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• Autonomous freight train project: a project of the French IRT Railenium (Technological Research 
Institute), involving  industrial and academic partners for developing Rail Research and Innovation.

• In the project, complex systems are seen as an interplay of heterogeneous sub-systems, generally critical, in 
particular their development process is most often challenging since it could be difficult to verify that 
stakeholders needs are satisfied.

• High-level architecture (HLA) of these systems are represented as an interconnected hierarchy of their sub-
systems

• Requirements traceability is a crucial element of any especially for the design of critical complex systems

3

Context



• High-level architecture (HLA) models must be aligned with requirements 
models.

Ø The need of a graphical alignment links between HLA models and requirements

models for critical systems.

• Critical complex systems require formal and rigorous reasoning.

Ø The need of a formalization of these alignment links.
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Problem statement and motivations

Our objective: Defining graphical and formal alignments to be 
validated by 

experts of various domains (railways systems)



• A formal method based on set theory and first order logic

• An Event-B model is composed of a set of contexts and machines

Event E = SELECT G(v) THEN S(v) END
with

G(v) : guard
S(v) : substitution
v : state variables and local variables

Sees
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Event-B



• Semantics of models and refinements given by proof obligations
• Supported by industrial tools (AtelierB, ProB, Rodin platform …)
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Event-B refinement process



HLA modelling
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• Providing an automatic translation from SysML diagrams to Event-B

specifications

• Extending SysML with the refinement and decomposition mechanisms of 

Event-B to facilitate a step-by-step design for mastering complexity



The methodology for HLA modelling

8

High-level architecture
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SysML package diagram extensions with refinement and 
decomposition mechanisms

HLA_refines: defined between two packages. The refined package contains 
the modeling elements of a system. The refining package contains the 
modeling elements of its sub-systems to detail the behavior of the parent 
package
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HLA_decompose: allows to 
decomposed a package modeling 
a system into a set of packages
modeling each of its sub-systems



SysML sequence diagram extension with refinement

SysML sequence 
diagram extension:
A message of a 
refining package is a 
refinement of a 
message of the 
refined package. 
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Illustration of the SysML extensions
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a) System in 
initial state b) Open doors c) Extend the 

"Landing Gear"
d) Close the 

doors

Abstract Model

Landing Gear System case study



Illustration of the SysML extensions
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LandingGearSystemL1

LandingGearSystemL0

HLA_refines
First Refinement



Illustration of the SysML extensions
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HLA_refines

HLA_decompose

First Decomposition 
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Modelling requirements: the SysML/KAOS approach
SYSTEM TrainControllerL3_CONT
SETS DESTINATIONS; TRAIN_ENGINE_STATES; TRAIN_STATES;
CONSTANTS progressing, moving, stopped, ...
PROPERTIES
…
TRAIN_STATES = {progressing, moving, stopped}
END

REFINEMENT TrainControllerL3
REFINES TrainControllerL2
SEES TrainControllerL1 CONT, TrainControllerL2 CONT, TrainControllerL3 CONT
VARIABLES trainState, ...
INVARIANTS trainState ∈ TRAIN → TRAIN STATES ∧ ...
INITIALISATION trainState :∈ TRAIN → {stopped} ∥ ...
EVENTS
...
ProgressTrain ref milestone TransportPassengersToTheDestination =
SELECT trainState(tr) = stopped THEN trainState(tr) := progressing
END;
...
StopTrain ref milestone TransportPassengersToTheDestination =
SELECT trainState(tr) = moving THEN
trainState(tr) := stopped END
END

EXTRACT FROM THE EVENT-B SPECIFICATION OF SYSML/KAOS REQUIREMENTS MODEL Level 1

EXTRACT FROM THE EVENT-B SPECIFICATION OF SYSML/KAOS REQUIREMENTS MODEL Level 2

• FOTSO, Steve Jeffrey Tueno, FRAPPIER, Marc, LALEAU, Regine, et al. Back propagating B system updates
on SysML/KAOS domain models. In : 2018 23rd International Conference on Engineering of Complex
Computer Systems (ICECCS). IEEE, 2018. p. 160-169.

Goal Model

Domain Model



• Providing graphical alignment links between requirements models

and HLA models

• Providing an automatic translation from graphical alignment links to 

Event-B specifications
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Aligning HLA with requirements
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Aligning HLA with requirements

Goal ModelDomain Model

3. Alignment

Event-B 
Specification

1. SysML/KAOS Modeling 2. SysML HLA Modeling

Graphical alignment links 
between requirements
models and HLA models Automatic translation from 

graphical alignment links 
to Event-B specifications
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Alignment links

SysML/KAOS 
requirements 
metamodel

Leaf Goal

SysML HLA 
metamodel

SD Message

Dependency

Satisfy AND_SatisfyMilestone_Satisfy

1..*
11 *

Satisfy: allows to define an 
alignment link when a 
message can satisfy a goal.

Milestone_Satisfy: is defined when a 
sequence execution of a set of 
messages in a specific order is 
necessary to satisfy a goal.

AND_Satisfy: is defined when a goal 
is satisfied by a set of messages, i.e. 
the execution of all of them, in any 
order, is necessary to satisfy the goal.



Illustration with the Train control system case study: HLA modelling

TrainControlSystemL1

BDD

Signal State Machine Diagram

Train Mouvements State Machine Diagram Sequence Diagram

…

…
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Illustration of the alignment links

TrainControlSystemL1

BDD

Signal State Machine Diagram

Train Mouvements State Machine Diagram Sequence Diagram

…

…

1.« Milestone_Satisfy » 2.« Milestone_Satisfy »
1.« Milestone_Satisfy » 2.« Milestone_Satisfy »



§ A refinement relationship between Event-B events from message and leaf goal,
× The Event-B refinement semantics do not match our alignment semantics,

× Messages that satisfy a leaf goal can belong to distinct Event-B machines,

§ The formalization of SysML/KAOS models and SysML HLA models is 

performed in Event-B,
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Formalization of graphical alignment links

ØA new Event-B machine is built for each alignment link,

ØNew sets of refinement proof obligations are specified, one for each type of 

alignment.
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EVENT-B architecture of the proposed alignment

MACHINE E_G_M

REFINES …

SEES E_G_M CONTEXTS

VARIABLES E_vg1, E_vg2, ...

INVARIANTS E_G_M INVARIANTS 

INITIALISATION

EVENTS

E_LG (E_vg1, E_vg2)

END

SysML/KAOS Event-B specification

MACHINE E_A_M

REFINES …

SEES E_A_M CONTEXTS

VARIABLES E_va1, E_va2, ...

INVARIANTS E_A_M INVARIANTS

INITIALISATION

EVENTS

E_M1 (E_va1)

E_M2 (E_va2)

END

HLA Event-B specification

MACHINE E_LG_Goal_Satisfaction_Interface

REFINES E_G_M

SEES E_G_M CONTEXTS, E_A_M CONTEXTS

VARIABLES E_vg1, E_vg2, E_va1, E_va2

INVARIANTS INV_A  (E_va1, E_va2)    ∧

Gluing_INV (E_vg1, E_va1)

INITIALISATION

EVENTS

E_M1 ref_and E_LG (E_vg1, E_vg2, E_va1)

E_M2 ref_and E_LG (E_vg1, E_vg2, E_va2)

END

Alignment Event-B specification

Refinement   
Alignment        
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Formalization of graphical alignment links: some rules
Source concepts Target concepts

Rule Translation of Element Constraint Element Constraint

1 Leaf goal to satisfy LG
E_LG

LG is the leaf goal
E_LG is the event related to 
LG
E_G_M is the Event-B 
machine that contains E_LG

E_LG_Goal_Satisfaction_I
nterface

E_LG_Goal_Satisfaction_Interface ∈
MACHINE;
E_LG_Goal_Satisfaction_Interface
REFINES E_G_M;
E_LG_Goal_Satisfaction_Interface
SEES E_G_M CONTEXTS;

2 Variables involved
in E_LG

E_vgi,
i ∈ [1..n]

E_vgi are the variables of 
E_G_M involved in E_LG

E_vgi,
i ∈ [1..n]

E_vgi, ∈ VARIABLES

3 Messages
responsible for the
satisfaction of the
leaf goal LG

Mj
E_Mj
j ∈ [1..p]

M1, ... Mp are messages E_Mj
is the event related to 
message Mj ;
E_A_Mj is the Event-B 
machine that contains E_Mj

E_Mj
j ∈ [1..p]

E_Mj ∈ EVENTS
E_LG_Goal_Satisfaction_Interface
SEES
E_A_Mj CONTEXTS

4 Variables involved
in E_Mj events

E_vaj,k
j ∈ [1..p]
k ∈ [1..q]

E_vaj,k are the variables 
involved in E_Mj
INV_A_Mj(E_vaj,1, ...,E_vaj,q) 
is the part of E_A_Mj
invariant related to the E_vaj,k
variables

E_vaj,k,
j ∈ [1..p]
k ∈ [1..q]

E_vaj,k ∈ VARIABLES
INV_A_Mj(E_vaj,1, ..., E_vaj,q) ∈
INVARIANTS
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Formalization of graphical alignment links: Proof obligations

§ Gluing invariant are constructed in the machine E_LG_Goal_Satisfaction_Interface to links variables of 

the HLA EVENT-B machines E_A_Mj to variables of the SYSML/KAOS EVENT-B machine E_G_M. 

§ Alignment proof obligations:

Let LG be a leaf goal and M1, M2 two messages. Let E_LG be the event associated to LG and E_M1, E_M2

the two events associated to M1 and M2. Each event E is of the form: 

E = SELECT E_Guard THEN E_Post.

• Satisfy relationship. Assume that LG is satisfied by M1, then:

E_M1 ref E_LG

where ref is the standard EVENT-B refinement.

This proof obligation ensures that the execution of E_M1 implies the satisfaction of E_LG.
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Formalization of graphical alignment links: And_Satisfy alignment

§ And_Satisfy relationship. Assume that LG is satisfied by M1 and M2, then:

E_M1 ref_and E_LG

E_M2 ref_and E_LG

§ New proof obligations are generated:

E_M1_Guard ⇒ E_LG_Guard

E_M2_Guard ⇒ E_LG_Guard

(E_M1_Post ∧ E_M2_Post) ⇒ E_LG_Post

Ø These proof obligations ensure firstly that E_M1_Guard and E_M2_Guard should never contradict 

E_LG_Guard and secondly the execution of E_M1 and E_M2 without any specific order implies 

the satisfaction of E_LG.
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Formalization of graphical alignment links: Milestone_Satisfy
alignment

§ Milestone_Satisfy relationship. Assume that LG is satisfied by the sequential execution of M1 and M2,

then:

E_M1 ref_milestone E_LG

E_M2 ref_milestone E_LG

§ New proof obligations are generated:

E_M1_Guard ⇒ E_LG_Guard

E_M1_Post ⇒ E M2_Guard

E_M2_Post⇒ E_LG_Post

Ø These proof obligations ensure firstly that E_M1_Guard should never contradict E_LG_Guard. 

Secondly the scheduling constraint should be respected with E_M1_Post implies E_M2_Guard and 

finally the execution of E_M1 followed by the execution of E_M2 implies the satisfaction of E_LG
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Illustration of the formalization the alignment links

1.« Milestone_Satisfy » 2.« Milestone_Satisfy »

REFINEMENT TrainControllerL3
Refines TrainControllerL2
SEES TrainControllerL1_CONT, TrainControllerL2_CONT, TrainControllerL3_CONT
VARIABLES trainState , ...
...
EVENTS
ProgressTrain ref_milestone TransportPassengersToTheDestination =
SELECT trainState (tr) = stopped THEN trainState (tr) := progressing
END ;
...
END

EXTRACT FROM THE EVENT-B SPECIFICATION OF SYSML/KAOS 
REQUIREMENTS MODEL Level 2

REFINEMENT TrainControlSystemL1
REFINES TrainControlSystemL0
SEES TrainControlSystemL1_CONT , TrainControlSystemL0_CONT
VARIABLES signalState , trainMouvementState
...
EVENTS
UpdateSignalToGo =
SELECT signalState = stop ∧ trainMouvementState ( train )= stoppedtr THEN signalState := go END ;

MakeTrainProgress =
SELECT signalState = go ∧ trainMouvementState ( train )= stoppedtr THEN 
trainMouvementState (train ):= progressingtr END ;
...
END

EXTRACT FROM THE EVENT-B SPECIFICATION OF HLA

REFINEMENT ProgressTrain Goal Satisfaction Interface
REFINES TrainControllerL3
SEES TrainControllerL1 CONT, TrainControllerL2 CONT, TrainControllerL3 CONT, TrainControlSystemL1 CONT
VARIABLES ..., trainState, signalState, trainMouvementState
INVARIANTS
signalState ∈ SIGNAL STATES ∧ trainMouvementState ∈ TRAINS → TRAIN MOUVEMENTS
∧ (trainMouvementState[TRAINS] ={stoppedtr} ⇒ trainState[TRAIN]={stopped}) \\gluing invariant
∧ (trainMouvementState[TRAINS] ={progressingtr} ⇒ trainState[TRAIN]={progressing}) \\gluing invariant
∧ (trainMouvementState[TRAINS] ={movingtr} ⇒ trainState[TRAIN]={moving}) \\gluing invariant
INITIALISATION
...
signalState :∈ {stop} ∥
trainState, trainMouvementState : ((trainState ∈ TRAIN → {stopped}) ∧ (trainMouvementState :∈ TRAINS → 
{stoppedtr})
∧ (trainMouvementState[TRAINS] ={stoppedtr} ⇒ trainState[TRAIN]={stopped})
∧ (trainMouvementState[TRAINS] ={progressingtr} ⇒ trainState[TRAIN]={progressing})
∧ (trainMouvementState[TRAINS] ={movingtr} ⇒ trainState[TRAIN]={moving}) )
EVENTS
UpdateSignalToGo ref_milestone ProgressTrain =
SELECT signalState = stop ∧ trainMouvementState(train)=stoppedtr ∧ trainState(tr)=stopped THEN
signalState := go END;
MakeTrainProgress ref_milestone ProgressTrain =
SELECT signalState = go ∧ trainMouvementState(train)=stoppedtr THEN
trainMouvementState(train):=progressingtr ∥ trainState(tr):=progressing END
END

EVENT-B FORMALIZATION OF THE GOAL PROGRESSTRAIN ALIGNMENT LINK



• A model-based approach to align complex systems HLA models with 
SYSML/KAOS requirements models:

• Graphical to specify the alignment of a leaf goal with HLA elements 
responsible for its satisfaction,

• Formal to verify the alignment links in Event-B.

• A set of transformation rules to translate graphical alignment links into Event-B 

specifications

• Event-B specifications are formally analysed and proved using AtelierB

• A tool has been developed using QVT

Conclusion



• Propagating the impact of updates on requirements models and/or HLA 

models on other models and on established alignment links.

• Integrating security and safety properties specification and traceability down to Event-B 

models (new on-going PhD)

• Formal definition of our metamodels and verification of the translation rules. This could be 

carried out by using EB4EB.

Future work



Thanks for your attention
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Questions ???


