Teaching reductions : formal foundations

Julien Grange¹, Fabian Velken², Nils Vortmeier², Thomas Zeume²

¹LACL, Université Paris-Est Créteil, France ²Ruhr Universität Bochum, Germany

June 22nd, 2023

Goal : develop a platform to help students learn complexity theory

- $\checkmark~$ Understand the classic reductions
- 2 Design their own reductions, and get feedback

Goal : develop a platform to help students learn complexity theory

- $\checkmark\,$ Understand the classic reductions
- 2 Design their own reductions, and get feedback
 - easy-to-grasp specification language for reductions
 - automatic tools to check the validity of such reductions
 - produce a counter-example if the reduction is incorrect

To specify formally a reduction $P \leq P^{\star}$, either

• give an algorithmic procedure

instance of $P \mapsto \text{instance of } P^*$

To specify formally a reduction $P \leq P^*$, either

• give an algorithmic procedure

instance of $P \mapsto \text{instance of } P^*$

- 🙎 procedural
- \checkmark left-to-right

```
To specify formally a reduction P \leq P^*, either
```

• give an algorithmic procedure

```
instance of P \mapsto \text{instance of } P^*
```

- 🙎 procedural
- ✓ left-to-right
- give an FO-interpretation to define instances of P^{\star} in instances of P

```
To specify formally a reduction P \leq P^*, either
```

• give an algorithmic procedure

```
instance of P \mapsto \text{instance of } P^*
```

- 🙎 procedural
- ✓ left-to-right
- give an FO-interpretation to define instances of P^* in instances of P
 - ✓ declarative
 - 🙎 right-to-left

```
To specify formally a reduction P \leq P^{\star}, either
```

• give an algorithmic procedure

```
instance of P \mapsto \text{instance of } P^{\star}
```

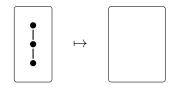
- 🙎 procedural
- ✓ left-to-right
- give an FO-interpretation to define instances of P^* in instances of P
 - ✓ declarative
 - 🙎 right-to-left

Best of both worlds :

- \checkmark declarative
- ✓ left-to-right

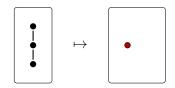
Cookbook reduction



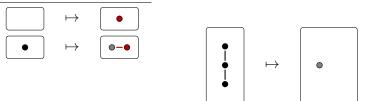


Cookbook reduction

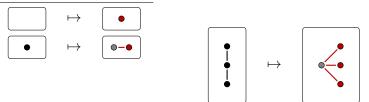




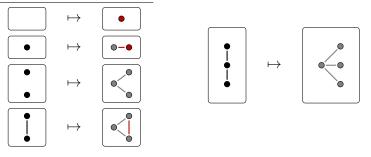
Cookbook reduction



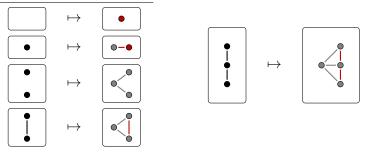
Cookbook reduction



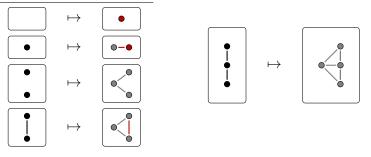
Cookbook reduction

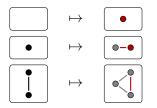


Cookbook reduction

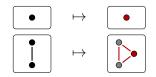


Cookbook reduction

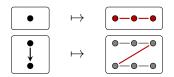




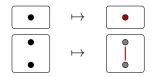
 $k - \text{CLIQUE} \le (k+1) - \text{CLIQUE}$



 $k\!-\!\mathrm{VertexCover} \leq k\!-\!\mathrm{FVS}$



 $\operatorname{HamCycle}_d \leq \operatorname{HamCycle}_u$



 $k - \text{CLIQUE} \le k - \text{INDEPSET}$

Theorem

Every cookbook reduction is equivalent to a quantifier-free interpretation

...but not all QF-interpretations are cookbook reductions

For fixed P^* , whether $r \in \mathcal{R}$ is a reduction $\emptyset \leq P^*$ is undecidable

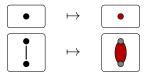
For fixed P^* , whether $r \in \mathcal{R}$ is a reduction $\emptyset \leq P^*$ is undecidable g for $\mathcal{R} = \{\text{FO-interpretations}\}$ and any non-trivial P^*

For fixed P^* , whether $r \in \mathcal{R}$ is a reduction $\emptyset \leq P^*$ is undecidable

- \mathfrak{A} for $\mathcal{R} = \{\mathsf{FO}\text{-interpretations}\}$ and any non-trivial P^{\star}
- \mathfrak{A} for $\mathcal{R} = \{\mathsf{QF}\text{-interpretations}\}$ and some $P^{\star} \in \mathsf{FO}$

For fixed P^* , whether $r \in \mathcal{R}$ is a reduction $\emptyset \leq P^*$ is undecidable

- \mathfrak{A} for $\mathcal{R} = \{\mathsf{FO}\text{-interpretations}\}$ and any non-trivial P^{\star}
- \mathfrak{A} for $\mathcal{R} = \{\mathsf{QF}\text{-interpretations}\}$ and some $P^{\star} \in \mathsf{FO}$
- \mathfrak{A} for $\mathcal{R} = \{$ edge-gadget reductions $\}$ and some $P^{\star} \in \mathsf{AC}^{\mathsf{0}}$



Edge-gadget reductions

For fixed P^* , whether $r \in \mathcal{R}$ is a reduction $\emptyset \leq P^*$ is undecidable

- \mathfrak{A} for $\mathcal{R} = \{\mathsf{FO}\text{-interpretations}\}$ and any non-trivial P^{\star}
- \mathfrak{A} for $\mathcal{R} = \{\mathsf{QF}\text{-interpretations}\}$ and some $P^* \in \mathsf{FO}$
- \mathfrak{A} for $\mathcal{R} = \{$ edge-gadget reductions $\}$ and some $P^{\star} \in \mathsf{AC}^{\mathsf{0}}$

For fixed P, P^* , whether $r \in \mathcal{R}$ is a reduction $P \leq P^*$ is decidable

For fixed P^* , whether $r \in \mathcal{R}$ is a reduction $\emptyset \leq P^*$ is undecidable

- \mathfrak{A} for $\mathcal{R} = \{\mathsf{FO}\text{-interpretations}\}$ and any non-trivial P^{\star}
- \mathfrak{A} for $\mathcal{R} = \{\mathsf{QF}\text{-interpretations}\}$ and some $P^{\star} \in \mathsf{FO}$
- \mathfrak{A} for $\mathcal{R} = \{$ edge-gadget reductions $\}$ and some $P^{\star} \in \mathsf{AC}^{\mathsf{0}}$

For fixed P, P^* , whether $r \in \mathcal{R}$ is a reduction $P \leq P^*$ is decidable

 \checkmark for $\mathcal{R} = \{ \text{cookbook reductions of arity} \leq r \}$, any P, and $P^{\star} \in \mathsf{FO}$

For fixed P^* , whether $r \in \mathcal{R}$ is a reduction $\emptyset \leq P^*$ is undecidable

- \mathfrak{A} for $\mathcal{R} = \{\mathsf{FO}\text{-interpretations}\}$ and any non-trivial P^{\star}
- \mathfrak{A} for $\mathcal{R} = \{\mathsf{QF}\text{-interpretations}\}$ and some $P^{\star} \in \mathsf{FO}$
- \mathfrak{A} for $\mathcal{R} = \{$ edge-gadget reductions $\}$ and some $P^{\star} \in \mathsf{AC}^{\mathsf{0}}$

For fixed P, P^* , whether $r \in \mathcal{R}$ is a reduction $P \leq P^*$ is decidable \checkmark for $\mathcal{R} = \{$ cookbook reductions of arity $\leq r \}$, any P, and $P^* \in FO$ \checkmark for $\mathcal{R} = \{$ edge-gadget reductions $\}$, any P, and $P^* \in MSO$

For fixed P^* , whether $r \in \mathcal{R}$ is a reduction $\emptyset \leq P^*$ is undecidable

- \mathfrak{A} for $\mathcal{R} = \{\mathsf{FO}\text{-interpretations}\}$ and any non-trivial P^{\star}
- \mathfrak{A} for $\mathcal{R} = \{\mathsf{QF}\text{-interpretations}\}$ and some $P^{\star} \in \mathsf{FO}$
- \mathfrak{A} for $\mathcal{R} = \{$ edge-gadget reductions $\}$ and some $P^{\star} \in \mathsf{AC}^{\mathsf{0}}$

For fixed P, P^* , whether $r \in \mathcal{R}$ is a reduction $P \leq P^*$ is decidable \checkmark for $\mathcal{R} = \{$ cookbook reductions of arity $\leq r \}$, any P, and $P^* \in FO$ \checkmark for $\mathcal{R} = \{$ edge-gadget reductions $\}$, any P, and $P^* \in MSO$

For input P, P^* , whether $r \in \mathcal{R}$ is a reduction $P \leq P^*$ is decidable \checkmark for $\mathcal{R} = \{QF\text{-interpretations}\}, P, P^* \in \exists FO$

Theorem

Fix any problem P and any $P^* \in FO$. One can decide whether a cookbook reduction of arity $\leq r$ is a valid reduction $P \leq P^*$.

Theorem

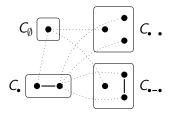
Fix any problem P and any $P^* \in FO$. One can decide whether a cookbook reduction of arity $\leq r$ is a valid reduction $P \leq P^*$.



The recipe for the cookbook reduction ρ of arity 2 from k-CLIQUE to (k+1)-CLIQUE

Theorem

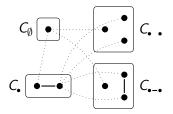
Fix any problem P and any $P^* \in FO$. One can decide whether a cookbook reduction of arity $\leq r$ is a valid reduction $P \leq P^*$.



The recipe for the cookbook reduction ρ of arity 2 from k-CLIQUE to (k+1)-CLIQUE $\rho(\mathcal{A})$ can be FO-interpreted in $\mathcal{A} \uplus \operatorname{recipe}(\rho)$.

Theorem

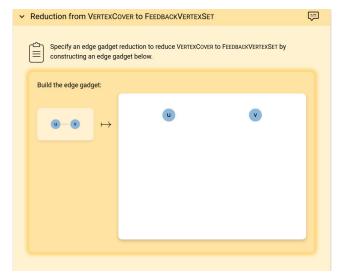
Fix any problem P and any $P^* \in FO$. One can decide whether a cookbook reduction of arity $\leq r$ is a valid reduction $P \leq P^*$.



The recipe for the cookbook reduction ρ of arity 2 from k-CLIQUE to (k+1)-CLIQUE $\rho(\mathcal{A})$ can be FO-interpreted in $\mathcal{A} \uplus \operatorname{recipe}(\rho)$.

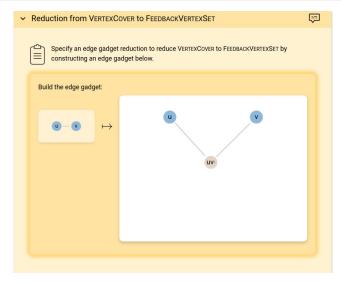
Hence, the correction of ρ only depends on the FO-type of its recipe at some depth.

Prototype on Iltis



Enter your gadget-reduction

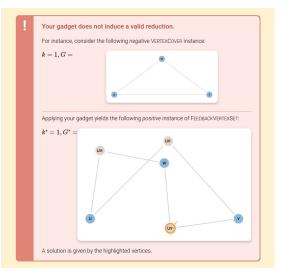
Prototype on Iltis



Enter your gadget-reduction

	Grange	

Prototype on Iltis



Wrong reduction: feedback via counter-example

Cookbook reductions : specification langage for reductions

- \checkmark intuitive
- $\checkmark\,$ powerful enough for many common reductions
- $\checkmark\,$ good decidable properties compared to other languages

Cookbook reductions : specification langage for reductions

- ✓ intuitive
- \checkmark powerful enough for many common reductions
- \checkmark good decidable properties compared to other languages

To come :

• allow parameter manipulation (e.g. k in k - CLIQUE)

Cookbook reductions : specification langage for reductions

- ✓ intuitive
- \checkmark powerful enough for many common reductions
- \checkmark good decidable properties compared to other languages

To come :

- allow parameter manipulation (e.g. k in k-CLIQUE)
- develop and deploy this feature on Iltis

Cookbook reductions : specification langage for reductions

- \checkmark intuitive
- \checkmark powerful enough for many common reductions
- \checkmark good decidable properties compared to other languages

To come :

- allow parameter manipulation (e.g. k in k-CLIQUE)
- develop and deploy this feature on Iltis

Theorem

Fix any problem P and any $P^* \in MSO$. One can decide whether an edge-gadget reduction is a valid reduction $P \leq P^*$.

Cookbook reductions : specification langage for reductions

- \checkmark intuitive
- \checkmark powerful enough for many common reductions
- \checkmark good decidable properties compared to other languages

To come :

- allow parameter manipulation (e.g. k in k-CLIQUE)
- develop and deploy this feature on Iltis

Theorem Conjecture

Fix any problem P and any $P^* \in MSO$ -MSO². One can decide whether an edge-gadget reduction a cookbook reduction of arity $\leq r$ is a valid reduction $P \leq P^*$.