On rappelle qu'il est toujours possible de déterminiser un automate fini :

Théorème 1. Étant donné un automate fini A, il est possible de construire un automate fini déterministe (et complet) \widehat{A} tel que $\mathcal{L}(\widehat{A}) = \mathcal{L}(A)$.

Autrement dit, le non-déterminisme n'apporte aucun pouvoir d'expression ; il est cependant légitime de se demander s'il permet davantage de concision.

Pour trancher cette question, il nous faut une mesure de la complexité des automates finis. On définit donc la **taille** d'un automate fini \mathcal{A} comme son nombre d'états.

Question 1. Soit un automate A de taille n. En étudiant la preuve du Théorème 1, donner une borne sur la taille du plus petit automate déterministe reconnaissant le même langage.

On chercher maintenant à prouver que cette borne est parfois atteinte; autrement dit, on cherche à montrer qu'asymptotiquement, le non-déterminisme permet d'obtenir des automates de taille exponentiellement plus petite que si l'on ne s'autorisait que des automates déterministes.

Pour cela, on va considérer, pour chaque $n \ge 1$, le langage \mathcal{L}_n sur $\Sigma := \{a, b\}$ décrit par l'expression rationnelle $(a + b)^*a(a + b)^{n-1}$.

Question 2. Pour chaque n, construire un automate fini non-déterministe A_n de taille n+1 reconnaissant le langage \mathcal{L}_n .

Question 3. Déterminisez l'automate A_3 . Quelle est sa taille ? Généralisez ce constat (sans preuve) à un n quelconque.

Question 4. Expliquez pourquoi constater que "l'automate déterministe obtenu par l'application du Théorème 1 à A_n est exponentiellement plus large que A_n " ne permet pas de conclure.

On va donc considérer, pour $n \geq 1$, un automate déterministe complet \mathcal{D}_n reconnaissant \mathcal{L}_n , et montrer que \mathcal{D}_n est de taille au moins 2^n .

Question 5. Soit u, v deux mots différents sur l'alphabet Σ , de longueur exactement n. Expliquer pourquoi les (uniques) exécutions de \mathcal{D}_n sur u et v ne peuvent pas terminer dans le même état. Indication : puisque u et v sont différents, il existe au moins une position i telle que $u_i = a$ et $v_i = b$ (ou l'inverse).

Question 6. En déduire qu'asymptotiquement, les automates non-déterminismes peuvent être exponentiellement plus concis que les automates déterministes.