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Introduction

Introduction

Databases stored on disk come with an order
@ Useful to scan the database

@ Query results shouldn’t depend upon it
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Example of query using the successor relation

Example (Successor-dependent query)
Ored :="The first node is red”
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Example of query using the successor relation

Example (Successor-invariant query)
Qodd :="The last node belongs to P, where P := {1,3,5,---}"

2

3[:> 1 ): Qodd

5
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Example of query using the successor relation

Example (Successor-invariant query)
Qodd :="The last node belongs to P, where P := {1,3,5,---}"

2

3[:> 1 ): Qodd
104 E Qodd
3
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Introduction

Example of query using the successor relation

Example (Successor-invariant query)
Qodd :="The last node belongs to P, where P := {1,3,5,---}"

2

3[:> 1 ): Qodd
104 E Qodd
3

2

Qodd defines odd structures.
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Successor-Invariant First-Order Logic Definition
Known results

Definition of Succ-inv FO

¢ € FO(X, S) is successor-invariant over a finite X-structure A if

vsla 527 (Aa 51) ): " (Av 52) ): 2
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Known results

Definition of Succ-inv FO

¢ € FO(X, S) is successor-invariant over a finite X-structure A if

vsla 527 (Aa 51) ): " (Av 52) ): 2

Definition (Successor-Invariant First-Order Logic)

Succ-inv FO := {p : ¢ is successor-invariant over every finite A}
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Successor-Invariant First-Order Logic Definition
Known results

Definition of Succ-inv FO

¢ € FO(X, S) is successor-invariant over a finite X-structure A if

vsla 527 (Aa 51) ): " (Av 52) ): 2

Definition (Successor-Invariant First-Order Logic)

Succ-inv FO := {p : ¢ is successor-invariant over every finite A}

Succ-inv FO doesn't have a recursive syntax.
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Successor-Invariant First-Order Logic Definition
Known results

Known results

Immerman-Vardi (1982):

e PTIME (=<-inv LFP) = Succ-inv LFP
Rossman (2007):

e FO € Succ-inv FO
Benedikt, Segoufin (2009):

@ Succ-inv FO = FO on trees

@ Succ-inv FO C MSO on

o graphs of bounded degree
e graphs of bounded treewidth
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Succ-inv FO collapses to FO when the degree is bounded
Succ-inv FO on Classes of Bounded Degree Proof of the collapse

Succ-inv FO collapses to FO when the degree is bounded

Let Cy be a class of degree at most d.

Succ-inv FO = FO on Cy
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Succ-inv FO collapses to FO when the degree is bounded

Let Cy be a class of degree at most d.

Succ-inv FO = FO on Cy

@ € Succ-inv FO

b
F € FO, 1 ¢ onCy
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g1

£(K) %

(G1,51) =« (G2,5)
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Proof of the collapse

G1 =f(k) G2

(G1,51) =« (G2,5)

@ € Succ-inv FO,
of quantifier rank k

Equivalence classes for =
over Cqg
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Proof of the collapse

g1

Il
=
ES
=
Q
N

(G1,51) =«

v € Succ-inv FO,
of quantifier rank k

2 A ¢C1 \ ¢C2 Vv ’¢C3 on Cd
~— —
€ FO

Equivalence classes for =¢(j
over Cy
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Proof of the collapse

G1 =f(k) G2

(G1,51) =« (92,52)
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G1 =f(k) G2
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(G1,51) =« (G2, %)
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Hypothesis: Gi,G> have the same number of each neighborhood
type (up to some threshold)

Julien Grange Succ-inv FO on Classes of Bounded Degree



Succ-inv FO collapses to FO when the degree is bounded
Succ-inv FO on Classes of Bounded Degree Proof of the collapse

Proof of the collapse

G1 =f(k) G2
i
(G1,51) =« (G2, %)

Because the degree is bounded, it amounts to

Hypothesis: Gi,G> have the same number of each neighborhood
type (up to some threshold)

Goal: Construct S1, S, such that (G1, S1), (G2, S2) have the
same number of each neighborhood type (up to some
threshold)
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Succ-inv FO on Classes of Bounded Degree Proof of the collapse

Neighborhood types with many occurrences in Gy
@ have many occurrences in G

@ can translate to their fractal version in (G1,S1) and (G2, S2)

Neighborhood types with few occurrences in G;
@ have the same number of occurrences in Go

@ can be embedded among frequent neighborhood types in

(G1, S1) and (G2, S2)
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Conclusion

Conclusion

Succ-inv FO = FO on classes of bounded degree

Follow-up questions

Succ-inv FO = FO on other sparse classes?
<-inv FO = FO on classes of bounded degree?
What about Succ-inv £, where L is a fragment of FO (e.g. CQ)?
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