

LABORATOIRE ESTAS ÉVALUATION DES SYSTÈMES DE TRANSPORTS AUTOMATISÉS ET DE LEUR SÉCURITÉ

Formal alignment of high-level architecture models with requirements models

Racem Bougacha¹, Régine Laleau², Simon Collart-Dutilleul¹

¹ COSYS-ESTAS, IFSTTAR, Université Gustave Eiffel, campus de Lille, France ²LACL, Université Paris-Est Créteil, Créteil, France

> Journée GT IE & INFORSID Mars 2024

(presentation from ICECCS 2023)

Outline of the presentation

- Context of the work
- HLA modelling and verification approach
- SysML/KAOS approach
- Graphical alignment links
- Formalization of graphical alignment links
- Conclusion

- Autonomous freight train project: a project of the French IRT Railenium (Technological Research Institute), involving industrial and academic partners for developing Rail Research and Innovation.
- In the project, complex systems are seen as an interplay of heterogeneous sub-systems, generally critical, in particular their development process is most often challenging since it could be difficult to verify that stakeholders needs are satisfied.
- High-level architecture (HLA) of these systems are represented as an interconnected hierarchy of their subsystems
- Requirements traceability is a crucial element of any especially for the design of critical complex systems

Problem statement and motivations

- High-level architecture (HLA) models must be aligned with requirements models.
 - The need of a graphical alignment links between HLA models and requirements models for critical systems.
 - Critical complex systems require formal and rigorous reasoning.
 - > The need of a formalization of these alignment links.

Our objective: Defining graphical and formal alignments to be validated by experts of various domains (railways systems)

Event-B

- A formal method based on set theory and first order logic
- An Event-B model is composed of a set of contexts and machines

MACHINE		CONTEXT
VARIABLES	Sees	SETS
INVARIANTS		CONSTANTS
THEOREMS		AXIOMS
VARIANT		THEOREMS
EVENTS		

Event E = SELECT G(v) THEN S(v) END with G(v) : guard S(v) : substitution v : state variables and local variables

Event-B refinement process

- Semantics of models and refinements given by proof obligations
- Supported by industrial tools (AtelierB, ProB, Rodin platform ...)

HLA modelling

• Providing an automatic translation from SysML diagrams to Event-B specifications

• Extending SysML with the refinement and decomposition mechanisms of Event-B to facilitate a step-by-step design for mastering complexity

The methodology for HLA modelling

SysML package diagram extensions with refinement and decomposition mechanisms

HLA_decompose: allows to decomposed a package modeling a system into a set of packages modeling each of its sub-systems

HLA_refines: defined between two packages. The refined package contains the modeling elements of a system. The refining package contains the modeling elements of its sub-systems to detail the behavior of the parent package

SysML sequence diagram extension with refinement

SysML sequence diagram extension:

A message of a refining package is a refinement of a message of the refined package.

Illustration of the SysML extensions

Illustration of the SysML extensions

Illustration of the SysML extensions

Modelling requirements: the SysML/KAOS approach

Computer Systems (ICECCS). IEEE, 2018. p. 160-169.

Aligning HLA with requirements

- Providing graphical alignment links between requirements models and HLA models
- Providing an automatic translation from graphical alignment links to Event-B specifications

Aligning HLA with requirements

Alignment links

necessary to satisfy a goal.

AND_Satisfy: is defined when a goal is satisfied by a set of messages, i.e. the execution of all of them, in any order, is necessary to satisfy the goal.

Illustration with the Train control system case study: HLA modelling

Illustration of the alignment links

Formalization of graphical alignment links

- A refinement relationship between Event-B events from message and leaf goal,
 - × The Event-B refinement semantics do not match our alignment semantics,
 - × Messages that satisfy a leaf goal can belong to distinct Event-B machines,
- The formalization of SysML/KAOS models and SysML HLA models is performed in Event-B,
- > A new Event-B machine is built for each alignment link,

New sets of refinement proof obligations are specified, one for each type of alignment.

EVENT-B architecture of the proposed alignment

Formalization of graphical alignment links: some rules

		Source concepts		Target concepts		
Rule	Translation of	Element	Constraint	Element	Constraint	
1	Leaf goal to satisfy	LG E_LG	LG is the leaf goal E_LG is the event related to LG E_G_M is the Event-B machine that contains E_LG	E_LG_Goal_Satisfaction_I nterface	E_LG_Goal_Satisfaction_Interface ∈ MACHINE; E_LG_Goal_Satisfaction_Interface REFINES E_G_M; E_LG_Goal_Satisfaction_Interface SEES E_G_M CONTEXTS;	
2	Variables involved in E_LG	E_vg _i , i ∈ [1n]	E_vg _i are the variables of E_G_M involved in E_LG	E_vg _i , i ∈ [1n]	E_vg _i , ∈ VARIABLES	
3	Messages responsible for the satisfaction of the leaf goal LG	$M_j \\ E_M_j \\ j \in [1p]$	$M_1,, M_p$ are messages E_M_j is the event related to message M_j ; $E_A_M_j$ is the Event-B machine that contains E_M_j	E_M _j j ∈ [1p]	$E_M_j \in EVENTS$ $E_LG_Goal_Satisfaction_Interface$ SEES $E_A_M_j CONTEXTS$	
4	Variables involved in E_M _j events	E_va _{j,k} j ∈ [1p] k ∈ [1q]	$E_va_{j,k}$ are the variables involved in E_M_j $INV_A_M_j(E_va_{j,1},, E_va_{j,q})$ is the part of $E_A_M_j$ invariant related to the $E_va_{j,k}$ variables	E_va _{j,k} , j ∈ [1p] k ∈ [1q]	$E_va_{j,k} \in VARIABLES$ INV_A_M _j (E_va_{j,1},, E_va_{j,q}) \in INVARIANTS	

Formalization of graphical alignment links: Proof obligations

- Gluing invariant are constructed in the machine E_LG_Goal_Satisfaction_Interface to links variables of the HLA EVENT-B machines E_A_M_i to variables of the SYSML/KAOS EVENT-B machine E_G_M.
- Alignment proof obligations:

Let LG be a leaf goal and M1, M2 two messages. Let E_LG be the event associated to LG and E_M_1 , E_M_2 the two events associated to M1 and M2. Each event E is of the form:

E = **SELECT** E_Guard **THEN** E_Post.

• Satisfy relationship. Assume that LG is satisfied by M1, then:

 $E_M_1 \operatorname{ref} E_LG$

where **ref** is the standard EVENT-B refinement.

This proof obligation ensures that the execution of E_M_1 implies the satisfaction of E_LG .

Formalization of graphical alignment links: And_Satisfy alignment

• And_Satisfy relationship. Assume that LG is satisfied by M1 and M2, then:

 E_M_1 ref_and E_LG E_M_2 ref_and E_LG

- New proof obligations are generated:
 - E_M_1 _Guard \Rightarrow E_LG_Guard
 - E_M_2 _Guard \Rightarrow E_LG_Guard
 - $(E_M_1_Post \land E_M_2_Post) \Rightarrow E_LG_Post$
 - These proof obligations ensure firstly that E_M₁_Guard and E_M₂_Guard should never contradict E_LG_Guard and secondly the execution of E_M₁ and E_M₂ without any specific order implies the satisfaction of E_LG.

Formalization of graphical alignment links: Milestone_Satisfy alignment

Milestone_Satisfy relationship. Assume that LG is satisfied by the sequential execution of M1 and M2, then:

E_M₁ ref_milestone E_LG E_M₂ ref_milestone E_LG

- New proof obligations are generated:
 - E_M_1 _Guard \Rightarrow E_LG_Guard
 - E_M_1 _Post $\Rightarrow E M_2$ _Guard
 - E_M_2 Post \Rightarrow E_LG_Post
- These proof obligations ensure firstly that E_M₁_Guard should never contradict E_LG_Guard. Secondly the scheduling constraint should be respected with E_M₁_Post implies E_M₂_Guard and finally the execution of E_M₁ followed by the execution of E_M₂ implies the satisfaction of E_LG

Illustration of the formalization the alignment links

Conclusion

- A model-based approach to align complex systems HLA models with SYSML/KAOS requirements models:
 - Graphical to specify the alignment of a leaf goal with HLA elements responsible for its satisfaction,
 - Formal to verify the alignment links in Event-B.
- A set of transformation rules to translate graphical alignment links into Event-B specifications
- Event-B specifications are formally analysed and proved using AtelierB
- A tool has been developed using QVT

Future work

• Propagating the impact of updates on requirements models and/or HLA

models on other models and on established alignment links.

- Integrating security and safety properties specification and traceability down to Event-B models (*new on-going PhD*)
- Formal definition of our metamodels and verification of the translation rules. This could be carried out by using EB4EB.

Thanks for your attention

