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Abstract. We try to recover the proof correctness strength of the B
method and the simplicity of the Abstract State Machine model (ASM)
by constructing a B-ASM language. The language inherits from the lan-
guage of substitution and from ASM program. The process of refinement
leads us to a program expressed in the ASM syntax only. As each step of
refinement is correct towards the specification, we obtain an ASM that
is proved to be correct towards the specification.
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1 Introduction

This paper aims at extending the B language [1] in order to build ASM programs
which are correct with respect to B-like logical specifications. On the one hand,
the main strengths of the B formal method are: i) the ability to express logical
statements, and ii) the construction of a correct implementation by refinement.
On the other hand, from our viewpoint, the striking aspects of ASM are the
non-bounded outer loop that can reach the fixed point of a program and the
power to express naturally any kind of (sequential) algorithms.

This paper introduces a new specification language, called B-ASM, attempt-
ing to bridge the gap between these two languages, by taking advantage of the
strengths of each approach. Our leitmotiv is to build an ASM which is correct
with respect to a B-like specification. In that aim, we have extended the syntax
and the semantics of B to take the non-bounded iteration into account. More-
over, the reuse of the well-founded theoretical relation of refinement from the B
method is then straightforward. Rather than directly writing a complex ASM
program, one can first specify the required logical properties of the program in a
B-ASM specification. Then, we are able to build from the latter a correct ASM
program, by proving the proof obligations (PO) associated to each refinement
step. For instance, if we can determine a variant in the B-ASM specification for
? This author has been supported by the ANR-09-JCJC-0098-01 MaGiX project to-
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the outer loop, then the ASM program obtained by refinement is guaranteed to
terminate.

In the following paragraphs, we briefly describe ASM and B.

Abstract State Machine. Abstract State Machines (ASMs) are known as a
powerful theoretical tool to model (sequential) algorithms and this, at any level
of abstraction of data structures ([7]). An ASM is a couple (A, π) where A is an
algebra (that specifies data) and π is a program that operates over the algebra
A. The program is a finite set of conditional rules testing (essentially) equalities
over terms of the algebra and then updating the state in parallel (in the following
we don’t restrict the syntax of ASM to be in normal form, but we use a syntax
closer to the Lipari Guide [6]).

The algebra A is initialized by an initial algebra and a computation is then
the execution of π until a fixed point is reached or when a clashed-update occurs
(a location is updated by two different values simultaneously).

This general model of computation has been used to model a large class of
problems (see [8] for tools and general purpose and [9] for a large example).

More than a practical tool, the ASM model is an attempt to formalize the
widely used notion of algorithms. The most important theoretical result is given
in [7] and states that any algorithm may be simulated step-by-step (in strict lock
step) by an appropriate ASM.

An Overview of B. B is a formal method [1] that supports a large seg-
ment of the software development life cycle: specification, refinement and im-
plementation. In B, specifications are organized into abstract machines (similar
to classes or modules). State variables are modified only by means of substi-
tutions. The initialization and the operations are specified in a generalization
of Dijkstra’s guarded command notation, called the Generalized Substitution
Language (GSL), that allows the definition of non-deterministic substitutions.
For instance, in an abstract machine, we can define an operation with guarded
substitutions, which are of the form any x where A then S end, where x is a
variable, A a first-order predicate on x, and S a substitution. Such a substitution
is non-deterministic because x can be any value that satisfies predicate A.

The abstract machine is then refined into concrete machines, by replacing
non-deterministic substitutions with deterministic ones. At each refinement step,
the operations are proven to satisfy their specification. Hence, through refine-
ment steps and proofs, the final code is proven to be correct with respect to
its specification. The B method is supported by several tools, like Atelier B [5],
Click’n Prove [2] and the B-Toolkit [4].

Contribution. Let M be a B-ASM machine, then we can construct an ASM
which is correct with respect to M .

This contribution is detailed in the next sections. Language B-ASM, the
extension of B integrating ASM constructs, is presented in Sect. 2. Then, Sect. 3
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provides a formal semantics for B-ASM, based on the weakest preconditions.
Section 4 shows how to prove that an ASM program built by refinement is
correct with respect to its B-ASM specification. Finally, Sect. 5 concludes the
paper with some remarks and perspectives.

2 B-ASM Programs

ASM programs are decomposed in two parts:

– an initialization algebra, i.e. an initial state;
– a one-step transition function.

For executing an ASM program, the transition function is iteratively applied
to the current state, starting from the initial state. The program stops when a
fixed point is reached, in other words, the transition function does not alter the
current state anymore.

We define B-ASM programs in the same way as in ASM programs, but the
language used to define transition functions is enriched with operations akin to
some non-deterministic B substitutions.

Definition 1. B-ASM transition functions, i.e. B-ASM transitions, are defined
by induction as follows:

ASM operations:

– f(
−→
t ) := u is an B-ASM transition, where f(

−→
t ) and u are first-order terms;

– if A then S end is an B-ASM transition, where A is a formula and S is
an B-ASM transition;

– par
−→
S end is an B-ASM transition, where

−→
S is a list of B-ASM transition;

– skip is an B-ASM transition;

non-deterministic operations:

– f(
−→
t ) :∈ E is an B-ASM transition, where f(

−→
t ) is a first-order term and

E a set;
– @x.S is an B-ASM transition, where x is a variable and S is an B-ASM

transition;
– choice S or T end is an B-ASM transition, where S and T are B-ASM

transition;
– any x where A then S end is an B-ASM transition, where x is a variable,
A a formula and S an B-ASM transition.

Let us now focus on the B specification language for the purposes of this
paper. In B, each abstract machine encapsulates state variables (introduced by
keyword VARIABLES), an invariant typing the state variables (in INVARI-
ANT), an initialization of all the state variables (INITIALISATION), and
operations on the state variables (OPERATIONS). The invariant is a first-
order predicate in a simplified version of the ZF-set theory, enriched by many
relational operators.
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We define the B-ASM specification language as a simple modification of the
B language, in order to specify ASM programs. In B-ASM, the vocabulary of
algebras (i.e. states) is introduced by keyword VARIABLES, the variables are
typed in the clause INVARIANT, the INITIALISATION clause contains
the definition of the initial states as parallel (non-deterministic) substitutions,
and the ASM transition is described in the clause OPERATION. In this paper,
we deal with terminating programs, so we add to the syntax an additional clause
called VARIANT. The latter defines the integer value which strictly decreases
at each iteration step.

To illustrate the B-ASM approach, we consider a machine specifying the
maximum of an array of integer values.

MACHINE Maximum(tab)
CONSTRAINTS tab ∈ seq1(N)
VARIABLES maxi /* Vocabulary */
INVARIANT maxi ∈ ran(tab) /* Typing */
CONSTANTS Maxi
PROPERTIES

Maxi ∈ seq1(N)→ N ∧
∀ t ∈ seq1(N).(Maxi(t) ∈ ran(t) ∧ ∀ e ∈ ran(t).(e ≤Maxi(t)))

INITIALISATION maxi := tab(1) /* Initial state */
VARIANT Maxi(tab)−maxi /* Halting condition */
OPERATION /* B-ASM transition function */

maxi := Maxi(tab)
END

In this abstract machine, we only specify the logical properties of the ex-
pected results, without defining an algorithm to compute them. At this stage,
the OPERATION clause consists of a non-deterministic B-ASM transition. In
order to obtain a formalized ASM (i.e. without non-deterministic operations),
this abstract machine has to be refined into a deterministic specification. Our
approach consists in adapting the B refinement relation to the B-ASM method.
Since the semantics of the B language is based on weakest preconditions (WP),
we have to provide the WP semantics of the B-ASM transition language de-
fined in Def. 1. This semantics will be presented in Sect. 3. In our example,
the following machine is one of the possible refinements of abstract machine
Maximum(tab).

REFINEMENT MaximumASM(tab)
REFINES Maximum(tab)
VARIABLES length, i,maxi /* Vocabulary */
INVARIANT /* Typing */

length = size(tab) ∧
i ∈ 1..length ∧
maxi = Maxi(tab ↑ i)

INITIALISATION /* Initial states */
length := size(tab);
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i := 1;
maxi := tab(1)

VARIANT length− i /* Halting condition */
OPERATION /* ASM transition function */

if i < length then
par

i := i+ 1
if tab(i+ 1) > maxi then

maxi := tab(i+ 1)
end

end
end

END

Observe that we have formalized an ASM, since there are no non-deterministic
operations used in the OPERATION clause. Intuitively, the algorithm specified
by the ASM computes the maximum of array tab. By using the refinement re-
lation inspired from B, we can prove that this ASM faithfully implements its
abstract specification.

3 Weakest Precondition Semantics of Transitions

To define the weakest precondition semantics, we first introduce a function m
which associates an integer to each list of B-ASM transitions. It will be used to
define the semantics by induction.

Definition 2. For all B-ASM programs S, we define an integer m(S) by in-
duction on S, and for all lists

−→
S of B-ASM programs, we will write m(

−→
S ) for∑

S∈
−→
S
m(S):

– m(f(
−→
t ) := u) = 0;

– m(if A then S end) = 1 +m(S);
– m(par

−→
S end) = 1 +m(

−→
S );

– m(skip) = 1;
– m(f(

−→
t ) :∈ E) = 1;

– m(@x.S) = 1 +m(S);
– m(choice S or T end) = 1 +m(S) +m(T );
– m(any x where A then S end) = 1 +m(S).

We now define the weakest precondition predicate for each list of B-ASM
transitions. Lists are here used to take the parallel B-ASM transitions into ac-
count.

Definition 3. Let
−−−−−−−→
f(
−→
t ) := u denote the list of substitutions (fi(

−→
ti ) := ui)0≤i≤n.

For all lists
−→
S of B-ASM programs, we define the formula [

−→
S ]P by induction on

m(
−→
S ); let

−→
Z be the list

−−−−−−−→
f(
−→
t ) := u; we consider all cases according to definition

1:
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– [
−→
Z ]P =

{
P (
−−−−−−−−−−−−→
f\f C−{−→t 7→ u}) if the substitution is consistent;

P if not;

– [
−→
Z , if A then S end,

−→
T ]P = (A⇒ [

−→
Z , S,

−→
T ]P ) ∧ (¬A⇒ [

−→
Z ,
−→
T ]P );

– [
−→
Z ,par

−→
S end,

−→
T ]P = [

−→
Z ,
−→
S ,
−→
T ]P ;

– [
−→
Z , skip,

−→
T ]P = [

−→
Z ,
−→
T ]P ;

– [
−→
Z , f(

−→
t ) :∈ E,

−→
T ]P = ∀x.x ∈ E ⇒ [

−→
Z , f(

−→
t ) := x,

−→
T ]P ;

– [
−→
Z ,@x.S,

−→
T ]P = ∀x.[

−→
Z , S,

−→
T ]P ;

– [
−→
Z , choice S or T end,

−→
U ]P = [

−→
Z , S,

−→
U ]P ∧ [

−→
Z , T,

−→
U ]P ;

– [
−→
Z ,any x where A then S end,

−→
T ]P = ∀x.A⇒ [

−→
Z , S,

−→
T ]P .

The following theorem allows us to prove that the semantics of parallel B-
ASM transitions does not depend on the order of these transitions. Indeed, if
we alter the order of transitions in a list, the resulting formulas are syntacti-
cally different. However, the theorem states that these formulas are semantically
equivalent.

Theorem 1. For all lists
−→
S of B-ASM programs and for all permutations σ,

formula [
−→
S ]P is equivalent to formula [σ(

−→
S )]P .

Proof. We proceed by induction on m(
−→
S ); we remark that for all permutations

−→
S′ of

−→
S we have m(

−→
S ) = m(

−→
S′). Let us write

−→
S =

−→
Z , T,

−→
U where

−→
Z =

−−−−−−−→
f(
−→
t ) := u and T 6= f(

−→
t ) := u; in the same way, we write

−→
S′ =

−→
Z ′, T ′,

−→
U ′

where
−→
Z ′ =

−−−−−−−−→
f ′(
−→
t′ ) := u′ and T ′ 6= f ′(

−→
t′ ) := u′. We consider as an example

T = if A then V end and T ′ = f(
−→
t ) :∈ E; since formulas of the form [

−→
S ]P

are in positive occurrences in definition 3, the other cases are quite similar. By
definition we have:

[
−→
S ]P = (A⇒ [

−→
Z , V,

−→
U ]P ) ∧ (¬A⇒ [

−→
Z ,
−→
U ]P )

There is a permutation µ such that µ(
−→
Z , V,

−→
U ) =

−→
Z , T ′, V,

−→
U ′′; by induction hy-

pothesis, [
−→
Z , V,

−→
U ]P is equivalent to [

−→
Z , T ′, V,

−→
U ′′]P . In the same way, [

−→
Z ,
−→
U ]P

is equivalent to [
−→
Z , T ′,

−→
U ′′]P . Thus, we have:

[
−→
S ]P ⇔ (A⇒ [

−→
Z , T ′, V,

−→
U ′′]P ) ∧ (¬A⇒ [

−→
Z , T ′, V,

−→
U ′′]P )

By definition, we have:

[
−→
Z , T ′, V,

−→
U ′′]P = ∀x.x ∈ E ⇒ [

−→
Z , f(

−→
t ) := x, V,

−→
U ′′]P

and:
[
−→
Z , T ′,

−→
U ′′]P = ∀x.x ∈ E ⇒ [

−→
Z , f(

−→
t ) := x,

−→
U ′′]P

Thus, according to usual boolean tautologies, we have:

[
−→
S ]P ⇔ ∀x.x ∈ E ⇒ (A⇒ [

−→
Z , f(

−→
t ) := x, V,

−→
U ′′]P )∧(¬A⇒ [

−→
Z , f(

−→
t ) := x,

−→
U ′′]P )
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By induction hypothesis, [
−→
Z , f(

−→
t ) := x, V,

−→
U ′′]P is equivalent to [

−→
Z , V, f(

−→
t ) :=

x,
−→
U ′′]P ; thus, we have:

[
−→
S ]P ⇔ ∀x.x ∈ E ⇒ [

−→
Z , T, f(

−→
t ) := x,

−→
U ′′]P

There is a permutation ρ such that ρ(
−→
Z , T, f(

−→
t ) := x,

−→
U ′′) =

−→
Z ′, f(

−→
t ) := x,

−→
U ′;

by induction hypothesis, [
−→
Z , T, f(

−→
t ) := x,

−→
U ′′]P is equivalent to [

−→
Z ′, f(

−→
t ) :=

x,
−→
U ′]P . Hence we have [

−→
S ]P ⇔ [

−→
Z ′, T ′,

−→
U ′]P ; thus [

−→
S ]P is equivalent to [σ(

−→
S )]P .

4 Refinement of Programs

In Def. 3, we have defined the semantics for B-ASM transitions. Now, we have
to define the semantics for the associated program. The latter has the same
semantics as the program of the following form:

while
−−−−→
f ′ 6= f do

−−−−→
f ′ := f ;
S;
if
−−−−→
f ′ = f then terminate := 0 end

invariant I
variant V + terminate

end

In this program, we have introduced several notations:

–
−→
f denotes the list of variables;

–
−→
f ′ is a list of fresh variables which are used to save the values of

−→
f from the

previous state; they are of the same type as
−→
f augmented with special values

that denote undefinedness. For instance, in the machineMaximumASM(tab),
some clauses are implicitly extended:
• variables length′, i′, maxi′ and terminate are added to clause VARI-

ABLES;
• the following formulas are in clause INVARIANT:

length′ = size(tab) ∪ {⊥} ∧
i′ ∈ 1..length′ ∪ {⊥} ∧
maxi′ = Maxi(tab ↑ i′) ∪ {⊥} ∧
terminate ∈ {0, 1}

• in clause INITIALISATION, length′, i′, and maxi′ are initialized to ⊥,
and terminate is initialized to 1;

– I denotes the body of the INVARIANT clause;
– V denotes the body of the VARIANT clause;
– S denotes the body of the OPERATION clause.
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The proof obligation associated to the above-mentioned program is derived
from the classical proof obligations associated to WHILE substitutions in the B
method. Let us write B the loop body:

B
∆=
−−−−→
f ′ := f ; S ; if

−−−−→
f ′ = f then terminate := 0 end

In order to prove that the program establishes predicate P , we have to prove
that:

1. the loop body preserves the invariant:

I ∧
−−−−→
f ′ 6= f ⇒ [B]I (PO1)

2. the variant is well-typed:

I ⇒ V + terminate ∈ N (PO2)

3. the variant strictly decreases at each iteration step:

I ∧
−−−−→
f ′ 6= f ⇒ [n := V + terminate][B](V + terminate < n) (PO3)

4. when the loop terminates, the program establishes predicate P :

I ∧
−−−−→
f ′ = f ⇒ P (PO4)

Refinement Proof. The proof obligations (PO) associated to refinement are
of the following form:

1. [Init′]¬[Init]¬J (PO init)
2. I ∧ J ⇒ [Subst′]¬[Subst]¬J (PO op)

where Init represents the initialization substitutions, Subst the operation sub-
stitutions, and I the invariant in the abstract machine. Init′, Subst′, and J
denote the counterparts of Init, Subst, and I, respectively, in the refinement
machine. The use of negation allows non-determinism to be taken into account.
These two POs guarantee that the execution of the concrete initialization (the
concrete operation, respectively) is not in contradiction with the effects of the
abstract initialization (the asbtract operation, resp.).

For instance, in our example dealing with the maximum of an array of integer
values, the proof of (PO init) is straightforward. Double negation is not needed,
because no substitution is non-deterministic in this example. Since B-ASM pro-
grams mainly consist of a WHILE loop, (PO op) requires the decomposition of
[Subst′] into the four above-mentioned POs associated to programs.

Proof obligation (PO1) can be proved by a case analysis. Either the new
element in tab is a new maximum, in that case, invariant maxi = Maxi(tab ↑ i)
is preserved by substitution maxi := tab(i + 1), or the new element is not a
maximum, consequently the invariant is also preserved.

Proof obligation (PO2) is straightforward.
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For (PO3), the proof consists in applying i := i+ 1 at each step of iteration;
hence, the variant strictly decreases. Variable terminate allows us to decrease
the variant even in the last iteration step, when i = length, but just before−−−−→
f ′ = f .

In this example, predicate P in (PO4) is:

[maxi := Maxi(tab)](length = size(tab) ∧ i ∈ 1..length
∧ maxi = Maxi(tab ↑ i) )

The latter can be rewritten into:

length = size(tab) ∧ i ∈ 1..length ∧ Maxi(tab) = Maxi(tab ↑ i)
(PO4) is straightforward, since at each iteration step, we guarantee by the invari-
ant clause that Maxi restricted to the i first elements is effectively the maximum.
Once all the elements are analysed, Maxi(tab) = Maxi(tab ↑ length).

5 Conclusion

The B method and the Abstract State Machine model have their own strength:
proof correctness during the software development life cycle for the B method
and algorithmic completeness for ASM model.

By mixing the two models, we expect to conserve both the qualities of the B
method and the usability of ASMs. For this, we add the ASMs syntax to the B
language of substitution and give a semantics for the weakest precondition and
a semantics for the program obtained by refinement.

At the end of the process a new B0 program is obtained following strictly
the syntax of a π program of an ASM , moreover the process has followed the
proof correctness of B method refinement.

The challenge is now, to verify the efficiency of the new method in a real case
study and of course, to develop tools.
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