Successor-Invariant First-Order Logic on Classes of Bounded Degree

Julien Grange Université de Rennes 1, Inria

02/25/2021

Table of contents

Introduction

2 Successor-Invariant First-Order Logic

- Definition
- Known results

3 Succ-inv FO on Classes of Bounded Degree

- Succ-inv FO collapses to FO when the degree is bounded
- Proof of the collapse

4 Conclusion

Introduction

Databases stored on disk come with an order

- Useful to scan the database
- Query results shouldn't depend upon it

Example of query using the successor relation

Example (Successor-dependent query)

 $\mathcal{Q}_{\mathsf{red}} := ``The first node is red''$

Example of query using the successor relation

Example (Successor-dependent query)

 $\mathcal{Q}_{\mathsf{red}} :=$ "The first node is red"

Example of query using the successor relation

Example (Successor-dependent query)

 $\mathcal{Q}_{\mathsf{red}} := ``The first node is red''$

Example of query using the successor relation

Example (Successor-dependent query)

 $\mathcal{Q}_{\mathsf{red}} := ``The first node is red''$

Example of query using the successor relation

Example (Successor-invariant query)

Example of query using the successor relation

Example (Successor-invariant query)

Example of query using the successor relation

Example (Successor-invariant query)

Example of query using the successor relation

Example (Successor-invariant query)

$$3$$

 4
 5
 1 \models Q_{odd}

Example of query using the successor relation

Example (Successor-invariant query)

Example of query using the successor relation

Example (Successor-invariant query)

Example of query using the successor relation

Example (Successor-invariant query)

 $\mathcal{Q}_{\mathsf{odd}} :=$ "The last node belongs to *P*, where $P := \{1, 3, 5, \cdots\}$ "

 \mathcal{Q}_{odd} defines odd structures.

Definition Known results

Definition of Succ-inv FO

$\varphi \in FO(\Sigma, S)$ is **successor-invariant** over a finite Σ -structure A if

$\forall S_1, S_2, \qquad (\mathcal{A}, S_1) \models \varphi \quad \leftrightarrow \quad (\mathcal{A}, S_2) \models \varphi$

Definition Known results

Definition of Succ-inv FO

 $\varphi \in FO(\Sigma, S)$ is **successor-invariant** over a finite Σ -structure A if

$$\forall S_1, S_2, \qquad (\mathcal{A}, S_1) \models \varphi \quad \leftrightarrow \quad (\mathcal{A}, S_2) \models \varphi$$

Definition (Successor-Invariant First-Order Logic)

Succ-inv FO := { φ : φ is successor-invariant over every finite \mathcal{A} }

Definition Known results

Definition of Succ-inv FO

 $\varphi \in FO(\Sigma, S)$ is successor-invariant over a finite Σ -structure \mathcal{A} if

$$\forall S_1, S_2, \qquad (\mathcal{A}, S_1) \models \varphi \quad \leftrightarrow \quad (\mathcal{A}, S_2) \models \varphi$$

Definition (Successor-Invariant First-Order Logic)

Succ-inv FO := { φ : φ is successor-invariant over every finite \mathcal{A} }

Succ-inv FO doesn't have a recursive syntax.

Definition Known results

Known results

Immerman-Vardi (1982):

• PTIME (= <-inv LFP) = Succ-inv LFP

Definition Known results

Known results

Immerman-Vardi (1982):
PTIME (= <-inv LFP) = Succ-inv LFP
Rossman (2007):
FO ⊊ Succ-inv FO

Definition Known results

Known results

Immerman-Vardi (1982):

• PTIME (= <-inv LFP) = Succ-inv LFP

Rossman (2007):

• $FO \subsetneq$ Succ-inv FO

Benedikt, Segoufin (2009):

• Succ-inv FO = FO on trees

Definition Known results

Known results

Immerman-Vardi (1982):

• PTIME(=<-inv LFP) = Succ-inv LFP

Rossman (2007):

• $FO \subsetneq$ Succ-inv FO

Benedikt, Segoufin (2009):

- Succ-inv FO = FO on trees
- \bullet Succ-inv $\mathrm{FO}\subseteq\mathrm{MSO}$ on
 - graphs of bounded degree
 - graphs of bounded treewidth

Succ-inv FO collapses to FO when the degree is bounded Proof of the collapse

Succ-inv FO collapses to FO when the degree is bounded

Theorem

Let C_d be a class of degree at most d.

Succ-inv $\mathrm{FO} = \mathrm{FO}$ on \mathcal{C}_d

Succ-inv FO collapses to FO when the degree is bounded Proof of the collapse

Succ-inv FO collapses to FO when the degree is bounded

Theorem

Let C_d be a class of degree at most d.

Succ-inv $\mathrm{FO}=\mathrm{FO}$ on \mathcal{C}_d

$$\varphi \in \text{ Succ-inv FO}$$

$$\downarrow$$
 $\exists \psi \in \text{FO}, \quad \psi \leftrightarrow \varphi \text{ on } \mathcal{C}_a$

Succ-inv FO collapses to FO when the degree is bounded Proof of the collapse

Proof of the collapse

$$\begin{array}{ccc} \mathcal{G}_1 & \equiv_{f(k)} & \mathcal{G}_2 \\ & \downarrow \\ (\mathcal{G}_1, \mathcal{S}_1) & \equiv_k & (\mathcal{G}_2, \mathcal{S}_2) \end{array}$$

Succ-inv FO collapses to FO when the degree is bounded Proof of the collapse

Proof of the collapse

$$\begin{array}{ccc} \mathcal{G}_1 & \equiv_{f(k)} & \mathcal{G}_2 \\ & \downarrow \\ (\mathcal{G}_1, \mathcal{S}_1) & \equiv_k & (\mathcal{G}_2, \mathcal{S}_2) \end{array}$$

 $\varphi \in \text{Succ-inv FO},$ of quantifier rank k

Succ-inv FO collapses to FO when the degree is bounded Proof of the collapse

Proof of the collapse

$$\begin{array}{ccc} \mathcal{G}_1 & \equiv_{f(k)} & \mathcal{G}_2 \\ & \downarrow \\ (\mathcal{G}_1, \mathcal{S}_1) & \equiv_k & (\mathcal{G}_2, \mathcal{S}_2) \end{array}$$

 $\varphi \in$ Succ-inv FO, of quantifier rank k

Succ-inv FO collapses to FO when the degree is bounded Proof of the collapse

Proof of the collapse

$$egin{array}{ccc} \mathcal{G}_1 &\equiv_{f(k)} & \mathcal{G}_2 \ & \downarrow \ & (\mathcal{G}_1,\mathcal{S}_1) &\equiv_k & (\mathcal{G}_2,\mathcal{S}_2) \end{array}$$

 $\varphi \in$ Succ-inv FO, of quantifier rank k

Succ-inv FO collapses to FO when the degree is bounded Proof of the collapse

Proof of the collapse

$$\begin{array}{ccc} \mathcal{G}_1 & \equiv_{f(k)} & \mathcal{G}_2 \\ & \downarrow \\ (\mathcal{G}_1, \mathcal{S}_1) & \equiv_k & (\mathcal{G}_2, \mathcal{S}_2) \end{array}$$

 $\varphi \in$ Succ-inv FO, of quantifier rank k

$$\varphi \quad \leftrightarrow \quad \underbrace{\psi_{C_1} \lor \psi_{C_2} \lor \psi_{C_3}}_{\in \text{ FO}} \text{ on } \mathcal{C}_d$$

Succ-inv FO collapses to FO when the degree is bounded Proof of the collapse

Proof of the collapse

$$egin{array}{ccc} \mathcal{G}_1 &\equiv_{f(k)} & \mathcal{G}_2 \ & \downarrow \ & (\mathcal{G}_1,\mathcal{S}_1) &\equiv_k & (\mathcal{G}_2,\mathcal{S}_2) \end{array}$$

Succ-inv FO collapses to FO when the degree is bounded $\ensuremath{\text{Proof}}$ of the collapse

Proof of the collapse

$$egin{array}{ccc} \mathcal{G}_1 &\equiv_{f(k)} & \mathcal{G}_2 \ & \downarrow \ & (\mathcal{G}_1,\mathcal{S}_1) &\equiv_k & (\mathcal{G}_2,\mathcal{S}_2) \end{array}$$

Because the degree is bounded, it amounts to

Succ-inv FO collapses to FO when the degree is bounded Proof of the collapse

Proof of the collapse

$$\begin{array}{ccc} \mathcal{G}_1 & \equiv_{f(k)} & \mathcal{G}_2 \\ & \downarrow \\ (\mathcal{G}_1, \mathcal{S}_1) & \equiv_k & (\mathcal{G}_2, \mathcal{S}_2) \end{array}$$

Because the degree is bounded, it amounts to

Hypothesis: G_1, G_2 have the same number of each neighborhood type (up to some threshold)

Succ-inv FO collapses to FO when the degree is bounded Proof of the collapse

Proof of the collapse

 $\begin{array}{rcl} \mathcal{G}_1 & \equiv_{f(k)} & \mathcal{G}_2 \\ & \downarrow \\ (\mathcal{G}_1, \mathcal{S}_1) & \equiv_k & (\mathcal{G}_2, \mathcal{S}_2) \end{array}$

Because the degree is bounded, it amounts to

- Hypothesis: G_1, G_2 have the same number of each neighborhood type (up to some threshold)
 - Goal: Construct S_1, S_2 such that $(\mathcal{G}_1, S_1), (\mathcal{G}_2, S_2)$ have the same number of each neighborhood type (up to some threshold)

Succ-inv FO collapses to FO when the degree is bounded Proof of the collapse

Neighborhood types with many occurrences in \mathcal{G}_1

Succ-inv FO collapses to FO when the degree is bounded Proof of the collapse

Neighborhood types with many occurrences in \mathcal{G}_1

• have many occurrences in \mathcal{G}_2

Neighborhood types with many occurrences in \mathcal{G}_1

- \bullet have many occurrences in \mathcal{G}_2
- can translate to their **fractal** version in $(\mathcal{G}_1, \mathcal{S}_1)$ and $(\mathcal{G}_2, \mathcal{S}_2)$

Neighborhood types with many occurrences in \mathcal{G}_1

- \bullet have many occurrences in \mathcal{G}_2
- can translate to their **fractal** version in $(\mathcal{G}_1, \mathcal{S}_1)$ and $(\mathcal{G}_2, \mathcal{S}_2)$

Neighborhood types with few occurrences in \mathcal{G}_1

 \bullet have the same number of occurrences in \mathcal{G}_2

Neighborhood types with many occurrences in \mathcal{G}_1

- \bullet have many occurrences in \mathcal{G}_2
- can translate to their **fractal** version in $(\mathcal{G}_1, \mathcal{S}_1)$ and $(\mathcal{G}_2, \mathcal{S}_2)$

- \bullet have the same number of occurrences in \mathcal{G}_2
- can be embedded among frequent neighborhood types in (\mathcal{G}_1, S_1) and (\mathcal{G}_2, S_2)

Succ-inv FO collapses to FO when the degree is bounded Proof of the collapse

Fractal types

Succ-inv FO collapses to FO when the degree is bounded Proof of the collapse

Fractal types

Succ-inv FO collapses to FO when the degree is bounded Proof of the collapse

Fractal types

Succ-inv FO collapses to FO when the degree is bounded Proof of the collapse

Fractal types

Succ-inv FO collapses to FO when the degree is bounded Proof of the collapse

Fractal types

Conclusion

Theorem

Succ-inv FO = FO on classes of bounded degree

Follow-up questions

Succ-inv FO = FO on other sparse classes? <-inv FO = FO on classes of bounded degree? What about Succ-inv \mathcal{L} , where \mathcal{L} is a fragment of FO (e.g. CQ)?