
Justification diagrams in a DevOps context Sébastien Mosser, Mireille Blay-Fornarino
(MDE + RE) CNRS working group
08/12/2021, Toulouse (virtually)

crédits photos: Pixabay

Bird-eye view of the problem

2

Facebook outage (04/09/2021)
https://en.wikipedia.org/wiki/2021_Facebook_outage

DevOps: It takes a village

3

ETS Research chair
DevOps for SDN

McMaster Centre for Software Verification

SPARKS

et al

UNDISCLOSED
(ind. partner)

SM@RT

43
1 2

DevOps w.r.t. MDE & RE ?

Justifying or Explaining?

Preliminary results

1DevOps w.r.t. MDE & RE

5

Context: DevOps lifecycle

6

Wait, this is not the “Software
Velocity” working group! 🤔

Blatant advertisement (RE)

7https://github.com/ace-lectures/re21-devops

Have I said blatant (MDE)?

8

Requirements Engineering for the Ageing
Population: a Teaching Perspective

Amélie Lachapelle-Dagenais⇤, Sébastien Mosser⇤, Anne-Marie Pinna-Déry† and Mireille Blay-Fornarino†
⇤Université du Québec à Montréal (UQAM), Montréal, Canada.

email: {lastname.firstname}@uqam.ca
†Université Côte d’Azur, I3S, CNRS, Sophia Antipolis, France.

email: {firstname.LASTNAME}@univ-cotedazur.fr

Abstract—Elders occupy an ample space among the potential

end-users of the pieces of software we are designing. This

situation is only increasing, and even the pessimistic projections

forecast global ageing in the World population. In this context,

it is our duty as software engineers to design and implement

software adapted to elders. However, this particular problem

is too often bypassed in the classical software engineering

curriculums. In this paper, we report about a set of courses

dedicated to requirements engineering for the ageing population,

currently implemented at Université Côte d’Azur (UCA, France)

and Université du Québec à Montréal (UQAM, Canada). We

identify challenges related to the ageing population that can

be addressed in a course and report on how such courses are

implemented in both institutions. The work reported in this paper

is validated through an in-depth case study at UCA, based on 18

years of experience in the teaching of requirement engineering

for specific populations.

I. INTRODUCTION

As an immediate consequence of the demographic transition
model [1], the world population is facing a crisis concerning
its elders. For example, in 2016, the percentage of Canadian
population [2] in the 65+ age rank was superior to 15%,
representing 5.8M people (TAB Ia). Depending on the growth
projection model used, this number is expected to increase to
⇠ 25% (TAB Ib), representing a number of citizens estimated
between 9.8M (low-growth hypothesis) and 10.8M (high-
growth hypothesis) people [3]. A more recent census makes
a distinction between 65+ and 80+ categories, with 50-years
projections [4]. If the Canadian population in the 80+ category
was only 4.3% in 2018, it is expected to represent up to
12.3% by 2068. Even if the crisis is more visible in devel-
oped countries, the current situation is a worldwide challenge
affecting the global health of the population. According to
these projections, the senior dependency ratio (i.e., percentage
of the population aged 65 and over per hundred persons aged
15 to 64.) is expected to be 29.8% at the World level (median
age: 38.2 years), but up to 49.6% in more developed regions1,
with a median age of 46.7. In Japan, the senior dependency
ratio is expected to reach 75.9% (median age: 55.1 years).

In such a context, several initiatives arise to train the next
generation of software developers. For example, in Canada,

1According to Statistics Canada methodology, more developed regions
comprise Europe, Northern America, Australia/New Zealand and Japan.

TABLE I: 65+ citizens in Canada [2]

Year 1976 1986 1996 2006 2016
Male 7.6% 9.1% 10.5% 12.2% 15.6%

Female 9.8% 12.2% 13.9% 15.2% 18.1%

(a) Percentage of citizens from 1976 to 2016
Year Low-growth Med-growth High-growth
Male 24.7% 23.5% 22.7%

Female 26.8% 25.4% 24.6%

(b) Estimated percentage in 2036 (three growth models)

the AGE-WELL2 nationwide network of centres of excellence
regroups 45 universities, 400 industrial partners and 200
researchers working together in the context of “technology and
ageing”. In addition to the research and product incubation
areas, the network dedicates resources to support training
and has trained more than 760 students since 2015 [5].
More recently, the Natural Sciences and Engineering Research
Council of Canada funded for 1.65M$ a training program
entitled SMAP (Smart Mobility for Aging Population3). In
Europe, to the best of the author’s knowledge, there is no
educational network dedicated to software engineering for
the ageing population. At the level of universities, initiatives
exist to support educational programs related to “eHealth” in
general, but, again, nothing particular to the ageing population.

Even if we can observe a recent trend in teaching initia-
tives related to Information and Communication Technologies
related to eHealth in general and more particularly the ageing
population, it is far from typical for universities to include
dedicated courses in their programs: notions required to ad-
dress such population are at best taught to the students as
isolated silos, and at worst ignored. Considering the current
situation, we defend that it is not reasonable for students in
computer science and software engineering not to address this
population. It goes again equity, diversity and inclusion crite-
ria. In this context, Université Côte d’Azur (UCA) pioneered
in 2003 the inclusion of a project-based course dedicated to
societal impact (B.Eng. and M.Eng. programs). The idea was
to put students in charge of completing a software development
project, emphasizing requirement engineering and adaptation
to particular needs. Initially focused on visually-impaired K12

2https://agewell-nce.ca/about-age-well
3https://smap.mcmaster.ca/

Towards Modelling Acceptance Tests
as a Support for Software Measurement

Alexandra Lapointe-Boisvert
Université du Québec à Montréal

Montréal, Canada
lapointe-boisvert.alexandra@uqam.ca

Sébastien Mosser
Université du Québec à Montréal

Montréal, Canada
mosser.sebastien@uqam.ca

Sylvie Trudel
Université du Québec à Montréal

Montréal, Canada
trudel.s@uqam.ca

Abstract—The DevOps paradigm emphasizes the need for a

measurable feedback loop, starting from requirements and going

as far as deployment in an automated way. In this context,

a modelling challenge is to leverage the existing requirement

engineering approaches to support measurements. Unfortunately,

measurement methods are slow and costly by definition, pre-

venting precisely measured requirements from being used in the

DevOps loop. As a result, developers have to deal with grossly

estimated elements, e.g., using story points promoted by agile

methods. Thus, it is not possible to provide better support for

the development team. We envision taking advantage of the

artifacts that already exist in a DevOps context to provide better

support for requirements measurement, making it available in an

automated context such as the DevOps one. This paper focuses

on the automated analysis of acceptance tests (e.g., expressed

using the Gherkin language) to support functional measurement

automation in a DevOps context. This proposition is illustrated

by a scenario coming from an industrial partner, supporting the

identification of four research challenges to be tackled.

I. INTRODUCTION

Many organizations shift from waterfall to Agile and now
DevOps culture to deliver software rapidly and continuously,
be more adaptive to change, and achieve their performance
goals. This is done by adopting leaner processes, disabling
non-added value activities and leveraging automation tools
to speed and stabilize software delivery through the entire
product life cycle [1]. With DevOps accelerating the pace
of digital development, all development actors must adapt.
Instead of relying on holistic specifications, development
teams break down products into smaller pieces of functional
software to release frequently and on cadence. DevOps prac-
titioners are continuously improving Continuous Integration
(CI) and Continuous Deployment (CD) pipelines to integrate
and deploy more efficiently. Quality analysts are automating
test executions to ensure the quality of the software being
shipped at every iteration. Security is integrated into every
phase of the software development life-cycle. By its very
essence, DevOps is about providing a way to continuously
improve the development process in an endless feedback loop.
Thus, measurement becomes critical, as one cannot improve
what cannot be measured.

From a state-of-practice point of view, user requirements
are mainly written into the form of user stories and functional
tests are written based on the acceptance criteria of the user
story. Tests tend to be written simultaneously, and user stories

are required and act as functional requirements that prevent
duplication of requirements writing. Eventually, the DevOps
paradigm reaches a paradox here, by emphasizing the need to
improve while still relying on clumsy measurements to support
such improvement at the requirements level. More precise way
of measuring software exists (e.g., the COSMIC method [2]),
with demonstrated benefits in terms of planning and project
implementation [3]. Unfortunately, the effort necessary to
measure a given piece of software according to these methods
is tremendous, making it close to impossible to integrate such
approaches in a DevOps context.

Any research effort in this direction should take into con-
sideration the state of practice: while relying on informal
artifacts as inputs, there is a need for better measurements
to support the DevOps feedback loop. As a consequence, the
global research question to be addressed is the following:

RQ: “To what extent existing artifacts developed in
a DevOps context can be modelled to support a
better (faster and more precise) estimation at the
requirements level?”

In the remainder of this paper, we envision how to address
this question by focusing on modelling acceptance tests as
relevant DevOps artifacts to support COSMIC measurements
allowing more precise measurements to be obtained in a faster
way. SEC. II describe the research effort in this context, and
SEC. III provides an in-depth description of an illustrative
scenario with the associated artifacts available. We describe in
SEC. IV our vision to address the research question by refining
it into modelling challenges to be tamed. Finally, section
SEC. V concludes this paper by summarizing the challenges
and the benefits of the approach for requirement engineers
working in a DevOps context.

II. RELATED WORK

There is a de facto convergence existing between Require-
ments Engineering (RE) and DevOps approaches. It started
with the study of agile methods (e.g., [4], [5], [6]) and naturally
evolve into taking into account the DevOps paradigm at a
broader level [7]. The objective of this section is to picture how
DevOps and RE research efforts evolved, while emphasizing
the lack of dedicated modelling approach in this context.

Agile methods are considered successful by the industry and
are widely used in DevOps ecosystems. However, one of the

DevOps@MODELS workshop series
• 2019:

• 35 participants
• 2020: Cancelled (COVID-19)
• 2021:

• 60 participants
• 2 industrial keynotes

9

What people see when talking about DevOps

10

Plot twist!

11

WKH�SURGXFW�LV�WKH�SODWIRUP�WKDW�GHYHORSHUV�XVH�WR�VDIHO\��TXLFNO\��DQG�VHFXUHO\
WHVW��GHSOR\��DQG�UXQ�WKHLU�,7�VHUYLFHV�LQ�SURGXFWLRQ�

0\WKߚ'HY2SV�LV�-XVWߡ�,QIUDVWUXFWXUH�DV�&RGHߢ�RU�$XWRPDWLRQ��:KLOH�PDQ\�RI
WKH�'HY2SV�SDWWHUQV�VKRZQ�LQ�WKLV�ERRN�UHTXLUH�DXWRPDWLRQ��'HY2SV�DOVR
UHTXLUHV�FXOWXUDO�QRUPV�DQG�DQ�DUFKLWHFWXUH�WKDW�DOORZV�IRU�WKH�VKDUHG�JRDOV�WR�EH
DFKLHYHG�WKURXJKRXW�WKH�,7�YDOXH�VWUHDP��7KLV�JRHV�IDU�EH\RQG�MXVW�DXWRPDWLRQ�
$V�&KULVWRSKHU�/LWWOH��D�WHFKQRORJ\�H[HFXWLYH�DQG�RQH�RI�WKH�HDUOLHVW�FKURQLFOHUV
RI�'HY2SV��ZURWHߡ��'HY2SV�LVQߞW�DERXW�DXWRPDWLRQ��MXVW�DV�DVWURQRP\�LVQߞW
DERXW�WHOHVFRSHVߢ�

0\WKߚ'HY2SV�LV�2QO\�IRU�2SHQ�6RXUFH�6RIWZDUH��$OWKRXJK�PDQ\�'HY2SV
VXFFHVV�VWRULHV�WDNH�SODFH�LQ�RUJDQL]DWLRQV�XVLQJ�VRIWZDUH�VXFK�DV�WKH�/$03
VWDFN��/LQX[��$SDFKH��0\64/��3+3���DFKLHYLQJ�'HY2SV�RXWFRPHV�LV
LQGHSHQGHQW�RI�WKH�WHFKQRORJ\�EHLQJ�XVHG��6XFFHVVHV�KDYH�EHHQ�DFKLHYHG�ZLWK
DSSOLFDWLRQV�ZULWWHQ�LQ�0LFURVRIW�1(7��&2%2/��DQG�PDLQIUDPH�DVVHPEO\�FRGH�
DV�ZHOO�DV�ZLWK�6$3�DQG�HYHQ�HPEHGGHG�V\VWHPV��H�J���+3�/DVHU-HW�ILUPZDUH��

635($',1*�7+(�$+$��020(17

(DFK�RI�WKH�DXWKRUV�KDV�EHHQ�LQVSLUHG�E\�WKH�DPD]LQJ�LQQRYDWLRQV�KDSSHQLQJ�LQ
WKH�'HY2SV�FRPPXQLW\�DQG�WKH�RXWFRPHV�WKH\�DUH�FUHDWLQJ��WKH\�DUH�FUHDWLQJ
VDIH�V\VWHPV�RI�ZRUN��DQG�HQDEOLQJ�VPDOO�WHDPV�WR�TXLFNO\�DQG�LQGHSHQGHQWO\
GHYHORS�DQG�YDOLGDWH�FRGH�WKDW�FDQ�EH�VDIHO\�GHSOR\HG�WR�FXVWRPHUV��*LYHQ�RXU
EHOLHI�WKDW�'HY2SV�LV�D�PDQLIHVWDWLRQ�RI�FUHDWLQJ�G\QDPLF��OHDUQLQJ�RUJDQL]DWLRQV
WKDW�FRQWLQXDOO\�UHLQIRUFH�KLJK�WUXVW�FXOWXUDO�QRUPV��LW�LV�LQHYLWDEOH�WKDW�WKHVH
RUJDQL]DWLRQV�ZLOO�FRQWLQXH�WR�LQQRYDWH�DQG�ZLQ�LQ�WKH�PDUNHWSODFH�

,W�LV�RXU�VLQFHUH�KRSH�WKDW�7KH�'HY2SV�+DQGERRN�ZLOO�VHUYH�DV�D�YDOXDEOH
UHVRXUFH�IRU�PDQ\�SHRSOH�LQ�GLIIHUHQW�ZD\V��D�JXLGH�IRU�SODQQLQJ�DQG�H[HFXWLQJ

“DevOps isn’t about automation,
just as astronomy isn’t about

telescopes.”

7KH�3KRHQL[�3URMHFW�SUHVHQWV�WKH�7KUHH�:D\V�DV�WKH�VHW�RI�XQGHUSLQQLQJ
SULQFLSOHV�IURP�ZKLFK�DOO�WKH�REVHUYHG�'HY2SV�EHKDYLRUV�DQG�SDWWHUQV�DUH
GHULYHG��ILJXUH����

7KH�)LUVW�:D\�HQDEOHV�IDVW�OHIW�WR�ULJKW�IORZ�RI�ZRUN�IURP�'HYHORSPHQW�WR
2SHUDWLRQV�WR�WKH�FXVWRPHU��,Q�RUGHU�WR�PD[LPL]H�IORZ��ZH�QHHG�WR�PDNH�ZRUN
YLVLEOH��UHGXFH�RXU�EDWFK�VL]HV�DQG�LQWHUYDOV�RI�ZRUN��EXLOG�LQ�TXDOLW\�E\
SUHYHQWLQJ�GHIHFWV�IURP�EHLQJ�SDVVHG�WR�GRZQVWUHDP�ZRUN�FHQWHUV��DQG
FRQVWDQWO\�RSWLPL]H�IRU�WKH�JOREDO�JRDOV�

)LJXUH����7KH�7KUHH�:D\V��6RXUFH��*HQH�.LP7ߡ��KH�7KUHH�:D\V��7KH�3ULQFLSOHV
8QGHUSLQQLQJ�'HY2SV7�5,�ߢ�HYROXWLRQ�3UHVV�EORJ��DFFHVVHG�$XJXVW���������
KWWS���LWUHYROXWLRQ�FRP�WKH�WKUHH�ZD\V�SULQFLSOHV�XQGHUSLQQLQJ�GHYRSV���

The Three Ways of DevOps
• Flow

• From Development to Operations

• Identify Value Streams

• Maximize / Speedup streams

• Feedback
• Amplify feedback

• Problems must not happen again

• Continuous Learning
• Disciplined approach

• Support risk taking / experimentation

12[DevOps Handbook]

“DevOps isn’t about
automation, just as

astronomy isn’t about
telescopes.”

13

- John Willis

Dealing with a Release failure

14

2Justiying or Explaining?
(the RELAI project)

15

Example: e-Health & DevOps

16

Marie-Jean
Meurs

Vision: Frontline service for mental health

17

Patient

NLP
Researchers

RELAI COLLECT PIPELINE

🇨🇦

🇨🇭🇧🇪

Practician

Collect an annotated corpus of textual conversations,
from patients received by the emergency units in
Switzerland and Belgium

Train a model to support the diagnostic of suicidal risk

Challenge: Convincing Ethic committees
•Need to obtain three different ethics committees certifications

• (Super) Long & (Super) tedious process (multi-days meeting in 🇨🇭, early 2020).

•Looks like a classical “certification” process

• Insights (ongoing):

•Strengthen the DMP

•Give confidence to defend it

•Even if not executable!

18

Challenge: Automated Support for developers

19

public void method store(Set<Entry> dataset) {
 Database db = RemoteStorage("...");
 for(Entry e: dataset) {
 db.save(e)
 }
}

Error:
Entry ‘e’ is not
anonymized

Enhance tooltips and error handlers in IDEs with composable
requirements that are driven by external & evolving concerns

🇫🇷

To “explain” or to “justify”?

20

The point is not to “explain”
the release process

21

It is clearly to “justify” it!
Show it is just, right and reasonable 3Preliminary Results

22

Justification diagram language

23

@startuml

conclusion C = "Software is ready for launch" - "Internal"
strategy S = "Software is functionnal"
domain D = "Internal"
rationale R = "ISO 1234"
support A = "JUnit test logs"
support B = "Jenkins test logs"

S --> C
D --> S
R --> S
A --> S
B --> S

@enduml

https://github.com/ace-design/JustificationDiagram

JUnit test logs

Software is functionnal ISO 1234

Jenkins test logs

Software is ready for launch
Internal

Internal

Justification Patterns

24

Valid Continuous Integration
interne

Project Scan

SonarCloud ready

Evaluate Project Quality

Project Valid

Test Coverage validated and Archived

Data Archivate

Build Maven passed

Evaluate Maven Project

testCoverage Archivate

Test Coverage validated

Maven ready

Project documented

Documentation ready

Scanning the project with SonarCloud

Archivees Data

Jacoco report Archivate

Validate testCoverage

images Archivate

Jacoco Report

Test Maven passedcode Archivate Creation of the README

Linked to GitHub actions
pipeline to instantiate a

pattern on a given project

Nicolas Corbière internship

Extracting Justification diagrams from pipelines

25https://www.etsmtl.ca/en/news/2021/chaire-kaloom-telus-ets 26

Time to
conclude!*

* Jean-Claude Dusse, French Fried Vacations 2

Wrap-up
• DevOps is not just about automation

• Strong relationship with MDE & RE
• Even if “explainability” is a research cash cow

• we actually need to justify!
• Justification Diagrams can model such a process

• Preliminary results applied to GitHub Actions
• Extracting DevOps requirements from legacy pipelines
• Open-source DSL available for Justification Diagrams

27

Blatant Advertisement

28

Join us!

Open positions
• 8 prof positions:
• 6 assistant/associate

@McMaster (open profile)
• 2 assistant/associate

@UQAM (HCI / System)
• 5+ postdocs positions
• 6+ PhDs positions
• 7+ M.Sc./M.Eng. (+internships)

29

Open Postdoc positions
• Model-Based Development of Assured Autonomous Vehicles
• Certification and Assurance of Security and Safety Properties
• Mixed-Criticality Systems and Dynamic Risk Assessment

via Machine Learning
• Optimizing Performance and Architecture

of Large-Scale Cloud-Based Fare Collection Systems
• Migration from Decentralized to Centralized Automotive E/E Architectures
• Model-Driven Engineering (MDE) for Mobile Health Applications
• Usability, Accessibility and Design Languages

for Wayfaring in Transport Systems

30
Contact: Vera Pantelic (pantelv@mcmaster.ca)

Credits
• Francis Bordeleau

(ÉTS, Montréal, 🇨🇦)
• Juergen Dingel

(Queen’s University, Kingston, 🇨🇦)

• Corinne Pulgar (ÉTS, Montréal, 🇨🇦)

• Jean Privat (UQAM, Montréal, 🇨🇦)
• Alexandre Lapointe-Boisvert

(UQAM, Montréal, 🇨🇦)
• Marie-Jean Meurs

(UQAM, Montréal, 🇨🇦)

• Vladimir Reinharz
(UQAM, Montréal, 🇨🇦)

• Richard Paige
(McMaster, Hamilton, 🇨🇦)

• Vera Pantelic
(McMaster, Hamilton,🇨🇦)

• Mireille Blay-Fornarino
(UCA, Nice, 🇫🇷)

• Jean-Michel Bruel
(Univ. Of Toulouse, Toulouse,🇫🇷)

31

