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Introduction

Databases stored on disk come with an order

Useful to scan the database

Query results shouldn’t depend upon it
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Example of query using the successor relation

Example (Successor-dependent query)

Qred :=“The first node is red”

•
•

•
•

•
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1 |= Qred
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•
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4 |= ¬Qred
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Example of query using the successor relation

Example (Successor-invariant query)

Qodd :=”The last node belongs to P, where P := {1, 3, 5, · · · }”

•

•

2
3

4
5

1

•

•

•
•

•

• |= Qodd

•

•

5
1

3
2

4

•
•

•

•
•

•

|= Qodd

Qodd defines odd structures.
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Definition
Known results

Definition of Succ-inv FO

ϕ ∈ FO(Σ,S) is successor-invariant over a finite Σ-structure A if

∀S1, S2, (A,S1) |= ϕ ↔ (A, S2) |= ϕ

Definition (Successor-Invariant First-Order Logic)

Succ-inv FO := {ϕ : ϕ is successor-invariant over every finite A}

Succ-inv FO doesn’t have a recursive syntax.
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Definition
Known results

Known results

Immerman-Vardi (1982):

PTIME ( =< -inv LFP ) = Succ-inv LFP

Rossman (2007):

FO ( Succ-inv FO

Benedikt, Segoufin (2009):

Succ-inv FO = FO on trees

Succ-inv FO ⊆MSO on

graphs of bounded degree
graphs of bounded treewidth
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Succ-inv FO collapses to FO when the degree is bounded
Proof of the collapse

Succ-inv FO collapses to FO when the degree is bounded

Theorem

Let Cd be a class of degree at most d.

Succ-inv FO = FO on Cd

ϕ ∈ Succ-inv FO

↓

∃ψ ∈ FO, ψ ↔ ϕ on Cd
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Proof of the collapse

G1 ≡f (k) G2
↓

(G1, S1) ≡k (G2, S2)

ϕ ∈ Succ-inv FO,
of quantifier rank k

ϕ ↔ ψC1 ∨ ψC2 ∨ ψC3︸ ︷︷ ︸
∈ FO

on Cd

C1

C2 C3

Equivalence classes for ≡f (k)

over Cd
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Proof of the collapse

Proof of the collapse

G1 ≡f (k) G2
↓

(G1, S1) ≡k (G2,S2)

Because the degree is bounded, it amounts to

Hypothesis: G1,G2 have the same number of each neighborhood
type (up to some threshold)

Goal: Construct S1,S2 such that (G1,S1), (G2, S2) have the
same number of each neighborhood type (up to some
threshold)
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Succ-inv FO collapses to FO when the degree is bounded
Proof of the collapse

Neighborhood types with many occurrences in G1

have many occurrences in G2
can translate to their fractal version in (G1,S1) and (G2,S2)

Neighborhood types with few occurrences in G1

have the same number of occurrences in G2
can be embedded among frequent neighborhood types in
(G1,S1) and (G2,S2)
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Fractal types

a•

•

•

b•

••

•

•

τ|k

τ|k−1

τ|k−1

χ|k−d

χ|k−d−1

d
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Proof of the collapse
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Frequent types: • • •
Rare types: •
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Conclusion

Theorem

Succ-inv FO = FO on classes of bounded degree

Follow-up questions

Succ-inv FO = FO on other sparse classes?
< -inv FO = FO on classes of bounded degree?
What about Succ-inv L, where L is a fragment of FO (e.g. CQ)?
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