoted by MIHA−GA. In MIHA,
genetic algorithm in skin membrane obtains solutions from level-2 membranes
and forms the initial population. During the next evolutionary process, crossover
operator tries to combine good genetic segments from different individuals, while
mutation operator helps extend the search scope. We listed the computational
results by using MIHA and MIHA−GA in Table 4. It is proved that GA in skin
membrane has good impact on the performance of our algorithm.

4.3 Effect of membrane structure

In this subsection, we tried to prove the effect of membrane structure. Membrane
computing provides a parallel distributed framework. We denoted our algorithm
without membrane structure to be MIHA−MS . As shown in Table 5, without
membrane framework, the MIHA−MS can not find competitive solutions as the
results obtained by using MIHA.

366

10

Table 3: Computational results by using MIHA and MIHA−level3.

instance BS(RMB) MS(RMB) WS(RMB) STD(RMB) ET(s)

MIHA BJ60 01 10864.7334 10914.4491 10939.8273 21.2864 179.3093
BJ60 02 10217.4691 10310.1949 10395.6818 54.3404 167.1625
BJ60 03 11321.6848 11423.8391 11489.1644 53.3224 168.3861
BJ60 04 11800.7563 11847.7284 11915.0534 31.7880 179.6456
BJ60 05 10890.8377 10909.8830 10947.0117 14.5797 190.0507
BJ60 06 11875.3018 11916.5380 11942.8835 21.5401 157.5884
BJ60 07 12528.3080 12634.5020 12685.8953 54.0499 138.2126
BJ60 08 11783.3490 11867.4716 11932.7904 45.1478 162.5045
BJ60 09 11573.5410 11705.3953 11908.5312 107.6724 173.2149
BJ60 10 12939.9900 13196.1938 13269.0754 90.2917 161.0214
Average 11579.5971 11672.6195 11742.5914 49.4019 167.7096

MIHA−level3 BJ60 01 10875.6553 10928.4416 10957.5933 22.3405 98.4386
BJ60 02 10353.4233 10437.4359 10528.0329 46.5592 98.8066
BJ60 03 11414.4174 11509.0854 11649.5848 76.5323 98.8509
BJ60 04 11808.4673 11848.1219 11945.9823 35.8897 103.6991
BJ60 05 10899.0969 10928.9037 10994.4671 28.3997 114.5028
BJ60 06 11883.8319 11932.5517 11992.1479 36.4949 99.5624
BJ60 07 12569.4389 12735.7666 12914.4059 114.1379 87.9780
BJ60 08 11814.2420 11863.5460 11935.7837 40.0692 92.5350
BJ60 09 11650.6475 11742.9264 11858.7899 72.9718 90.5239
BJ60 10 13166.0801 13239.2438 13320.9522 41.7384 84.2999
Average 11643.5301 11716.6023 11809.7740 51.5134 96.9197

367

11

Table 4: Computational results by using MIHA and MIHA−GA.

instance BS(RMB) MS(RMB) WS(RMB) STD(RMB) ET(s)

MIHA BJ60 01 10864.7334 10914.4491 10939.8273 21.2864 179.3093
BJ60 02 10217.4691 10310.1949 10395.6818 54.3404 167.1625
BJ60 03 11321.6848 11423.8391 11489.1644 53.3224 168.3861
BJ60 04 11800.7563 11847.7284 11915.0534 31.7880 179.6456
BJ60 05 10890.8377 10909.8830 10947.0117 14.5797 190.0507
BJ60 06 11875.3018 11916.5380 11942.8835 21.5401 157.5884
BJ60 07 12528.3080 12634.5020 12685.8953 54.0499 138.2126
BJ60 08 11783.3490 11867.4716 11932.7904 45.1478 162.5045
BJ60 09 11573.5410 11705.3953 11908.5312 107.6724 173.2149
BJ60 10 12939.9900 13196.1938 13269.0754 90.2917 161.0214
Average 11579.5971 11672.6195 11742.5914 49.4019 167.7096

MIHA−GA BJ60 01 10887.3386 10918.3082 10945.5878 19.3695 160.4212
BJ60 02 10265.5463 10332.7347 10414.2800 47.0151 147.2111
BJ60 03 11347.9277 11471.3450 11593.1845 75.5207 147.7990
BJ60 04 11802.0435 11841.7084 11935.3495 37.6027 149.1469
BJ60 05 10896.8324 10915.9710 10940.7710 12.3304 167.5803
BJ60 06 11880.3074 11937.5616 11971.5064 28.7858 168.7334
BJ60 07 12532.3226 12656.8304 12847.2887 83.8907 127.9422
BJ60 08 11804.3203 11874.9623 11932.1919 38.2917 136.4170
BJ60 09 11629.4012 11685.8443 11849.0145 61.8985 138.6707
BJ60 10 13119.1625 13260.5937 13353.1819 73.0125 126.3682
Average 11616.5203 11689.5860 11778.2356 47.7718 147.0290

368

12

Table 5: Computational results by using MIHA and MIHA−MS .

instance BS(RMB) MS(RMB) WS(RMB) STD(RMB) ET(s)

MIHA BJ60 01 10864.7334 10914.4491 10939.8273 21.2864 179.3093
BJ60 02 10217.4691 10310.1949 10395.6818 54.3404 167.1625
BJ60 03 11321.6848 11423.8391 11489.1644 53.3224 168.3861
BJ60 04 11800.7563 11847.7284 11915.0534 31.7880 179.6456
BJ60 05 10890.8377 10909.8830 10947.0117 14.5797 190.0507
BJ60 06 11875.3018 11916.5380 11942.8835 21.5401 157.5884
BJ60 07 12528.3080 12634.5020 12685.8953 54.0499 138.2126
BJ60 08 11783.3490 11867.4716 11932.7904 45.1478 162.5045
BJ60 09 11573.5410 11705.3953 11908.5312 107.6724 173.2149
BJ60 10 12939.9900 13196.1938 13269.0754 90.2917 161.0214
Average 11579.5971 11672.6195 11742.5914 49.4019 167.7096

MIHA−MS BJ60 01 11326.5402 11449.6812 11643.8202 100.8547 14.6030
BJ60 02 10704.9149 10823.7735 10950.9690 76.9992 14.2598
BJ60 03 12034.3366 12134.3792 12192.6607 52.7816 13.8523
BJ60 04 12365.0652 12559.8677 12853.2036 145.7351 15.0256
BJ60 05 11231.7932 11292.1902 11369.0203 49.6178 15.7620
BJ60 06 12286.2834 12444.0914 12588.4879 88.0559 14.1395
BJ60 07 13241.8030 13392.2743 13478.2894 82.8872 12.0423
BJ60 08 12170.5549 12361.7430 12505.8710 108.1388 13.4651
BJ60 09 12291.5100 12420.7206 12572.0969 73.2170 12.9955
BJ60 10 13354.1939 13583.4122 13781.8097 128.4438 12.1163
Average 12100.6995 12246.2133 12393.6229 90.6731 13.8261

369

13

4.4 Effect of tabu search

To analyze the effect of tabu search in level-2 membranes, we compared our
algorithm to the MIHA without tabu search, MIHA−TS . Tabu search in level-
2 membranes is replaced by greedy algorithm. Although membrane framework
remains in that case, the experimental results are less competitive than those
obtained by using MIHA, see Table 6.

Table 6: Computational results by using MIHA and MIHA−TS .

instance BS(RMB) MS(RMB) WS(RMB) STD(RMB) ET(s)

MIHA BJ60 01 10864.7334 10914.4491 10939.8273 21.2864 179.3093
BJ60 02 10217.4691 10310.1949 10395.6818 54.3404 167.1625
BJ60 03 11321.6848 11423.8391 11489.1644 53.3224 168.3861
BJ60 04 11800.7563 11847.7284 11915.0534 31.7880 179.6456
BJ60 05 10890.8377 10909.8830 10947.0117 14.5797 190.0507
BJ60 06 11875.3018 11916.5380 11942.8835 21.5401 157.5884
BJ60 07 12528.3080 12634.5020 12685.8953 54.0499 138.2126
BJ60 08 11783.3490 11867.4716 11932.7904 45.1478 162.5045
BJ60 09 11573.5410 11705.3953 11908.5312 107.6724 173.2149
BJ60 10 12939.9900 13196.1938 13269.0754 90.2917 161.0214
Average 11579.5971 11672.6195 11742.5914 49.4019 167.7096

MIHA−TS BJ60 01 10885.7841 10926.8821 10956.9339 21.4261 178.9296
BJ60 02 10348.5065 10431.9705 10567.5762 64.6180 163.2735
BJ60 03 11408.0875 11544.4161 11691.5340 81.8656 181.3918
BJ60 04 11806.7144 11874.6096 12000.3970 59.1001 189.1059
BJ60 05 10891.2894 10906.0981 10939.9388 13.5889 211.0158
BJ60 06 11928.3036 11991.9485 12038.1416 27.5477 160.3498
BJ60 07 12788.3859 12943.2357 13091.7043 93.8455 148.9768
BJ60 08 11838.6827 11979.3826 12068.2326 62.0261 168.0495
BJ60 09 11698.5996 12038.9623 12193.1661 139.9844 167.9968
BJ60 10 13350.1401 13450.0882 13526.5397 52.9312 150.3822
Average 11694.4494 11808.7594 11907.4164 61.6933 171.9472

5 Conclusion

This work focused on membrane-inspired evolutionary algorithm to deal with a
real and green open vehicle routing problem. The problem considered in this pa-
per is to construct open routes for vehicles to visit all customers within their time
windows. The overall objective is to minimize the total cost that is composed
of cost of emissions, operational costs and cost of drivers. A hybrid heuristic al-
gorithm was designed in the framework of membrane system. It benefited from
parallel distributed structure and special communication strategy. The compu-
tational results proved its competitiveness.

370

14

Open vehicle routing problem (OVRP), a kind of vehicle routing problem
(VRP), has unlimited potential value in the vigorous development of Sharing
Economy. The practical importance of this problem has not received enough
attention from researchers. In the future, more realistic models involving open
routes can be addressed, such as close-open vehicle routing problem and OVRP
with heterogeneous fleet. Our algorithm can be used to those problems with
possible modifications. It is predictable that membrane-inspired algorithm can
do more in the fields of logistics and transportation.

Acknowledgment

This work was supported by the National Natural Science Foundation of China
(61872325, 61772290); the China Scholarship Council (201806405004); the Fun-
damental Research Funds for the Central Universities (63192616); the Science
and Technology Development Strategy Research Program of Tianjin (18ZLZXZF
00320); and the Collaborative Innovation Center for China Economy.

References

1. Dantzig, G.B., Ramser, R.H.: The truck dispatching problem. Manag. Sci. 680–91
(1959).

2. Toth, P., Vigo, D.: The vehicle routing problem. Monogr. Discret. Math. Appl. 9
(2002)

3. Schrage, L.: Formulation and structure of more complex/realistic routing and
scheduling problems. Networks. 11, 229–232 (1981)

4. Repoussis, P.P., Tarantilis, C.D., Ioannou, G.: The open vehicle routing problem
with time windows. J. Oper. Res. 58, 355–367 (2007)

5. Bodin, L., Golden, B., Assad, A., Ball, M.: Routing and scheduling of vehicles and
crews: The state of the art. Comput Oper Res. 10(2), 63–211 (1983)

6. Brandao, J.: A tabu search heuristic algorithm for open vehicle routing problem.
Eur. J. Oper. Res. 157, 552–564 (2004)

7. Derigs, U., Reuter, K.: A simple and efficient tabu search heuristic for solving the
open vehicle routing problem. J. Oper. Res. Soc. 60, 1658–1669 (2009)

8. Fu, Z., Eglese, R., Li, L.: Corrigendum to the paper: A new tabu search heuristic
for the open vehicle routing problem. J. Oper. Res. Soc. 57, 1017–1018 (2006)

9. Russell, R., Chiang, W., Zepeda, D.: Integrating multi-product production and
distribution in newspaper logistics. Comput. Oper. Res. 35, 1576–1588 (2008)

10. Fleszar, K., Osman, I.H., Hindi, K.S.: A variable neighbourhood search algorithm
for the open vehicle routing problem. Eur. J. Oper. Res. 195(3), 803–809 (2009)

11. Pisinger, D., Ropke, S.: A general heuristic for vehicle routing problems. Com-
put.Oper. Res. 34(8), 2403–2435 (2007)

12. Salari, M., Toth, P., Tramontani, A.: An ILP improvement procedure for the open
vehicle routing problem. Comput. Oper. Res. 37, 2106–2120 (2010)

13. Zachariadis, E., Kiranoudis, T.: An open vehicle routing problem metaheuris-tic for
examining wide solution neighborhoods. Comput. Oper. Res. 37, 712–723 (2010)

14. Tarantilis, C.D., Ioannou, G., Kiranoudis, C.T., Prastacos, G.P.: A threshold ac-
cepting approach to the open vehicle routing problem. RAIRO Oper. Res. 38,
345–360 (2004)

371

15

15. Tarantilis, C.D., Ioannou, G., Kiranoudis, C.T., Prastacos, G.P.: Solving the open
vehicle routing problem via a single parameter meta-heuristic algorithm. J.Oper.
Res. 56, 588–596 (2005)

16. MirHassani, S., Abolghasemi, N.: A particle swarm optimization algo-rithm for
open vehicle routing problem. Expert Syst. Appl. 38, 11547–11551 (2011)

17. Wang, W., Wu, B., Zhao, Y., Feng, D.: Particle swarm optimization for open vehicle
routing problem. in: D.S. Huang, K. Li, G.W. Irwin (Eds.), Proceedings of the 2006
International Conference on Intelligent Computing: Part II (ICIC06),Springer-
Verlag, Berlin, Heidelberg, pp. 999–1007. (2006)

18. Zhen, T., Zhu, Y., Zhang, Q.: A particle swarm optimization algorithm for the
open vehicle routing problem. in: Proceeding 2009 International Conference on
Environmental Science and Information Application Technology, IEEE, pp. 560–
563 (2009)

19. Li, X., Tian, P.: An ant colony system for the open vehicle routing problem.
in: M.Dorigo (Ed.), Lecture Notes in Computer Science (ANTS 2006), Springer,
Berlin, pp. 356–363, 4150. (2006)

20. Li, X., Tian, P., Leung, S.: An ant colony optimization metaheuristic hybridized
with tabu search for the open vehicle routing problem. J. Oper. Res. Soc. 60,
1012–1025 (2009)

21. Pan, L., Fu, Z.: A clonal selection algorithm for open vehicle routing problem.
in:Proceeding 2009 Third International Conference on Genetic and Evolutionary
Computing, pp. 786–790 (2009)

22. Repoussis, P.P., Tarantilis, C.D., Braysy, O., Ioannou, G.: A hybrid evolution s-
trategy for the open vehicle routing problem. Comput. Oper. Res. 37, 443–455
(2010)

23. Yu, S., Ding, C., Zhu, K.: A hybrid GA-TS algorithm for open routing optimization
of coal mines material. Expert Syst. Appl. 38, 10568–10573 (2011)

24. Niu, Y., Yang, Z., Chen, P., Xiao, J.: Optimizing the green open vehicle routing
problem with time windows by minimizing comprehensive routing cost. J. Clean
Prod. 171, 962–971 (2018)

25. Păun, Gh.: Computing with membranes. Journal of Computer and System Sci-
ences. 61(1), 108–143 (2000)

26. Pan, L., Păun, Gh., Pérez-Jiménez, M.J.: Spiking neural P systems with neuron
division and budding. Science China Information Science. 54(8), 1596–1607 (2011)

27. Barbuti, R., Bove, P., Milazzo, P., Pardini, G.: Minimal probabilistic P systems
for modelling ecological systems. Theoretical Computer Science. 608, 36–56 (2015)

28. Sakellariou, I., Stamatopoulou I., Kefalas, P.: Using membranes to model a multi-
agent system towards underground metro station crowd behaviour simulation. E-
CAI 2012 workshop. Montpellier, France, August 28, 5–10 (2012)

29. Niu, Y., Zhang, Y., Zhang, J.: Running cells with decision-making mechanism:
intelligence decision P System for evacuation simulation. Int J Comput Commun.
13, 865–880 (2018)

30. Lucie, C., Erzsébet, C., Ludĕk, C., Petr, S.: P colonies vol. 1, no.3, Pages: 178–197
(2019)

31. Nishida, T. Y.: Membrane algorithms: Approximate algorithms for NP-complete
optimization problems, Applications of Membrane Computing, 303–314 (2006)

32. Zhang, G., Rong, H., Neri, F., Pérez-Jiménez, M.J.: An optimization spiking neural
P system for approximately solving combinatorial optimization problems. Int. J.
Neural. Syst. 24(5), 1–16 (2014)

372

16

33. Zhang, G., Rong, H., Cheng, J., Qin, Y.: A population-membrane-system-inspired
evolutionary algorithm for distribution network reconfiguration. J. Electron. 23(3),
437–441 (2014)

34. Zhang, X., Li, J., Zhang, L.: A multi-objective membrane algorithm guided by the
skin membrane. Nat. Comput. 15(4), 597–610 (2016)

35. Zhang, X., Tian, Y., Jin, Y.: Approximate non-dominated sorting for evolutionary
many-objective optimization. Inform. Sciences. 369, 14–33 (2016)

36. Petr Sośık.: P systems attacking hard problems beyond NP: a survey vol. 1, no.3,
Pages: 198–208 (2019)

37. Ciobanu, G., Pérez-Jiménez, M.J., Păun, Gh. eds.: Applications of membrane com-
puting. Springer Berlin Heidelberg. 287(1), 73–100 (2006)

38. Zhang, X., Wang, S., Niu, Y., Pan, L.: Tissue P systems with cell separation:
attacking the partition problem. Science China Information Sciences. 54(2), 293–
304 (2011)

39. Pan, L., Păun, G.: Spiking neural P systems: an improved normal form. Theoretical
Computer Science. 411, 906–918 (2010)

40. Zhang, G., Liu, C., Rong, H.: Analyzing radar emitter signals with membrane
algorithms. Mathematical and Computer Modelling. 52(11–12), 1997–2010 (2010)

41. Pan, L., Daniel, D.P., Perez-Jimenez, M.J.: Computation of ramsey numbers by P
system with sctive membranes. International Journal of Foundations of Computer
Science. 22, 29–38 (2011)

42. Barth, M., Younglove, T., Scora, G.: Development of a Heavy-duty Diesel Modal
Emissions and Fuel Consumption Model. Technical Report. UCB-ITSPRR-2005-
1, California PATH Program, Institute of transportation Studies, University of
California at Berkeley (2005)

43. Scora, M., Barth, G.: Comprehensive Modal Emission Model (CMEM),
Version 3.01, User Guide. Technical Report. URL: < http :
//www.cert.ucr.edu/cmem/docs/CMEM User Guide v3.01d.pdf > (accessed
17.02.2014) (2006)

44. Barth, M., Boriboonsomsin, K.: Energy and emissions impacts of a freeway-based
dynamic eco-driving system. Transportation Research Part D. 14, 400–410 (2009)

45. Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with
time window constraints. Oper. Res. 35(2), 254–265 (1987)

46. Tan, K.C., Cheong, C.K., Goh, C.K.: Solving multi-objective vehicle routing prob-
lem with stochastic demand via evolutionary computation. Eur. J. Oper. Res.
177(2), 813–839 (2007)

373

Improved spectral clustering algorithm based on
Tissue-like P system

Zhe Zhang1 Xiyu Liu2∗

Business School, Shandong Normal University, Jinan, China
zaq1230123@163.com xyliu@sdnu.edu.cn

Abstract. Traditional spectral clustering algorithms usually use Gaus-
sian kernel functions to form the similarity matrix. This method is sensi-
tive to the selection of scale parameters. Moreover, the traditional spec-
tral clustering algorithm randomly initializes the center in the clustering
stage may affect the clustering results. This paper presents an improved
spectral clustering algorithm based on tissue-like P system (SCAP-TP),
which uses a new construction method of similarity matrix to consider
the distance between data points and the intrinsic structure of the da-
ta set. In the clustering stage, a tissue-like P system is designed as the
computational framework of the AP clustering algorithm, which greatly
improves the efficiency of the clustering algorithm, and also explores a
new direction for the application of membrane computing. Three UCI
data sets and three artificial data sets are used for making comparison
between SCAP-TP algorithm and some existing methods. Experiments
results prove the superiority of the proposed algorithm.

Keywords: Tissue-Like P Systems · Spectral Clustering · AP Algorithm
· Laplace Matrix.

1 Introduction

Spectral clustering is an algorithm evolved from graph theory, which transforms
the clustering problem of data into the partitioning problem of graphs. Spectral
clustering treats each data point as a vertex on the graph. The similarity of data
points is regarded as the weight of the edge. By dividing the graph, the sum
of the edge weights in the subgraph is as high as possible, the sum of the edge
weights between the graphs is as low as possible, thus completing the clustering
problem of the data. In 2000, according to the theory of spectral partitioning,
Shi [1] proposed a standard cut set criterion based on 2-way partitioning (Nor-
malized Cut). Hagen and Kahng [2] proposed the proportional secant objective
function (Ratio Cut). Although the spectral clustering algorithm has achieved
good results in recent years, the algorithm is still in the early stage of devel-
opment, and there are still some problems to be further studied. For example,
the algorithm is sensitive to the selection of scale parameters when constructing
similar matrices using Gaussian kernel functions, and Zelnik-Manor and Peron-
a [3] have shown that different scale parameter values have different effects on

374

2 Zhe Zhang Xiyu Liu

the results. In order to solve this problem, Zhang [4] proposed a construction
method of similar matrix based on local density. Li and Guo [5] utilized neighbor
propagation principle to get the similarity matrix. Yessica [6] presented Powered
Gaussian kernel similarity function to solve this problem.

Membrane computing (P system) is a computational model abstracted by the
Gh. Paun [7] based on the cellular structure and function of the organism. Ac-
cording to different structures, P systems can be divided into three types: cell-like
P systems, tissue-like P systems and neural-like P systems. These computational
models have been proven to have powerful computing power, and because of the
uncertainties and maximum parallelism of P systems, these models also have
high computational efficiency. Since the advent of the P systems, it has received
extensive attention from scholars in related fields. More and more variants of the
P system have been proposed for different research fields. Recently, membrane
computing has begun to combine with clustering issues. Jiang et al. [8] proposed
a variant of tissue-like P systems with active membranes to realize the clustering
process. Zhao [9] constructs a cell-like P systems with promoters and inhibitors
to improve DBSCAN algorithm. Liu et al. [10] proposed a consensus clustering
algorithm based on K-medoids. Peng [11] proposed a tissue-like membrane sys-
tem to adapt a multi-objective clustering framework for fuzzy clustering. Peng
[12] proposed an extended membrane system to processing the automatic fuzzy
clustering problem. Gong [13] combines the MST clustering algorithm with the
membrane calculation to effectively improve the quality of the cluster.

In this paper, for the problem that spectral clustering is sensitive to scale
parameters and sensitive to random selection initial values in the clustering
stage, we first introduce the method of constructing similar matrix by Li and
Guo [5], which can simultaneously consider the distance between data points
and the intrinsic structure of data set. The feature vector is obtained by spectral
clustering. Then use the Affinity Propagation (AP) algorithm for clustering. We
constructed a tissue-like P systems as the computational framework of the AP
clustering algorithm, which greatly improved the efficiency of the algorithm in
clustering stage. The remaining work of this paper is arranged as follows: In
section 2, we briefly introduce the related knowledge of tissue-like P systems,
spectral clustering and AP algorithm. In section 3 we propose an improved
spectral clustering method based on tissue-like P system. Section 4 compares
the effects of proposed algorithm with other algorithms on different data sets.
The conclusion is arranged in section 5.

2 Related works

2.1 Spectral clustering

The idea of spectral clustering comes from the theory of spectral partitioning,
which transforms the clustering problem into the partitioning problem of undi-
rected graphs. Each data point is treated as a vertex on the undirected graph
G=(V,E) , the edge E represents the connection between the data points, the
weight wij on the edge represents the similarity between the two points, and W

375

Improved spectral clustering algorithm based on Tissue-like P system 3

is a similar matrix. By dividing the undirected graphs, different subgraphs are
obtained, so that the sum of weights in the subgraphs are as high as possible,
and the sum of weights between the different subgraphs are as low as possible,
this completes the clustering of the data set.

Spectral clustering can solve the partitioning problem of graphs by eigen-
vectors of Laplacian matrix. In general, the similarity matrix relies on the use
of Gaussian kernel functions in the fully connected graph to define the weights
between the vertices Wij = exp(−dist(xi, xj)/2σ

2), where σ is a scale parame-
ter. Then the degree matrix D, dii =

∑
wij , D = diag(di) is obtained through

the similar matrix. A Laplacian matrix L is constructed from the similarity ma-
trix W and the degree matrix D. There are usually three ways to construct the
Laplacian matrix L: (1) unnormalized Laplacian matrix L=D-W (2) Normalized
symmetric Laplacian matrix L = I−D−1/2WD−1/2 (3) Normalized asymmetric
Laplacian matrix L = D−1WD−1. Then, the eigenvectors corresponding to the
first k eigenvalues are calculated by Laplacian matrix to form the feature ma-
trix U, and U is normalized to obtain a new feature matrix Y. Each row of the
feature matrix Y is regarded as a data point, the feature matrix Y is clustered,
and then the clustering result is mapped to the original data set, and the entire
spectral clustering algorithm is complete.

2.2 Tissue-like P systems

The tissue-like p system deals with a mechanism in which multiple cells interact
with each other in the same environment to participate in the calculation. A
tissue-like P system of degree m is defined as [13]:

Π = (O, σ1, . . . , σm, syn, i0) (1)

Where:
(1) O is a finite non-empty alphabet that contains objects in the cell.
(2) syn is the connection between cells. syn ⊆ (1, 2, . . . ,m) × (1, 2, . . . ,m).
(3) i0 is the label of the output cell.
(4) σi is i-th cell in the following form:

σi = (Qi, si,0, wi,0, Pi), 1 ≤ i ≤ m (2)

Where Qi is a finite set of states; si,0 ∈ Qi is the initial state; wi,0 ∈ Q∗ is
the initial set of objects; Pi is a finite set of rules, and the form of the rule is
sw → s′xygozgo .The execution of the system from any state s to the next state
s’ is as follows: in state s , in each cell, the multiple set w will be replaced by
x, y, z, and x remains in the current cell, y is sent to the cells that connected
to the current cell through the communication channel, z is sent out to the
environment, so the system enters the next state s’.

2.3 AP clustering algorithm

The AP algorithm is an algorithm proposed by Frey and Dueek [15] in 2007. It
does not need to specify the number of clusters in advance. The idea of the AP

376

4 Zhe Zhang Xiyu Liu

algorithm is to treat all the data as nodes of the network, and then calculate the
cluster center through the information transfer of each side of the network. In
the entire information transfer mechanism, there are two kinds of information
transmitted between nodes, responsibility and availability. The AP algorithm
continuously updates the responsibility and availability of each point through the
iteration until k high-quality exemplars are generated, and then the remaining
points are allocated to the corresponding clusters.

First, the AP algorithm takes the similarity between the data points as an
input, and the similarity between the two points is defined as sij = −‖xi − xj‖2
.The greater the value of the similarity, the closer the distance between the two
points is, which is convenient for subsequent calculations. The similarity matrix
is defined as S .

Then preference P indicates the tendency of the point to be selected as the
cluster center. If there is no prior knowledge, all data points are considered as
potential exemplar representatives, and generally P is set to the median of the
elements in the similar matrix S.

Then we can calculate the responsibility and availability. The core of the AP
algorithm is the process of repeated delivery of these two pieces of information.
The degree of responsibility r(i, k) represents the possibility that the point k is
suitable as a representative point of the point i.

r(i, k) = {S(i,k)−maxj �=k(a(i,k)+r(i,k)),i �=k

S(i,k)−maxj �=k(S(i,k)),i=k
(3)

The degree of availability a(i, k) indicates that point i selects point k as the
degree of attribution of its representative point.

a(i, k) = {min(0,r(k,k)+
∑

j �=i,k max(r(j,k),0)),i�=k
∑

j �=k max(r(j,k),0),i=k
(4)

According to the above two formulas, the algorithm is iterated. In order to
prevent the oscillation during the iteration, Meng et al. [16] introduced the damp-
ing coefficient, whose main function is to adjust the stability of the algorithm
iteration. The adjusted formula is:

rt+1(i, k) = λ ∗ rt(i, k) + (1 − λ) ∗ rt+1(i, k) (5)

at+1(i, k) = λ ∗ at(i, k) + (1 − λ) ∗ at+1(i, k) (6)

Finally, k = argmaxa(i, k) + r(i, k) is used to determine the cluster center.
If i = k , then i is the clustering center. If i �= k , then k is the clustering center
of i. The algorithm stops when the algorithm reaches the maximum number of
iterations or if the cluster center no longer changes in several iterations.

3 Improved Spectral Clustering Algorithm

3.1 Construction of Similarity Matrix

The construction of similar matrix has a great influence on the spectral clustering
algorithm. The traditional spectral clustering algorithm uses the Gaussian kernel

377

Improved spectral clustering algorithm based on Tissue-like P system 5

function to construct the similar matrix, wij = exp(−dist(xi, xj)/2σ
2), where σ

is a scale parameter. Different scale parameters may produce different results.
To improve this problem, Li and Guo [5] proposed a powered Gaussian kernel
spectral clustering. In this algorithm, the powered Gaussian kernel similarity
function is used to construct the similarity matrix, wγ

ij = exp(−dist(xi, xj)/β)
γ

, where γ is a power parameter, which is generally set to 5. β = maxi(min‖xi −
xj‖) , β can take into account the distance between data points and the structure
of the data set. In this paper, we borrow this method to form a similarity matrix.

3.2 The Proposed Tissue-like P system

After constructing a similarity matrix using the formula wγ
ij = exp(−dist(xi, xj)/β)

γ ,
according to the flow of the spectral clustering method, the degree matrix, the
Laplacian matrix and the eigenvectors corresponding to the first k eigenvalues
are calculated respectively. After the normalization process, the AP clustering
algorithm is used to cluster the new feature matrix. The AP algorithm does not
need to specify the initial cluster center, which overcome the influence of the
traditional spectral clustering on the clustering result when the K-means algo-
rithm is used in the clustering stage. Considering the parallelism of membrane
computing, we construct a tissue P system as the computational framework of
AP clustering algorithm. Figure.1 is the proposed tissue-like P system with the
following structure:

Π = (O, σ1, . . . , σn, ψ1, . . . , ψn, syn, i0) (7)

Where:

(1) O is a finite non-empty alphabet that contains objects in the cell

(2) syn ⊆ ((1, 1), . . . , (1, n), (2, 1) . . . , (2, n), . . . , (n, 1), . . . , (n, n)) is the con-
nection between cells. .

(3) i0 is the label of the output cell, i0 = 0

(4) σi is the i-th cell of the lower n cells, and its form is as follows:

σi =(s, si, wi,1, . . . , wi,n, ai,1, . . . , ai,n, siwi,1ai,1 → z1(ri,1, go),

siwi,2ai,2 → z2(ri,12, go), . . . , siwi,nai,n → zn(ri,n, go)), 1 ≤ i ≤ n
(8)

In the cell σi, s represents a finite set of states. In this paper, in order to satisfy
the information transfer mechanism of the AP algorithm, we define S as the des-
ignated number of each cell, so si refers to the cell number is si in the tissue-like P
system. wi,1, wi,2, . . . , wi,n refers to the object in cell si, representing the similar-
ity between the i-th data point and the remaining data points. ai,1, ai,2, . . . , ai,n
is also an object in the cell si, representing the availability between the i-th
data point and other data points. The rule siwi,nai,n → zn(ri,n, go) refers to
the calculation of the responsibility ri,j between the i-th data point and the j-th
candidate center using the formula 5, and sends it to the cell labeled zj . When
the new object ri,j enters the cell, the original ri,j dissolves.

378

6 Zhe Zhang Xiyu Liu

ψi is the i-th cell in the upper n cells, and its form is as follows:

ψi =(z, zj , r1,j , . . . , rn,j , zir1,j → s1(a1,j , go),

zir2,j → s2(a2,j , go), . . . , zirn,j → sn(an,j , go)), 1 ≤ i ≤ n
(9)

In ψi, z is also a finite set of cell states, and zj refers to the cell number zj in
the tissue-like P system. r1,j , r2,j , . . . , rn,j is an object in the cell, representing
the responsibility between the j-th data point and other data points. The rule
ziri,j → si(ai,j , go) indicates that the availability ai,j between the j-th data point
and the i-th data point is calculated according to the formula 6, and ai,j is sent
to the cell labeled si. When the new object ai,j enters the cell, the original ai,j
dissolves.

The whole process is repeated in the Tissue-like P system until the maximum
number of iterations is reached, and the system stops. Then according to the
formula k = argmaxa(i, k) + r(i, k). We can get a set of cluster centers. The
detailed steps of SCAP-TP algorithm is shown in Algorithm 1.

Fig. 1. The Proposed Tissue-like P System

4 Experimental analysis

In this part, we compare the algorithm proposed in this paper with the k-means,
NJW (σ = 0.1, σ = 0.5), MPSC [17] algorithm on three artificial data sets and
three UCI data sets. The specific information of the data sets are as shown in
Table.2:

379

Improved spectral clustering algorithm based on Tissue-like P system 7

Table 1. SCAP-TP algorithm

Algorithm 1. SCAP-TP algorithm

Step1.Use the Powered Gaussian kernel function to construct the sim-
ilar matrix W.wij = exp(−dist(xi, xj)/2σ

2).β = maxi(min‖xi − xj‖)
Step2. Degree matrix D (dii =

∑
wij).

Step3. Construct a normalized symmetric Laplacian matrix L, L =
I −D−1/2WD−1/2.
Step4. Calculate the feature vector v corresponding to the first k eigen-
values of L, and construct the feature matrix U.
Step5. Normalize the feature matrix U to obtain a normalized matrix
Y, which contains n points in space reduced to k dimensions.
Step6. Treat each row of Y as a point and Clustering them by AP
clustering algorithm based on the Tissue-like P system that we formed.

Table 2. Information of Data Sets

Data Sets Objects Attributes Classes Source

Iris 150 4 3 UCI
Wine 178 13 3 UCI
Seeds 210 7 3 UCI
Spiral 944 2 2 Artificial

Twomoons 2000 2 2 Artificial
Threecircles 3603 2 3 Artificial

The three artificial data sets are showed in Figure. 2. In the experiment, the
power parameter γ is set to 5, and in the AP algorithm clustering phase, the
maximum number of iterations is 500, and the iteration convergence coefficient
is 50. For each data set, the number of cells in tissue-like P system is equal to
the number of data points in the data set. All the experiments are conducted
on the computer with Intel core i5-3230M CPU, 4GB RAM. The experiments
environment is Matlab 2016b.

The experimental results on the artificial dataset are shown in Figure.3. As
can be seen from Figure.3, our algorithm can handle data sets of different struc-
tures very well.

For the clustering problem of UCI data sets, we use the correct rate and
running time as evaluation indicators. The accuracy is calculated as:

ρACC =
1

N

∑
maxj |vi

⋂
vj | (10)

The experimental results of the UCI data set are as follows:

When testing the UCI dataset, our algorithm performs better than other
algorithms, and because of the tissue-like P system as the computational frame-
work, runtime is also optimized.

380

8 Zhe Zhang Xiyu Liu

a b c

Fig. 2. Artificial Data Sets

a b

-40 -20 0 20 40 60 80

-30

-20

-10

0

10

20

30

40

c

d e

-40 -20 0 20 40 60 80

-30

-20

-10

0

10

20

30

40

f

g h

-40 -20 0 20 40 60 80

-30

-20

-10

0

10

20

30

40

i

Fig. 3. (a)(b)(c) clustering results of SCAP-TP algorithm in artificial data sets respec-
tively; (d)(e)(f) clustering results of NJW algorithm with σ = 0.1 in artificial data sets
respectively; (g)(h)(i) clustering results of NJW algorithm with σ = 0.5 in artificial
data sets respectively

Table 3. Clustering Results of Different Algorithms on UCI Data Sets

Data Sets Evaluation Index K-means NJW MPSC SCAP-TP

Iris Accuracy 0.7273 0.8534 0.9067 0.9067
Iris Time(s) 0.3521 0.5160 0.5889 0.4154
Seeds Accuracy 0.7008 0.7905 0.7194 0.8857
Seeds Time(s) 0.5732 0.5890 0.4641 0.4675
Wine Accuracy 0.4730 0.4267 0.5505 0.6742
Wine Time(s) 0.5394 0.4840 0.4022 0.3686

5 Conclusion

This paper proposes an improved spectral clustering algorithm based on tissue-
like P system (SCAP-TP) algorithm to solve the clustering problem. Its basic

381

Improved spectral clustering algorithm based on Tissue-like P system 9

idea is to use powered Gaussian function to construct a similar matrix to over-
come the influence of scale parameters on spectral clustering, Then, the normal-
ized feature matrix is obtained according to the process of spectral clustering.
and the feature matrix is clustered by AP algorithm. In order to improve the
efficiency of the AP algorithm, we construct a tissue-like P system as the com-
puting framework of the AP algorithm. Compared with other algorithms, the
superiority of the proposed algorithm in clustering data sets with different struc-
tures is proved. In the future, we will pay more attention to the combination of
clustering algorithm and membrane computing to improve the performance of
the algorithm, and also explore the direction of membrane computing.

References

1. Shi J, Malik J, F.: Normalized cuts and image segmentation. IEEE Transactions on
pattern Analysis and machine intelligence 22(8), 888–905 (2000)

2. Hagen L, Kahng AB, F.: New spectral methods for ratio cut partitioning and clus-
tering . IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 11(9), 1074–1085 (1992)

3. Zelnik Manor L, Perona P, F.: Self-tuning spectral clustering. Advances in neural
information processing systems 22, (2004)

4. Zhang X, Li J, Yu H, F.: Local density adaptive similarity measurement for spectral
clustering. Pattern Recogn Lett 32(2), 352–358 (2011)

5. Li XY, Guo LJ, F.: Constructing affinity matrix in spectral clustering based on
neighbor propagation. Neuro computing 97, 125–130 (2012)

6. Nataliani Y, Yang M S, F.: Powered Gaussian kernel spectral clustering. Neural
Computing and Applications 31, 557–572 (2019)

7. Paun, Gheorghe, F.:Computing with Membranes. Journal of Computer and System
Sciences 61(6), 108–143 (2000)

8. Zhenni Jiang, Xiyu Liu, Minghe Sun, F.: A Density Peak Clustering Algorithm
Based on the K-Nearest Shannon Entropy and Tissue-Like P System. Mathematical
Problems in Engineering 2019, (2019)

9. Zhao Y, Liu X, Li X, F.: An improved DBSCAN algorithm based on cell-like P
systems with promoters and inhibitors. PLoS ONE 13(12),(2018)

10. Liu X, Zhao Y, Sun W, F.: K-Medoids-Based Consensus Clustering Based on Cell-
Like P Systems with Promoters and Inhibitors. Communications in Computer and
Information Science 681, 95–108 (2016)

11. Peng H, Shi P, Wang J, F.: Multiobjective fuzzy clustering approach based on
tissue-like membrane systems. Knowledge-Based Systems 125, 74–82 (2017)

12. Peng H, Wang J, Shi P, F.: An Extended Membrane System with Active Mem-
branes to Solve Automatic Fuzzy Clustering Problems. International Journal of
Neural Systems 26(03), (2016)

13. Gong P, Liu X, S.: An Improved MST Clustering Algorithm Based on Mem-
brane Computing. In: Springer, Cham. International Conference on Human Cen-
tered Computing 2017, 10745:1-12.

14. Paun, Gheorghe and Rozenberg, Grzegorz and Salomaa, Arto, T.: The Oxford
Handbook of Membrane Computing. Oxford University Press, Inc.,New York, NY,
USA (2010)

15. B. J. Frey, D. Dueck, F.: Clustering by passing messages between data points.
Science 315, 972–976 (2007)

382

10 Zhe Zhang Xiyu Liu

16. J. Meng, H. Hao, Y. Luan, F.: Classifier ensemble selection based on affinity prop-
agation clustering. Journal of Biomedical Informatics. 60, 234–242 (2016)

17. Wang Lijuan, Ding Shifei, Jia Hongjie, F.: An improvement of Spectral Cluster-
ing via Message Passing and Density Sensitive Similarity. IEEE Access 7, 101054–
101062 (2019)

383

A review of membrane computing models for
ecosystems and a case study on giant pandas

Yingying Duan1, Gexiang Zhang1�, Dunwu Qi2, Luis Valencia-Cabrera3, Haina
Rong1, and Mario J. Perez-Jimenez3.

1 School of Electrical and Engineering, Southwest Jiaotong University,
Chengdu 610031, China

2 Chengdu Research Base of Giant Panda Breeding, Chengdu, Sichuan, China
3 Department of Computer Science and Artificial Intelligence, Universidadde Sevilla,

Sevilla, Spain

Abstract. Ecosystem modeling based on membrane computing is emerg-
ing as a powerful way to study the dynamic of (real) ecological popula-
tions. These models, providing distributed parallel devices, have shown
a great potential to imitate the rich features observed in the behavior
of species and their interactions, key elements to understand and model
ecosystems. Compared with differential equations, membrane computing
models, a.k.a. P systems, can model more complex biological phenomena,
due to their modularity, their ability to enclose the evolution of different
environments and simulate in parallel different interrelated processes.

In this paper, a comprehensive survey of membrane computing
models for ecosystems is given, taking a giant panda ecosystem as an
example to assess the models performance. This work aims at modeling
a number of species using P systems with different membrane structure
types to predict the number of individuals depending on parameters
such as reproductive rate, mortality rate, and rescue or release. Firstly,
the computing models are introduced conceptually, explaining the use of
the rules. Next, various modeled species (including endangered animals,
plants, and bacteria) are summarized, and some computer tools are pre-
sented. Then, a discussion follows on the use of P systems for ecosystem
modeling. Finally, a case study on giant pandas in Chengdu Base is ana-
lyzed, concluding that the study in this field by using single environment
systems can provide a valuable tool to deepen into the knowledge about
the evolution of the overall ecosystem. This could ultimately help in the
decision making processes of the managers of the ecosystem to increase
the species diversity and modify the adaptability. Also, we should con-
sider the impacts of natural disasters on population dynamics of species.
To this purpose, the analysis performed has provided a considerably more
feasible prediction data than those so far been harvested.

Keywords: Membrane Computing; Ecosystem Modeling; Endangered
Species

� Gexiang Zhang is corresponding author (phone:13882184673; e-mail: zhgxdy-
lan@126.com)

384

2 Y. Duan et al

1 Introduction

Membrane Computing is a fast-growing branch of natural computing [83].
The computational devices within this paradigm are called membrane systems
or P systems, and they have attracted major interest since their appearance.
Nowadays membrane computing community is actively combining deep theoret-
ical researches with practical applications.

On the one hand, theoretical studies focus on how to design membrane com-
puting models according to the compartmentalized structure and the functioning
of biological membranes within living cells, and how to evaluate their computa-
tional power and computational complexity, addressing efficiency aspects. Differ-
ent types of membrane structures abstracted from biological cells can be distin-
guished in membrane systems. The most widely studied are cell-like P systems
[79, 81, 112] (inspired in the compartmentalized hierarchical structure inside a
cell), tissue-like P systems [7, 67] (with the focus in the interconnection among
cells, not entering into details of the internal compartments inside each cell), and
spiking neural P systems [78, 80, 101] (inspired from the transmission of electri-
cal pulses, a.k.a. spikes, among neurons). Along the last twenty years, plenty of
research results have proved that a number of variants of these computational
models are equivalent in power to Turing computing power (computationally
complete), and many of them obtained efficient solutions (polynomial solutions,
even linear in some cases) to a variety of computationally hard, NP-complete
[89, 99] or PSPACE problems [104, 1].

On the other hand, application researches of membrane computing models
aims to effectively apply the introduced models to handle several practical prob-
lems, from basic ones to the modeling of complex systems. For automatic design
of membrane computing models (ADMCM), regarded as an automatic computa-
tion device, the models can adaptively achieve basic arithmetic operations [132].
Thus, in [49] Huang et al applied P systems with the Q-bit representation to
compute power n2, something also achieved in [77] by Ou et al, who applied P
systems calculate power n2 with a different approach using an elitist genetic algo-
rithm (GA). within this same research line, in [17, 131] five types of automatic P
systems were used to compute adding, subtraction, multiplication, division and
power. In some studies, spiking-like P systems are used as a computing device to
resolve several arithmetic problems; for instance, the addition of n natural num-
bers and the multiplication of two arbitrary natural numbers with a given length
of binary bits [88, 134]. Of course, apart from providing automatic design and
arithmetic operations, P systems are applied to hard problems such as vertex
cover [62, 102], quadratic assignment [73], 3-coloring [31, 74] and non-semilinear
sets [2, 103]. Besides, they have been applied to solve image processing prob-
lems [19, 86, 100, 121, 125, 128], complex optimization problems [4, 132, 110, 130,
35], and intelligent control problems for robots [10, 84, 122]. These applications
show that membrane computing models are useful tools to solve many practical
problems of very different nature. It seems clear that each type of computation-
ally hard problem addressed by membrane computing models somehow implies

385

A review of P systems for ecosystems 3

an extension of application fields, providing theoretical and practical foundations
opening paths that can be worth exploring, and widening the application space.

Regarding the contributions of membrane computing to model complex sys-
tems, relevant achievements have been made along the last decade, with a special
attention to the study of real ecosystems (focusing on endangered or invasive
species, among others) and population dynamics. Thus, endangered species on
ecosystems present reproduction rates usually low, along with mortality rates ab-
normally high, due to reasons derived from the biology of the species themselves,
the increased threats by others, the effects of human activities or natural disas-
ters. It is often the case that these endangered species are not considered to be
free of danger even when the threat is vanishing, because of their scarcity in the
undisturbed fragments, so that isolated population sometimes cannot survive
after destruction and become extinct. Hence, the qualitative and quantitative
understanding of the inherent laws or processes underlying the disturbances in
the population size and distribution (i.e., the population dynamics) has become
critical for the successful management and conservation of endangered species
[72]. Apart from their natural mortality, most species have suffered the effects
of several nature disasters. In certain studies, some types of natural disasters
have caused or may potentially cause the risk of species biodiversity collapse, or
even some species extinction in certain regions [54, 105, 109, 114]. For example,
references in [15, 37, 93, 98, 108] studied the impacts of climate change on the
parameters related with the population dynamics of congbird [98], divergence
of species responses [37], the impact for agricultural welfare [108], parasite bio-
diversity [15], and an information fusion of numerous natural or environmental
factors by using multi-mathematic models [93]. In order to accurately assess
the impacts of these factors, several mathematical models are used to analyze
the impacts of these elements on population dynamics; e.g., differential equations
[38], generalized linear models (GLMs) [71], generalized additive models (GAMs)
[126], ecological niche factor analysis (ENFA) [48], or machine-learning methods
such as maximum entropy method (Maxent) [91], Bayesian approaches [40] and
neural networks [117]. According to the predicted results of these models, the
parameters related can affect the population change in varying degrees. The re-
searches mentioned that it would be worth providing projections for endangered
species population dynamics under the influence of potential natural disasters,
in order to protect them. Besides, it would be advisable to address the research
on the population dynamics of the species following different approaches.

This work focuses on membrane computing (MC) models of species in certain
ecosystems, so it involves two main fields: membrane computing and population
dynamics. Concerning the first one, MC has among its strengths the availability
of rigorous and complete, strongly-founded theoretical-practical developments;
in addition, it provides parallel distributed devices in a framework with flexible
evolution rules. With respect to the latter one, the population dynamics of the
species has obvious biological processes involved, such as feeding, reproduction,
mortality, rescue, release, biochemical reactions of bacteria, and this dynamics
could be also affected by the potential impacts of natural disasters on popu-

386

4 Y. Duan et al

lations. Based on the characteristics of membrane systems and the features of
endangered species, these evolutionary behavior of such species can be expressed
by the rules of membrane systems. Hence, along this paper, we recapitulate
ecosystem models using different types of P systems. Firstly, we consider how
to map between the elements related with the species and their interactions in
the ecosystem and those related with the definition of P systems. So far, there
are several references to study the applications of P systems on different real
ecosystems. The common characteristics are summarized as: (a) each individual
is represented by an object in the P system; (b) the different behaviors of indi-
viduals of the species are abstracted as the rules in the P systems; (c) a certain
living environment in the ecosystem is abstracted as a membrane structure. At
every moment, all individuals will evolve synchronously. For these species in-
habiting different geographical regions but subject to the same processes, this
situation can also be represented by using multienvironment P systems, where
communication is possible between different environments. For other species such
as plants and bacteria, the evolutionary processes are also modeled according
to their characteristics, and possibly distinguishing environments with different
parameters. Through the analysis above, we have depicted some of the most rel-
evant facts taken into account when modeling ecosystems based on P systems,
in order to accurately predict data about the biological evolution of the species,
aiming to capture in these models (i.e., to mimic) the relevant elements of the
real biological phenomena under study.

The rest of this paper is arranged as follows. Section 2 introduces mem-
brane computing models for ecosystems. After that, Section 3 summarizes the
applications of such membrane computing models to the population dynamics
of certain ecosystems. Then, Section 4 lists several simulation software tools to
perform virtual experiments for P systems models of ecosystems. Later on, in
Section 5, a case study on the population dynamics of giant pandas is analyzed.
Finally, some conclusions and possible further developments are discussed in
Section 6.

2 Membrane computing models for ecosystems

As outlined in Section 1, different types of mathematical models have been
applied to ecosystems. These models are representations imitating the real sys-
tems under study, using a certain formalism. In particular, some of these approx-
imations are computational models, what means they follow the rules of some
computing paradigm that regulates their behavior, and can be computed directly
in their computational devices, or be simulated following the same exact rules;
on the contrary, non-computational models (e.g. differential equations) require
the use of approximated methods in order to be computed by some computing
device.

When membrane computing is used to create a representation of an ecosys-
tem, incorporating their main parameters, individuals, processes, etc. involved in
their dynamics, this is considered a computational model, because is a model of

387

A review of P systems for ecosystems 5

the ecosystem that is based on a computational paradigm (in this case, membrane
computing), whose computation follows the exact rules of the formal model, not
requiring any approximate method to be computed. These models of ecosys-
tems are based on membrane computing, so they are usually called membrane-
computing based models, using for this representation some type of membrane
systems (commonly referred to as P systems).

As computational devices, membrane systems or P systems are abstracted
from the structure and the functioning of livng cells. There are three main classes
of P systems: (1) cell-like P systems, inspired from living cells; (2) tissue-like P
systems, inspired from the interactions of cells in tissues; and (3) SN P systems
(Spiking Neural P systems), inspired from neural systems.

Concerning the population dynamics of ecosystems, with regards to the mem-
brane structure mostly cell-like and tissue-like P systems have been used to
build these models. Thus, cell-like P systems have been generally applied to
model ecosystems where a single environment is involved, whereas the latter
ones haven been applied to systems involving more than one environment im-
plying communications. However, a third type of system, initially referred to
as multi-environment system, has been widely adopted to combine the inter-
nal structure on cell-like P system (in tissue-like systems the cells only present
one level, without internal organization) plus the existence of different regions
with cells inside and allowing communication among environments (what is not
possible in cell-like systems).

With respect to the dynamics of the systems involved in these computa-
tional models, mostly two main paths have been followed when dealing with
multi-environment systems: a stochastic approach (there are zero or several cell-
like P systems inside each environment) and a probability approach (there is
one and only one cell-like P system in each environment); for further details re-
fer to [132]. Nowadays, the stochastic approaches are generally associated with
computational models at a micro level (e.g., involving molecular interactions),
not being widely used to model ecosystems at a macro level. Consequently, in
what follows along the paper we only consider the computational models of P
systems following the probabilistic approach, also termed population dynamic
P systems (PDP systems).

PDP systems are variants of P systems introducing probability mechanisms
into P systems. According to the number of environments, PDP systems can be
divided into single environment PDP systems (with a cell-like P system inside
a single environment, see Fig.1 (a)) and multi-environment PDP systems (with
several environments, each one containing a single P system inside, see Fig.1
(b)). These two types of PDP systems are introduced as follows, including syn-
tactic and semantic aspects.

Definition 2.1 ([11]). A single-environment P system of degree n with
n ≥ 1 is a tuple

Π = (Γ, μ,M1, ...,Mn, R, {fr}r∈R) (1)

388

6 Y. Duan et al

where

• Γ is a finite alphabet constructed by all the objects in the PDP system.

• μ is a membrane structure (MS), consisting of n membranes, labeled as 1,

2,...,n. The skin membrane is marked as 1. We associate electrical charges

with membranes from the set {-,0,+}, negative, neutral and positive.

• Mi, 1 ≤ i ≤ n, are finite multisets over Γ , representing the multisets of

objects initially placed in the n regions delimited by the membranes of the
hierarchical structure μ.

• Ri(Ri ∈ R), 1 ≤ i ≤ n, are a finite sets of rules of the following forms:

• Rules of the first type: r1 ≡ u[v]αi
pr−→ u′[v′]βi

• Rules of the second type: r2 ≡ u[v]αi
1−pr−−−→ u′[λ]βi

where, u, v are a multiset over Γ and pr is a real number between 0 and 1
associated with the rule, α and β are electric charges where α, β ∈ {−, 0,+}. In
each computation step, the same left-hand side of the rule can produce different
evolutionary states (e.g., surviving or not), and the sum of these rules sharing
their left-hand side (including the electrical charge) must always be equals to 1.

Rule analysis. For modeling ecosystem, the rules are abstracted from the
behavior of species, food distributions, natural disasters, bacterium reactions,
etc. From the point of view of the certainty of the application of the rules, two
kinds of operational rules can be distinguished. The first type would be rule
without explicit probability written; this is equivalent to a probability of 1; that
is, these rules will be executed whenever selected, what will happen whenever
they are applicable and no rules are competing for the same objects involved.
The other type of rules, in this sense, would be the rules with probability lower
than 1; that is, rules that, once selected, will be executed depending on their
probability.

The pattern transformation of the above system is as follows: taking Fig.1(a)
as an example, object v from region delimited by region 1 is transferred into
region in membrane 2, and then begin to evolve by using some of the two rules
in 2. Thus, if rule r1 is selected according to its probability, then object v is
rewritten into object v′ in cell 2 (of course, this could be any multiset); if r2 is
selected instead, then object v is removed from the skin membrane. The system
halts when reaching a given condition, typically a number of iterations or cycles
of the evolution of the system, because usually when modeling complex systems
there is no beginning or end (differently from P systems generating numbers,
computing functions or solving computationally hard problems); instead, in this
case the result of the computation is indeed the observation of the system itself,
including whatever elements (individuals and other possible variables involved)
subject to study.

Definition 2.2 ([21]). Amulti-environment P system of degree (m,n) with
m ≥ 1, n ≥ 1, taking T time units, T ≥ 1, is a tuple

389

A review of P systems for ecosystems 7

Π = (G,Γ,Σ, T,RE , μ,Π, {fr,j |r ∈ RΠ ∧ 1 � j � m},
{Mi,j |1 ≤ i ≤ n, 1 ≤ j ≤ m}, {Ej |1 ≤ j ≤ m}) (2)

where

• G = (V, S) is a directed graph such that (x, x) ∈ S, for each x ∈ V . Let
V = {e1, e2, ..., em} whose elements are called environments.

• Γ is the working alphabet and
∑

� Γ is an alphabet describing the objects
that can be presented in the different environments.

• RE is a finite sets of communication rules between two environments, of
the form

rej ,ejl ≡ (x)ej
p(x,j1,j2,...,jh)−−−−−−−−−→ (x′

1)ej1 ...(x
′
h)ejh (3)

where x, x′
1, . . . , x

′
h ∈ ∑

, (ej , ejl) ∈ S(l = 1, ..., h) and p(x,j1,j2,...,jh)(t) ∈
[0,1]. For the same left-hand size (x)ej , the sum of functions associated with the
rules from RE equal to 1.

• Π = (Γ, μ,RΠ) is a P system skeleton representing the m P systems
respectively placed inside the m environments (with the same alphabet, mem-
brane structure and rules). Each environment ej contains exactly one P system
with this skeleton Π. The only difference among them will be derived from the
different parameters and initial multisets that can be initially placed inside the
P system of each environment.

• Mi,j , 1 ≤ i ≤ n, 1 ≤ j ≤ m, are the multisets of objects initially present
inside each of the n membranes of the m environments.

• Ej , 1 ≤ j ≤ m, are the multisets of objects initially present in the m
environments.

Taking Fig.2 (b) as an example: in the above system, there is a PDP system
like Fig.1. (a) inside each environment. Object x from environment ej , 1 ≤ j ≤ 4,
can move to another environment ek (maybe to more than one at the same time)
using rule rej ,ejl ; during its transmission, object x from environment ej can be
rewritten into x′

i, 1 ≤ i ≤ h, in environments ej1 to ejh .

When studying real world ecosystems, the first type (single-environment) can
only study the population dynamics of species in a region, while the second type
(multi-environment) is used to model various species distributed in more than
one environment. For the latter, each environment ej contains one P system with
the P system skeleton Π (if we want to identify the different multisets placed
inside the P system of each environment, these systems might be referred to as
Πj). Besides, it is worth emphasizing the important role played by the informa-
tion communication among environments (by sending one object to one or more
neighboring environments, possibly transforming this object into a different one
inside each target environment). At the same time, the m P systems placed in
the different regions are executed synchronously (let us also note that, inside
each one of these m P systems, a second level of parallelism is present through

390

8 Y. Duan et al

the parallel execution of rules in the n internal membranes of each system). The
above analysis shows that a single-environment PDP system is a special case of
a multi-environment PDP system.

2
1

a

0

Fig. 1. A portion of classified PDP systems used for modeling ecosystems. (a) A single-
environment PDP system with two membranes. (b) A multi-environment PDP system
with four environments with the same P system skeleton placed inside each environment
(their internal structure being omitted).The system shows population activity of the
four environments e1 to e4.

In what following the main uses of PDP systems to model ecosystems are
analyzed.Thus, a synthesis of several papers published since 2013 illustrates that
different types of P systems have been used for predicting population dynamic
of ecosystems. Well-known membrane systems can be used for modeling ecosys-
tems in order to assess the projected number of individuals of certain species and
their distribution (in terms of ages and locations). So far, a number of endan-
gered species (listed in literature in section 1) have been studied. They focus on
different species, study different processes and phenomena, and there are some
differences in the definition of rules such as counts or types and subtly different
membrane structures (e.g., single vs multi-environment, or different number of
membranes in the P system skeleton). However, the general structure of the sys-
tems and their dynamics can be extracted for a general protocol, as explained
in [26]. A simplified version of such protocol is outlined in the following steps
described below.

Step 1. Obtain biological data of the species studied. In the present study
pedigree data is available. The information includes the number of female (male)
individuals, age, and birthday or death date. Depending on the biology of the
species (usually animals), we need to further know other information not recorded
in datasets, typically related with processes of interest; for example, their living
habits or feeding needs.

Step 2. Define a conceptual model. According to the evolutionary behavior
of the species, i.e., feeding, reproduction, mortality, and so on, a preliminary

391

A review of P systems for ecosystems 9

general model (conceptual model) is abstracted from these basic processes, and
then each module of this model is given a certain priority.

Step 3. Define the computational model: starting from the conceptual model,
the computational model is built based on a mathematical framework Π, in our
case PDP systems. Natural evolutionary behaviors from conceptual model are
symbolized, representing the underlying processes with the elements of the com-
putational model. The necessary mapping for this model involves: (a) designing
the membrane structure of the skeleton P systems (cell-like structure) to place
inside the environments, including the initial multisets representing individual
objects (an animal ↔ an object) and symbolic food; (b) designing the evolution-
ary rule sets capturing the main processes affecting the biology of the species
under study, according to their living behaviors. Eventually, a complete multi-
environment PDP system (or some other equivalent complete model for the
ecosystem) is established. This model should be ready to analyze in terms of its
functioning under different scenarios.

Step 4. Choose simulation software: the previous model designed might be
analyzed with manual traces, to validate against real data and later use to formu-
late hypothesis and check the behavior of the system under potential scenarios
of interest. However, the manual analysis of big complex systems is not only te-
dious or error prone, but also impractical and directly intractable in certain case
studies. Thus, we need simulation tools where we can debug the models, experi-
mentally validate them and finally using them for intensive virtual experiments
under different scenarios of major interest for the ecosystems under study. In the
case of PDP systems and similar types of membrane systems, the most widely
used software has been the framework provided by P-Lingua and MeCoSim. This
software is used to run experiments to estimate the population size of the species
under study in the coming years under different conditions, performing the sim-
ulation from the P system defined in Step 3 and the initial data provided by
the user. To sum up the process, MeCoSim contains three files: (a) a config file,
where we can define the custom app including the setting of simulations, in-
put tables and output fields/charts, along with other input/output information
and parameter-related data (please read user manual [137]); (b) data file, whose
purpose is to record experimental data sets, i.e., input data, output data and
all the parameters corresponding to a specific experiment; (c) model file, where
the specification of the P system itself is given, including membrane structure,
initial multisets received from the scenario and grammatical rules capturing the
rules of the P systems (both skeleton and environment rules).

Step 5: Output predicted data sets. Taken the statistic data sets of a certain
year as input, along with all the parameters related with the biology of the species
and the conditions of the ecosystem, the system predicts a set of experimental
results by using MeCoSim environment, and then running the model loaded for
certain number of cycles (usually years) to get the output.

The protocol depicted above provides an organized sequence of steps to de-
sign a model based on PDP system and use it in a practical way to get new
insights from the study of the phenomena under study. This provides a theoret-

392

10 Y. Duan et al

ical but also practical framework for the use of size-based indicators to monitor
the ecosystem changes of species. From a conservation and management view-
point, a key advantage followed with these models based on PDP systems and
the tools available (where many potential scenarios can be analyzed by simply
changing the input data) is that predictions can be obtained according to the
evolutionary behavior of species, rather than relying solely on historical baselines
that may not be relevant under current or future environmental conditions. The
applications of models in the context studied can also include analysis of how
several parameters -including growth ratio, reproduction ratio, and mortality
ratio, among others- affect predicted changes in the number of species.

3 Application of P systems to ecosystems

In this section, we revise various species that were modeled using different
types of P systems. In [4], it is concluded that P systems is a suitable model-
ing technique to predict population dynamics of various species because of the
following features:

• Formulating ecosystem modeling as population dynamic P systems over-
comes some of the limitations of purely size- or species-based approaches.

• Natural behaviors of each individual are identifiable: identifiability of in-
dividual behaviors such as survival or mortality is known (conforming to the
natural evolution law of real species).

• The evolution direction of each individual is uncertain: this uncertainty
arises from the probabilistic handling of the underlying natural behavior.

• Increasing super-large samples may change distribution functions of DEs,
but in PDP system this issue is not present.

• There is no need for function constraints or condition assumptions such as
sampling independence, functional differentiability, existence of expectation or
variance when predicting population dynamics. Besides, the modeling methods
proposed can further contribute to interpretability and robustness.

Based on the advantages outlined above, the population dynamics of the
species present in several ecosystems have been studied in the past with different
applications of P systems, as summarized in the following subsections.

3.1 Bearded vulture

The ecosystem modeled in that work is located on the southern slope of the
central Pyrenees (Aragon region, Spain), a mountainous area belong to the Eu-
rosiberian biogeographic region, which encompasses the three geomophological
regions of the Pyrenees: the ’Axial Pyrenees’, ’Internal Sierras’, and ’External
Sierras’. Bearded vultures are distributed in different regions within those areas.

The bearded vulture is a cliff-nesting and territorial large scavenger. This
species is the only vertebrate that feeds almost exclusively on bone remains
of herbivores living in the three habitats mentioned, i.e., animals like red deer,
fallow deer, roe deer and sheep. The remains of these animals was predicted to be

393

A review of P systems for ecosystems 11

the major limiting factor for the survival of avian scavengers during winter and
summer [66]. Bearded vulture has a mean lifespan in wild birds of 21.4 years[136].
In general, the mean age of the successful reproduction is 11.4 years [4]. With
every spawning, usually only one chick survives due to the aggression, although
the species can produce (as frequently does) two eggs. Recently, field technicians
from the Conservation of the Bearded Vulture have carried out annual breeding
surveys, indicating that the fertility ratio of the species in the Pyrenees is around
30%, which makes this species become one of the rarest raptors.

Taking into consideration all the evolutionary characteristics and the core
parameters affecting the changes in the population size of the species, different
types of P systems were used to model ecosystems related to bearded vulture. In
the initial phase, a bearded vulture model was presented by a single-environment
P system, whereas also different rule selection methods started to be explored.
Thus, in [11], based on the principle of bio-chemistry reactions, they selected
rules by using stochastic constants, so that a rule will be executed if the condi-
tion of intrinsic reactivity given a certain threshold is met. However, this tech-
nique cannot exploit in general the full range of rules of the system, involving a
number of different processes subject to different natural laws. Thus, in order to
solve the drawbacks of limiting the use of rules mentioned, a probability-based
population dynamic P system is defined, where rules are chosen in a probability-
based roulette way. Experimental results show that, in comparison with previous
P system, this system can better simulate the trends of population dynamics of
bearded vultures, in the sense of showing a higher accuracy with respect of the
validation dataset.

According to the analysis conducted in this work, the population belonging
to a single environment usually contains a small number of individuals, with
their genetic variability probably lost; this loss may happen not only during the
founding event, but also during subsequent generations, when the population re-
mains small and the exchange of individuals with other populations is minimal.
In order to capture other scenarios the initial scope is widened. Thus, it is fre-
quently the case of ecosystems with certain separated regions with some degree
of communication among them; there, in order to modify the breeding rate by
increasing genetic diversity and enhance the survival rate of individuals, they can
move among areas; this is captured in the case studied by a multi-environment P
system with two nested membranes. In this system, each environment contained
17 different types of animals corresponding to 13 species. Besides, there was
communication between two environments, that is, individuals from the same
species coming from different regions could mate, thus increasing genetic diver-
sity and modifying the survival rate of bearded vulture. In [66], Margalida et al
also studied multi-environment population dynamic P systems. Their experimen-
tal results showed that these types of P systems can truly reflect the trend of
beard vulture, improving the results compared with those of single-environment
P systems.

394

12 Y. Duan et al

3.2 Zebra mussel

The zebra mussel (Dreissena polymorpha) is a freshwater mussel living in
several of the major river basins, including Ribarroja reservoir in the north of
Spain. This species is an invasive species. Its appearance in Spain and several
European countries resulted in adverse impacts on industry, economy and ecol-
ogy [138, 139]. Zebra mussel is a dioecious species with an r-selected reproductive
strategy, consisting in external fertilization and planktonic larval stages. Its suc-
cess colonizing new environments may be attributed to high fecundity, efficient
larval dispersal, few natural controls and its ability to adhere to hard substrates
[140].

Zebra mussel has become a dangerous threat by feeding competition and
alternation of river sediments, to native mussels. As these native mussels are
threatened or endangered, current control strategies in Spain water bodies are
therefore limited to avoid spreading of zebra mussel by regulating boating and
fishing activities. For these reasons, different biochemical and histological biomakes
have undertaken to study the impacts in the population dynamics of zebra mus-
sel, thus aiming to control the dispersal of zebra mussel, and over other species.
In general, traditional approaches applied logistic regression [142], classification
and regression tree model [141], rule-based genetic algorithms [143], and max-
imum entropy method (Maxent) [144] to analyze the alteration of population
dynamics of zebra mussel, obtaining a series of good results. However, the use of
such equations in the case of the zebra mussel ecosystem imposes some restric-
tions on its ecological analysis. Hence, some scholars used P systems to predict
the change of population dynamics of zebra mussel. Using PDP systems, the
maximal advantages are that it is possible to mimic the evolutionary features
of animals or to explore the birth or mortality trend of populations, giving the
traceability of each adult or larvae individual during the evolution of the system.
In [13], according to the categories of species and distribution of their regions,
a multi-environment population dynamics P system with 5 cells and 17 areas
is used to model the zebra mussel of Ribarroja reservoir. Since zebra mussel
must breed in a strict temperature, this parameter is also considered in this P
system. Comparing with statistical data, the deviation rate is controlled within
10%. Subsequently, Colomer et al [23] used a PDP system with 40 cells and 17
areas to model zebra mussel. This model divided 40 cells into different functions
providing the first or second cycle evolution of this species. Simulation results
showed that PDP models provide very useful tools to model complex, partially
desynchronized, processes that work in a parallel way. According to the analysis
above, P system-based model can predict better results when handling charac-
teristics such as the ones present in this species, thus increasing the confidence
in the effectiveness of the approach followed.

3.3 Pyrenean chamois

Pyrenean chamois (genus Rupicapra) is a mountain ungulate distributed
over most of the medium- to high-altitude mountain ranges of Andorra, France

395

A review of P systems for ecosystems 13

and Spain [145]. There are about 53000 individuals of pyrenean chamois living
in these places. The status of the species has not always been so favorable; for
example, in the late 60’s the population decreased down to the edge of extinction
due to indiscriminate hunting.

In order to realistically simulate the evolutionary behavior of this species and
estimate the effects of introducing a pestivirus affecting the species, Colomer et al
[21] modeled Pyrenean chamois using a multi-environment PDP system with
thresholds including maxim density. According to the requirements of modeling
pyrenean chamois, the processes mainly considered where that of feeding, repro-
duction and mortality, being these evolutionary behaviors properly abstracted
as some rules in the PDP system designed.

As the population dynamics of pyrenean chamois in a significant part of
certain regions was highly influenced by an infection of a border disease virus
(BDV)[136], this model considered the impacts of diseases caused by BDV on
the population dynamics of the species under study.

The changing trend of population scales of species may be affected by many
factors. Weather change problems (i.e., increased frequency of extreme weather)
can cause the risk of biodiversity loss or collapse, as it may happen to pyrenean
chamois. For some species, it may even cause their extinctions in some regions,
hence this model also considered the impacts of weather on population dynamics.
Besides, other natural factors are also considered in this model. In a P system,
natural disasters can be abstracted in different ways; for instance, increasing the
mortality of pyrenean chamois. In this model, there is a membrane structure
with 10 membranes, where the individuals of each of these regions are subject to
the effects of multi-natural conditions. In addition, there are four environments
(each one including the same skeleton with the 10 regions just mentioned) cor-
responding to four study areas where ecological data was available (national
reservoir of hunting in Pallars-Aran, RNC Cerdanya-Alt Urgell, RNC Cadi, and
RNC Freser-Setcases), all of them belonging to the Catalan Pyrenees.

According to the simulation results obtained with the model designed, be-
longing to ecological data of 22 years, some differences were observed with respect
to the real data available to validate the model. It was concluded after a deeper
study that these differences between the values obtained with the model and the
statistical data could be further reduced by introducing more nature conditions
into P systems. The module, flexible and extensible nature of membrane systems
would make it possible to introduce the new elements without major changes in
the existing model, and reusing the existing structures and rules.

Due to the fact that monitoring data including weather change varies con-
tinuously, and due to the existing relations among different natural conditions
(see the selected examples), it is likely that for assessing population dynamics we
should focus on multi-index fusion, not just single-index study. A few potential
examples can enlighten this thought:

• Hot weather can increase the spread of diseases;

• Bad weather can make species including chamois move to other areas;

• Invasions of alien species may also bring new diseases.

396

14 Y. Duan et al

3.4 Giant pandas

Giant pandas are listed as endangered species by IUCN Red Data Book (re-
cently updated to class VU - vulnerable - in the last assessment, 2016). According
to the fourth giant panda survey by National Forestry Administration (NFA),
only both 1864 wildlife giant panda and 375 captive giant panda including 166
male and 209 female survive on earth by end of 2013. It is a sharply debated
question whether panda populations are just beginning to regain lost ground or
are already healthier than they have been for many years [44]. Recent studies
have clarified that giant panda in more than 200 countries and regions around
the world are almost extinct or extinct because present survival rates become
exceptionally low.

Facing the survival status of giant pandas, approaches on assessing popu-
lation size are built. Because P systems can incorporate and quantify several
behaviors of species, i.e., reproduction, feeding, mortality and the direct or in-
direct species interactions over communications, P systems are used to model
giant pandas. In [50], based on the ecological data of giant pandas in Chengdu
Research Base of Giant Panda Breeding, a probability membrane system is de-
signed with a membrane structure consisting of two nested membranes, a series
of objects and evolution rules to represent the giant panda ecosystem. Experi-
mental results showed that the model can approximately simulate the trends of
population dynamics of giant pandas. In order to properly mimic the natural
behaviors and lifestyles of giant panda in real natural environment, based on the
ecological data of giant pandas in China Giant Panda Conservation Research
Center, in [113], a release module is added to the previous population dynamics
P system with a two-layer nested membrane. The simulation results indicated
that the maximum deviation rate between the prediction results and the actual
data was basically controlled within ±4.13%, which improved the accurate of so-
lutions using P system compared with [50]. Although these systems have already
been dedicated to further improve the quality of simulation results mentioned,
they are still limited to single-environment conditions, with no clear-cut study-
ing for multi-environment P systems so far. Besides, natural disasters are also
not considered in the studied systems to this day.

3.5 Other biological systems

In this section, we survey ecosystem modeling for other biological systems in-
cluding the quorum sensing regulatory networks of the bacterium vibrio fischeri
and that of arabidopsis thaliana. We will study the impacts of P systems on
the behavior of populations of other ecosystems. For such ecosystems, P systems
are used to model the biological phenomena rather than the behavior of indi-
viduals. The model designs and experiment assays were applied to the following
ecosystems:

V ibrio fischeri. Quorum sensing is a cell density-dependent gene regulation
system that can manage expression of specific sets of genes. Certain pathogenic
bacteria use quorum sensing to regulate genes encoding extracellular virulence

397

A review of P systems for ecosystems 15

factors[3]. The cell density control of luminescence in the symbiotic marine bac-
terium V ibrio fischeri is the best-studied quorum sensing system. Hence, several
references used P systems to model this bacteria, concluding that these systems
can really simulate the overall effect of the colony. In [7], Bernardini et al used a
single-environment P system with membrane structure (9,1) to model the quo-
rum sensing regulatory networks of the V ibrio F isheri. In this model, there
are 9 compartments, each one representing a bacterium. Inside each of the com-
partents, rules are used to regulate the reactions of the luminescence genes.
Besides, objects can move between a compartment and the environment. Single-
environment techniques limited the communication between different types of
bacteria. In [96], Romero-campero et al presented a multi-environment P sys-
tem with stochastic constants in order to allow the individuals of bacterial cells to
communicate each other. Through experimental results, this multi-environment
computational models of quorum sensing in V ibrio fischeri can efficiently pre-
dict the change of bacterial density.

Arabidopsis thaliana. Gene regulatory networks are useful models based on
versatile frameworks for biologists to understand the interactions among genes
in living organisms. In order to better reproduce the behaviour and the dynam-
ics of gene networks, an accurate tool -a PDP system- is provided to simulate
the behaviour of different types of gene networks of species. Thus, in [118], Luis
et al first use membrane computing models to reproduce the behaviour of a gene
network constructed by the improved LAPP method. In this model, the state
of each gene in the network at every moment needed to be coded by a series of
binary numbers in the existing environments. Then, through interactions (reg-
ulated by the rules defined), the next state of the genes will be produced. The
contribution of each interaction is calculated from the previously generated ob-
jects in order to assess the global influence. Once global clock equals to 0, the
system can stop, obtaining the optimal gene networks. Subsequently, Luis et al
[119] applied the defined LN DP systems to reconstruct gene logical networks
and gene dynamics of Arabidopsis thaliana in order to regulate the flowering
processes associated to Arabidopsis thaliana on a long day scenario. By simu-
lating using the software MeCoSim, the designed model proved to match the
output data obtained by the latter algorithm.

4 Simulation software

P system simulators have become important computational tools in the pro-
cesses of model debugging, validation and later virtual experimentation, among
other purposes. In this section, we introduce some simulation software products
to design models for ecosystems by means of P systems.

The primitive simulators are P-Lingua dedicated languages, which are a class
of software frameworks applied to specify and simulate P systems [3]. P-Lingua
has been successfully used to fix ecosystem modeling problems [3], formal model
checking and several computationally hard problems[136]. Each model displays
characteristic semantic constraints that determine the way in which the rules

398

16 Y. Duan et al

are selected. Hence, it is necessary for simulation software to take into account
different scenarios when the computational tools of P systems come to the fore.
Nowadays several P system models, i.e., P systems with active membranes [3],
tissue P system models [1] and spiking neural P systems (SN P) systems [1],
among others, can be performed in the simulators.

With the development of simulators, in recent years, different software appli-
cations have been applied to the simulation and validation of biological systems.
Here, we will introduce several developed software tools in the following sections:

MetaPlab (Italy; 2008). In [16], Castellini et al applied a software called
MetaP lab (MP), a computational framework for metabolic P systems, to model
biological phenomena related to metabolism. Metaplab framework consists of
the following four layers: (i) MP graph: it takes MP systems as inputs and
visualizes them. (ii) MP store data structure. This layer is applied to store all the
elements of MP in a suitable Java object form. (iii) Data processing. It is a plugin-
based module dealing with biological data. (iv) MP vistas. It copes mainly with
the graphical representation of MP structures and dynamics. For more details
refer to the web site [146]. Through experiment verification, MetaP lab can deal
with dynamic computation problems, flux discovery and regulation discovery
problems, compared with traditional simulators.

BioSimWare (Italy; 2010). In [3], Besozzi et al presented BioSimWare.
BioSimWare was a novel software providing a user-friendly framework for com-
plex biological systems, ranging from cellular processes to biological phenomena.
BioSimWare implemented several stochastic algorithms to simulate the dynam-
ics of single- or multi-environment models, as well as automatic tools to analyze
the effect of variation of the system parameters. BioSimWare supports SBML
format, and can automatically convert stochastic models into the corresponding
deterministic formulation. Prediction data showed that this software can offer a
better comprehension for complex biological.

MeCoSim(Spain; 2010). In [90], the simulation environment MeCoSim was
first presented. This software provided a multifunction application for the study,
analysis, modeling, visual simulation, model checking and optimization of all
the possible variants of P systems covered by P-Lingua framework, plus some
linked external simulators. In this software, some plugins have been developed to
provide some analysis and model monitoring capabilities. Based on the powerful
programming function of the software, it has been successfully applied as an
assistant tool for the iterative design of ecosystem models such as literatures
mentioned.

Due to the different scope of the first two software products, MeCoSim can
be a kind of feasible simulation tool for P systems to model ecosystems following
an approach similar to the one described in previous section of the paper. Nev-
ertheless, for MeCoSim, there are still relevant challenges to be considered. The
core point is that the simulators cannot dynamically tune the ecological param-
eters (according to real biological parameters, parameters such as reproduction
rate must change every year) in the process of performing P systems; that is,
these parameters will remain unchanged along the whole simulation, resulting in

399

A review of P systems for ecosystems 17

the bigger deviation rate between prediction data and real biological data. This
is a critical problem to be solved, possibly opening a new line of future work for
the software developers.

5 A case study on giant pandas

This section analyzes a particular case study where the methodology and
tools explained in previous subsections are applied. Specifically, the species of
interest will be the giant panda, and the following subsections will describe in
further detail the purpose, process and conclusions derived from our study.

5.1 Data Availability

The present work aims to capture the main facts and processes related with
biological data and evolution of certain populations of giant pandas in captivity.
More specifically, the geographical environment researched is Chengdu Research
Base of Giant Panda Breeding (GPBB, for short). Taking a closer look, let us
remark that the captive giant panda population of GPBB consists of individu-
als in GPBB, those in Chengdu Zoological Garden, and those who were born
in GPBB but are living outside of GPBB; The reference basis for our research
is giant panda pedigree data complied by Chinese association of zoological gar-
dens, including data belonging to 12 years (from 2005 to 2016). The adequate
processing of these data sets could lead to the extraction of relevant statistical
data referred to the number of female and male giant pandas per year, including
the age of each individual, being these data the basis and driving force, along
with the deep study of the processes involved in the biological evolution of the
species, to model the ecosystem.

5.2 Model Design

Population dynamic P systems (PDPs) based models involve two stages: a
conceptual model, followed by a computational model; the former one is used to
build the different behavior modules of the species in the ecosystem, such as Gi-
ant Panda, and give several key parameters required by the model; subsequently,
the latter phase is applied from the schema of the previous model to design the
specific PDP system detailing the structure, objects involved and setting the
computation rules governing the processes analyzed in the biology of the species
in the ecosystem and its evolution, according to the conceptual model introduced.

(a) Conceptual Model of PDPs
The main goal of this stage, in our case study, is the design of a novel popu-

lation dynamics P system based model for captive Giant Pandas in the regions
described at the beginning of this section. The processes of interest in the evolu-
tion of the ecosystem include the biological aspects related with its life cycle and
other possible phenomena happening in the environment; these processes should

400

18 Y. Duan et al

Table 1. Summary of studies that have used a new frontier approach, termed PDP
systems with different constraints, to assess the number of endangered species under
conditions of different types.

A case study (Endangered) Region/Condition Comments

M. Cardona et al. 2008 [11]
Bearded Vulture

Region: the cliff-nesting and ter-
ritorial mountains in Catalan
Pyrenees (Northeastern Spain).
Condition: Single-environment

(2,1) with two electrical charges (0
or +) where the skin region is used
to fix reproduction and mortality and
the inner one to fix feeding; Five wild
and domestic ungulates are included
as carrion (prey) species.

M. Cardona et al. 2008 [12]
Bearded Vulture

Region: Catalan Pyrenees(NE)
Condition: Single-environment

The structure of this system is the
same as that of [11]. The only dif-
ference is: this system is a dy-
namic P system with the probabilis-
tic approach, while the former used
stochastic constants (a rule can be
used when the reaction condition
reaches a given constant).

M. Cardona et al. 2010[14]
Scavenger Birds

Region: Catalan Pyrenees(NE)
Condition: Single-environment

(2,1) with two charges. This system
considers not-nomadic species (also
called invasion alien species - see part
(b) in section 3 -) and density regula-
tion in order to coexist. Subsequently,
this model contains 13 species includ-
ing two new scavenger birds.

M.A. Colomer et al. 2010[21]
Pyrenean Chamois

Region: Catalan Pyrenees(NE)
Condition: Multi-environment

(11,4,1) with three electrical charges
(-,0,+). The model mainly considers
four influencing factors: introduced
disease such as pestivirus infection,
climate change (refer to part (a) in
section 3), hunting, and migrations
between areas.

M.A. Colomer et al. 2010[24]
Bearded Vulture

Region: the cliff-nesting and
territorial mountains in Cata-
lan Pyrenees (Northeast, Spain).
Condition: Multi-environment

The computational model of the
probabilistic P system is the same as
that of [21] (please refer to third case
in this table for the detailed introduc-
tion about the model of a P system).

M. Cardona et al. 2011[13]
Scavengers/Zebra mussel

Region: Catalan Pyrenees (NE
Spain) /a fluvial reservoir (Riba-
roja-Ebro river, Northeast Spain)
Condition: Multi-environment

For the scavengers, the structure is
the same as [11], hence many details
have been skipped. For mussels, the
structure is (5,17,1) with tree elec-
trical charges. This model mainly fo-
cuses on factors such as water tem-
perature (see part (a) in section 3 for
impacts of the factor), fixation of the
mussel to the substrate, movement of
larvae and density regulations.

M.A. Colomer et al. 2011[22]
Scavenger Birds

Region: (Spain) Catalan Pyre-
nees/Pyrenean and Pre-pyrenean
mountains. Condition: Multi-
environment

(2,2) with environment change mod-
ule where any of species will move
to another area when the capacity
reaches a threshold. The model stud-
ied: (a) 13 species, including three
avian scavengers (three types of vul-
tures) as predator species, plus six
wild ungulates and four domestic un-
gulates as prey species; (b) the inter-
actions between species; (c) the com-
munication between two areas; (d)
load capacity regulation.

M.A. Colomer et al. 2011 [20]
Plant Communities

Region: (sub)Alpine(NE Spain)
Condition: Multi-environment

(5,5) with climatic variability (part
(a) in section 3) and orographic fac-
tors (part (c)). More importantly, the
model first emphasizes on the impact
of the plant community module on
population dynamics. The remaining
modules are similar to those in previ-
ous models.

M.A. Colomer et al. 2012 [25]
A carnivore that predates
on ungulates and five ungu-
lates

Region: Catalan Pyrenees(NE)
Condition: Single-environment

(11,2) with three electrical charges.
This model mainly considers the im-
pacts of environment factors such as
weather, orography and soil condi-
tions on carnivore size.

401

A review of P systems for ecosystems 19

Table 2. (Contined) summary of studies that have used a new frontier approach,
termed PDP systems with different constraints, to assess the number of endangered
species under conditions of different types.

Case study Region/Condition Comments

A. Margalida et al. 2011[65].
Scavenger Birds

Region: Catalan Pyrenees(NE)
Condition: Multi-environment

The model only considers wild ungu-
lates due to the limitation of domestic
carcasses. Undoubtedly, this causes
an impact on the biomass. The model
of (2,2) structure verified that when
only considering wild ungulates the
ecosystem cannot offer enough food
for predators.

A. Margalida et al. 2012[66].
European vultures as the
Bearded vulture, Egyptian
vulture, and Cinereous vul-
ture

Regions: 10 municipalities in
Catalonia, Northern Spain.
Food source: the four scenarios
of food availability considered.
Condition: Multi-environment

Taking 10 areas and 4 avian scav-
engers as the research object, the
model considers the impact of climate
variations, such as seasons (summer
and winter) (part (a) in section 3),
food shortage, density regulation, and
changes in species habitats (insuffi-
cient resources) on population dy-
namics.

M.A. Colomer et al. 2014[23].
Zebra mussel

Region: Reservoir of Ribarroja
Condition: Multi-environment

(40,17), where the first 20 membranes
are used for 20 weeks reproductive cy-
cle, 16 for the weeks of second repro-
ductive cycle, and the last two mem-
branes are used to preform mortality;

Z. Huang, G. Zhang, et al. 2017
[50]. Domestic Giant Panda

Two regions: Chengdu Research
Base of Giant Panda Breed-
ing (GPBB)/China Conservation
and Research Center for Gi-
ant Panda(CCRCGP) (Wolong).
Condition: Single environment

(2,1) where two membranes are used
to evolve and store object informa-
tion; The evolution process of the
species: RMF+Rescue module, where
RMF is also modified as RFM, FMR
or other forms.

H. Tian, G. Zhang, et al. 2018
[113]. Domestic Giant Panda

Two regions: GPBB/CCRCGP
Condition: Single-environment

The membrane structure is the same
as in [50], and the only differ-
ence is that release module is added
to the previous module, that is,
RMF+Rescue module+Release mod-
ule.

F. Bernardini, et al. 2005 [7].
The quorum sensing regu-
latory networks of the bac-
terium Vibrio Fischeri.

Region: Marine; Condition:
Single-environment; Evolu-
tionary Rule choices: in the
stochastic way

(9,1) where multisets of objects are
used to model bags or soups of chem-
icals whereas rules are used to model
generic biochemical processes.

F. Romero-Campero et al.
2008. [96]. Quorum Sensing
in Vibrio Fischeri

Region: Marine; Condition: a
parametric multi-environment P
system; Rule choices: stochastic
approach.

(N ;25), multi-compartmental P sys-
tem where N bacteria are randomly
placed inside a multi-environment
with 25 different regions, that is,
there is an uncertain number of bac-
teria in each region.

L. Valencia-Cabrera, et al.[118]
2013. Gene regulatory net-
works

Condition: single-environment The first membrane computing model
is applied to reconstruct the behavior
of logic networks of species.

L. Valencia-Cabrera, et al. [119]
2013. Gene regulatory net-
works

Case study: Arabidopsis thaliana
Condition: single-environment

Based on [118], P systems are used
to reproduce a logic gene network of
(real) arabidopsis thaliana in order to
regulate the flowing processes.

402

20 Y. Duan et al

be simulated by computers according to the model designed and the input data
about giant panda populations and related parameters. PDPs prediction focuses
on the changes in the female or male population size and distribution of ages. In
the following subsection, we design the conceptual model that will strat defining
the modules that will be finally applied into the computational model.

Before introducing the conceptual model, we first describe the life cycle of
giant panda, the classification of age groups and types of food required. In this
simplified case study, the whole evolution behavior of Giant Panda considered
consists of four processes: reproduction, mortality, feeding and rescue. Thus, the
ecosystem model to design should also contain modules for these four processes
involved.

In this model, according to the specialists’ understanding of Giant Panda
life habits, age groups are classified into six ranges; a detailed introduction is
in Table 1, where the classification standards of female and male may have a
little difference. For food required, we mainly consider three kinds of food as the
necessary feeding sources: bamboos, bamboo shoots and other food (including
milk, fruits and so on).

Table 3. The classification of age groups

Infancy Sub adult Adult Middle-age Quinquagenarian Senile

Female GP [0, 1] [2, 4] [5, 8] [9, 17] [18, 27] [28, 34]

Male GP [0, 1] [2, 4] [5, 6] [7, 17] [18, 27] [28, 36]

The whole setup (an entire year) of this conceptual model can mainly consist
of the four models depicted in Fig. 2, where the first three models are executed
sequentially, while the rescue module runs in parallel with respect to them. It
involves a series of rules when executing each model that are abstracted from
different evolution behaviors. At every instant, each individual will evolve ac-
cording to a series of rules in a parallel way with other individuals. The model
graph of this conceptual model is illustrated in Fig. 2.

As shown in Fig. 2, the conceptual model considered in PDPs can be grouped
into four modules: reproduction module, mortality module, feeding module and
rescue module. This subsection will first focus on these four modules:

I. Reproduction module. Many new individuals are born every year. Depend-
ing on the born rate, the number of new individuals will emerge depending on
the number of female individuals in the breeding age, with certain variations
due to the probabilistic nature of the rules, capturing the inherent randomness
present in nature up to a certain degree. In further extensions of this model, we
could determine the number of new individuals also depending on additional or
alternative direct or indirect factors.

403

A review of P systems for ecosystems 21

Fig. 2. A conceptual model graph

II. Feeding module. During each cycle (in our case, a year), plenty of food
is provided to captive Giant Pandas, where the main types of food are bamboo,
bamboo shoots and others (fruits or milk). In captive environment, all required
food can be satisfied. However, it is worth incorporating this process in our
models in order to also track the food consumption and, more importantly, we
can also consider analyzing scenarios with certain damage producing scarcity of
food sources due to some natural disasters like earthquakes or climatic anomalies.

III. Mortality module. Some individuals of the population can die with a
certain mortality rate in this phase, also subject to probabilistic rules. In com-
parison with wild giant pandas, the fundamental results showed that the mor-
tality of captive giant pandas is significantly lower, and the longevity of captive
individuals is clearly higher, given the improved life conditions and medical tech-
nologies of captive population, also subject to improvements along the years. In
this model, both parameters about mortality and longevity can be tuned on the
basis of statistical data.

IV. Rescue module. In nature, population size is affected not only by the birth
and death of individuals, but also by the addition of new rescue individuals
to the ecosystem. The rescue module mainly describes the change of rescued
information including the number of giant pandas rescued from the wild, the
sex and the age. Historically, the number of rescued individuals ranges from at
least one panda without rescue every year to at most two rescued individuals.
In addition, each individual has a certain probability of being rescued. The
maximum life span of (virtual) rescued giant pandas is the same as that of
(natural) wild giant pandas. At the same time, it is difficult to find and rescue
young and older giant pandas because of their weak mobility, so the rescue

404

22 Y. Duan et al

situation of giant pandas at this age is not considered. In simulation, the number
of rescued giant pandas of each sex and age is pseudo-random. In this way, they
will be added to current population at the end of a cycle. Because the rescue
module only simulates the phenomenon that rescued individuals may occur every
year, the steps of performing this module are not affected by other modules.

Before designing this model we have just presented, it was necessary to obtain
data and qualitative information about the different processes and behavioral
facts related with Giant Panda life cycle. This module had to consider natural
factors such as reproduction habits, mortality rates, specific evolutionary behav-
ior and conduct patterns, determined according to the actual situation observed.
Concerning rescue module, the data about rescued individuals per age and gen-
der were collected from past experience, and the causes for these rescues analyzed
with the experts in charge of managing the ecosystem. Some decisions were made
concerning the estimation of rescued individuals per year, and some increase in
the comparative age of these individuals when incorporated into captive life was
applied.

(b) Computational (Mathematical) Model of PDPs

The main goals of the research conducted was to assess the evolution in
the population size along the years under certain given conditions and initial
populations, by using a model base on P systems. This step involved a num-
ber of processes and parameters related with the biology of the species and the
ecosystem, that should be translated into the concepts belonging to the formal
model used: P systems (i.e., structures - environments, membranes -, objects,
evolution rules - skeleton and environment rules -). Besides, the proper seman-
tic constraints and considerations inherent to P systems had to be taken into
account, along with the accuracy of these conditions (like the application of cer-
tain probabilities associated with the rules) in mimicking the natural processes
involved. For PDPs, once the simple P system skeleton to be placed inside the
environment was defined, we mainly focus on designing the evolutionary rules
to capture the processes taking place in our subject ecosystem.

Due to the fact that only one target species was the subject of our study,
and no movement among regions was considered as part of the initial design, no
complex environment interactions was required. Therefore, a single environment
was enough for this case study. Inside such environment, the P system skeleton
was designed with two membranes: the external membrane, denoted as a skin
membrane (directly contained inside the single environment), labeled as 1; and
the inner membrane (used to perform most of the evolution operations), labeled
as 2. Then, inside those two membranes all processes occur, sequencing the
proper operations of three of the modules and simultaneously performing the
actions related with the other one: the rescue. In every module, all the individuals
subject to the rules of the module evolve in parallel. A trace of a simulation of the
model along a cycle (a year in this case) is illustrated in Fig. 3. In what follows
the model will be described in a semi-formal way through its main constituent
parts.

The PDP system Π modeling our case study can be defined as the tuple:

405

A review of P systems for ecosystems 23

Fig. 3. Evolution patterns of a simulation cycle

(G,Γ,Σ, T,RE , μ,R, {fr,1|r ∈ R},M1,1,M2,1, E1) (4)

where

- G is an alphabet of objects;
- Γ is an evolutionary object set, where

Γ = {Xi,j , Yi,j , Zi,j ,Wi,j : 1 ≤ i ≤ 2, 1 ≤ j ≤ ki,5} (5)

where

Symbol i represents female (i=1) or male (i=2) Giant Panda, j represents
the age of Giant Panda.

In the initial phase, each individual (giant panda) is abstracted as an object,
therefore the situations of objects should change as the life span of individuals
change, for exampe, Xi,j → Yi,j → Zi,j → Wi,j . Object Xi,j is abstracted as
a i-year-old male or female (j) panda individual before reproduction modules,
object Yi,j is abstracted as a j-year-old male or female (i) panda individual in
mortality modules, object Zi,j is abstracted as a j-year-old male or female (i)
survival panda individual, objectXi,j is abstracted as a j-year-old male or female
(i) panda individual after feeding, symbol Ci,j is abstracted as a j-year-old male
or female (i) rescue panda individual.

In formula (2), symbols S,B and O denote different foor such as bamboos,
bamboo shoots and others (fruits or milk). Symbols F and A are auxility alpha-
bets, where F is to promote food production, A is to trigger rescue behaviors.

- Σ is an environment alphabet set that is an empty set in an initial state;
- T is a simulation circle;
- μ is a hierarchical membrane structure with two membranes labeled as 1 and
2, where the skin membrane (environment) is labeled as 2, μ = [[]1]2;
- Both M1,1 and M2,1 are object sets over V associated with regions 1 and 2,
where

406

24 Y. Duan et al

- M2,1 = {Xqi,j
i,j : 1 ≤ i ≤ 2, 1 ≤ j ≤ ki,5}, where qi,j is the number of all the

j-year-old male or female (i) pandas;
- M1,1 = {F,A}.
In this system, rewriting rules of all modules consist of initialization rules,

reproduction rules, rescue rules, mortality rules, feeding rules and uodate rules.
rule set R of computational model are designed as follows:

(a) Initialization rules: food supply

r1 ≡ [F]02 → F [Sg3Bg4Og5]−2

(b) Reproduction rules
- Panda individuals unreaching reproduction age

r2 ≡ Xi,j []
0
2 → [Yi,j]

−
2 , i ∈ [1, 2], j ∈ [0, ki,12]

- Female reproduction individuals during the reproductive period

r3 ≡ X2,j
gy−→ [Y yY2,j], 1 ≤ y ≤ 2, k2,12 ≤ j ≤ k2,13

- Female unreproduction individuals during the reproductive period

r4 ≡ X2,j []
0
2

1−g1−g2−−−−−−→ [Y2,j]
−
2 , k2,12 ≤ j ≤ k2,13

- Male panda individuals

r5 ≡ X1,j []
0
2 → [Y1,j]

−
2 , k1,12 ≤ j ≤ k1,13

- Aged panda individuals

r6 ≡ Xi,j []
0
2 → [Yi,j]

−
2 , 1 ≤ i ≤ 2, ki,13 ≤ j ≤ ki,5

- Neonatal female or male panda individuals

r7 ≡ [Y]−2 → [Yi,0]
+
2 , 1 ≤ i ≤ 2

(c) Rescue Rules
-Number of giant pandas rescued from the wild field

r8 ≡ [A]−2
pcc−−→ ACc[]

+
2 , cmin ≤ c ≤ cmax

- Sex for rescued giant pandas

r9 ≡ [C
pgi−−→ Ci]

0
1, 1 ≤ i ≤ 2

- Age for rescued giant pandas

r10 ≡ [Ci
pgi−−→ Ci,j+1+round(j/3)]

0
1, 1 ≤ i ≤ 2, 0 ≤ j ≤ cmaxage

(d) Mortality Rules
- Survival individuals of infancy giant pandas

407

A review of P systems for ecosystems 25

r11 ≡ [Yi,j
1−ki,6−−−−→ Zi,j]

+
2 , 1 ≤ i ≤ 2, 0 ≤ j < ki,1

- Mortality individuals of infancy giant pandas

r12 ≡ [Yi,j
ki,6−−→ λ]+2 , 1 ≤ i ≤ 2, 0 ≤ j < ki,1

- Survival individuals of young giant pandas

r13 ≡ [Yi,j
1−ki,7−−−−→ Zi,j]

+
2 , 1 ≤ i ≤ 2, ki,1 ≤ j < ki,2

- Mortality individuals of young giant pandas

r14 ≡ [Yi,j
ki,7−−→ λ]+2 , 1 ≤ i ≤ 2, ki,1 ≤ j < ki,2

- Survival individuals of adult giant pandas

r15 ≡ [Yi,j
1−ki,8−−−−→ Zi,j]

+
2 , 1 ≤ i ≤ 2, ki,2 ≤ j < ki,3

- Mortality individuals of adult giant pandas

r16 ≡ [Yi,j
ki,8−−→ λ]+2 , 1 ≤ i ≤ 2, ki,2 ≤ j < ki,3

- Survival individuals of middle-age giant pandas

r17 ≡ [Yi,j
1−ki,9−−−−→ Zi,j]

+
2 , 1 ≤ i ≤ 2, ki,3 ≤ j < ki,4,1

- Mortality individuals of middle-age giant pandas

r18 ≡ [Yi,j
ki,9−−→ λ]+2 , 1 ≤ i ≤ 2, ki,3 ≤ j < ki,4,1

- Survival individuals of middle aged and old giant pandas

r19 ≡ [Yi,j
1−ki,10−−−−−→ Zi,j]

+
2 , 1 ≤ i ≤ 2, ki,4,1 ≤ j < ki,4,2

- Mortality individuals of middle aged and old giant pandas

r20 ≡ [Yi,j
ki,10−−−→ λ]+2 , 1 ≤ i ≤ 2, ki,4,1 ≤ j < ki,4,2

- Survival individuals of old giant pandas

r21 ≡ [Yi,j
1−ki,11−−−−−→ Zi,j]

+
2 , 1 ≤ i ≤ 2, ki,4,2 ≤ j < ki,5

- Mortality individuals of old giant pandas

r22 ≡ [Yi,j
ki,11−−−→ λ]+2 , 1 ≤ i ≤ 2, ki,4,2 ≤ j < ki,5

- Longevity giant pandas

408

26 Y. Duan et al

r23 ≡ [Yi,ki,5 → λ]+2 , 1 ≤ i ≤ 2

(e) Feeding Rules. Giant pandas in different periods needs to acquire different
quantities of food, therefore we divide feeding rules into three periods like infancy,
young and other periods.

- Feeding rules for infancy giant pandas

r24 ≡ [Zi,jS
fi,1Bfi,2Ofi,3 → Wi,j]

0
2, 1 ≤ i ≤ 2, 0 ≤ j < ki,1

- Feeding rules for young giant pandas

r25 ≡ [Zi,jS
fi,4Bfi,5Ofi,6 → Wi,j]

0
2, 1 ≤ i ≤ 2, ki,1 ≤ j < ki,2

- Feeding rules for giant pandas during other periods

r26 ≡ [Zi,jS
fi,7Bfi,8Ofi,9 → Wi,j]

0
2, 1 ≤ i ≤ 2, ki,2 ≤ j < ki,2

(f) Update rules
- Empty food rules

r27 ≡ [S → λ]02

r28 ≡ [B → λ]02

r29 ≡ [O → λ]02

- Update circle rules

r30 ≡ [Wi,j]
0
2 → Xi,j+1[]

0
2, 1 ≤ i <≤ 2, 0 ≤ j ≤ ki,5

r31 ≡ F []02 → [F]02

r32 ≡ A[]02 → [A]02

where
symbol ki,1 indicates that captive giant pandas are in sub-adulthood; symbol

ki,2 indicates that these pandas are in adulthood; symbol ki,3 represents that
some pandas are in middle age stage; symbol ki,4,1 represents that some pandas
are in middle-aged old stage; symbol ki,4,2 represents that some pandas are in
old age stage; symbol ki,5 denotes the longevity age of giant pandas. Symbols
ki,6-ki,11 denotes the mortality of giant pandas in different stages, where ki,6 is
in infancy stage, ki,7 is in sub-adulthood, ki,8 is in adulthood, ki,9 is in middle
age stage, ki,10 is in middle-aged old stage, ki,11 is in old age stage. Symbols
ki,11 and ki,12 show the age of breeding giant pandas at the begining and at the
end stages, respectively.

Symbol g1 denotes the probability of giant panda fertility in reproductive
period, g2 denotes the probability that giant pandas in reproductive period breed
twins. Symbol g3 is the number of supplied bamboos within a year, g4 is the

409

A review of P systems for ecosystems 27

number of supplied bamboo shoots within a year, symbol g5 is the number of
other supplied food like fruits or milk within a year.

Symbol fi,1 is the amount of bamboos consumed by all reserached giant
panda individuals in a year, fi,2 is the amount of bamboo shoots consumed by
all individuals in a year, fi,3 is the amount of others consumed by all individuals
in a year. Symbol fi,4 is the amount of bamboos consumed by a sub-adult panda
within a year, fi,5 is the amount of bamboo shoots consumed by a sub-adult
panda within a year, fi,6 is the amount of other food consumed by a sub-adult
panda within a year. Symbol fi,7 is the amount of bamboos consumed by a adult
panda within a year, fi,8 is the amount of bamboo shoots consumed by a adult
panda within a year, fi,9 is the amount of other food consumed by a adult panda
within a year.

Symbol cmin defines the minimum number of rescued wild giant pandas,
cmax defines the maximum quantity of rescued wild individuals, cmaxage de-
fines maximum age for rescuing wild individuals, pcc is the probability of rescuing
c wild individuals in a year, pgi is the probability of rescuing wild individuals
that the sex of each panda is i, paj is the probability of rescuing wild individuals
that the age of each panda is j.

The values of these constants have been obtained experimentally. For each
probabilistic parameter, if it is large, there is a larger population fluctuation,
whereas if it is small, there is not an obvious change in size, both of which
become impossible to obtian reliable estimates. Parameters reflect the severity
of natural stochasticity (k decreases with increasing environmental disasters).
It goes without saying that these parameters have considerable significance in
population and conservation biology [68].

Step 1: Obtain data set. Data sets about giant pandas come mainly from two

regions: Chengdu Research Base of Giant Panda Breeding (GPBB

for short) and China Conservation and Research Center for Giant

Panda (CCRCGP for short).

Step 2: Initialization. Designing a successful ecomembrane system can require

a plenty of parameters such as mortality, reproduction rate, rescue

rate and so on. In the initialized configuration, these parameters

should be initialized first.

Step 3: Design a conceptual model. Some behavior modelers like mortality

module are abstracted from daily behavior of species. According to

evolutionary circle, they are given different priorities so as to perform

successfully. The model described by the whole process is called a

conceptual model.

Step 4: Design a computational model. It is a mathematical modeling of the

conceptual model in Step 3. (Please see subsection (b))

Step 5: Output. Simulate and obtain a predicted number of giant pandas.

In summary, for our given expamples-a giant panda population prediction
method based membrane systems, the detailed introduction of this method is
as follows: we first need to count the basic information of giant pandas in the
researched region, i.e., counts, age, sex, and so on; then, we design a concep-

410

28 Y. Duan et al

tual with execution sequence according to the fragmented habits (reproduction,
feeding, death and rescue) of all researched pandas; next, we can also design a
computational model that it contains a standard mathematical formula and a set
of rules abstracted from the envolutionary habits of species accroding to a given
conceptual; finally, we will obtain a series of the computational resutls by doing
a plently of simulation experiments, and output an optimal data. Theroretical
analysis indicates that in absence of real data as a reference this method can
effectively analyze variation trends of population quantities and evaluate the
number of panda individuals in the future.

Table 4. Values of the ecological parameters used in this model for Giant Panda (GP for short)
(F=Female, M=Male, A=±1.35 × 107), other explanations refer to part 5.2.

Species i ki,1 ki,2 ki,3 ki,4,1 ki,4,2 ki,5 ki,6 ki,7 ki,8 ki,9 ki,10 ki,11 ki,12 ki,13

GP (F) 1 1 4 8 17 27 34 0.09 0.001 0.007 0.008 0.1 0.15 6 20

GP (M) 2 1 4 6 17 27 36 0.05 0.001 0.005 0.0058 0.034 0.091 5 20

Species i g1 g2 g3 g4 g5 fi,1 fi,2 fi,3 fi,4 fi,5 fi,6 fi,7 fi,8 fi,9

GP (F) 1 0.191 0.098 A A A 0 0 182 2920 2920 292 11680 10950 1276

GP (M) 2 0.191 0.098 A A A 0 0 182 2920 2920 292 11680 10950 1276

5.3 Experiments

In this subsection, we used the software tool-P-lingua (MeCoSim) [1] to test
our experiments. This software is new programming language able to define P
systems of different types (frameworks) including the probabilistic framework
mentioned in this paper. Subsequently, we first introduce experimental design
and simulation (a), and then we analyze the experimental results. Besides, for
PDPs, we give idential parameter settings obtained experimentaly.

(a) Experimental design and simulation
PDPs scale individual-level processes up to ecosystem structure and dynamic.

Here, we presents in three steps how pedigree data of giant panda can be used
to inform population dynamic P systems (PDPs), where population size of giant
panda in each year is shown as Fig.6.

First, the individual pedigree data of captivity giant panda that can be used
to parameterize PDPs include: food consumption; number of recuse individuals;
individual sex and individual age; and the division of individual life span about
offspring, adult and old. Once parameterized, PDP can be used to predict the
number of individuals at the first time step. This process needs to first calculate
number of reproductive and mortility individuals. These are used to calculate the
fixed size-specific survival, reproductive, and mortality rates (see Fig. 7). Repro-
ductive and moratility rates determine the change that increases and decreases of
population size in and out of the studied sepcies. Because each individual enters

411

A review of P systems for ecosystems 29

into next status in a probability way, at each time step, number of these individ-
uals varies. The predicted changes at population size through time are uncertain
numerically but are controlled within a given confidence interval. The numerical
density of species is summed across all individuals at differnt age groups. These
are outputted at each time step along with predicted changes. Changes in popu-
lation size can be described by fitting, at each time step, a straight line (see Fig.8
where the parameters used in PDP systems are derived from the data of Table
5). Predicted changes in population can then be confronted with empirical data
for comparison or repeating the above process in conjuntion with a statistical
procedure to formally estimate parameters and their uncertainty (see Fig.9).

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
0

20

40

60

80

100

120

140

160

180

200

(A) Ecological Data

Year

Nu
m

be
r o

f G
ria

nt
 P

an
da

2005 2008 2011 2014 2017
0

50

100

150

(B) Female Data

2005 2008 2011 2014 2017
0

50

100

(C) Male Data

Fig. 4. Population Size of Endangered Giant Panda Published in the Last
13 Years where all the used data are showed though three histograms. (A)
Ecological Data: the total number of real giant panda in each year. (B) Female data:
the number of female individuals in a selected year. (C) Male data: the number of male
individuals in a selected year. (That is, NA = NB + NC , N presents the number of
giant panda). Such data sets are called statistical data sets which are generally used
as input for prediction.

(b) The analysis for experimental results
In Fig.8, by comparing varying trajectories of the number of prediction

species to trends in the number of statistical species, we identified the changing
regular of population size across the GPBB. In five subgraphs above, we provide
strong evidence that the average rate of changes in giant panda populations are
1.86% (data from 2005 as input) per year shown in (a), almost consistent with
statistical data, and that similar rates of changes occur across other four group
experiments we provided, i.e., 10.26% (2008 as input), 12.84% (2011 as input),
3.41% (2014 as input) (see four other figures in Fig.8). This rate of each group
means that on average, the number of griant panda will be really predicted with

412

30 Y. Duan et al

2005 2010 2015
0.4

0.45

0.5

0.55

0.6

0.65
Survival rate ranges

Year

S
ur

vi
va

l R
at

e

2006 2008 2010 2012 2014 2016
0

0.05

0.1

0.15

0.2
Reproduction rate ranges

Year

R
ep

ro
du

ci
on

 R
at

e

2006 2008 2010 2012 2014 2016
0

0.01

0.02

0.03

0.04

0.05

0.06
Mortality rate ranges

Year

M
or

ta
lit

y
R

at
e

Fig. 5. The statistical survival rate, reproduction rate and mortality rate of endangered
giant panda from GPBB for 13 years from 2005 to 2017, given three group trajectories
reflecting the dominant caused of changes in population size: natural factors; human
behavior; or enigmatic factors. The purpose of three graphs is to offer the basis reference
for setting parameters in the process of running PDP systems such that the data in
Table 5 are tuned on the basis of Fig. 7.

a small error rate within serveral years. According to these results, we find that
the deviation of the number of species per year are controlled within 10% ex-
cept for special point (Fig.8.) although different input can also led to different
prediction results in terms of predicting the number of species in the same year
(Fig.9). These devaition results from models show that there is no single, fully
integrated model that can simulate all possible species states, and there causes
number variation in the combination of parameters including growth rate, birth
rate and mortality rate rather than a single cause because of the difficulty of
parameterizing interactions.

5.4 Discussion

Data are needed to parameterize and serve for population dynamic P systems
(PDPs) to apply them to predict number of individuals of real ecosystems in
several years and assess how accurate their predictions of ecosystems structure
and function are. Because PDPs are computationally inexpensive feasible for
them to moel ecosystem, there could be scope for the development of PDPs as
real-time prediction models. Prediction from PDPs could be combined with data
collected from GPBB including individual growth rates, indiviudal mortality
rates, individual reproductive rates, number of individuals, and number of rescue
individuals. More research on the level of complexity needed to accurately predict
ecosystem dynamic with uncertain is needed.

Models have been confronted by data in different ways: qualitative compar-
isons of prediction data from PDP models with standard data from statistics
and then more qualitative assessment of PDP models by calculating deviation
rate and variance. Choosing the model with earlier history data as a reference,
Comparing between prediction data and earlier history data is an approach that
is being used for evaluating PDP models.

413

A review of P systems for ecosystems 31

2006 2007 2008 2009 2010
60

70

80

90

100

110

(a) Year

Pr
ed

ic
tio

n
Da

ta

2009 2010 2011 2012 2013
80

100

120

140

160

(b) Year
2012 2013 2014 2015 2016

100

120

140

160

180

200

(c) Year

2015 2016 2017 2018 2019
0

50

100

150

200

250

300

(d) Year

Pr
ed

ic
tio

n
Da

ta

2018 2019 2020 2021 2022
200

250

300

350

(e) Year
1 2 3 4 5

−0.1

0

0.1

0.2

0.3

(f) Year

De
vi

at
io

n
Ra

tio

Prediction
Statistic

2005
2008
2011
2014

Minimal
deviation ratio

(MIDR): 0

N1=N2

Maximal
deviation

ratio (MADR):
5.99%

MIDR: 6.98%MIDR:
7.29%

MIDR:
2.69%

MADR:
3.08%

MADR:
14.41%

MADR: 20.42%

2018 and 2019:
No statistical

data

Blue line:
Prediction

 data

No red line:
No statistical

data from 2018 to
2022:

Fig. 6. Prediction data changes and Statistical data changes as different
years’s input data. There is a significant and roughly difference in the average per-
year prediction data and statistical data between the size-rise and the size-decline
phases across the 5 years analyzed. Each pair of values corresponds to the predicted
or statistic result of the same year. For (a), taking 2005 as an input, a PDP system
is used to predict five-year population size from 2006 to 2010, respectively; for (b),
taking 2008 as an input, prediction years from 2009 to 2013; for (c), taking 2011 as an
input, prediction years from 2012 to 2016; for (d), taking 2014 as an input, prediction
years from 2015 to 2019; for (e), taking 2017 as an input, prediction years from 2018 to
2022; for (f), this graph describes the comparison of the deviation ratio of five groups
of data set, the special introduction is given in Fig.9. In five figures above, we list the
minial deviation ratio and maximal ratio of each input year (shown by the arrows),
where ratio = (N1 − N2)/N2) in which N1 represents prediction data, N2 represents
statistical data in reality. In (d) and (e), because the pedigree data only counted the
data before 2017, there are no data for these years from 2018 to 2022 (lack of red line).

414

32 Y. Duan et al

1 2 3 4 5
−5%

0

5%

10%

15%

20%

25%

30%

D
ev

ia
ti

o
n

 R
at

e

Year

2005 (2006−2010)
2008 (2009−2013)
2011 (2012−2016)
2014 (2015−2017)

No value

5.61%4.28%

−1.59%
0%

9.6%

14.41%

10.11%

20.42%

9.9%

9.48%

10.16%

4.46%

2.69%

3.08%
0.99%

No value

6.98%

7.29%

17.19%

Fig. 7. How the difference occurs in the process of prediction by PDP mod-
els. (dotted line to Solid line) The changes of five-year time intervals (2006-2010)
deviation rates (2005 as input); The changes of five-year (2009-2013) deviation rates
(2008 as input); The changes of five-year (2012-2016) deviation rates (2011 as in-
put); The changes of five-year (2015-2017) deviation rates (2014 as input); The de-
viation trajectory generated by the prediction errors. Overlapping prediction parts,
i.e., 2009-2010 {input 2005(5.61% and 0.99%), 2008(10.11% and 9.9%)}, 2012-2013
{input 2008(14.41% and 6.98%), 2011(10.11% and 9.48%)}, and 2015-2016 {input
2011(17.19% and 6.98%), 2014(4.46% and 2.69%)}, indicate the input data of different
years can predict different results for the same year. In this graph, ’No value’ means
no deviation rate due to the lack of statistical data in reality.

415

A review of P systems for ecosystems 33

Uncertainty also comes from our imperfect knowledge about what drivers the
change of eocsystems. This is especially critical in modeling ecosystems, where
different parameters make different prediction results. Tools to formly integrate
data and assess parameter uncertainty are begining to be used in conjunction
with PDPs and Data. One key advantage of the PDP framework is that it can
account for the effect of parameters and obtain prediction data calculated in a
probability way under parameter effect on model output. Because this model
can evaluate how uncertainty changes number of individuals, this model is par-
ticularly useful for predicting data.

6 Conclusions and Future works

Predicting the change trend of population size is increasingly urgent as chang-
ing environmental and climate conditions continue to modify the population dy-
namic of endangered species. Record species changes have hastened efforts to
identify exectinction risks and ameliorate the ultimate causes of decline. In this
work, we have investigate the computational models for ecosystems, especially for
endangered species. Since early modeling approaches ignored species traits and
functional groups, PDP systems applied to threatened and declining populations
can now overcome many drawbacks associated with differential equations. Sub-
sequently, we give a global overview of modeling ecosystems using PDP systems.
Most of the researches are focused on model definitions with different constraints
such as structures, climate conditions, invasion ways and habitat destructions or
losses, and their applications to different species. A large number of experiment
results verified that PDP systems can predict better results. The key strength
of PDP systems is that each sub-rule imitates one of spcies behaviors, making
use of all speceis data, leading to the best possible prediction on population size.
As a case study, we define a computational model of a single-environment PDP
system and apply it to modeling Giant Panda. Compared with statistical data,
better prediction data are obtained. These results verified that PDP systems
are improving recovery of threateded and declining species, which means that
modeling ecosystems using PDP systems have the potential to fix some natural
problems in reality.

Building models of giant panda that integrate modeling processes from bio-
geochemical to the basic evolutionary cycles of this species is only a preliminary
work. In the future, some of main conditions needs to be considered: 1) model-
ing multi-region captive giant panda requires more complex models than single-
region species, i.e., communications between different species. 2) Considering the
impacts of climate changes, invasion alien species and habit destructions such
as earthquake on species requires more real physical models to design the model
of a PDP system, and it may be challenging to get more efficient data collec-
tion. Our team is trying to solving these problems in order to more accurately
estimate ecosystems.

416

34 Y. Duan et al

Acknowledgments. This work was supported by the National Natural Sci-
ence Foundation of China (61972324, 61672437, 61702428), the Sichuan Science
and Technology Program (2018GZ0185, 2018GZ0086), New Generation Arti-
ficial Intelligence Science and Technology Major Project of Sichuan Province
(2018GZDZX0043) and Artificial Intelligence Key Laboratory of Sichuan Province
(2019RYJ06).

References

1. Alhazov, A., Mart́ın-Vide, C., Pan, L: Solving graph problems by P systems with
restricted elementary active membranes. In Aspects of Molecular Computing, 1-
22(2003).

2. Alhazov, A., Cojocaru, S.: Small asynchronous P systems with inhibitors defining
non-semilinear sets. Theoretical Computer Science, 12-19(2017).

3. Andersen, M.C., Adams, H., Hope, B., et al: Risk assessment for invasive species.
Risk Analysis: An International Journal, 24(4), 787-793(2004).

4. Bahuguna, D., Abbas, S., Dabas, J.: Partial functional differential equation with
an integral condition and applications to population dynamics. Nonlinear Analy-
sis: Theory, Methods & Applications, 69(8), 2623-2635(2008).

5. Bax, N., Williamson, A., Aguero, M., et al: Marine invasive alien species: a threat
to global biodiversity. Marine policy, 27(4), 313-323(2003).

6. Bayley, P.B., Peterson, J.T.: An approach to estimate probability of presence and
richness of fish species. Transactions of the American Fisheries Society, 130(4),
620-633(2001).

7. Bernardini, F., Gheorghe, M.: Population P Systems. Journal of Universal Com-
puterence, 10(5):509-539(2004).

8. Bie D, Gutiérrez-Naranjo M A, Jie Z, et al: A membrane computing framework
for self-reconfigurable robots[J]. Natural Computing, 1-12(2018).

9. Bortolussi, L., Lanciani, R., Nenzi, L.: Model checking Markov population models
by stochastic approximations. Information and Computation, 262, 189-220(2018).

10. Buiu, C., Vasile, C., Arsene, O.: Development of membrane controllers for mobile
robots. Information Sciences, 187, 33-51(2012).

11. Cardona, M., Colomer, M. A., Pérez-Jiménez, M. J., et al: Modeling ecosystems
using p systems: The bearded vulture, a case study. In International Workshop
on Membrane Computing, 137-156(2008).

12. Cardona, M., Colomer, M., Pérez Jiménez, M.D.J., et al: A P System modeling
an ecosystem related to the bearded vulture. In Proceedings of the Sixth Brain-
storming Week on Membrane Computing, 51-66(2008).

13. Cardona, M., Colomer, M. A., Margalida, A., et al: A computational modeling
for real ecosystems based on P systems. Natural Computing, 10(1), 39-53(2011).

14. Cardona, M., Colomer, M.A., Margalida, A., et al: AP system based model of
an ecosystem of some scavenger birds. In International Workshop on Membrane
Computing, 182-195(2009).

15. Carlson, C.J., Burgio, K.R., Dougherty, E R , et al: Parasite biodiversity faces
extinction and redistribution in a changing climate. Sci Adv, 3(9):e1602422(2017).

16. Castellini, A., Manca, V.: MetaPlab: A Computational Framework for Metabolic
P Systems. In Membrane Computing: 9th International Workshop, 5391, 157-168
(2009).

417

A review of P systems for ecosystems 35

17. Chen, Y., Zhang, G., Wang, T., et al: Automatic design of a P system for basic
arithmetic operations. Chinese Journal of Electronics, 23(2): 302-304(2014).

18. Cheng,J., Zhang, G., Zeng, X.: A novel membrane algorithm based on differential
evolution for numerical optimization. International Journal of Unconventional
Computing, 7(3): 159-183(2011).

19. Christinal, H.A., et al: Thresholding 2d images with cell-like p systems. Romanian
Journal of Information Science and Technology, 13 (2), 131-140(2010).

20. Colomer, M., Fondevilla, C., Valencia Cabrera, L.: A new P system to model the
subalpine and alpine plant communities. Proceedings of the Ninth Brainstorming
Week on Membrane Computing, 91-112(2011).

21. Colomer, M.A., Lav́ın, S., Marco, I., et al: Modeling population growth of Pyre-
nean chamois (Rupicapra p. pyrenaica) by using P-systems. In International Con-
ference on Membrane Computing, 144-159(2010).

22. Colomer, M.A., Margalida, A., Sanuy, D., Pérez-Jiménez, M.J.: A bio-inspired
computing model as a new tool for modeling ecosystems: the avian scavengers as
a case study. Ecological modelling, 222(1), 33-47(2011).

23. Colomer, M., Margalida, A., Valencia, L., et al: Application of a computational
model for complex fluvial ecosystems: The population dynamics of zebra mussel
Dreissena polymorpha as a case study. Ecological Complexity, 20, 116-126(2014).

24. Colomer, M.A., Mart́ınez-del-Amor, M.A., Pérez-Hurtado, I., et al: A uniform
framework for modeling based on P systems. In 2010 IEEE Fifth International
Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA),
616-621(2010).

25. Colomer, M.A., Pérez-Hurtado, I., Pérez-Jiménez, M.J., et al: Comparing simu-
lation algorithms for multienvironment probabilistic P systems over a standard
virtual ecosystem. Natural Computing, 11(3), 369-379(2012).

26. Colomer, M.À., Margalida, A., Pérez-Jiménez, M.J.: Population dynamics P sys-
tem (PDP) models: a standardized protocol for describing and applying novel
bio-inspired computing tools. PloS one, 8(4), (2013).

27. Conway, G.R.: Mathematical models in applied ecology. Nature, 269(5626),
291(1977).

28. Costantino, R.F., Desharnais, R.A., Cushing, J.M., et al: Chaotic dynamics in an
insect population. Science, 275(5298), 389-391(1997).

29. Cushing, J.M., Costantino, R.F., Dennis, B.: Nonlinear population dynamics:
models, experiments and data. Journal OF Theoretical Biology, 194: 1-9(1998).

30. DeYoung, B., Heath, M., Werner, F., et al: Challenges of modeling ocean basin
ecosystems. Science, 304(5676), 1463-1466(2004).

31. Dı́az-Pernil, D., Gutiérrez-Naranjo, Miguel A., Pérez-Jiménez, M.J., et al: A
Linear-time Tissue P System Based Solution for the 3-coloring Problem. Elec-
tronic Notes in Theoretical Computer Science, 171(2): 81-93(2007)

32. Dı́az-Pernil, D., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, et al: A linear time
solution to the partition problem in a cellular tissue-like model. Journal of Com-
putational & Theoretical Nanoscience, 7(5), 884-889(6)(2010).

33. Dı́az-Pernil, D., Miguel, A. Gutiérrez-Naranjo, Peng, H.: Membrane computing
and image processing: a short survey. Journal of Membrane Computing, 58-
73(2019).

34. Doherty, T.S., Glen, A.S., Nimmo, D.G., et al: Invasive predators and global bio-
diversity loss. Proceedings of the National Academy of Sciences, 113(40), 11261-
11265(2016).

418

36 Y. Duan et al

35. Dong, W., Zhou, K., Qi, H., et al: A tissue P system based evolutionary algorithm
for multi-objective VRPTW. Swarm and Evolutionary Computation, 39: 310-
322(2018).

36. Early, R., Bradley, B.A., Dukes, J.S., et al: Global threats from invasive alien
species in the twenty-first century and national response capacities. Nature Com-
munications, 7, 12485(2016).

37. Fei S., Desprez J.M., Potter K.M., et al: Divergence of species responses to climate
change. Science Advances, 3(5): e1603055(2017).

38. Fisher, R.A.: The wave of advance of advantageous genes. Annals of eugenics,
7(4), 355-369(1937).

39. Gallardo, B., Clavero, M., Sánchez, M.I., et al: Global ecological impacts of inva-
sive species in aquatic ecosystems. Global change biology, 22(1), 151-163(2016).

40. Gamboa, F., Gassiat, E.: Bayesian methods and maximum entropy for ill-posed
inverse problems. The Annals of Statistics, 25(1), 328-350(1997).

41. Grziwotz, F., Strauß, J.F., Hsieh, C.H., et al: Empirical Dynamic Modelling Iden-
tifies different Responses of Aedes Polynesiensis Subpopulations to Natural En-
vironmental Variables. Scientific reports, 8(1), 16768(2018).

42. Guo, H., Yuan, X.: Leslie Matrix and Its Application-Prediction on the Devel-
opment of the Population of the Giant Panda in Fuping. Journal of Southwest
Nationalities College: Natural Science Edition, 22(2), 175-178(1996).

43. Guo, H., Yuan, X., Li, G.: Prediction on the development of the population of
the Giant Panda in chengdu research base of giant panda breeding. Exploration
of Nature, (2), 74-77(1997).

44. Guo, J.: Giant Panda Numbers Are Surging–or Are They?. Science, 316(5827),
974-975(2007).

45. Haddad, N. M., Brudvig, L. A., Clobert, J.: Habitat fragmentation and its lasting
impact on Earth’s ecosystems. Science advances, 1(2), (2015).

46. Hanski, I.: Habitat fragmentation and species richness. Journal of Biogeography,
42(5), 989-993(2015).

47. He, J., Xiao, J., Shao, Z.: An adaptive membrane algorithm for solving combina-
torial optimization problems. Acta Mathematica Scientia, 34(5):1377-1394(2014).

48. Hirzel, A.H., Hausser, J., Chessel, D., et al: Ecological-niche factor analysis: how
to compute habitat-suitability maps without absence data?. Ecology, 83(7), 2027-
2036(2002).

49. Huang, X., Zhang, G., Rong, H., Ipate, F.: Evolutionary design of a simple
membrane system. In International Conference on Membrane Computing, 203-
214(2011).

50. Huang, Z., Zhang, G., Qi, D.: Application of Probabilistic Membrane Systems to
Model Giant Panda Population Data. Computer Systems & Applications, 26(8):
252-256(2017).

51. Hulme, P.E.: Trade, transport and trouble: managing invasive species pathways
in an era of globalization. Journal of applied ecology, 46(1), 10-18(2009).

52. Jiménez-Valverde, A., Peterson, A.T., Soberón, J., et al: Use of niche models in
invasive species risk assessments. Biological invasions, 13(12), 2785-2797(2011).

53. Klausmeier, C.A.: Habitat destruction and extinction in competitive and mutu-
alistic metacommunities. Ecology Letters, 4(1), 57-63(2001).

54. Lambers, J.: Extinction risks from climate change. Science, 348(6234): 501-
502(2015).

55. Langkilde, T., Thawley, C.J., Robbins, T.R.: Behavioral adaptations to invasive
species: benefits, costs, and mechanisms of change. Advances in the Study of
Behavior, 49, 199-235(2017).

419

A review of P systems for ecosystems 37

56. Ledesma, L., Manrique, D., Rodŕıguez-Patón, A.: A tissue P system and a DNA
microfluidic device for solving the shortest common superstring problem. Soft
Computing, 9(9), 679-685(2005).

57. Lee, C.E.: Evolutionary genetics of invasive species. Trends in ecology & evolution,
17(8), 386-391(2002).

58. Li, Z., Zhang, L., Su, Y., et al: A skin membrane-driven membrane algorithm for
many-objective optimization. Neural Computing and Applications, 30(1), 141-
152(2018).

59. Li, H., Liang, Y., Cao, D., Xu, Q.: Model-population analysis and its applications
in chemical and biological modeling. TrAC Trends in Analytical Chemistry, 38,
154-162(2012).

60. Lindgren, E., Andersson, Y., Suk, J.E., et al: Monitoring EU Emerging Infectious
Disease Risk Due to Climate Change. Science, 336(6080):418-419(2012).

61. Liu, C., Du, Y.: A membrane algorithm based on chemical reaction optimization
for many-objective optimization problems. Knowledge-Based Systems, 165: 306-
320(2019).

62. Lu, C., Zhang, X.: Solving vertex cover problem by means of tissue P systems with
cell separation. International Journal of Computers Communications & Control,
5(4), 540-550(2010).

63. Manalastas, P.: Membrane Computing with Genetic Algorithm for the Travelling
Salesman Problem. In Theory and Practice of Computation, 116-123(2013).

64. Manca, V., Marchetti, L.: Solving dynamical inverse problems by means of
Metabolic P systems. BioSystems, 109(1), 78-86(2012).

65. Margalida, A., Colomer, M. A., Sanuy, D.: Can wild ungulate carcasses provide
enough biomass to maintain avian scavenger populations? An empirical assess-
ment using a bio-inspired computational model. PloS one, 6(5), (2011).

66. Margalida, A., Colomer, M. A.: Modelling the effects of sanitary policies on Eu-
ropean vulture conservation. Scientific reports, 2, 753(2012).

67. Martin-Vide, C., Pǎun, Gh., Pazos, J., et al: Tissue P systems. Theoretical Com-
puter Science, 296(2), 295-326(2003).

68. Moilanen, A., Hanski, I.: Habitat destruction and coexistence of competitors in
a spatially realistic metapopulation model. Journal of Animal Ecology, 64(1),
141-144(1995).

69. Molnar, J.L., Gamboa, R.L., Revenga, C., et al: Assessing the global threat of
invasive species to marine biodiversity. Frontiers in Ecology and the Environment,
6(9), 485-492(2008).

70. Nakagiri, N., Tainaka, K. I., Tao, T.: Indirect relation between species extinction
and habitat destruction. Ecological Modelling, 137(2-3), 109-118(2001).

71. Nelder, J.A., Wedderburn, R.W.: Generalized linear models. Journal of the Royal
Statistical Society: Series A (General), 135(3), 370-384(1972).

72. Nicole, J.: Threat of invasive species to bats: a review. Mammal review. (2017).

73. Niu, Y., Subramanian, K.G., Venkat, I., et al.: A tissue P system based solution to
quadratic assignment problem. International Journal of Foundations of Computer
Science, 23(07), 1511-1522(2012).

74. Niu, Y., Xiao, J., Jiang, Y.: Time-free solution to 3-coloring problem using tissue
P systems. Chinese Journal of Electronics, 25(3), 407-412(2016).

75. Orellana-Martin, D., Valencia-Cabrera, L., Nez, A.R.N., et al: The unique satis-
fiability problem from a membrane computing perspective. Romanian journal of
information science and technology, 21.3: 288-297(2018).

420

38 Y. Duan et al

76. Orozco-Rosas, U., Montiel, O., Sepúlveda, R.: Mobile robot path planning using
membrane evolutionary artificial potential field. Applied Soft Computing, 77: 236-
251(2019).

77. Ou, Z., Zhang, G., Huang, X.: Automatic design of cell-like P systems through
tuning membrane structures, initial objects and evolution rules. International
Journal of Unconventional Computing, 9(5-6): 425-443(2013).

78. Pan, L., Pǎun, G.: Spiking neural P systems with anti-spikes. International Jour-
nal of Computers Communications & Control, 4(3), 273-282(2009).

79. Pǎun, A., Pǎun, Gh.: The power of communication: P systems with sym-
port/antiport. New Generation Computing, 20(3), 295-305(2002).

80. Pǎun, A., Pǎun, Gh.: Small universal spiking neural P systems. BioSystems, 90(1),
48-60(2007).

81. Pǎun, Gh.: P systems with active membranes: attacking NP-complete problems.
Journal of Automata, Languages and Combinatorics, 6(1), 75-90(2001).

82. Pǎun, Gh: Membrane computing: an introduction. Springer Science & Business
Media, (2012).

83. Pǎun, Gh., Rozenberg, Gh., Salomaa, A.: Membrane computing with external
output. Fundamenta Informaticae, 41(3), 313-340(1998).

84. Pavel, A.B., Buiu, C.: Using enzymatic numerical P systems for modeling mobile
robot controllers. Natural Computing, 11(3), 387-393(2012).

85. Peng, H., Wang, J., Ming, J., et al.: Fault diagnosis of power systems using intu-
itionistic fuzzy spiking neural P systems. IEEE transactions on smart grid, 9(5),
4777-4784(2018).

86. Peng, H., Wang, J., Shi, P: A novel image thresholding method based on mem-
brane computing and fuzzy entropy. Journal of Intelligent and Fuzzy Systems
Applications in Engineering and Technology, 24(2), 229-237(2013).

87. Peng, H., Wang, J.: A hybrid approach based on tissue P systems and artificial
bee colony for IIR system identification. Neural Computing and Applications,
28(9), 2675-2685 (2017).

88. Peng, X.W., Fan, X.P., Liu, J.X., et al: Spiking Neural P Systems for Performing
Signed Integer Arithmetic Operations. Journal of Chinese Computer Systems,
34(2), 360-364(2013).

89. Pérez-Jiménez, M.J.: The P versus NP problem from the membrane computing
view. European Review, 22(1), 18-33(2014).

90. Pérez-Hurtado, I., Valencia, L., Pérez-Jiménez, M.J., Colomer, M.A., Riscos-
Núñez, A.: MeCoSim: A general purpose software tool for simulating biologi-
cal phenomena by means of P Systems. In Proceedings 2010 IEEE Fifth Inter-
national Conference on Bio-inpired Computing: Theories and Applications, pp.
637-643(2010).

91. Phillips, S.J., Anderson, R.P., Schapire, R.E.: Maximum entropy modeling of
species geographic distributions. Ecological modelling, 190(3-4), 231-259(2006).

92. Pimm, S.L., Jenkins, C.N., Abell, R., et al: The biodiversity of species and
their rates of extinction, distribution, and protection. Science, 344(6187):1246752-
1246752(2014).

93. Proistosescu, C., and P.J. Huybers: Slow climate mode reconciles historical and
model-based estimates of climate sensitivity. Science Advances 3-7(2017).

94. Prugh, L.R., Hodges, K.E., Sinclair, A.R.: Effect of habitat area and isolation on
fragmented animal populations. Proceedings of the National Academy of Sciences,
105(52), 20770-20775(2008).

421

A review of P systems for ecosystems 39

95. Reina-Molina, R., Dı́az-Pernil, D., Real, P., Berciano, A.: Membrane parallelism
for discrete Morse theory applied to digital images. Applicable Algebra in Engi-
neering, Communication and Computing, 26(1-2), 49-71(2015).

96. Romero-Campero, F.J., Pérez-Jiménez, M.J.: A model of the quorum sensing
system in Vibrio fischeri using P systems. Artificial life, 14(1), 95-109(2008).

97. Rybicki, J., Hanski, I.: Species–area relationships and extinctions caused by habi-
tat loss and fragmentation. Ecology letters, 16, 27-38(2013).

98. Saether, B.E., Tufto, J., Engen, S., Jerstad, K., et al: Population Dynami-
cal Consequences of Climate Change for a Small Temperate Songbird. Science,
287(5454):854-856(2000).

99. Sharaf H, Badr A, Farag I.: Using P system with Innate Immunity to solve NP
Complete Problems. Computing & Information Systems, 14(2), 2010.

100. Song, T., Pang, S., Hao, S., et al: A parallel image skeletonizing method using
spiking neural p systems with weights. Neural Processing Letters, 1-18(2018).

101. Song, T., Pan, L., Pǎun, G.: Asynchronous spiking neural P systems with local
synchronization. Information Sciences, 219, 197-207(2013).

102. Song, T., Zheng, H., He, J.: Solving vertex cover problem by tissue P systems
with cell division. Applied Mathematics & Information Sciences, 8(1), 333(2014).

103. Sosik, P.: A catalytic P system with two catalysts generating a non-semilinear
set. Romanian J. Inf. Sci. Technology, 16(1): 3-9(2013).

104. Sosik, P., Rodŕıguez-Patón, A.: Membrane computing and complexity theory: A
characterization of PSPACE. Journal of Computer and System Sciences, 73(1),
137-152(2007).

105. Soultan, A., Wikelski, M., Safi, K.: Risk of biodiversity collapse under climate
change in the Afro-Arabian region. Scientific reports, 9(1), 955(2019).

106. Spatz, D.R., Zilliacus, K.M., Holmes, N.D., et al: Globally threatened vertebrates
on islands with invasive species. Science advances, 3(10), (2017).

107. Strayer, D.L., Eviner, V.T., Jeschke, J.M., et al: Understanding the long-term
effects of species invasions. Trends in ecology & evolution, 21(11), 645-651(2006).

108. Stevanovic, M., Popp, A., Lotze-Campen, H., et al: The impact of high-
end climate change on agricultural welfare. Science Advances, 2(8): e1501452-
e1501452(2016).

109. Stohlgren, T.J., Schnase, J.L.: Risk analysis for biological hazards: what we need
to know about invasive species. Risk Analysis: An International Journal, 26(1),
163-173(2006).

110. Strohm, S., Tyson, R.C.: The effect of habitat fragmentation on cyclic population
dynamics: a reduction to ordinary differential equations. Theoretical ecology, 5(4),
495-516(2012).

111. Swihart, R.K., Feng, Z., Slade, N.A., Mason, D.M., et al: Effects of habitat
destruction and resource supplementation in a predator–prey metapopulation
model. Journal of Theoretical Biology, 210(3), 287-303(2001).

112. Tanentzap, A.J., Walker, S., Theo Stephens, R.T., et al: A framework for predict-
ing species extinction by linking population dynamics with habitat loss. Conser-
vation Letters, 5(2), 149-156(2012).

113. Tian, H., Zhang, G., Rong, H., et al: Population model of giant panda ecosys-
tem based on population dynamics P system. Journal of Computer Applications,
38(5): 1488-493(2018).

114. Tilman, D., May, R. M., Lehman, C. L., et al: Habitat destruction and the ex-
tinction debt. Nature, 371(6492), 65(1994).

115. Urban, Mark C.: Accelerating extinction risk from climate change. Science,
348.6234: 571-573(2015).

422

40 Y. Duan et al

116. Vanbergen, A.J., Esṕındola, A., Aizen, M. A.: Risks to pollinators and pollination
from invasive alien species. Nature ecology & evolution, 2(1), 16(2018).

117. Vander Zanden, M.J., Olden, J.D., Thorne, J.H., Mandrak, N.E.: Predicting oc-
currences and impacts of smallmouth bass introductions in north temperate lakes.
Ecological Applications, 14(1), 132-148(2004).

118. Valencia-Cabrera, L., Garcia-Quismondo, M., Pérez-Jiménez, et al: Modeling
Logic Gene Networks by Means of Probabilistic Dynamic P Systems. IJUC, 9(5-
6), 445-464(2013).

119. Valencia Cabrera, L., Garćıa Quismondo, M., Pérez-Jiménez, M., et al. Analysing
gene networks with pdp systems. Arabidopsis thailiana, a case study. In Pro-
ceedings of the Eleventh Brainstorming Week on Membrane Computing, 257-
272(2013).

120. Wahlberg, N., Moilanen, A., Hanski, I.: Predicting the occurrence of endangered
species in fragmented landscapes. Science, 273(5281), 1536-1538(1996).

121. Wang, B., Chen, L., Cheng, J.: New result on maximum entropy threshold image
segmentation based on P system. Optik, 163: 81-85(2018).

122. Wang, X., Zhang, G., Neri, F., et al: Design and implementation of membrane
controllers for trajectory tracking of nonholonomic wheeled mobile robots. Inte-
grated Computer-Aided Engineering, 23(1): 15-30(2016).

123. Wang, X., Zhang, G., Zhao, J., et al: A modified membrane-inspired algorithm
based on particle swarm optimization for mobile robot path planning, Interna-
tional Journal of Computers, Communications & Control, 10(5): 732-745(2015).

124. Willis K.J., Bhagwat S.A.: Biodiversity and climate change. Science, 326(5954):
806-807(2009).

125. Yahya, R., Hasan, S., George, L., Alsalibi, B.: Membrane computing for 2D image
segmentation. Int. J. Advance Soft Compu. Appl, 7(1), 35-50(2015).

126. Yee, T.W., & Mitchell, N.D.: Generalized additive models in plant ecology. Jour-
nal of vegetation science, 2(5), 587-602(1991).

127. Zhang, G., Cheng, J., Wang, T., Zhu, J.: Membrane Computing: Theory and
Applications. Beijing: China Science Publishing. 2015.

128. Zhang, G., Gheorghe, M., Li, Y.: A membrane algorithm with quantum-inspired
subalgorithms and its application to image processing, Natural Computing—An
International Journal, 11(4): 701-717(2012).

129. Zhang, G., Pan, L.: A survey of membrane computing as a new branch of natural
computing. Chinese journal of computers, 33(2): 208-214(2010).

130. Zhang, G., Rong, H., Neri, F., Pérez-Jiménez, M. J.: An optimization spiking
neural P system for approximately solving combinatorial optimization problems.
International Journal of Neural Systems, 24(05), 1440006(2014).

131. Zhang, G., Rong, H., Ou, Z., Pérez-Jiménez, M.J., et al: Automatic Design of
Deterministic and Non-Halting Membrane Systems by Tuning Syntactical Ingre-
dients, IEEE Transactions on NanoBioscience, 13(3): 363-371(2014).

132. Zhang, G., Zhou, F., Huang, X., et al: A novel membrane algorithm based on par-
ticle swarm optimization for solving broadcasting problems. Journal of Universal
Computer Science, 18(13): 1821-1841(2012).

133. Zhang, X., Li, J., Zhang, L.: A multi-objective membrane algorithm guided by
the skin membrane. Natural Computing, 15(4):597-610(2016).

134. Zhang, X., Zeng, X., Pan, L.: A spiking neural p system for performing multipli-
cation of two arbitrary natural numbers. Chinese journal of computers. 32(12):
2362-2372(2009).

423

A review of P systems for ecosystems 41

135. Zhao, J., Butters, T.D., Zhang, H., et al: Image-Based Model of Atrial Anatomy
and Electrical Activation: A Computational Platform for Investigating Atrial Ar-
rhythmia. IEEE Transactions on Medical Imaging, 32(1): 18-27(2013).

136. Zou, A., Hou, Z., Tan, M., et al: A behavior controller based on spiking neural
networks for mobile robots. Neurocomputing, 71(4/6):655-666(2018).

137. http://www.p-lingua.org/mecosim/
138. Mackie, G., Schloesser, D. Comparative biology of zebra mussels in Europe and

North America: an overview. American zoologist, 36(3), 244-258(1996).
139. Ardura, A., Zaiko, A., Borrell, Y. Novel tools for early detection of a global aquatic

invasive, the zebra mussel Dreissena polymorpha. Aquatic Conservation: Marine
and Freshwater Ecosystems, 27(1), 165-176(2017)

140. Ackerman, J.D., Sim, B., Nichols, S.J. A review of the early life history of zebra
mussels (Dreissena polymorpha): comparisons with marine bivalves. Canadian
Journal of Zoology, 72(7), 1169-1179 (1994).

141. Mingyang, L., Yunwei, J., Kumar, S. Modeling potential habitats for alien species
Dreissena polymorpha in Continental USA. Acta Ecologica Sinica, 28(9), 4253-
4258(2008).

142. Hallstan, S., Grandin, U., Goedkoop, W. Current and modeled potential distribu-
tion of the zebra mussel (Dreissena polymorpha) in Sweden. Biological Invasions,
12(1), 285-296(2010).

143. Chen, Q., Mynett, A. Applications of Soft Computing to Environmental Hy-
droinformatics with Emphasis on Ecohydraulics Modelling. In Practical Hydroin-
formatics, (405-420)(2009).

144. Drake, J. M., Bossenbroek, J. M. Profiling ecosystem vulnerability to invasion
by zebra mussels with support vector machines. Theoretical Ecology, 2(4), 189-
198(2009).

145. Masini, F., Lovari, S. Systematics, phylogenetic relationships, and dispersal of the
chamois (Rupicapra spp.). Quaternary Research, 30(3), 339-349(1988).

146. MetaPlab website, http://mplab.sci.univr.it

424

A Grid-Density Based Algorithm by Weighted
Spiking Neural P Systems with Antispikes and

Astrocytes in Spatial Cluster Analysis

Deting Kong, Yuan Wang, Di Wang, Xiyu Liu, and Jie Xue∗

Business School, Shandong Normal University
East road of Wenhua, No.88, Jinan, Shandong, China

Jiexue@sdnu.edu.cn

Abstract. In this paper, we propose a novel clustering approach based
on P systems and grid- density strategy. We present grid-density based
approach for clustering high dimensional data, which first projects the
data patterns on a two-dimensional space to overcome the curse of di-
mensionality problem. Then, through meshing the plane with grid lines
and deleting sparse grids, clusters are found out. In particular, we present
weighted spiking neural P systems with antispikes and astrocyte (WS-
NPA2 in short) to implement grid- density based approach in parallel.
Each neuron in weighted SN P system contains a potential, which can
be expressed by a computable real number. Spikes and anti-spikes are
inspired by neurons communicating through excitatory and inhibitory
impulses. Astrocytes have excitatory and inhibitory influence on synaps-
es. Experimental results on multiple real-world datasets demonstrate the
effectiveness and efficiency of our approach.

Keywords: Spiking Neural P Systems, Grid-density based Clustering
Approach, Multidimensional Datasets

1 Introduction

Spiking neural P systems (SN P in short) are a kind of parallel and distributed
neural-like computation model in the field of membrane computing [1,2]. SN P
systems can generate and accept the sets of Turing computable natural numbers
[9], generate the recursively enumerable languages [12] and compute the sets of
Turing computable functions [3].

Inspired by different biological phenomena and mathematical motivations,
several families of SN P systems have been constructed, such as SN P systems
with anti-spikes [17], SN P systems with weight [14], SN P systems with astro-
cyte [9], homogenous SN P systems [23], SN P systems with threshold [24], fuzzy
SN P systems [15], sequential SN P systems [18], SN P systems with rules on
synapses [20], SN P systems with structural plasticity [8]. For applications, SN P
systems are used to design logic gates, logic circuits [14] and operating systems

425

2 D. Kong et al.

[4], perform basic arithmetic operations [25], solve combinatorial optimization
problems [11], diagnose fault of electric power systems [21]. Păun who initiated
the P systems pointed out that solving real problem by membrane computing
need to be addressed. The comparative analysis of dynamic behaviors of a hy-
brid algorithm indicates that the combination of evolutionary computation with
membrane systems can produce a better algorithm for balancing exploration and
exploitation [22,10,16]. However, the hybrid algorithm does not use objects and
rules defined by P systems. On account of P system is still in the phase of solving
addition, subtraction, multiplication, and division [13]. How can these algorithms
deal with complex functions? Different from researches above, the whole process
of clustering algorithm proposed in this paper is implemented through changes
of objects by rules in membranes. In which, objects encode data. Membrane
rules working on objects achieve the clustering goal.

Grid-based clustering is usually used for the more complex and high-dimension
data. Data space is partitioned into certain number of cells. Cells are basic units
for clustering operations [19]. OPTIGRID [26] is designed to obtain an optimal
grid partitioning. CLIQUE is probably the most intuitive and comprehensive
clustering technique [27]. The shifting grid approach (SHIFT) has been report-
ed to be somehow similar to the sliding window technique. AGRID combines
density and grid-based approaches to cluster large high-dimensional data [56].
Smart Grids integrate several disciplines, which migrate from the traditional
centralized power delivery infrastructures to the distributed nature [28,7].

Based on the above considerations, this paper develops a hybrid optimization
method, grid-density based algorithm by weighted SN P systems with anti-spike
and astrocyte. Characteristic of each dimension is calculated and compared by
rules independently in different membranes synchronously. Communications a-
mong membranes is utilized to explore clusters. Experimental results on multiple
realworld datasets demonstrate the effectiveness and efficiency of our approach.

2 Weighted Spiking Neural P Systems with Antispikes
and Astrocytes

Weighted spiking neural P systems with antispikes and astrocytes (called WS-
NPA2) of degree m ≥ 1 is a construct of the form

Π = (O, σ1, . . . , σm, syn, ast1, . . . , astk, In,Out)

where, O is the set of spikes, O = {a, ā}, a is spike, ā is antispike. The empty
string is denoted by λ; σ1, σ2, . . . , σm are neurons, m is the degree of neurons,
of the form σi = (ni, Ri), 1 ≤ i ≤ m, Where, ni is the initial number of spikes
contained in σi, Ri is a finite set of rules with: (1)E/sc → s, s is spikes or
antispikes, c is the number of spikes in the rule, c ≥ 1, E is a regular expression
over a or a; (2)se → λ, e is the number of spikes, e ≥ 1. syn ⊆ {1, 2, . . . ,m} ×
{1, 2, . . . ,m} × ω are synapses between neurons, ω is the weight on synapse (i,
j), ω ∈ Z. For each (i, j), there is at most one synapse (i, j, ω). A rule E/sc → s

426

A Grid-Density based Algorithm 3

is applied as follows. If neuron σi contains r spikes/antispikes, r ≥ c, then the
rule can fire, c numbers of spikes/antispikes are consumed, r − c numbers of
spikes/antispikes remain in σi and one spikes/antispikes is released. The number
of spikes/antispikes is multiplied by ω and pass immediately to all neurons with
(i, j, ω) ∈ syn. se → λ is forgetting rules. e numbers of spikes/antispikes are
omitted from the neuron immediately.

For spikes aq and antispikes ap (p, q ∈ Z are numbers of spikes and anti-
spikes), an annihilation rule aā → λ is applied in a maximal manner. aq−p or
a(a)p−q remain for the next step, provided that q ≥ p or p ≥ q, respectively.
ast1, . . . , astk are astrocytes, of the form asti = (synasti, ti), where synasti ⊆ syn
is the subset of synapses controlled by the astrocyte, ti is the threshold of the
astrocyte. Suppose that there are k spikes passing along the neighboring synaps-
es synasti. If k ≥ ti, then asti has an inhibitory influence on synasti, and the k
spikes are transformed into one spike by ak → a. a will be sent into the neuron
connected to asti. Otherwise, k < ti, then asti has an excitatory influence on
synasti , all spikes survive and reach their destination neurons.

In,Out ∈ {1, 2, . . . ,m} indicate the input and output neurons, respectively.

3 Grid-Density Based Clustering Algorithm for Multi-di
mensional Dataset

3.1 Identify the two well-informed features

Generally, in grid-based methods, the computations will grow exponentially with
high dimensions, because of the evaluations should be done over all grid points.
For example, a cluster analysis with N dimensions and L grid partitions in each
dimension, would result in LN grids. To avoid this curse of dimensionality prob-
lem, we try to project data in actual feature space into a 2D space, aim to
discover the initial locations of potential clusters in a plane. The plane com-
prised by the two well-informed features ni, nj ∈ N will be covered by a L × L
lattice of grids with M data objects Xp(p = 1, . . . ,M).

At first, each dimension of objects is partitioned into K = [
√
M] bins, B =

{b1, b2, . . . , bk} is as

ci(bk) =| {Xp, p = 1, . . . ,M, | Xpi − bk |<| Xpi − bk′ |; bk, bk′ ∈ B, bk′ �= bk} |(1)
xpi is the value of feature ni in data pattern Xp and | . | is the cardinality

operator representing the number of elements in a set. The number of peaks in K
bins are considered as the centroid of data collections and are accounted as the
effectiveness measure, ε, of feature ni. Figure 1 depicts this histogram for the 13
features of the known Wine data set where their ε’s are 3,2,1,2,1,2,0,4,3,3,3,4,5,
respectively. According to these ε’s, the features n8, n12 and n13 are selected.
Two of the three should be selected as the two well-informed features for Wine
data set. These features will then be used to do the cluster analysis.

ε(ni) =| {ci(bk) : ci(bk) > ci(bk−1) and ci(bk) > ci(bk+1)} | (2)

427

4 D. Kong et al.

Fig. 1. histogram for the 13 features of Wine data set

3.2 Clustering by Grid-Density Based Algorithm

The plane comprised by the two well-informed features will be covered by a
H = L×L lattice of grids. Grids are denoted by G = {g1, g2, . . . , gH}. C(gh), h ∈
{1, 2, . . . , H} is the number of data Xp partitioned in grid gh according to (3).

C(gh) =| {Xp : p = 1, . . . ,M,Xp ∈ gh, gh ∈ G} | (3)

Next, non-dense grids are deleted. A grid is dense if C(gh) > θ, θ ∈ N+ is a
threshold defined before computation. After getting the initial members of grid
graph G, G is refined by finding out dense grid. Those sparse girds are discarded.
The refined grid graph is defined as:

Gr = {gh | C(gh) > θ} ⊆ G (4)

Each grid gh ∈ Gr has 4 neighbors connected with it as shown in Figure 2. A
cluster is a set of neighbors of dense grids. The process of clustering algorithm
is shown in Table below.

428

A Grid-Density based Algorithm 5

Fig. 2. Neighbors of grid gh ∈ Gr

Algorithm: Grid-Density based clustering algorithm

Inputs: Ω = {Xpi, 1 ≤ p ≤ M, 1 ≤ i ≤ N}, H = L× L, θ : densitythreshold

Outputs: CS = {CS1, CS2, . . . , CSt}
Begin

for all features ni, i = 1, 2, . . . , N

use K = [
√
M] bins to partition the feature ni

obtain the number of data in each bin B = {b1, . . . , bk} by (1)

compute the effectiveness measure ε(ni) for ni by (2)

rank ε(ni)

get the two top-ranked features

project data patterns into H = L× L grids

obtain the capability C(gH) of each grid by (3)

select dense grid by (4)

form cluster set by combing neighbor dense grids

return the t clusters, CS = {CS1, CS2, . . . , CSt}
End

4 Multi-WSNPA2 Design for Grid-Density Based
Clustering

4.1 Grid-Density Based Clustering by Multi-WSNPA2

In this section, the weighted spiking neural P system with antispkies and as-
trocytes is designed for grid-density based clustering. Objects in each neuron

429

6 D. Kong et al.

Fig. 3. Structure of WSNPA2 for grid-density based clustering algorithm

are organized as spikes and antispikes with real-valued numbers corresponding
to Ω = {Xpi, 1 ≤ p ≤ M, 1 ≤ i ≤ N}. Feature selection and cluster analysis
are implemented by rules of WSNPA2. WSNPA2 is divided into three subsys-
tems: feature selection, effectiveness comparison and clustering. The structure
of WSNPA2 is shown in Fig.3, where ovals represent neurons, rhombic stand
for astrocytes and arrows indicate channels. WSNPA2 for grid-density based
clustering algorithm is described as the following construct

Π = (O, σS1, σS2, σS3, syn,R, astS1, astS3, σin1, . . . , σinN , σout1, . . . , σoutt)

where, O = {a, ā}. At beginning, the input neuron contains xpi numbers of spike
a; σS1 stands for neurons in feature selection subsystems,σS1 = {DMiz, F iz′,
FSiz′′}, 1 ≤ i ≤ N, 1 ≤ z = z′ ≤ [

√
M], 1 ≤ z′′ ≤ 2[

√
M]/3; σS2 represents neu-

rons in effectiveness comparison subsystems, σs2 =
⋃

1≤i≤N (Ei ∪ECi)∪{ECS};
σS3 describes neurons in clustering subsystems, σS3 = {{Ci′ j , i

′ ∈ {1, 2}, 1 ≤ j ≤
N}, {Ggg′ , 1 ≤ g, g

′ ≤ L}, CS}; The number of astrocytes astS1 in the feature
selection system is N ∗ N between each two DMiz. The number of astrocytes
astS3 in the clustering system is L × L × 2 + 1; Input neurons σin1, . . . , σinN

are in the feature selection system. Output neurons σout1, . . . , σoutt are in the
clustering system.

There are several different clustering subsystem work in parallel for different
grid number H = L ∗L and density threshold θ, which means the whole system
can output variant clustering results simultaneously.

syn represents synapse among neurons:

syn(DMiz, astS1), 1 ≤ i ≤ N, 1 ≤ z ≤ [
√
M]

syn(Fiz′ , astS1), 1 ≤ i ≤ N, 1 ≤ z
′ ≤ [

√
M]

430

A Grid-Density based Algorithm 7

syn(Fiz′ , F Siz′′), 1 ≤ i ≤ D, 1 ≤ z
′ ≤ 1 ≤ z′′ ≤ 2[

√
M]/3

syn(F Siz′′ , Ei), 1 ≤ i ≤ N, 1 ≤ z′′ ≤ 2[
√
M]/3

syn(Ei, ECi), 1 ≤ i ≤ N

syn(ECi, ECS), 1 ≤ i ≤ N

syn(DMi1, Ci1), 1 ≤ i ≤ N

syn(Ci′ j , astS3), i
′ ∈ {1, 2}, 1 ≤ j ≤ N

syn(Ci′ j , Ggg′), i
′ ∈ {1, 2}, 1 ≤ j ≤ N, 1 ≤ g, g

′ ≤ L

syn(Ggg′ , astS3), i
′ ∈ {1, 2}, 1 ≤ g, g

′ ≤ L

syn(astS3, CS)

R is the following set of firing and forgetting rules:([]x means the rule works
in neuron x, otherwise, the rule executes through all neurons)

[axpi → axpi , xpi < tih]DMiz
, axpi → a, xpi > tih

[af → af]F
iz

′ , [a
f2−f1 → a]FS

iz
′′ , f2 − f1 > 0

[a2m → a2m+2]Ei
, [a2m+2/am → am]Ei

, [am → am]ECi

[a → a]Ei
, [a → a]ECi

, [am → ā2]ECS , [ā
2 am → λ]E′

i

[am → ā2]ECS , [ā
2 am → λ]E′

i
, [ā2 axij → axij]DMiz

[a
x
i
′
j → a

x
i
′
j]CS

i
′
j
, a

x
i
′
j → a, xi′ j > θi′

[a → a]G
gg

′ , [a
4/a3 → ā2]G

gg
′ , [a

n → λ ; n < θ]G
gg

′

[an → a ; n ≥ θ]G
gg

′ , [a → a]G
gg

′

4.2 Overview of Computations

Data set of M observations are codified by spikes axpi , 1 ≤ i ≤ N , 1 ≤ p ≤ M .
The computation of the P system is split in three subsystems. When axpi arrive
in neuron DMi1, the computation begins in parallel.

In feature selection subsystem, threshold tih in each astrocytes astS1ih is
tih = [h ∗ (Xi max −Xi min)/[

√
M]], 1 ≤ i ≤ N , 1 ≤ h ≤ [

√
M]. If xpi > tih, it is

said that xpi belongs to the current neuron DMiz. Rule 2 add a spike in DMiz.
Otherwise, axpi pass through DMiz to find its neuron (bin) by rule 1. After all
axpi execute with rule 1 and rule 2, the peak of each dimension is chosen by rule
3 and rule 4.

All peaks of dimension i gain by spike a in neuron Ei. Then, effectiveness
comparison subsystem starts. The maximum number of peaks of each dimension
is selected by rule 5-9. Rule 5 and 6 copy peaks am into a2m+2 and sends am

into neuron ECi for preparation. Then, different number of am is descended one
by one by rule 8. Rule 9 helps ECS collect all dimensions without the one with

431

8 D. Kong et al.

maximum number of peaks. The serial number of the neuron who sends out ā2

by rule 10 is chosen as the first dimension for clustering. Other effectiveness com-
parison subsystem will work in the same way except that the chosen dimension
is deleted by rule 11.

Rule 12 activates the input neurons of the two selected features. The clus-
tering subsystem begins. Rule 13-14 put observations into suitable bins in their
own dimensions. (θi′ = [i1Xi max − Xi min)/L]). Then, rule 15 select the grid
who has two spikes. It is chosen as initial grid for cluster . Rule 16 activates the
input neurons of the two selected features again. Rule 17-19 finds dense grids.
Rule 12-16 will continue to work until there are no spike input. The clustering
result is obtained by the serial number of neurons with a output by rule 19.

5 Experiments and Analysis

The experiments set out to investigate the performance of the proposed approach
compared to classical clustering algorithms. We conduct experiments using ten
real-world datasets. Table below summarizes these data sets, ordered in their
number of attributes.

Table 1. Ten real-world datasets of UCI.

Data set Number of attributes Number of classes Number of objects

Haberman 3 2 306

Iris 4 3 150

Thyroid 5 4 215

Ecoli 7 8 336

Diabetes 8 3 768

Breast 9 3 684

Glass 9 6 214

Wine 13 3 178

Vehicle 18 4 846

Ionosphere 33 2 351

The amount of necessary resources to define multi-WSNPA2 of grid-density
based clustering for the ten datasets are shown in Table.2.

To compare the algorithm with k-means and AHC (agglomerative hierarchi-
cal clustering) in more precise notion, their clustering performance in terms of
accuracy is depicted in Table. 3. This AHC uses the ward linkage27 which is
appropriate for Euclidean distance. The accuracy of clusters evaluates the right
objects of clusters in each class.

432

A Grid-Density based Algorithm 9

Table 2. The amount of necessary resources to define multi-WSNPA2 of the ten
datasets.

Data set parallel steps Initial cells Initial objects Number of rules

Haberman 314 52 36517 929

Iris 155 49 2.0782e+03 617

Thyroid 223 73 2.7634e+04 1097

Ecoli 344 128 1.1750e+03 2389

Diabetes 778 222 2.7639e+05 6170

Breast 694 235 19331 6183

Glass 222 132 2.1698e+04 1958

Wine 190 173 1.5998e+05 2340

Vehicle 866 524 1581507 15268

Ionosphere 359 618 2.6438e+03 11628

Table 3. The accuracy of clusters evaluates the right objects of clusters in each class.

Data set the algorithm K-means AHC

Haberman 47.82 48.64 50.06

Iris 93.33 89.79 91.54

Breast 93.99 96.06 95.83

Wine 97.75 95.20 97.73

Ionosphere 72.93 70.20 70.54

Average 81.16 79.97 81.14

Clearly, the performance is comparable to k-means and AHC and even better
as its averages (in bold-face) show.

Table 4. Comparison of time consuming among the three algorithms.

Data set the algorithm K-means AHC

Haberman 0.07 0.08 0.07

Iris 0.03 0.05 0.08

Thyroid 0.05 0.04 0.06

Ecoli 0.07 0.04 0.09

Breast 0.15 0.05 2.48

Glass 0.05 0.07 0.07

Wine 0.04 0.07 0.05

Vehicle 0.19 0.14 0.46

Ionosphere 0.08 0.06 0.14

Average 0.08 0.07 0.38

433

10 D. Kong et al.

The intrinsic maximal parallelism of P systems can be exploited to produce a
speed-up for solutions. In order to achieve this, the model needs several ingredi-
ents, among them the ability to generate an exponential workspace in polynomial
time. The computational cost is more than k-means as the last stage of its algo-
rithm is repetitive. Table .4 compares the time consuming against k-means and
AHC where the fastest (in average) is shown in boldface.

6 Conclusion

This paper discusses the use of weighted spiking neural P system with antispike
and astrocyte to appropriately develop a novel hybrid method with grid-density
based algorithm for solving clustering problems which first projects the data
patterns on a two-dimensional space to overcome the curse of dimensionality
problem. To choose these two well-informed features, a simple and fast feature
selection algorithm is proposed. Then, through meshing the plane with grid lines
and deleting sparse grids, clusters are found out. In particular, we present weight-
ed spiking neural P systems with antispikes and astrocyte (WSNPA2 in short)
to implement grid-density based approach in parallel. Each neuron in weighted
SN P system contains a potential, which can be expressed by a computable real
number. Spikes and anti-spikes are inspired by neurons communicating through
excitatory and inhibitory impulses. Astrocytes have excitatory and inhibitory
influence on synapses. Characteristic of each dimension is calculated and com-
pared by rules independently in different membranes synchronously. Communi-
cations among membranes is utilized to explore clusters. Experimental results
on multiple real-world datasets demonstrate the effectiveness and efficiency of
our approach to classical k-means and AHC algorithms.

Acknowledgement

This work was supported in part by the National Natural Science Foundation
of China (No. 61802234, 61876101), Natural Science Foundation of Shandong
Province (No. ZR2019QF007), and China Postdoctoral Project (No. 2017M612339)

References

1. Leporati A., Zandron C., Ferretti C., Mauri G.: Solving numerical NP-complete
problems with spiking neural P systems. Lecture Notes in Computer Science 4860,
336–352 (2007)

2. Leporati A., Mauri G., Zandron C., G. Paun, M. Prez-Jimnez: Uniform solutions
to SAT and subset sum by spiking neural P systems. Natural Computing 8(4),
681–702 (2009)

3. Paun A.,Paun G.: Small universal spiking neural P systems. Biosystems 90, 48–60
(2007)

4. Adl A., Badr A., Farag I.: Towards a Spiking Neural P Systems OS. CoRR
1012.0326 (2010)

434

A Grid-Density based Algorithm 11

5. Hinneburg A., Keim D.: Optimal grid-clustering: towards breading the curse of
dimensionality in high-dimensional clustering. In: Proc. of the 25th Inter-national
Conference on Very Large Data Bases (1999)

6. Monti A., Ponci F.: Power grids of the future: Why smart means complex. IEEE
Computer Society 7–11 (2010)

7. Vicente D., Vellido A.: A review of hierarchical models for data clustering and
visualization. In: Giraldez R, Riquelme JC, Aguilar-Ruiz JS (eds) Tendencias de
la Minera de Datos en Espana (2004)

8. Cabarle F., Adorna H.,Perez-Jimenez M., Song T.: Spiking neural P systems with
structural plasticity. Neural Computing Applications 26, 1905–1917 (2015)

9. Paun G.: Spiking neural P systems with astrocyte-like control. Journal of Universal
Computer 13, 1707–1721(2007)

10. Zhang G., Marian G.,Wu C.: A quantum-inspired evolutionary algorithm based on
P systems for Knapsack problem. Fundamenta Informaticae 87, 93–116 (2008)

11. Zhang G., Rong H., Neri F., Perez-Jimenez M.: An optimization spiking neural P
system for approximately solving combinatorial optimization problems. Internari-
onal Journal of Neural Systems 24(5), 1440006 (2014)

12. Chen H., Freund R., Ionescu M., Paun G., Prez-Jimnez M.: On string languages
generated by spiking neural P systems. Fundamenta Infirmaticae 75, 141–162
(2007)

13. Cheng J., Zhang G., Zeng X.: A novel membrane algorithm based on differen-
tial evolution for numerical optimization. International Journal of Unconventional
Computing 7, 159–183(2011)

14. Wang J., Hoogeboom H., Pan L., Paun G., Perez-Jimenez M.: Spiking neural P
sys- tems with weights. Neural Computation 22, 2615–2646 (2010)

15. Wang J., Shi P., Peng H., Perez-Jimenez M., Wang T.: Weighted fuzzy spiking
neural P systems. IEEE Transactions on Fuzzy Systems 21, 209–220 (2013)

16. Huang L., Suh I.H., Abraham A.: Dynamic multi-objective optimization based
on membrane computing for control of time-varying unstable plants. Information
Sciences 181, 2370–2391 (2011)

17. Pan L., Paun G.: Spiking neural P systems with anti-spikes. International Journal
of Computers Communication and Control (2011)

18. Ibarra O., Paun A., Rodriguez-Paton A.: Sequential SN P systems based on
min/max spike number. Theory Computer Science 410, 2982–2991 (2009)

19. Agrawal R., Gehrke J., Gunopulos D., Raghavan P.: Automatic subspace cluster-
ing of high dimensional data for data mining applications. In: Proceedings of the
1998 ACM SIGMOD international conference on Management of data, pp. 94–105
(1998)

20. Song T., Zou Q., Li X., Zeng X.: Asynchronous spiking neural P systems with rules
on synapses. Neurocomputing 151, 1439-1445 (2015)

21. Wang T., et al.: Fault diagnosis of electric power systems based on fuzzy reason-
ing spiking neural P systems. IEEE Transactions on Power System 30, 1182-1194
(2015)

22. Nishida T.: Membrane algorithm with Brownian sub algorithm and genetic sub
algorithm. International Journal of Foundations of Computer Science 18, 1353-
1360 (2007)

23. Zeng X., Zhang X., Pan L.: Homogeneous spiking neural P systems. Fundamenta
Infirmaticae 97, 275-294 (2009)

24. Zeng X., Zhang X., Song T., Pan L.: Spiking neural P systems with thresholds.
Neural Computation 26, 1340-1361 (2014)

435

12 D. Kong et al.

25. Liu X., Li Z., Liu J., Liu L., Zeng X.: Implementation of arithmetic operations
with time- free spiking neural P systems. IEEE Transactions on Nanobioscience
14, 617-624 (2015)

26. Zeng X., Song T., Zhang X., Pan L.: Performing Four Basic Arithmetic Operations
With Spiking Neural P Systems. IEEE Transactions on Nanoscience 11(4), 366-374
(2012)

27. Zhao Y., Song J.: AGRID: an efficient algorithm for clustering large high dimen-
sional data sets. In: Proc. of The 7th Pacific-Asia Conference on Knowledge Dis-
covery and Data Mining (PAKDD03), pp. 271-282 (2003)

28. Yan Y., Qian Y., Sharif H., Tipper D.: A survey on smart grid communication
infrastruc- tures: Motivations, requirements and challenges. IEEE Communications
Surveys and Tutorials 15(1), 28-42 (2013)

436

Generating Hilbert Words in Array
Representation with P Systems

Rodica Ceterchi1, Luping Zhang2, Linqiang Pan2,5, K. G. Subramanian2,3, and
Gexiang Zhang4

1 University of Bucharest
Faculty of Mathematics and Computer Science
14 Academiei St, 010014 Bucharest, Romania

2 School of Artificial Intelligence and Automation,
Huazhong University of Science and Technology,

Wuhan, 430074, China
3 Faculty of Science, Liverpool Hope University,

Hope Park, Liverpool L16 9JD, UK
Honorary Visiting Professor

4 Nature-Inspired Computation and Smart Grid Lab
School of Electrical Engineering, Southwest Jiaotong University

Chengdu, 610031, China

In Memoriam Professor Rani Siromoney

Abstract. Construction of finite grammars to generate languages of
digitized picture patterns, considered as arrays of symbols, has been a
problem of interest with several studies having been done in the area of
two-dimensional formal languages. On the other hand, with the introduc-
tion of the novel computing model of P system in the area of membrane
computing, P systems were developed for handling the problem of pic-
ture array generation, with the rewriting involved being sequential as
in Chomsky grammars or parallel as in Lindenmayer systems. We intro-
duce the array representation for the finite approximations of the Hilbert
space-filling curve, and we generate them with P systems with parallel
array rewriting.

1 Introduction

In two-dimensional language theory [13], a variety of array grammars based on
different aspects such as the type of rules, the rewriting mode and others, have
been proposed and their generative powers have been investigated. In the recent
past, the novel computing model of P system in the area of membrane comput-
ing [19] was considered as a convenient framework (see for example, [2, 24, 25,
27]) to handle the problem of picture array generation in view of the ability of
the P system model to regulate the array generation process. Motivated by these

5 Corresponding Author: lqpan@mail.hust.edu.cn, lqpanhust@gmail.com

437

studies and utilizing the P system model, the problem of generation of approx-
imation patterns of different kinds of space-filling curves has been investigated
[4, 6, 7, 9].

The Hilbert curve [14], proposed by Hilbert in 1891 as a variant of the Peano
curve [18], is a continuous space-filling curve (SFC) passing through every point
of a square. The Hilbert words are the finite approximations of the Hilbert
curve. In [6] the authors have introduced array representations for the Peano
curve, as well as for the related Wunderlich curve of type 1. Array-rewriting
rules were introduced, which, acting in parallel, are able to produce the words of
the respective SFCs, in array representation, and P systems with two membranes
were used as a control mechanism for the parallel array-rewriting.

In the present paper we apply this approach to the Hilbert SFC. The problem
of generating Hilbert words in string representation (as chain code words) with
P systems was addressed in [5]. Here we introduce the array representation
(following [6]) and array rewriting rules, using two types of P systems as control
mechanism. We prove correctness using again a linearization procedure, which
is here more refined than the one introduced in [6], and is the most important
main contribution of the paper. While there are many methods of controlling
the rewriting in formal language theory [20], the advantage of the P system is
that the number of membranes used is small (here only one or two) and the
specification of the target in the rules controls the rewriting.

While the curves considered in [6] were approximated by words represented
as 3n×3n arrays, the curves considered in this paper are approximated by words
represented as 2n×2n arrays. There are other differences as well, which make the
problem of applying the same technique non-trivial. Peano words andWunderlich
type 1 words have their starting and ending points in opposite corners of the
square. Hilbert words have their starting and ending points on the same side of
the square. There are implications of these facts on the linearization method.

The paper is organized as follows: after Introduction and Preliminaries, we re-
call in Section 3 the generation of Hilbert words in string representation. Section
4 introduces the array rewriting rules, and states the main result, the generation
of Hilbert arrays with P systems. Section 5 presents the linearization method
for Hilbert arrays, and proves the main result.

2 Preliminaries

2.1 Space filling curves and chain-code words

Among different syntactic approaches for two-dimensional picture generation,
chain code grammars introduced in [16] are string grammars with terminal al-
phabet {l, r, u, d}. The symbols, called chain-code symbols, are interpreted as
moving and drawing a line one unit in the two-dimensional plane, to the left,
right, up or down from the current position. The pictures generated by such
chain code grammars are called chain code pictures.

438

Based on the chain code grammar features, chain code P system models have
been introduced in [5] (also [4]) to generate the patterns of approximations of
space-filling curves.

2.2 The P Systems used to control parallel rewriting

The P systems used in previous work ([5], [4], [6], [7]) to control the parallel
application of the rewriting rules (either string or array rewriting) have the
following simple structure:

Π = (N,T, [1[2]2]1, {w}, ∅, R1, R2, 2).

They have two membranes, out of which the inner one, with label 2, has the
sole role of collecting the results (no rules, no initial object). In membrane 1,
rules R1 are rewriting rules acting in parallel, a group with target indication
here, denoted by morphism γ (respectively Γ), and another group with target
indication in, denoted by morphism f (respectively F).

The derivation mode is target agreement: all rules with the same target are
applied simultaneously.

According to [11], a second P system can be considered, to accomplish the
same task, namely

Π = (N,T, [1]1, {w}, R1)

with only one membrane. All rules are in R1, with two types of labels: label gen
(from generate) appended to the γ rules, and label fin (from final) appended to
the f rules.

The derivation mode is label agreement: all rules with the same label are
applied simultaneously.

The correctness proofs are extremely precise, and are the same for both sys-
tems. We have to show that for any natural n ≥ 1, f(γn(w)) = the n-th approx-
imation of the desired SFC in string representation, (respectively, F (Γn(w)) =
the n-th approximation of the desired SFC in array representation).

3 The Hilbert Curve in String Representation and its
Generation with P Systems

The Hilbert curve, introduced in [14], was codified using chain code symbols
for the first time in the paper [26]. Several generative mechanisms were used to
produce the finite approximations, called Hilbert words. We recall in this section
their generation with P systems from [5].

Figure 1: First three approximations of the Hilbert curve, H1, H2, H3.

439

The first Hilbert word is H1 = urd, and for n > 1 the Hilbert words are
given by the inductive formula

Hn = ρ′(Hn−1)uHn−1rHn−1dλ
′(Hn−1)

where ρ′, λ′ and δ are homomorphisms on Σ = {u, r, l, d} given below:
ρ′(u) = r, ρ′(d) = l , ρ′(l) = d, ρ′(r) = u – symmetry w.r.t. Oy axis and

rotation right 90◦ degrees;
λ′(u) = l , λ′(d) = r, λ′(l) = u, λ′(r) = d – symmetry w.r.t. Oy axis and

rotation left 90◦ degrees. (We have kept the notations from [7].)
δ(u) = d, δ(d) = u, δ(r) = l, δ(l) = r – symmetry w.r.t. origin.

Let γ denote the string morphism

U → RuUrUdL,R → UrRuRlD,L → DlLdLrU,D → LdDlDuR

and let f denote the string morphism

U → λ,R → λ, L → λ,D → λ.

Theorem 1. ([5]) With the above notations we have:

f(γn(U)) = Hn.

Using this, we have in [5] the following result:

Theorem 2. The context-free parallel chain code P system

ΠH = ({U,R,L,D}, {u, l, r, d}, [1[2]2]1, {U}, ∅, R1, R2, 2)

where R2 = ∅ and R1 contains the γ rules with target indication ”here”, and f
rules with target indication ”in”, functioning in target agreement mode, generates
the Hilbert words Hn(n ≥ 1).

We can now also state the following:

Theorem 3. The context-free parallel chain code P system

Π ′
H = ({U,R,L,D}, {u, l, r, d}, [1]1, {U}, R1)

with only one membrane, with rules in R1 the γ rules with label gen, and the f
rules with label fin, functioning in label agreement mode, generates the Hilbert
words Hn(n ≥ 1).

4 2-D Hilbert arrays

We introduce here the 2D representations of the finite approximations of the
Hilbert curve, and the array rewriting rules for their generation. We follow closely
the model of previous work [6] on the Peano and Wunderlich type 1 curves.

440

The Basic patterns of the Hilbert words are the following four 2×2 arrays:

(U)
2 3
1 4

r d
u ∗ with ∗ = d, r (1)

(R)
4 3
1 2

∗ l
r u

with ∗ = u, l (2)

(L)
2 1
3 4

d l
r ∗ with ∗ = d, r (3)

(D)
4 1
3 2

∗ d
u l

with ∗ = u, l (4)

Consider the alphabet of non-terminals

N̄ = {Ud,Ur,Ru,Rl, Ld, Lr,Du,Dl},
where each element is a 1 × 1 array.

Denote by Γ the array morphism of the eight rewriting rules bellow:

U∗ → Ur Ud
Ru L∗ with ∗ = d, r (5)

R∗ → D∗ Rl
Ur Ru

with ∗ = u, l (6)

L∗ → Ld Dl
Lr U∗ with ∗ = d, r (7)

D∗ → R∗ Ld
Du Dl

with ∗ = u, l (8)

Denote by F the array morphism of the four rewriting rules below

Ud → d, Ur → r, Ld → d, Lr → r,Ru → u,Rl → l,Du → u,Dl → l (9)

We intend to prove the following (equivalent) results:

Theorem 4. The P system

ΠH = (N,T, [1[2]2]1, {Ud}, ∅, R1, R2, 2)

with R2 = ∅ and R1 containing the rules Γ with target indication here, and
the rules F with target indication in, functioning in the derivation mode target
agreement, will produce in membrane 2 the Hilbert words codified as 2D arrays.

Theorem 5. The P system

Π ′
H = (N,T, [1]1, {Ud}, R1)

with R1 containing the rules Γ with label gen and the rules F with label fin will
produce the Hilbert words codified as 2D arrays.

The proof is the object of the next section.

441

5 The linearization method for Hilbert arrays

We introduce in this section the linearization of Hilbert arrays. Linearization of
2D arrays for the Peano and Wunderlich curves was first introduced in [6]. The
case for the Hilbert curve is different: the Peano related curves have starting and
ending points in opposite corners of the square, and the starting point can be
determined from the argument; but the Hilbert words have starting and ending
points on the same side of the square, and the starting corner has to be specified.

The purpose of linearization is to show that Hilbert 2-D arrays can be trans-
formed into corresponding 1-D strings of chain-code symbols which are precisely
the chain-code Hilbert words, and that the array rewriting can thus be reduced
to the string rewriting case.

Let α ∈ {se, sw, ne, nw} denote the four corners of the square, (se, sw, ne, nw
short for southeast, southwest, northeast and northwest)..

Recall that the nonterminal array alphabet is

N̄ = {Ud,Ur,Ru,Rl, Ld, Lr,Du,Dl}

where the elements are 1 × 1 arrays. Note that the entries of the arrays in N̄
have a special form.

Recall that N = {U,D,R,L} are the string nonterminals, and that T =
{u, d, r, l} are the string terminals, the chain code symbols.

Consider the injection φ : N̄ → N ×T which takes a 1×1 matrix to its entry,
consisting of the catenation of a symbol in N with a symbol in T . (Note that
not all combinations are allowed!) We have

φ(Ud) = Ud, φ(Ur) = Ur, φ(Du) = Du, φ(Dl) = Dl,

φ(Ru) = Ru, φ(Rl) = Rl, φ(Ld) = Ld, φ(Lr) = Lr.

Since φ acts like the identity, we will omit it in the sequel, but we will keep in
mind the different semantics. While Ud for instance can be the argument of Γ ,
φ(Ud) can be the argument of γ, but we will write the result as γ(Ud).

We plan to define inductively a family lin
(n)
α of morphisms on

⋃
n≥0 M2n×2n [N̄],

which takes arrays into strings over N̄ (which, via φ, will be identified with strings
over N ∪ T). For every n ≥ 0,

lin(n)
α : M2n×2n [N] → N22n ,

will be a partial function, with domain Γn, and such that for all n ≥ 1 we have

lin(n)
α ◦ Γn = γn ◦ φ.

In the following we will omit the φ.

Case n = 0.

442

We make the convention that lin(0) applied to 1 × 1 arrays is the identity
(i.e. produces the entry of that array). Actually, lin(0) = lin(0) ◦ φ. Note there
is no index denoting corner. The superscipt (0) will be omited in the sequel.

Case n = 1.
The partial function

lin(1)
α : M2×2[N] → N22 ,

with domain Γ , is defined by the following eight relations:

lin(1)
sw (Γ (U∗)) = lin(1)

sw

(
Ur Ud
Ru L∗

)
= RuUrUdL∗, with ∗ = {d, r} (10)

lin(1)
ne (Γ (L∗)) = lin(1)

ne

(
Ld Dl
Lr U∗

)
= DlLdLrU∗, with ∗ = {d, r} (11)

lin(1)
sw (Γ (R∗)) = lin(1)

sw

(
D∗ Rl
Ur Ru

)
= UrRuRlD∗, with ∗ = {u, l} (12)

lin(1)
ne (Γ (D∗)) = lin(1)

ne

(
R∗ Ld
Du Dl

)
= LdDlDuR∗, with ∗ = {u, l}. (13)

Note that lin
(1)
α applied to an array starts in the α corner of the array and

will access each entry of the array. At each entry, which is of the form Xy, with
X ∈ {U,R,L,D} and y ∈ {u, r, l, d},
– it writes the entry Xy into the output string
– goes to the neighbouring entry indicated by y.

This will be true for all the other members of the family.
We recall from section 3 the definition of the string morphism γ:

γ(U) = RuUrUdL, γ(R) = UrRuRlD,

γ(L) = DlLdLrU, γ(D) = LdDlDuR.

From the definition of lin(1) we note that:

lin(1)
sw (Γ (U∗)) = RuUrUdL∗ = γ(U)∗ = γ ◦ lin(U∗), with ∗ = {d, r} (14)

lin(1)
ne (Γ (L∗)) = DlLdLrU∗ = γ(L)∗ = γ ◦ lin(L∗), with ∗ = {d, r} (15)

443

lin(1)
sw (Γ (R∗)) = UrRuRlD∗ = γ(R)∗ = γ ◦ lin(R∗), with ∗ = {u, l} (16)

lin(1)
ne (Γ (D∗)) = LdDlDuR∗ = γ(D)∗ = γ ◦ lin(D∗), with ∗ = {u, l} (17)

We have thus established

Lemma 1. For X = U,L,R,D, and the appropriate values for ∗, we have (writ-
ten in compact form):

lin(1)
α ◦ Γ (X∗) = γ(X)∗ = γ ◦ lin(X∗).

Case n = 2.
We want lin

(2)
α : M4×4[N] → N16, to act on Γ 2(N), which are 2 × 2 arrays

resulting from the application of array rewriting rules Γ twice.
For instance, in view of Lemma 1, we have:

lin(2)
sw ◦ Γ 2(U∗) = (lin(2)

sw (Γ (Γ (U∗))) = lin(2)
swΓ

((
Ur Ud
Ru L∗

))

= lin(2)
sw

(
Γ (Ur) Γ (Ud)
Γ (Ru) Γ (L∗)

) (18)

The 4 × 4 array which is the argument of lin(2) above is composed of four 2 × 2
arrays, which are defined, and on which lin(1) is defined, (case n = 1) which are
’glued’ according to the basic pattern

r d
u ∗

defined in relation (1). Thus, the sequence of equalities above can be continued
by

= lin(1)
sw ◦ Γ (Ru)

lin(1)
sw ◦ Γ (Ur)

lin(1)
sw ◦ Γ (Ud)

lin(1)
ne ◦ Γ (L∗)

= γ(R)uγ(U)rγ(U)dγ(L)∗ = γ2(U∗).

(19)

On the other arguments, the pattern can be any other one of three basic
patterns described by formulas (2), (3) and (4), the definition of lin(2) follows
from the pattern, and the computations are similar.

Thus we also have

444

Lemma 2. For X = U,L,R,D, and the appropriate values for ∗, we have (writ-
ten in compact form):

linα ◦ Γ 2(X∗) = γ2(X)∗ = γ2 ◦ lin(X∗).

Case n (Induction hypothesis).
Assume we have defined

lin(n)
α : M2n×2n [N] → N22n ,

a partial function, with domain Γn, such that the following are true for for
X = U,L,R,D respectively, and the corresponding values of ∗:

lin(n)
α ◦ Γn(X∗) = γn(X)∗ = γn ◦ lin(X∗).

Case n+ 1:
We define now the partial function

lin(n+1)
α : M2n+1×2n+1 [N] → N22n+1

,

with domain Γn+1(N̄). The arrays of Γn+1(N̄) are each composed of four 2n×2n

subarrays, arranged according to one of the four basic patterns. We have:

Γn+1(U∗) =
(
Γn(Ur) Γn(Ud)
Γn(Ru) Γn(L∗)

)
, with ∗ = d, r (20)

Γn+1(L∗) =
(
Γn(Ld) Γn(Dl)
Γn(Lr) Γn(U∗)

)
, with ∗ = d, r (21)

Γn+1(R∗) =
(
Γn(D∗) Γn(Rl)
Γn(Ur) Γn(Ru)

)
, with ∗ = u, l (22)

Γn+1(D∗) =
(
Γn(R∗) Γn(Ld)
Γn(Du) Γn(Dl)

)
, with ∗ = u, l (23)

We define:

lin(n+1)
sw (Γn+1(U∗)) :=

= lin(n)
sw (Γn(Ru)) lin(n)

sw (Γn(Ur)) lin(n)
sw (Γn(Ud)) lin(n)

ne (Γ
n(L∗))

(24)

lin(n+1)
ne (Γn+1(L∗)) :=

= lin(n)
ne (Γ

n(Dl)) lin(n)
ne (Γ

n(Ld)) lin(n)
ne (Γ

n(Lr)) lin(n)
sw (Γn(U∗))

(25)

lin(n+1)
sw (Γn+1(R∗)) :=

= lin(n)
sw (Γn(Ur)) lin(n)

sw (Γn(Ru)) lin(n)
sw (Γn(Rl)) lin(n)

ne (Γ
n(D∗))

(26)

445

lin(n+1)
ne (Γn+1(D∗)) :=

= lin(n)
ne (Γ

n(Ld)) lin(n)
ne (Γ

n(Dl)) lin(n)
ne (Γ

n(Du)) lin(n)
sw (Γn(R∗))

(27)

Lemma 3. For X = U,L,R,D respectively, and appropriate ∗, we have:

lin(n+1)
α ◦ Γn+1(X∗) = γn+1(X)∗ = γn+1 ◦ lin(X∗).

The proof is immediate by straightforward computations and the induction hy-
pothesis. #$

Lemma 4.

lin(n)
α ◦ (F ◦ Γn) = (f ◦ γn) ◦ linα

Proof. For X = U,D,R,L and the appropriate values for ∗, we have:

lin(n)
α ◦ F ◦ Γn(X∗) = f ◦ lin(n)

α ◦ Γn(X∗) = (f ◦ γn)(linα(X∗)). (28)

#$

The proof of Theorem 2:
Starting with the nonterminal 1× 1 array Ud in membrane 1, by applying n

times (in parallel) the rules with target here we obtain the array Γn(Ud), still
in membrane 1. One application of the rules with target in leads to the array
F (Γn(Ud)) in membrane 2. By the third relation of the previous lemma, the
linearization of F (Γn(Ud)) is the string f(γn(U))d. According to Theorem 1,
we have f(γn(U))d = Hnd, where Hn is the nth Hilbert word. #$

6 Conclusions and future work

Based on previous work on Peano type SFC words [6], we have introduced here
2D array representations of Hilbert words. We have shown how they can be
generated with P systems with array rewriting rules acting in parallel. The lin-
earization procedure, which allows the transition from arrays to strings and from
array-rewriting to string rewriting, is here explored more in depth, and the for-
malism is much more refined.

Other variants of Hilbert words in array representation can be readily ob-
tained using this approach.

Methods and concepts exposed here can be extended to 3D cases.
A more vast area of further research is to use P systems to implement or

model some of the many applications of SFCs (see [1]).

446

Acknowledgements

This work was started during the two weeks visit of RC at the Key Laboratory
of Image Information Processing and Intelligent Control, of Education Ministry
of China, School of Artificial Intelligence and Automation, Huazhong University
of Science and Technology, China, June 24 – July 7, 2019.

The work of LZ and LP and was supported by the National Natural Science
Foundation of China (61772214).

The work of GZ was supported by the National Natural Science Foun-
dation of China (61972324, 61672437, 61702428), the New Generation Arti-
ficial Intelligence Science and Technology Major Project of Sichuan Province
(2018GZDZX0043), the Sichuan Science and Technology Program (2018GZ0185,
2018GZ0086) and Artificial Intelligence Key Laboratory of Sichuan Province
(2019RYJ06).

The authors are grateful to Rudolf Freund for discussions and suggestions
during the CMC20 conference in Curtea de Argeş, Romania, August, 2019.

References

1. Bader, M.: Space-filling Curves - An Introduction with applications in Scientific
Computing. Texts in Computational Science and Engineering. Springer-Verlag
(2013).

2. Ceterchi, R., Mutyam, M., Pǎun, Gh., Subramanian, K.G.: Array - rewriting P
systems. Natural Comput. 2 (2003) 229–249.

3. Ceterchi, R., Nagar, A.K., Subramanian, K.G.: Approximating polygons for space-
filling curves generated with P systems, C. Graciani et al. (Eds.): Pérez-Jiménez
Festschrift, LNCS 11270, (2018) 57–65. https://doi.org/10.1007/978-3-030-00265-
7 5

4. Ceterchi, R., Nagar, A.K., Subramanian, K.G.: Chain Code P System Generating a
Variant of the Peano Space-filling Curve, T. Hinze et al. (Eds.): CMC 2018, LNCS
11399, Springer Nature (2019). https://doi.org/10.1007/978-3-030-12797-8 6

5. Ceterchi, R., Subramanian, K.G., Venkat, I.: P Systems with parallel rewriting for
chain code picture languages. Proc. 11th Conference on Computability in Europe
(CiE), 145–155 (2015).

6. R. Ceterchi, A.K. Nagar, L.Pan, K.G. Subramanian: P Systems Generating Ar-
ray Representations of Peano Type Space-Filling Curves. Proceedings of the 20th
International Conference on Membrane Computing, CMC20, August 5–8, 2019,
Curtea de Argeş, Romania (Gh. Păun editor) Bibliostar, Râmnicu Vâlcea (2019)
309–324.

7. R. Ceterchi, K.G. Subramanian: P Systems for Generating Pictures in String Rep-
resentations: The Case of Space-Filling Curves, Proceedings of the 20th Interna-
tional Conference on Membrane Computing, CMC20, August 5–8, 2019, Curtea
de Argeş, Romania (Gh. Păun editor) Bibliostar, Râmnicu Vâlcea (2019) 63–80.

8. Dassow, J., Habel, A., Taubenberger, S. : Chain-code pictures and collages gener-
ated by hyperedge replacement, Lecture Notes in Comp. Sci., 1073 (1996) 412–427.

9. Dharani A., Stella Maragatham R., Nagar A. K., Subramanian K. G.: Chain
Code P System for Generation of Approximation Patterns of Sierpiski Curve. IW-
CIA2018, LNCS 11255 (2018) 43–52

447

10. Drewes, F. : Some Remarks on the Generative power of collage grammars and
chain-code Grammars, Lecture Notes in Comp. Sci., 1764 (2000) 1–14.

11. Freund R.: Playing with Derivation Modes, Proceedings of the 20th International
Conference on Membrane Computing, CMC20, August 5–8, 2019, Curtea de Argeş,
Romania (Gh. Păun editor) Bibliostar, Râmnicu Vâlcea (2019) 109–122.

12. Gheorghe, M., Pǎun, Gh., Pérez Jiménez, M. J., Rozenberg, G. : Research fron-
tiers of membrane computing: Open problems and research topics. Int. J. Found.
Comput. Sci. 24(5) (2013) 547–624.

13. Giammarresi D., Restivo A., Two-dimensional languages In: Rozenberg G., Salo-
maa, A. (eds.) Handbook of Formal Languages, vol. 3, pp. 215–267. Springer,
Heidelberg (1997).

14. Hilbert, D. : Über die stetige Abbildung einer Linie auf ein Flächenstück. Math.
Annln. 38 459–460 (1891).

15. Kitaev, S. : Mansour, T., Seebold, P. : The Peano curve and counting occurrences
of some patterns, J. Autom., Lang. Combin. 9(4) (2004) 439–455.

16. Maurer, H.A., Rozenberg, G., Welzl, E. : Using string languages to describe picture
languages, Inform. Control 54 (1982) 155–185.

17. Moore, E.H. : On certain crinkly curves. Trans. Amer. Math. Soc. 1 (1900), 72–90.
18. Peano, G. : Sur une courbe qui remplit toute une aire plane. Math. Annln. 36

157–160 (1890).
19. Pǎun, Gh. : Computing with membranes. J. Comp. System Sci. 61 (2000), 108-

143.
20. Salomaa, A. : Formal languages. Academic Press. London. 1973.
21. Sagan, H. : Space-filling curves. Springer-Verlag. New York. 1994.
22. Seebold, P. : Tag system for the Hilbert curve. Discrete Math. and Theor. Comp.

Sci. 9 (2007) 213–226.
23. Sierpiński, W. : Sur une nouvelle courbe continnue qui remplit toute une aire plane.

Bull. Acad. Sci. de (Sci. math et nat.,) Série A) 462–478 (1912).
24. Siromoney, R., Subramanian, K.G. : Space-filling curves and Infinite graphs. Lec-

ture notes in Comp. Sci. 153 (1983) 380–391.
25. Subramanian, K.G. : P systems and picture languages, Lecture Notes in Comp.

Sci. 4664 (2007) 99–109.
26. Subramanian, K.G., Siromoney, R.: On Array Grammars and Languages. Cyber-

netics and Systems. 18 (1987) 77-98.
27. Subramanian, K.G., Venkat, I., Pan, L. : P Systems generating chain code picture

languages, Proc. Asian Conf. Membrane Computing, (2012) pp.115–123.
28. Wunderlich, W. : Über Peano-Kurven. Elem. Math. 28 (1973) 1–10.

448

Automatic Design of Spiking Neural P Systems

Based on Genetic Algorithms

Jianping Dong1, Michael Stachowicz2, Gexiang Zhang1 �, Matteo Cavaliere2,

Haina Rong1, and Prithwineel Paul1

1 School of Electrical Engeneering, Southwest Jiaotong University,

Chengdu, 610031, China

zhgxdylan@126.com
2 Faculty of Science and Engineering, Manchester Metropolitan University,

Manchester, Britain

Abstract. At present, all known spiking neural P systems (SN P system-

s) are established by manual design rather than automatic design. The

method of manual design poses two problems: consuming a lot of com-

puting time and making unnecessary mistakes. In this paper, we propose

an automatic design approach for SN P systems by genetic algorithm-

s. More specifically, the regular expressions are changed to achieve the

automatic design of SN P systems. In this method, the number of neu-

rons in system, the synapse connections between neurons, the number

of rules within each neuron and the number of spikes within each neu-

ron are known. A population of SN P systems is created by generating

random accepted regular expressions. A genetic algorithm is applied to

evolve a population of SN P systems toward a successful SN P system-

s with high accuracy and sensitivity for carrying out specific tasks. An

effective fitness function is designed to evaluate each candidate SN P sys-

tem. In addition, the elitism, crossover and mutation are also designed.

Finally, experimental results show that the approach can successfully ac-

complish the automatic design of SN P systems for generating natural

numbers and even natural numbers by using the .NET framework.

Keywords: Spiking neural system; genetic algorithm; fitness function; mu-

tation probability; membrane computing.

� Corresponding author.

449

2 J. Dong, M. Stachowicz, et al.

1 Introduction

As a bridge between computer science and natural science, natural com-

puting is a wide research area with several branches, which includes cellular

automations [1], neural computations [2], elvoving algorithms [3–6], swarm in-

telligence [7], artificial immune systems [8], membrane computing [9, 10], etc.

Membrane computing is a new and hot research direction in recent years. Mem-

brane computing models, called P systems or membrane systems, are abstract-

ed from the structure and functioning of the living cell, as well as from the

cooperation of cells in tissues, organs and other populations of cells [11, 12].

Currently, membrane systems can be divided, according to different membrane

structure, into cell-like P systems, tissue-like P systems and SN P systems [13].

Until now, many variants of membrane computing models have been investi-

gated and also some models have been used in real life application. [14–18].

A good membrane computing model is the basis of its applied investiga-

tions and software and hardware implementations. In recent years, with the

development of membrane computing models, experts and scholars have start-

ed the automatic design method of membrane computing models. Currently,

the automatic design methods of membrane systems can be classified into two

groups [19, 21]: the heuristic algotithms and the reasoning techniques. Genetic

algorithms and quantum-inspired evolutionary algorithms are used to evolve

a population of P systems [20]. A genetic approach was used to design an ar-

tificial cell system, which can be regarded as a cell-like P system with a single

membrane [22]. An evolving design solution of membrane systems was pro-

posed to implement the design of square of 4 in the membrane system based

on simulation software P-Lingua [23]. A fitness function with a penalty factor

was presented to evaluate a P system [24]. Cell-like P systems and tissue-like

P systems have been automatically designed to fullfill some specific tasks, like

computing square of 4 and of n (n ≥ 2 is a natural number) [25–27]. A de-

terministic and non-halting membrane system by tuning membrane structures,

initial objects and evolution rules was proposed in [28]. The reasoning tech-

niques were used to design P systems in [29]. However, this idea has never been

extended to the third generation neural networks, which closely the activity of

biological neurons, and more specifically SN P systems [15].

This paper makes the attempt to propose an automatic design approach of

SN P systems by genetic algorithms. First of all, we establish a population of

450

Automatic Design of Spiking Neural P Systems 3

SN P systems with changing regular expression on the predefined number of

neurons in each SN P system, the synapse connections between neurons, the

number of rules within each neuron and the number of spikes within each neu-

ron. Secondly, a genetic algorithm is applied to evolve a population of SN P

systems toward a successful SN P system with high accuracy and sensitivity

for carrying out specific task. An effective fitness function is designed to eval-

uate each candidate SN P system. Finally, experimental results show that the

approach can successfully accomplish the automatic design of SN P systems

for generating natural numbers and even natural numbers by using the .NET

framework.

The paper is structured as follows. Section 2 describes the problems of the

automatic design of SN P systems. Section 3 presents the automatic design ap-

proach for SN P systems based on genetic algorithms in detail. Experimental re-

sults are shown and analyzed in Section 4. Finally, some conclusions are drawn

in Section 5.

2 Problem Description

In this section, we briefly review SN P systems, and then the problems of

the automatic design of SN P systems are described.

2.1 Spiking Neural P System

A SN P system consists of five main elements: the number of neurons in

each SN P system, the synapse connections between neurons, the number of

rules within each neurons, the regular expressions which define each rule and

the number of spikes within each neuron.

A SN P system [15] of degree m ≥ 1 is a tuple Π = (O, σ1, · · · , σm, syn, io),

where:

(1) O = {a} is the singleton alphabet (a is called spike);

(2) σ1, · · · , σm are neurons, identified by pairs

σi = (ni, Ri) , 1 ≤ i ≤ m (1)

where:

(a) ni ≥ 0 is the initial number of spikes contained in σi.

451

4 J. Dong, M. Stachowicz, et al.

(b) Ri is a finite set of rules of the following two forms:

(i) E/ac → a; d where E is a regular expression over O, and c ≥ 1, d ≥
0;

(ii) as → λ, for some s ≥ 1, with the restriction that for each rule

E/ac → a; d of type (i) from Ri, we have as /∈ L (E);

(3) syn ⊆ {1, . . .m} × {1, . . .m} with (i, i) /∈ syn for i ∈ {1, . . .m} (synapses

between neurons);

(4) io indicates the output neuron (i.e. σio is the output neuron).

The firing and forgetting rules of a SN P system are described and dis-

cussed in [15, 30]. The distinguishing feature of SN P system is that the sequence

of configurations can associate a spike train. If the output neuron spikes, then

we have 1 and otherwise we have 0. Hence, the spike train can be represented

by the sequence of ones and zeros.

2.2 Problem Statement

As briefly introduced above, there are many variants of SN P systems,

which are designed by manual design ranther than automatic design. In or-

der to automatically generate a SN P system, we should consider each aspect

in a SN P system. In this paper, the number of neurons in system, the synapse

connections between neurons, the number of rules within each neurons and the

number of spikes within each neuron, according to specific task, are previously

determined, but the regular expressions which define each rule and the delays

on each rule are randomly generated in a SN P system. Then we can generate

a population of SN P systems by same method. In our study, the aim is to use

genetic algorithms to get an optimal SN P system by approriately evolving a

SN P system. The problem is summarized as follows:

First of all, we define a population of SN P systems Π = {Πi}i∈H , where

H is a subset of natural numbers and each SN P system Πi of degree m ≥ 1 is

described as follows:

Πi = (O, σ1, · · · , σm, syn, io)

where

(1) O = {a} is a predefined singleton alphabet;

452

Automatic Design of Spiking Neural P Systems 5

(2) σ1, · · · , σm is the neurons from 1 to m.

σi = (ni, Ri) , 1 ≤ i ≤ m (2)

where:

(a) ni ≥ 0 is the initial number of spikes contained in σi.

(b) Ri is a finite set of rules of the following two forms:

(i) Spike transfer rules: E/ac → a; d. When fullfilling spike transfer

rules and d = 0, a spike in the neuron will travel along the synapses

connected to other neurons.

(ii) Spike forgetting rules: i.e, s spikes are consumed.

(3) io indicates the output neuron.

In addition, the implementations of all the rules are considered to be nodeter-

ministic through the population of SN P systems. In order to simulate nodeter-

minism of SN P systems, pseudorandoms are used to determine which rule is

to be selected.

3 Automatic Design Method

In this section, the detailed procedure of automatically designing of a SN P

system is described. An overview of automatic design method is outlined and

each step is explained one by one, which include overview of automatical de-

sign method, building a population of SN P systems, Design of fitness function

and elitism, crossover and mutations.

3.1 Overview of automatical design method

An overview of automatic design method is decribed using two aspect-

s: generating a population of SN P systems and evolving a population of SN

P systems. Initial configuration is predefined, which includes the number of

neurons in each P system, the synapse connections between each neuron, the

number of rules and the number of spikes within each neuron, a population of

SN P systems is created by randomly generating rules at the start. We evolve

the population based on genetic algorithms after generating a population. The

pseudocode of automatic design method is shown in Fig. 1

The genenral steps of the design method can be summarized as follows:

453

6 J. Dong, M. Stachowicz, et al.

Step 1: Input some basic parameters, which include m, ni, syn, io, H , MaxSteps,

StepRepetition, MutationRate, MinFitness, MaxGeneration, BestF itness

and ExpectedSet,

Input: Initial membrane construction and objects and genetic algorithm
1: i=1
2: while (i ≤ H) do
3: Generating random SNPSi

4: Caculating fitness value F(SNPSi)
5: if (F (SNPSi) ≤ MinFitness||F (SNPSi) == null) then
6: Generating new SNPSi and replacing old SNPSi

7: end if
8: i = i + 1

9: end while
10: while (generation ≤ MaxGeneration) do
11: Caculating fitness value each SNPS
12: Sorting population accordding to set F(SNPS)
13: i=1
14: while (i ≤ H) do
15: if (i ≤ Elitism && i ≤ H) then
16: Newpopulation[i] = Population[i]

17: if (F(SNPSi > BestFitness)) then
18: BestFitness = F (SNPSi)

19: end if
20: else
21: Crossover and mutation are operated
22: end if
23: if (F (SNPSi) == 0||F (SNPSi) == null) then
24: F (SNPSi) = 0

25: else
26: F (SNPSi) = F (SNPSi)

27: end if
28: i = i + 1

29: end while
30: genration = gneration + 1

31: end while
Output: Spiking neural P system

Fig. 1. The algorithm of automatic design of SN P systems

where:
(a) m, ni, syn and io represent the number of neurons in each SN P system,

the number of spikes in each neuron, the synapse connections between

each neuron and the output neurons, respectively.

(b) io indicates the output neuron.

(c) H is population size.

454

Automatic Design of Spiking Neural P Systems 7

(d) MaxSteps represents the maximum steps that each network will take.

(e) StepRepetition is the amount of repetitions each network will generate an

output list.

(f) MutationRate is the percentage chance for mutation.

(g) MinFitness represents minimal fitness.

(h) MaxGeneration is the max amount of generations.

(i) BestF itness represents the best fitness through generations.

(j) ExpectedSet is the expected set.

Step 2: Accordding to initial parameters and rules that randomly create, gen-

erating the population of SN P systems and caculating the fitness value. F (SNPSi)

and F (SNPS) represent the fitness value of the ith SN P system and the

fitness set of all SN P systems in the population, respectively. Investigate

whether SN P systems are correct according to the fitness function value of

each SN P system in the population.

Step 3: The genetic algorithm is used to automatically design each SN P sys-

tem in the population. Elitism represents the number of reserving optimum

number of SN P systems in the population. The rest of SN P systems are op-

erated by using crossover and mutation.

Step 4: Output of new SN P system with high sensitivity and precision after

completion of automatic design.

We can infer that from Fig. 1, the most important three steps include build-

ing a population of SN P systems, designing a fitness function and setting

elitism, crossover and mutation. We will introduce them one by one in the fol-

lowing subsections.

3.2 Building a population of SN P systems

A SN P system includes the number of neurons, the synapse connections

between neurons, the number of rules within each neuron, the regular expres-

sions which define each rule and the number of spikes within each neuron. A

SN P system represents an individual (DNA, SNPSi) in the popualtion. Here,

an individual is also thought of as a set, which contains above five aspects. As

a result, the building of a population of SN P systems can be divided into the

following steps.

455

8 J. Dong, M. Stachowicz, et al.

Step 1: Generate a random individual, where rules are randomly generated

and other elements are predefined.

Step 2: Repeat the first step until all the individuals(SNPSi) in the population

are produced;

Step 3: Check whether each individual is correct;

Step 4: Delete and replace individuals with incorrect and fitness value lower

than 0.1;

Step 5: Save the initial population.

With the initial population, it is necessary to have an appropriate evalua-

tion function to guide the population to evolve to the optimal solution. Hence,

it is worth to notice that the fitness function plays an important role throughout

the automatical design process. We describe the details of the fitness function

as follows.

3.3 Design of fitness function

In this subsection, we discuss how to design the fitness function, which

is used to calculate the sensitivity and the precision of SN P systems. There

are two data sets after the establishment of the SN P systems. One is a real

output set OutputSet. Another is given expected set ExpectedSet. OutputSet

represents generating number set of repeating execution SN P systems for a

specifical task. ExpectedSet is expected number set for a special task. So a fit-

ness function is established by comparing elements in the real output set and

the expected set. The pseudocode of the fitness funtion is shown in Fig. 2

The category of an element in the above two sets is as follows:

(1) The output set is compared with the expected set and for every number that

is in both of the sets, the true positive count tp increases;

(2) The output set is compared with the expected set and for every number that

is in the output set but not in the expected set, the false positive count fp

increases;

(3) The output set is compared with the expected set and for every number that

is not in the output set but is in the expected set, the false negative count fn

increases;

456

Automatic Design of Spiking Neural P Systems 9

(4) The true negative values, which are not in the output set and not in the

expected set, are not counted, since they are not needed for this design.

In the process of the automatic design, besides the design of fitness func-

tion, the elitism, crossover and mutation of genetic algorithms are also very

important problems. We will discuss how to evolve accroding to the fitness

function in the next subsection.

Input: OutputSet, ExpectedSet, tp = 0, fp = 0, fn = 0

1: Initialization settings
2: Merging elements from OutputSet and ExpectedSet into OutExSet. The length of

OutExSet is n
3: i = 1

4: while (i ≤ H) do
5: i = i + 1

6: if OutExSet(i) ∈ OutputSet then
7: if OutExSet(i) ∈ ExpectedSet then
8: tp = tp + 1

9: Turn to Step 21
10: else
11: fp = fp + 1

12: Turn to Step 21
13: end if
14: else
15: if OutExSet(i) ∈ ExpectedSet then
16: fn = fn + 1

17: Turn to Step 21
18: else
19: Turn to Step 21
20: end if
21: end if
22: if i � n then
23: Turn to Step 26
24: else
25: Turn to Step 4
26: end if
27: Fitness = (2×tp

2×tp+fp+fn) × sf

28: end while
Output: Return Fitness

Fig. 2. The design of the fitness function

457

10 J. Dong, M. Stachowicz, et al.

3.4 Elitism, crossover and mutation

DNA consists of genes, which in the case of this paper are represented by a

SN P system. Each instance of DNA also contains the fitness for the genes con-

tained within it. The crossover function allows the exchange of genes between

two parents, creating a new child DNA with the characteristics of the parents

that were used. After the crossover, there is also a chance for the new child D-

NA to mutate, changing one of the rules in the generated network at random.

To ensure variety in each population, population total new random members

are added to the population pool with each generation.

Along with crossover and chance for mutation, this algorithm also allows

for the use of elitism. This feature allows a selected number of best networks to

be introduced with a new generation. This allows the algorithm to ensure that

fitness will continue to increase even if poor mutations occur too frequently.

The pseudocode of the elitism, crossover and mutation is shown in Fig. 3

Input: A population of SN P systems in the current genenration.
1: Caculating fitness value each SN P system and sorting SN P system according the fitness

value.
2: i = 1

3: while (i ≤ H) do
4: i = i + 1

5: if (i ≤ Elitism && i ≤ H) then
6: Newpopulation[i] = Population[i]

7: else
8: Parent1=ChooseParent()
9: Parent2=ChooseParent()
10: if random1 ≤ CrossoverRate then
11: Newpopulation[i] = maxParent1, Parent2

12: else
13: CrossoverChild=Crossover(Parent1,Parent2)
14: if random2 ≤ CrossoverRate then
15: Newpopulation[i] = CrossoverChild

16: else
17: MutateChild=Mutate(CrossoverChild)
18: Newpopulation[i] = MutateChild

19: end if
20: end if
21: end if
22: end while
Output: Return Newpopulation

Fig. 3. The design of the elitism, crossover and mutation

458

Automatic Design of Spiking Neural P Systems 11

The detailed procedure of elitism, crossover and mutation are described as

follows:

Elitism: Elitism, the best optimal individual in the current population, is set

to 1 in the method of the automatic design, i.e., a SNP system with the high

sensitivity and precision can be saved to new popualtion each generation.

Crossover: The crossover is mainly composed of two steps, one is to choose

the parent individuals (Parents with a higher fitness will have a higher chance

of reproducing, however all parents should have a chance), and the other one

is to exchange the corresponding rules in the two parent individuals.

Mutations: After getting new sub-individuals from the crossover of two par-

ent individuals, new sub-individuals are mutated and added to new popula-

tion, where MutationRate is adjusted according to the detailed problem dy-

namically. The pseudocode of dynamic adjustment is described in Fig. 4.

Input: GlobleBestF itness = 0, CurrentBestF itness, RateChange = 0,
MutationRate = 0

1: i = 1

2: while (i ≤ H) do
3: i = i + 1

4: if GlobleBestF itness ≤ CurrentBestF itness then
5: GlobleBestF itness = CurrentBestF itness

6: RateChange + +

7: else
8: RateChange = 0

9: end if
10: if RateChange ≥ 10 then
11: MutationRate = random(0, 10)

12: else
13: MutationRate = random(10, 20)

14: end if
15: end while
Output: Return MutationRate

Fig. 4. The dynamic adjustment of mutation probability

4 Experimentations and Analysis of Results

In this section, the method of the automatic design is first thoroughly test

to ensure the systems are generated as expected. First of all, a SN P system

459

12 J. Dong, M. Stachowicz, et al.

generating all even natural numbers and a SN P system generating all natural

numbers are used to simulate the evolution of SN P systems towards a expected

configuration to ensure the sentivity and precision of the data being outputed.

Secondly, we analyze the experimental results of two known SN P systems and

obtain experimental conclusions.

In order to illustrate the performance of the method of the automatic de-

sign when simulating a SN P system generating all natural numbers, we do a

dynamic behavior analysis from the fitness function value of the experimental

testing process. Fmax is used to testify the convergency of the algorithms.

Fmax: the maximum fitness value in the current generation. The maximum

fitness value Fmax represents the best SN P system in the current genneration.

Fmax is defined in Eqs.3.

Fav : the average fitness value in the current generation. A larger value of

Fav represents a smaller difference between the expected set and the output set.

Fav is defined in Eqs.4.

Fmax = max

H∑
i=1

F (SNPSi) (3)

Fav =
1

H

H∑
i=1

F (SNPSi) (4)

where, F (SNPSi) represents the fitness value of ith SN P systems, H is the

number of the SN P systems in the population.

4.1 A SN P system generating all natural numbers

The specific sketch of a SN P system generating all natural numbers is

shown in Fig. 5.

A SN P system generating all natural numbers mainly contains five ele-

ments: four neurons, ten synapse connections between neurons, eight rules and

two starting spikes each neuron. Four neurons consist of three general neurons

and one output neuron.

In the process of simulated evolution, the basic design parameters are set

as follows. Expected output set for the natural numbers system: 1, 2, 3, 4, 5, 6, 7,

8, 9; Population count: 4 members; Maximum number of steps per system: 50;

460

Automatic Design of Spiking Neural P Systems 13

Fig. 5. A SN P system generating all natural numbers

Maximum number of repetitions per system: 50; Maximum number of genera-

tions: 200.

We obtain the change curves of the average fitness values and the maxi-

mum fitness values in Fig. 6.

Fig. 6. The change curves of the average fitness values and the maximum fitness values

As in Fig. 6, If the number of iterations increases, the maximum fitness val-

ue rapidly increases in initial period and also the average fitness value slowly

increases than the maximum fitness value at the same time. After 80 iterations,

461

14 J. Dong, M. Stachowicz, et al.

Fig. 7. The output set of SN P systems generating all natural numbers

the maximum fitness value is constant, which indicate that the evolutionary is

convergent.

From Fig. 7, the results of the correct natural data output are produced by

a natural SNP system and is the same as the expected set.

4.2 A SN P system generating all even natural numbers

The specific sketch of a SN P system generating all even natural numbers

is shown in Fig. 8.

A SN P system generating all even natural numbers mainly contails five

elements: seven neurons, twelve synapse connections between neurons, twelve

rules, two starting spikes in six neurons and no starting spikes in other neurons.

Seven neurons consist of six general neurons and one output neuron.

The basic parameters are set as follows.The constraints for this set of tests,

unless otherwise stated, are as follows: Expected output set for the even num-

bers system: 2, 4, 6, 8, 10, 12, 14, 16; Population count: 4 members, increasing

by 1 every generation; Maximum number of steps per system: 50; Maximum

number of repetitions per system: 50; Maximum number of generations: 200.

462

Automatic Design of Spiking Neural P Systems 15

Fig. 8. A SN P system generating all even natural numbers

Fig. 9. The change curves of the average fitness values and the maximum fitness values

463

16 J. Dong, M. Stachowicz, et al.

The results in Fig. 9 and Fig. 10 are the same as those in Fig. 6 and Fig. 7.

The greater the number of iterations, the greater the fitness value and the algo-

rithm is convergent. The output results are very close to the expected results.

As a result, the expecrimental results of SN P systems generating all natural

numbers and SN P systems generating all even natural numbers show that our

method is feasible and effective.

Fig. 10. The output set of SN P systems generating all even natural numbers

5 Conclusions

This paper proposes a clear possibility on how to use genetic algorithms

to design an expected SN P system, including the overview approach of the

automatic design, the fitness function and the design of elitism, crossover and

mutation. After randomly generating a population of SN P systems, the genetic

algorithm is used to evolve the initial population to obtain the optimal SN P

system. The introduction of genetic algorithm makes it easier to generate new

SN P systems than manual design. Moreover, a fitness function, i.e., the com-

parison between the output set and the expected set, is established to reflect

464

Automatic Design of Spiking Neural P Systems 17

the precision and sensitivity of SN P systems. The experimental results show

that the fitness function designed by this study can effectively guide the search

for the optimal SN P system. Finally, the experimental results from two exam-

ples show that the approach is effective to automatically design a SN P system

based on genetic algorithms. In future works, we will generalize this method

to generate more SN P systems, such as generating asynchronous and time-free

systems (which are usually quite hard to design manually, but relevant from

an application point of view). Moreover, we have only changed the rules in the

present approach, while other elements such as the number of neurons and the

synapse connections between neurons have not been changed in the process of

evolution. Therefore, much attention will be devoted to them in furture.

Acknowledgment

This work was supported by the National Natural Science Foundation of China

(61972324, 61672437, 61702428), the Sichuan Science and Technology Program

(2018GZ0185, 2018GZ0086), New Generation Artificial Intelligence Science and

Technology Major Project of Sichuan Province (2018GZDZX0043) and Artificial

Intelligence Key Laboratory of Sichuan Province (2019RYJ06).

References

1. Kari, L., Rozenberg, G.: The Many Facets of Natural Computing. Communications

of the ACM, 51(10), 72-83(2008).

2. Wolfram, S.: Statistical mechanics of cellular automata. review of modern physics,

55(3), 601-644(1983).

3. Kazarlis, S., Bakirtzis, A., Petridis, V.: A genetic algorithm solution to the unit com-

mitment problem. IEEE Transactions on Power Systems, 11(1), 83-92(1996).

4. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. IEEE Swarm Intel-

ligence Symposium, 1(1), 33-57(2007).

5. Zhang, G.: Quantum-inspired evolutionary algorithms: a survey and empirical s-

tudy. Journal of Heuristics, 17(3), 303-351(2011).

6. Zhang, G., Li, N., Jin, W.: Novel Quantum Genetic Algorithm and Its Applications.

Frontiers of Electrical and Electronic Engineering in China, 1(1), 31-36(2006).

7. Al-Rifaie, M., John, M., Suzanne, C.: Creativity and Autonomy in Swarm Intelli-

gence Systems. Cognitive Computation, 4(3), 320-331(2012).

465

18 J. Dong, M. Stachowicz, et al.

8. Farmer, J., Norman, H., Alan, S.: The immune system, adaptation, and machine

learning. Physica D, 22(1-3), 187-204(1986).

9. Păun, G.: Membrane Computing. International Symposium on Fundamentals of

Computation Theory, 2751(1-3), 284-295(2003).

10. Păun, G.: Introduction to Membrane Computing. Applications of Membrane Com-

puting, 2751(1-3), 1-42(2006).

11. Păun, G., Rozenberg, G.: A guide to membrane computing. Theoretical Computer

Science, 287(1), 73-100(2002).

12. Zhang, G.: A membrane algorithm with quantum-inspired subalgorithms and its

application to image processing. Natural Computing, 11(4), 701-717(2012).

13. Zhang, G., Pan, L.: A Survey of Membrane Computing As a New Branch of Natural

Computing. Chinese Journal of Computers, 2(30), 208-214(2010).

14. Bernardini, F., Gheorghe, M.: Population P systems. Journal of Universal Computer

Science, 10(5), 509-539(2004).

15. Ionescu, M., Păun, Gh.: Spiking neural P systems. Fundamenta Information, 71(2),

279-308(2006).

16. Cavaliere, M., Genova, D.: P systems with symport/antiport of rules. Journal of U-

niversal Computer Science, 10(5), 540-558(2004).

17. Martı́n-Vide, C, Păun, G., Pazos, T.: Tissue P systems. Theoretical Computer Science,

296(2), 295-326(2003).

18. Păun, A., Popa, B.: P systems with proteins on membranes and membrane division.

Developments in Language Theory, Lecture Notes in Computer Science, 4036, 292-

303(2006).

19. Zhu, M., Zhang, G., Yang, Q., Rong, H., Yuan W., Pérez-Jiménez, M.: P systems-

based computing polynomials with integer coefficients: design and formal verifica-

tion. IEEE transanctions on nanobioscience, 17(3), 272-280(2018).

20. Zhang, G., Gheorghe, M., Pan, L., Pérez-Jiménez, M.: Evolutionary membrane com-

puting: A comprehensive survey and new results. Developments in Language The-

ory, Inf. Sci., 279, 528-551(2018).

21. Zhang, G., Cheng, J., Wang, T., Wang, X., Zhu J.: Membrane Computing: Theory and

Applications. Beijing, China: Science Press, 2015.

22. Suzuki, Y., Tanaka, H.: chemicial evolution among arificial proto-cells. International

Conference on Artificial Life 2000, USA, 54-63(2000).

23. Escuela, G., Gutiérrez-Naranjo, M.: An application of genetic algorithms to mem-

brane computing. Proceedings of the 10th Brainstorming Week on Membrane Com-

puting, 101-108(2010).

24. Tudose, C., Lefticaru, R., Ipate, F.: Using genetic algorithms and model checking

for P systems automatic design. Studies in Computational Intelligence, 387, 285-

302(2012).

466

Automatic Design of Spiking Neural P Systems 19

25. Huang, X., Zhang, G., Rong, H., Ipate, F.: Automatic Design of Cell-like P Systems

through Tuning Membrane Structures, Initial Objects and Evolution Rules. Interna-

tional Journal of Unconventional Computing, 9(5), 425-443(2012).

26. Ou, Z., Zhang, G.: Automatic Design of Cell-like P Systems through Tuning Mem-

brane Structures, Initial Objects and Evolution Rules. International Journal of Un-

conventional Computing, 9(5), 425-443(2013).

27. Chen, Y., Zhang, G., Wang, T., Huang, X.: Automatic design of celllike P systems

through tuning membrane structures, initial objects and evolution rules. Chin. J.

Electron., 23(2), 302-304(2014).

28. Zhang, G., Rong, H., Ou, Z., Pérez-Jiménez, M., Gheorghe, M.: Automatic design of

deterministic and non-halting membrane systems by tuning syntactical ingredients.

IEEE Trans. Nanobiosci., 13(3), 363-371(2014).

29. Yuan, W., Zhang, G., Pérez-Jiménez, M., Wang, T., Huang, X.: P systems based com-

puting polynomials: Design and formal verification. Natural Comput., 15(4), 591-

596(2016).

30. Zhang, G., Rong, H., Neri, F., Pérez-Jiménez, M.: An optimization spiking neural

P system for approximately solving combinatorial optimization problems. Interna-

tional Journal of Neural Systems, 24(5), 01-16(2014).

467

Bi-level multi-objective optimization of loss and
waste in the wheat processing

Wanying Liang, Hua Yang �, and Kang Zhou

Department of Math and Computer,Development Strategy Institute of reserve of food
and material,Wuhan Polytechnic University, Wuhan 430023, Hubei,

China{lwy000208@163.com,Huay20@163.com}

Abstract. Wheat, as one of the main processed grain in food indus-
try, with the development of science and technology, the development of
wheat processing industry has entered a period of large-scale. However,
in order to meet the visual and taste requirements of wheat process-
ing technology, but also to improve the market share of grain products,
grain processing enterprises often over-process grain, resulting in unnec-
essary waste. Therefore, considering that there is still a lot of room for
improvement in wheat processing technology, this paper uses the rele-
vant knowledge of information technology and other fields to establish
a mathematical model by analyzing the loss rate, yield rate and wheat
nutrient loss rate of wheat processing links, and to measure and evaluate
the loss and waste of grain processing links. On this basis, the data sets
of 8 processes, such as feeding, screening, stone removal, wheat purifica-
tion, grinding, flour making, powder blending, packaging, are optimized
by double layer multi-objective optimization, hierarchical analysis, and
a reasonable optimization scheme is put forward.

Keywords: Wheat processing technic ,Metro-logical evaluation,Double-
layer Multi-objective Optimization.

1 Foreword

With the improvement of living standards, consumers put forward higher re-
quirements for the fineness of grain. In order to meet the market demand, grain
processing enterprises often regard flour and rice with good raw products and
good taste as the ”first priority”, and the processing standards even far exceed
the national standards, resulting in a great waste of grain.

Wang [1] studied the food quality and nutrition quality of wheat and wheat
processing technic. The appropriate processing technic, flour extraction rate and
the extraction scheme were the necessary conditions for the reasonable process-
ing of wheat. Zhao [2] studied excessive flour processing, which not only increased
the production cost of enterprises, but also reduced the quality of some noodle
products: the one-sided pursuit of refined flour production and consumption, not
only caused great loss of beneficial nutrients in wheat, but also lost the real taste

� Corresponding author.

468

2 F. Author et al.

of people’s staple flour. Wang [3] in order to improve the overall utilization rate
of wheat flour production equipment and wheat flour processing efficiency, based
on the research on the production process of a single production line of a wheat
flour enterprise, the production related data was collected, combined with the
application of system modeling and simulation technology, the processing flow
model of wheat flour single production line was established by using Flexsim sim-
ulation software, and the simulation experiment was carried out. Through the
analysis of simulation data and many simulations, the improvement scheme is
put forward to optimize the model, and the overall utilization rate of the equip-
ment is obviously improved. The research conclusions can provide a reference
for this kind of wheat flour processing enterprises to a certain extent. In 2015,
Zhao [4] , on the basis of defining the evaluation object of grain postpartum loss
and waste, according to the characteristics of China’s grain postpartum system,
adopted objective weighting method to set up index weight, selected six grain
varieties, such as rice, wheat, corn, soybean, peanut, rapeseed and so on, based
on harvesting, drying, farmers storing grain, storage, transportation, process-
ing, selling and consumption and so on. The evaluation index system of grain
postpartum loss and waste was constructed in eight links, and the calculation
method of each layer index was given. In the same year, Li [5] studied the pro-
cessing technic and operation management in the production of special wheat
flour. In the process of wheat flour making, skillfully controlling the operation
skills of each system, and whether the operation of each grinding system is sci-
entific and reasonable, is directly related to the quality of special wheat flour
and the ratio of high quality flour, and is an important measure and guarantee
to achieve the best milling effect. Zhao [6] is of great significance to ensure food
security in China. Under the background of the rigid growth of grain demand
and the increasing difficulty of increasing grain production, the occurrence mech-
anism of grain postpartum loss is analyzed. On the basis of this analysis, the
control measures are put forward from the aspects of constructing modern grain
circulation system, improving storage and logistics facilities, guiding enterprises
to process moderately, promoting comprehensive utilization of by-products and
straightening out grain price to guide residents’ rational consumption, so as to
reduce grain loss and waste and promote the effective utilization of resources. In
2018, based on the present situation of grain loss and waste at home and abroad,
Chen [7] analyzed the causes of grain processing loss and waste in China, and
put forward some measures and suggestions. At present, the development of
wheat flour processing industry in China has not kept up with the economic
development speed, which restricts the development and growth of wheat flour
processing industry in China. Wang [8] analyzed and studied the development
course and technological process of wheat flour making, and discussed the de-
velopment prospect of wheat flour processing technic. Jiang [9] described wheat
general processing and high-tech processing respectively, and briefly summarized
the differences between wheat general processing and high-tech processing. For
the future development trend of wheat processing, full automation, green and
deep processing are the three main directions.

469

Title Suppressed Due to Excessive Length 3

For the above years of study, there is indeed the problem of loss and waste
caused by excessive processing [10] in the process of wheat processing technic. In
this paper, based on the loss and waste of 8 processes of wheat processing technic,
the investigation data simulation model of output rate, loss rate and nutrient
loss rate of grain processing link is established, and the principle of econometric
evaluation system is established. According to the loss rate of wheat processing
link, the index set of the measurement and evaluation system of the production
rate, themeasurement and evaluation of the loss investigation of grain processing
link is carried out. Finally, the double-layer multi-objective optimization model
is constructed, and the optimization scheme is obtained by analyzing the double-
layer multi-objective optimization data set of wheat processing link.

2 Simulation Model for investigation of loss and waste in
Grain processing

2.1 Model analysis

For a long time, the consumer pays little attention to the nutrition problem
of the refined grain, and more focuses on the appearance and the taste of the
refined grain. For this reason, in order to meet the needs of people’s visual and
taste, and to improve the market share of the refined grain, the grain processing
enterprises often over-process the grain, resulting in unnecessary waste. In fact,
over-processing of food will not only result in a low yield, but also a significant
loss of nutrition in the food. The relevant government agencies should supervise
the production of the enterprises and support the proper processing of the grain
by the enterprises. How do you know that the processing of a certain enterprise is
over-processed? We need to set up a simulation model to understand the overall
processing technic and processing level of this grain processing enterprise. The
postnatal loss waste simulation model of the grain processing link is composed of
three parts, which are: an investigation data simulation model of the yield rate
of the grain processing links, an investigation data simulation model of the loss
rate of the grain processing links, and an investigation data simulation model
for the loss of nutrients in grain processing links. In the following, the general
simulation model of the loss of the grain processing links is introduced, and the
three parts of the simulation model are introduced.

2.2 Model Established

General Simulation Model of the Investigation on the Loss of the
Grain Processing links We assume that the sample set of grain processing
link loss and waste survey data from the same variety, scale, region and process-
ing technic equipment comes from a whole. Therefore, we need to establish a
simulation model of postpartum loss and waste of grain processing link for the
same variety, scale, region and processing technic equipment sample set. The
steps of establishing the simulation model of postpartum loss and waste in grain
processing links are as follows:

470

4 F. Author et al.

(1) The data set of grain processing loss and waste is classified according
to different varieties, different scales, different regions and different processing
technic and equipment.

(2) For each kind of data set, first of all, the data is preprocessed: after careful
screening, the data points that leave the group are removed. Then, the index
set that needs to be simulated is calculated or extracted from the preprocessed
data set. Finally, the modeling is carried out. Set the index set that needs to
be simulated is Pj(j = 1, 2, 3, · · · , s). Pj denotes the index of the process of the

j(j = 1, 2, 3, · · · , s) step, P
(i)
j denote the i(i = 1, 2, · · · , t) sample of the step

processing data.
According to the principle of minimum total difference (sum of distances)

between the data of each sample point and the index points that need to be
simulated, the model is established as follows:

min

t∑
i=1

√√√√ s∑
j=1

(Pj − P
(i)
j)2 (1)

Output variables: indicator set is Pj(j = 1, 2, 3, · · · , s)
Input variables: preprocessed sample data is P

(i)
j (j = 1, 2, · · · , s)(i = 1, 2, · · · , t)

Simulation Model of Survey data for production rate of Grain pro-
cessing links Set ak represents the k(k = 1, 2, · · · , t) sample which collected,
in the following form

ak = f(ak1, ak2, ak3, ak4,−→ak5) (2)

Where, ak1 represents variety of k − th samples, ak2 represents regions of
k − th samples,ak3 represents production enterprise scale of k − th samples,ak4
represents type of production equipment of k− th sample,−→ak5represents the out-
put rate corresponding to each production process of k− th sample, it’s a vector.
For the collected samples, after classification, in order to describe them simply,
for a class of samples −→ak5 recorded as Ck,in the form of.

Ck = (ck1, ck2, · · · , cks) (3)

In which,ckjrepresents the yield of the k−th step of the k−th sample,establishing
model.

min
t∑

k=1

√√√√ s∑
j=1

(cj − ckj)2 (4)

Output variables: index set of output rate for each process is cj(j = 1, 2, 3, · · · , s).
Input variables: preprocessed sample data is Ck = (ck1, ck2, · · · , cks).
In the following, from the data of the pre-processed grain sample, the data

simulation model of the yield rate of the grain processing link is used, and the
corresponding database and simulation system are established, through system-
atic calculation, the output rate of grain processing links in different provinces
and countries under different equipment and scale is obtained.

471

Title Suppressed Due to Excessive Length 5

Simulation Model of investigation data for loss rate of Grain process-
ing links Set ak represents the k(k = 1, 2, · · · , t) − th sample of the collection,
in the following form.

ak = f(ak1, ak2, ak3, ak4,−→ak5) (5)

Of which, ak1 represents variety of k − th samples, ak2 represents regions of
k − th samples, ak3 represents production enterprise scale of k − th samples, ak4
represents type of production equipment of k−th sample, −→ak5 represents the loss
rate corresponding to each production process of k − th sample, it’s a vector.
For the collected samples, after classification, in order to describe them simply,
for a class of samples −→ak5 recorded as Lk, in the form of.

Lk = (lk1, lk2, · · · , lks) (6)

Of which, lkj represents the yield of the j−th step of the k−th sample,establishing
model.

min
t∑

k=1

√√√√ s∑
j=1

(lj − lkj)2 (7)

Output variables: index set of loss rate for each process is lj(j = 1, 2, 3, · · · , s).
Input variables: preprocessed sample data is Lk = (lk1, lk2, · · · , lks).
In the following, from the data of the pre-processed grain sample, the data

simulation model of the loss rate of the grain processing link is used, and the cor-
responding database and simulation system are established, through systematic
calculation, the investigation and simulation data of the output rate and loss
rate of grain processing links in different provinces and countries under different
equipment and scale is obtained.

Investigation data Simulation Model of nutrient loss rate in Grain
processing links Set ak represents the k(k = 1, 2, · · · , t) − th sample of the
collection, in the following form.

ak = f(ak1, ak2, ak3, ak4, ak5,−→ak6) (8)

Of which, ak1 represents variety of k − th samples, ak2 represents regions of
k − th samples, ak3 represents production enterprise scale of k − th samples,
ak4 represents type of production equipment of k− th sample,ak5 represents the
type of nutrients of k − th sample,−→ak6 represents the corresponding loss rate of
a certain nutrient in each production process of the k − th sample, it’s a vector.
For the collected samples, after classification, in order to describe them simply,
for a class of samples −→ak6 recorded as Yk, in the form of.

Yk = (yk1, yk2, · · · , yks) (9)

Of which, ykj represents the yield of thej−th step of the k−th sample,establishing
model.

min

t∑
k=1

√√√√ s∑
j=1

(yj − ykj)2 (10)

472

6 F. Author et al.

Output variables:index set of certain nutrient loss rate in each process isyj(j =
1, 2, 3, · · · , s). Input variables: preprocessed sample data is Yk = (yk1, yk2, · · · , yks).

3 Measurement and Evaluation of loss and waste
investigation in Grain processing links

Based on the obtained simulation data, under the conditions of different vari-
eties, different scales, different regions and different processing technology and
equipment, an evaluation system is established to evaluate the loss and waste of
different processing links and different technological processes, to compare the
sample data with the simulation data, and to establish the evaluation table of
the production condition of the enterprise.

3.1 Principles for establishing a measurement and evaluation index
system for loss and waste in grain processing links

In every link of grain processing, in order to pursue fineness and palatability,
processing enterprises over-process grain, resulting in serious loss and waste of
grain processing link. In order to reduce the loss and waste in the process of grain
processing, we need to investigate and study the loss and waste, and establish
a measurement and evaluation system in order to accurately grasp the loss and
waste of each link of grain processing.

In order to achieve the goals of the highest output rate, the smallest loss rate,
the smallest nutrient loss and the smallest energy consumption, it is necessary
to classify the waste data set of grain processing links according to different va-
rieties, different scales, different regions and different processing technology and
equipment. Then for each kind of data set, the data is preprocessed: after care-
ful screening, the data points that leave the group are removed. Then the index
set that needs to be simulated is calculated or extracted from the preprocessed
data set. Based on the principles of scientific, maneuverability and dynamics
of evaluation index selection, and according to the principle of minimum total
difference (sum of distance) between the data of each sample point and the in-
dex point that needs to be simulated, an index system composed of index set
of output rate, loss rate and nutrient loss rate of each link of grain processing
is established by sample set to evaluate different processing links and different
equipment. Different process flow and other loss and waste changes, determine
the advantages and disadvantages.

3.2 Measuring and evaluating index system of loss and waste in
grain processing links

According to the idea of establishing the index system of measurement and
evaluation, the index system of grain processing links includes:

(1) Evaluation index set of loss rate of each process is lj(j = 1, 2, 3, · · · , s).
(2) Evaluation index set of certain nutrient loss rate in each process is yj(j =

1, 2, 3, · · · , s).

473

Title Suppressed Due to Excessive Length 7

3.3 Data sets

In the paper, we have data sets of loss rate and production rate in each link of
wheat processing from different regions in china. In the paper we will take the
samples under a certain variety, a certain region, a certain scale and equipment
as an example, the measurement and evaluation system is used. The difference
between the output rate of the corresponding index set and the standard value of
the corresponding index set is calculated, and its advantages and disadvantages
are evaluated.

4 Optimization model of grain processing link loss and
waste investigation

4.1 Double-layer multi-objective optimization model for grain
processing links

In order to find out which processing links in the grain processing enterprise is
over-processed, and to find the law of the maximum and the minimum loss rate
for different production equipment, the two-layer multi-objective optimization
model is established.

The first layer, the optimization model of each link of grain processing. Aim-
ing at each link of grain processing, the model is established based on the maxi-
mum and the variance of the loss rate, the loss rate of each link is calculated, and
the phenomenon of over-processing in which link is judged, in order to optimize
the grain processing process. Second, the optimization model of grain processing
scale and processing equipment. Starting from different dimensions, the model is
established by using the principle of maximum loss rate and maximum variance,
the loss rate of each link under different processing scale and different production
equipment is calculated, and the law of loss rate in processing process is found
out. Set ak represents the k(k = 1, 2, · · · , t) − th sample of the collection, in the
following form.

ak = f(ak1, ak2, ak3, ak4, l
(j)
k) (11)

Of which, ak1 represents variety of k − th samples, ak2 represents regions of
k − th samples, ak3 represents production enterprise scale of k − th samples, ak4
represents type of production equipment of k− th sample, l

(j)
k represents the loss

rate of thej − th procedure of the k − thsample, l(j) represents the average loss
rate of the j− th procedure for all samples, p(j) represents variance of loss of the
j − th procedure for all samples, λi(i = 1, 2) represents weight, and

∑2
i=1 λi = 1

.
Established model:max{λ1

l(j)∑s

j=1
l(j)

+ λ2
p(j)∑s

j=1
p(j)

}.
Of which:lj = 1

t

∑t
k=1 l

(j)
k ,pj =

∑t
k=1(l

(j)
k − l(j))2

Output variable: the process that results in the greatest loss due to over-
processing of grain

Input variables: preprocessed sample data is ak = (ak1, ak2, ak3, ak4, l
(j)
k)

474

8 F. Author et al.

4.2 Double-layer multi-objective optimization data set and
optimization scheme for wheat processing links

According to Table 1, the data set of the first layer of wheat, the proportion
of the influencing factors of the wheat loss, the proportion of the proportion of
the eight processing processes of the wheat, the maximum of the screening and
the packaging loss, 43.7% and 40.7%, respectively, the net wheat accounts for
6.9%,the powder blending ratio is 6.0%, the powder-making ratio is 1.1%, the
stone-removing ratio is 1.2%, the grinding ratio is 0.5%, and the feeding ratio is
0%.

Table 1. Optimal data set for the first layer of Wheat

Feeding Screening Stone removal Wheat purification Grinding Flour making Flour blending Packaging

Average value 0 0.127766 0.006538 0.02796 0.0024779 0.005528 0.028004 0.123602
Variance 0 0.028119 0.000247 0.002957 0.000079 0.0002532 0.001936 0.025282
Average
value 0 0.396942 0.020312 0.086866 0.0076982 0.0171744 0.087003 0.384005

dimensionless
Variance
dimension 0 0.477604 0.004203 0.050229 0.0013433 0.0043013 0.032891 0.429428

-less
Average variance

value 0 0.437 273 0.012258 0.068547 0.0045208 0.0107378 0.059947 0.406717
after weighting

Table 2. Optimal data set for the second layer of wheat for large scale

Feeding Screening Stone removal Wheat purification Grinding Flour making Flour blending Packaging

Equipment Large scale
Average value 0 0.1068 0.009605925 0.032215444 0.007285714 0.012785714 0.022684215 0.0925

Variance 0 0.021277117 0.000334409 0.000944903 0.000354905 0.000771201 0.000651283 0.010199016
Average
value 0 0.376219261 0.033838334 0.113483808 0.025665038 0.045039625 0.0799086 0.325845334

dimensionless
Variance
dimension 0 0.616141636 0.009683807 0.027362444 0.010277314 0.022332411 0.018859809 0.29534258

-less
Average variance

value 0 0.496180449 0.021761071 0.070423126 0.017971176 0.033686018 0.049384204 0.310593957
after weighting

475

Title Suppressed Due to Excessive Length 9

Table 3. Optimal data set for the second layer of wheat for medium scale

Feeding Screening Stone removal Wheat purification Grinding Flour making Flour blending Packaging

Equipment Medium scale
Average value 0 0.116733333 0.006915783 0.02450654 0.000964971 0.000699588 0.043635118 0.158079802

Variance 0 0.02793521 0.000320147 0.001594491 0.00001199 7.34136056 0.003220371 0.052098583
Average
value 0 0.332067328 0.019673092 0.069712917 0.002745021 0.001990095 0.124127331 0.449684216

dimensionless
Variance
dimension 0 0.327923731 0.003758116 0.018717286 0.000140719 0.00008617 0.03780305 0.611570919

-less
Average variance

value 0 0.32999553 0.011715604 0.044215101 0.00144287 0.001038137 0.080965191 0.530627568
after weighting

Table 4. Optimal data set for the second layer of wheat for small scale

Feeding Screening Stone removal Wheat purification Grinding Flour making Flour blending Packaging

Equipment Small scale

Average value 0 0.14728125 0.004841243 0.02933594 0.00179279 0.006879422 0.015677437 0.104885974

Variance 0 0.034042764 0.000170252 0.005405845 0.00002835 0.000259476 0.001090714 0.007644494

Average

value 0 0.474039482 0.015582027 0.094420667 0.005770276 0.022142111 0.050459405 0.337586033

dimensionless

Variance

dimension 0 0.699865077 0.00350012 0.111135567 0.000582845 0.005334413 0.02242335 0.157158629

-less

Average variance

value 0 0.58695228 0.009541073 0.102778117 0.00317656 0.013738262 0.036441377 0.247372331

after weighting

476

10 F. Author et al.

Table 5. Optimal data set for the second layer of wheat for medium scale for domestic

equipment

Feeding Screening Stone removal Wheat purification Grinding Flour making Flour blending Packaging

Equipment Domestic

Average value 0 0.157757692 0.006382157 0.032242759 0.003583047 0.005938304 0.021147657 0.108307766

Variance 0 0.034269671 0.000218892 0.003896603 0.000112987 0.000336663 0.001019855 0.007744435

Average

value 0 0.470413834 0.019030798 0.0961439 0.0106842 0.017707285 0.063059684 0.322960298

dimensionless

Variance

dimension 0 0.719964597 0.004598651 0.081862937 0.002373731 0.007072878 0.021425936 0.162701271

-less

Average variance

value 0 0.595189215 0.011814725 0.089003418 0.006528965 0.012390081 0.04224281 0.242830785

after weighting

Table 6. Optimal data set for the second layer of wheat for medium scale for unknow

equipment

Feeding Screening Stone removal Wheat purification Grinding Flour making Flour blending Packaging

Equipment Un-know

Average value 0 0.062783333 0.00687517 0.018680793 0.000083333 0.004639056 0.042859683 0.156739226

Variance 0 0.009962878 0.000334736 0.0009537 0.000000083 0.000085395 0.003843715 0.06568899

Average

value 0 0.214526091 0.023491957 0.063830913 0.000284744 0.015851318 0.146448424 0.535566553

dimensionless

Variance

dimension 0 0.12319698 0.004139217 0.011793078 0.00000103 0.001055962 0.047529848 0.812283884

-less

Average variance

value 0 0.168861535 0.013815587 0.037811996 0.000142887 0.00845364 0.096989136 0.673925219

after weighting

From Tables 1-6, we can know the following results.

(1)From the first layer data set of double-layer multi-objective optimiza-
tion of wheat processing link, it can be seen that: 0.4372>0.4067>0.0685>
. . . >0.0045>0, it can be seen that the loss rate of wheat in the process of screen-
ing and packaging is particularly large, followed by wheat and flour blending,
and the loss rate of other processes is slightly small and basically the same.

477

Title Suppressed Due to Excessive Length 11

(2)From the second layer data set of the two-layer multi-objective optimiza-
tion of the wheat processing link, we can see that: Sieve process loss rate: small
scale > large scale> medium scale.(0.5869>0.3299>0.4961), Domestic equip-
ment > mixed equipment.(0.5951>0.1688) Packing process loss rate: medium
scale> large scale > small scale (0.5306> 0.3105 > 0.2473), Mixed equipment >
Domestic equipment (0.6739>0.2428) No matter the size or different equipment,
the wheat loses seriously in the screening process and the packaging process,
and the small and medium scale loses the most in the screening process and the
packaging process respectively, so it is more advantageous to choose the large-
scale processing. The loss rate of domestic equipment and mixing equipment in
screening process and packaging process is the largest, and the loss rate of mixed
equipment in packaging process is 0.67%. The loss rate of domestic equipment
and mixing equipment is basically the same in the process of wheat purification,
but the mixing equipment also reaches 0.09% in the process of powder blending,
which is relatively high. It is shown that the waste of screening and packag-
ing process is serious in small and medium-sized processing enterprises when
selecting mixed equipment.

(3)It is suggested to develop large-scale wheat processing enterprises and
select domestic equipment. We should give priority to the development of large-
scale enterprises, improve the production technology and management level of
small and medium-sized enterprises, introduce new technologies, improve the
equipment, test the output rate in real time, and reduce the loss of finished
products in the processing process.At the same time, for the waste of wheat
packaging, enterprises should reasonably adjust the proportion of bags in bulk,
it is best to carry out large packing at one time before leaving the factory, reduce
the times of sub-loading, at the same time, do seamless links between process-
ing plants, warehouses, means of transportation and transit settings, strengthen
logistics construction, and reduce the loss of wheat in the process of packaging
and transportation.

5 Conclusion

Based on the study of eight processes of wheat processing technic, three sim-
ulation models of grain processing yield, loss rate and nutrient loss rate were
established in this paper. According to the obtained simulation data, an evalua-
tion system was established under the conditions of different varieties, different
scales, different regions and different processing technic and equipment to eval-
uate the loss and waste of different processing links and different technological
processes. Compare the sample data with the simulation data to evaluate the
advantages and disadvantages, and establish the enterprise production status
evaluation table. Based on the obtained data results, the bi-level multi-objective
optimization is carried out. The first data set of the two-layer multi-objective
optimization of the wheat processing link infers that the loss rate of the wheat
during the processing, the screening and the packaging process is particularly

478

12 F. Author et al.

large, the net wheat and the powder distribution are the second, and the loss
rate of the other processes is slightly small and basically comparable. From the
second layer data set of double-layer multi-objective optimization of wheat pro-
cessing link, it is shown that the screening and packaging process is seriously
wasted when mixed equipment is selected in small and medium-sized processing
enterprises. It is suggested that large-scale wheat processing enterprises should
be developed and domestic equipment should be selected. With the introduc-
tion of new technology, the improvement of equipment and the waste of wheat
packaging, enterprises should reasonably adjust the proportion of bags in bulk,
strengthen logistics construction and reduce the loss of wheat in the process of
packaging and transportation.

References

1. Wang,X.: Wheat processing technology and wheat flour quality. Grain and Feed

Industry,2006(10): 9-12.

2. Zhao,T.: Grain overprocessing = waste+loss of nutrition. Agricultural

Machinery,2013(20):17-20.

3. Zhang,B.: Research on data acquisition and optimization algorithm of wheat pro-

cessing process. Jiangnan University Master thesis,2015(6).

4. Zhao, X., Cao,B.,Zhao, L.: Study on evaluation index system of grain postpartum

loss and waste. Grain Science, Technology and economy,2015(6):6-9.

5. Li,L., Li,S.,Wang ,X.:Processing technology and operation management in the pro-

duction of special wheat flour. Modern Flour Industry,2015(3).

6. Zhao,H.: Analysis on the mechanism and treatment measures of grain loss. Chinese

Journal of Agricultural Resources and Regional Planning,2016,37(11):92-98.

7. Chen,Z., Deng,Y., Zhang,S., Hu,L., Wang,X.: Research on the current situation and

countermeasure in the problem of grain processing wastes and losses in China grain.

Science and Technology and Economy,2018,43(5):96-99.

8. Wang,L.: Study on processing technology of wheat flour. Henan

Agriculture,2018(26):45-46.

479

Title Suppressed Due to Excessive Length 13

9. Jiang,D.: The difference between common and high-tech processing of wheat. China

Food,2018(24):114-115.

10. Wan,Z.: Excessive processing has resulted in a huge loss of food resources and

nutrients.Heilongjiang grain, 2016(1):55-55.

480

