
Formal alignment of
high-level architecture models with

requirements models

1

Racem Bougacha1, Régine Laleau2, Simon Collart-Dutilleul1

1 COSYS-ESTAS, IFSTTAR, Université Gustave Eiffel, campus de Lille, France
2LACL, Université Paris-Est Créteil, Créteil, France

Journée GT IE & INFORSID
Mars 2024

(presentation from ICECCS 2023)

Outline of the presentation

2

• Context of the work
• HLA modelling and verification approach
• SysML/KAOS approach
• Graphical alignment links
• Formalization of graphical alignment links
• Conclusion

• Autonomous freight train project: a project of the French IRT Railenium (Technological Research
Institute), involving industrial and academic partners for developing Rail Research and Innovation.

• In the project, complex systems are seen as an interplay of heterogeneous sub-systems, generally critical, in
particular their development process is most often challenging since it could be difficult to verify that
stakeholders needs are satisfied.

• High-level architecture (HLA) of these systems are represented as an interconnected hierarchy of their sub-
systems

• Requirements traceability is a crucial element of any especially for the design of critical complex systems

3

Context

• High-level architecture (HLA) models must be aligned with requirements
models.

Ø The need of a graphical alignment links between HLA models and requirements

models for critical systems.

• Critical complex systems require formal and rigorous reasoning.

Ø The need of a formalization of these alignment links.

4

Problem statement and motivations

Our objective: Defining graphical and formal alignments to be
validated by

experts of various domains (railways systems)

• A formal method based on set theory and first order logic

• An Event-B model is composed of a set of contexts and machines

Event E = SELECT G(v) THEN S(v) END
with

G(v) : guard
S(v) : substitution
v : state variables and local variables

Sees

5

Event-B

• Semantics of models and refinements given by proof obligations
• Supported by industrial tools (AtelierB, ProB, Rodin platform …)

6

Event-B refinement process

HLA modelling

7

• Providing an automatic translation from SysML diagrams to Event-B

specifications

• Extending SysML with the refinement and decomposition mechanisms of

Event-B to facilitate a step-by-step design for mastering complexity

The methodology for HLA modelling

8

High-level architecture

Package
Diagram

BDD
Diagram

State-machine
Diagram

Sequence
Diagram

Model to Model
transformation

SysML refinement &
decomposition

mechanisms

Event-B
Model

Formal
Verification/

Validation

Model
Checkers

Theorem
Provers Animators

SysML package diagram extensions with refinement and
decomposition mechanisms

HLA_refines: defined between two packages. The refined package contains
the modeling elements of a system. The refining package contains the
modeling elements of its sub-systems to detail the behavior of the parent
package

9

HLA_decompose: allows to
decomposed a package modeling
a system into a set of packages
modeling each of its sub-systems

SysML sequence diagram extension with refinement

SysML sequence
diagram extension:
A message of a
refining package is a
refinement of a
message of the
refined package.

10

Illustration of the SysML extensions

11

a) System in
initial state b) Open doors c) Extend the

"Landing Gear"
d) Close the

doors

Abstract Model

Landing Gear System case study

Illustration of the SysML extensions

12

LandingGearSystemL1

LandingGearSystemL0

HLA_refines
First Refinement

Illustration of the SysML extensions

13

HLA_refines

HLA_decompose

First Decomposition

14

Modelling requirements: the SysML/KAOS approach
SYSTEM TrainControllerL3_CONT
SETS DESTINATIONS; TRAIN_ENGINE_STATES; TRAIN_STATES;
CONSTANTS progressing, moving, stopped, ...
PROPERTIES
…
TRAIN_STATES = {progressing, moving, stopped}
END

REFINEMENT TrainControllerL3
REFINES TrainControllerL2
SEES TrainControllerL1 CONT, TrainControllerL2 CONT, TrainControllerL3 CONT
VARIABLES trainState, ...
INVARIANTS trainState ∈ TRAIN → TRAIN STATES ∧ ...
INITIALISATION trainState :∈ TRAIN → {stopped} ∥ ...
EVENTS
...
ProgressTrain ref milestone TransportPassengersToTheDestination =
SELECT trainState(tr) = stopped THEN trainState(tr) := progressing
END;
...
StopTrain ref milestone TransportPassengersToTheDestination =
SELECT trainState(tr) = moving THEN
trainState(tr) := stopped END
END

EXTRACT FROM THE EVENT-B SPECIFICATION OF SYSML/KAOS REQUIREMENTS MODEL Level 1

EXTRACT FROM THE EVENT-B SPECIFICATION OF SYSML/KAOS REQUIREMENTS MODEL Level 2

• FOTSO, Steve Jeffrey Tueno, FRAPPIER, Marc, LALEAU, Regine, et al. Back propagating B system updates
on SysML/KAOS domain models. In : 2018 23rd International Conference on Engineering of Complex
Computer Systems (ICECCS). IEEE, 2018. p. 160-169.

Goal Model

Domain Model

• Providing graphical alignment links between requirements models

and HLA models

• Providing an automatic translation from graphical alignment links to

Event-B specifications

15

Aligning HLA with requirements

16

Aligning HLA with requirements

Goal ModelDomain Model

3. Alignment

Event-B
Specification

1. SysML/KAOS Modeling 2. SysML HLA Modeling

Graphical alignment links
between requirements
models and HLA models Automatic translation from

graphical alignment links
to Event-B specifications

17

Alignment links

SysML/KAOS
requirements
metamodel

Leaf Goal

SysML HLA
metamodel

SD Message

Dependency

Satisfy AND_SatisfyMilestone_Satisfy

1..*
11 *

Satisfy: allows to define an
alignment link when a
message can satisfy a goal.

Milestone_Satisfy: is defined when a
sequence execution of a set of
messages in a specific order is
necessary to satisfy a goal.

AND_Satisfy: is defined when a goal
is satisfied by a set of messages, i.e.
the execution of all of them, in any
order, is necessary to satisfy the goal.

Illustration with the Train control system case study: HLA modelling

TrainControlSystemL1

BDD

Signal State Machine Diagram

Train Mouvements State Machine Diagram Sequence Diagram

…

…

19

Illustration of the alignment links

TrainControlSystemL1

BDD

Signal State Machine Diagram

Train Mouvements State Machine Diagram Sequence Diagram

…

…

1.« Milestone_Satisfy » 2.« Milestone_Satisfy »
1.« Milestone_Satisfy » 2.« Milestone_Satisfy »

§ A refinement relationship between Event-B events from message and leaf goal,
× The Event-B refinement semantics do not match our alignment semantics,

× Messages that satisfy a leaf goal can belong to distinct Event-B machines,

§ The formalization of SysML/KAOS models and SysML HLA models is

performed in Event-B,

20

Formalization of graphical alignment links

ØA new Event-B machine is built for each alignment link,

ØNew sets of refinement proof obligations are specified, one for each type of

alignment.

21

EVENT-B architecture of the proposed alignment

MACHINE E_G_M

REFINES …

SEES E_G_M CONTEXTS

VARIABLES E_vg1, E_vg2, ...

INVARIANTS E_G_M INVARIANTS

INITIALISATION

EVENTS

E_LG (E_vg1, E_vg2)

END

SysML/KAOS Event-B specification

MACHINE E_A_M

REFINES …

SEES E_A_M CONTEXTS

VARIABLES E_va1, E_va2, ...

INVARIANTS E_A_M INVARIANTS

INITIALISATION

EVENTS

E_M1 (E_va1)

E_M2 (E_va2)

END

HLA Event-B specification

MACHINE E_LG_Goal_Satisfaction_Interface

REFINES E_G_M

SEES E_G_M CONTEXTS, E_A_M CONTEXTS

VARIABLES E_vg1, E_vg2, E_va1, E_va2

INVARIANTS INV_A (E_va1, E_va2) ∧

Gluing_INV (E_vg1, E_va1)

INITIALISATION

EVENTS

E_M1 ref_and E_LG (E_vg1, E_vg2, E_va1)

E_M2 ref_and E_LG (E_vg1, E_vg2, E_va2)

END

Alignment Event-B specification

Refinement
Alignment

22

Formalization of graphical alignment links: some rules
Source concepts Target concepts

Rule Translation of Element Constraint Element Constraint

1 Leaf goal to satisfy LG
E_LG

LG is the leaf goal
E_LG is the event related to
LG
E_G_M is the Event-B
machine that contains E_LG

E_LG_Goal_Satisfaction_I
nterface

E_LG_Goal_Satisfaction_Interface ∈
MACHINE;
E_LG_Goal_Satisfaction_Interface
REFINES E_G_M;
E_LG_Goal_Satisfaction_Interface
SEES E_G_M CONTEXTS;

2 Variables involved
in E_LG

E_vgi,
i ∈ [1..n]

E_vgi are the variables of
E_G_M involved in E_LG

E_vgi,
i ∈ [1..n]

E_vgi, ∈ VARIABLES

3 Messages
responsible for the
satisfaction of the
leaf goal LG

Mj
E_Mj
j ∈ [1..p]

M1, ... Mp are messages E_Mj
is the event related to
message Mj ;
E_A_Mj is the Event-B
machine that contains E_Mj

E_Mj
j ∈ [1..p]

E_Mj ∈ EVENTS
E_LG_Goal_Satisfaction_Interface
SEES
E_A_Mj CONTEXTS

4 Variables involved
in E_Mj events

E_vaj,k
j ∈ [1..p]
k ∈ [1..q]

E_vaj,k are the variables
involved in E_Mj
INV_A_Mj(E_vaj,1, ...,E_vaj,q)
is the part of E_A_Mj
invariant related to the E_vaj,k
variables

E_vaj,k,
j ∈ [1..p]
k ∈ [1..q]

E_vaj,k ∈ VARIABLES
INV_A_Mj(E_vaj,1, ..., E_vaj,q) ∈
INVARIANTS

23

Formalization of graphical alignment links: Proof obligations

§ Gluing invariant are constructed in the machine E_LG_Goal_Satisfaction_Interface to links variables of

the HLA EVENT-B machines E_A_Mj to variables of the SYSML/KAOS EVENT-B machine E_G_M.

§ Alignment proof obligations:

Let LG be a leaf goal and M1, M2 two messages. Let E_LG be the event associated to LG and E_M1, E_M2

the two events associated to M1 and M2. Each event E is of the form:

E = SELECT E_Guard THEN E_Post.

• Satisfy relationship. Assume that LG is satisfied by M1, then:

E_M1 ref E_LG

where ref is the standard EVENT-B refinement.

This proof obligation ensures that the execution of E_M1 implies the satisfaction of E_LG.

24

Formalization of graphical alignment links: And_Satisfy alignment

§ And_Satisfy relationship. Assume that LG is satisfied by M1 and M2, then:

E_M1 ref_and E_LG

E_M2 ref_and E_LG

§ New proof obligations are generated:

E_M1_Guard ⇒ E_LG_Guard

E_M2_Guard ⇒ E_LG_Guard

(E_M1_Post ∧ E_M2_Post) ⇒ E_LG_Post

Ø These proof obligations ensure firstly that E_M1_Guard and E_M2_Guard should never contradict

E_LG_Guard and secondly the execution of E_M1 and E_M2 without any specific order implies

the satisfaction of E_LG.

25

Formalization of graphical alignment links: Milestone_Satisfy
alignment

§ Milestone_Satisfy relationship. Assume that LG is satisfied by the sequential execution of M1 and M2,

then:

E_M1 ref_milestone E_LG

E_M2 ref_milestone E_LG

§ New proof obligations are generated:

E_M1_Guard ⇒ E_LG_Guard

E_M1_Post ⇒ E M2_Guard

E_M2_Post⇒ E_LG_Post

Ø These proof obligations ensure firstly that E_M1_Guard should never contradict E_LG_Guard.

Secondly the scheduling constraint should be respected with E_M1_Post implies E_M2_Guard and

finally the execution of E_M1 followed by the execution of E_M2 implies the satisfaction of E_LG

26

Illustration of the formalization the alignment links

1.« Milestone_Satisfy » 2.« Milestone_Satisfy »

REFINEMENT TrainControllerL3
Refines TrainControllerL2
SEES TrainControllerL1_CONT, TrainControllerL2_CONT, TrainControllerL3_CONT
VARIABLES trainState , ...
...
EVENTS
ProgressTrain ref_milestone TransportPassengersToTheDestination =
SELECT trainState (tr) = stopped THEN trainState (tr) := progressing
END ;
...
END

EXTRACT FROM THE EVENT-B SPECIFICATION OF SYSML/KAOS
REQUIREMENTS MODEL Level 2

REFINEMENT TrainControlSystemL1
REFINES TrainControlSystemL0
SEES TrainControlSystemL1_CONT , TrainControlSystemL0_CONT
VARIABLES signalState , trainMouvementState
...
EVENTS
UpdateSignalToGo =
SELECT signalState = stop ∧ trainMouvementState (train)= stoppedtr THEN signalState := go END ;

MakeTrainProgress =
SELECT signalState = go ∧ trainMouvementState (train)= stoppedtr THEN
trainMouvementState (train):= progressingtr END ;
...
END

EXTRACT FROM THE EVENT-B SPECIFICATION OF HLA

REFINEMENT ProgressTrain Goal Satisfaction Interface
REFINES TrainControllerL3
SEES TrainControllerL1 CONT, TrainControllerL2 CONT, TrainControllerL3 CONT, TrainControlSystemL1 CONT
VARIABLES ..., trainState, signalState, trainMouvementState
INVARIANTS
signalState ∈ SIGNAL STATES ∧ trainMouvementState ∈ TRAINS → TRAIN MOUVEMENTS
∧ (trainMouvementState[TRAINS] ={stoppedtr} ⇒ trainState[TRAIN]={stopped}) \\gluing invariant
∧ (trainMouvementState[TRAINS] ={progressingtr} ⇒ trainState[TRAIN]={progressing}) \\gluing invariant
∧ (trainMouvementState[TRAINS] ={movingtr} ⇒ trainState[TRAIN]={moving}) \\gluing invariant
INITIALISATION
...
signalState :∈ {stop} ∥
trainState, trainMouvementState : ((trainState ∈ TRAIN → {stopped}) ∧ (trainMouvementState :∈ TRAINS →
{stoppedtr})
∧ (trainMouvementState[TRAINS] ={stoppedtr} ⇒ trainState[TRAIN]={stopped})
∧ (trainMouvementState[TRAINS] ={progressingtr} ⇒ trainState[TRAIN]={progressing})
∧ (trainMouvementState[TRAINS] ={movingtr} ⇒ trainState[TRAIN]={moving}))
EVENTS
UpdateSignalToGo ref_milestone ProgressTrain =
SELECT signalState = stop ∧ trainMouvementState(train)=stoppedtr ∧ trainState(tr)=stopped THEN
signalState := go END;
MakeTrainProgress ref_milestone ProgressTrain =
SELECT signalState = go ∧ trainMouvementState(train)=stoppedtr THEN
trainMouvementState(train):=progressingtr ∥ trainState(tr):=progressing END
END

EVENT-B FORMALIZATION OF THE GOAL PROGRESSTRAIN ALIGNMENT LINK

• A model-based approach to align complex systems HLA models with
SYSML/KAOS requirements models:

• Graphical to specify the alignment of a leaf goal with HLA elements
responsible for its satisfaction,

• Formal to verify the alignment links in Event-B.

• A set of transformation rules to translate graphical alignment links into Event-B

specifications

• Event-B specifications are formally analysed and proved using AtelierB

• A tool has been developed using QVT

Conclusion

• Propagating the impact of updates on requirements models and/or HLA

models on other models and on established alignment links.

• Integrating security and safety properties specification and traceability down to Event-B

models (new on-going PhD)

• Formal definition of our metamodels and verification of the translation rules. This could be

carried out by using EB4EB.

Future work

Thanks for your attention

24

Questions ???

