ON INTERPRETATIONS IN BÜCHI ARITHMETICS

ALEXANDER ZAPRYAGAEV

Büchi arithmetics $\mathbf{B A}_{n}, n \geq 2$, are the theories $\mathbf{T h}\left(\mathbb{N} ;=,+, V_{n}\right)$ where V_{n} is an additional unary functional symbol such that $V_{n}(x)$ is the largest power of n that divides x. By convention, we put $V_{n}(0)=0$. They are a series of natural extensions of Presburger arithmetic $\operatorname{Pr} \mathbf{A}=\operatorname{Th}(\mathbb{N} ;=,+)$ [7] that are also complete and decidable. The theories $\mathbf{B A}_{n}$ were proposed by J. Büchi [2] in order to describe the sets of natural numbers recognizable by finite automata through definability in some arithmetical language.

Let $\operatorname{Digit}_{n}(x, y)$ be the digit corresponding to n^{y} in the n-are expansion of x. We consider automata over the alphabet $\{0, \ldots, n-1\}^{m}$. Assume that at step k, the automaton receives the input $\left(\operatorname{Digit}_{n}\left(x_{1}, k\right), \ldots, \operatorname{Digit}_{n}\left(x_{m}, k\right)\right)$, containing the digits corresponding to n^{k} in the n-ary expansion of numbers $\left(x_{1}, \ldots, x_{m}\right)$. We say the automaton accepts the tuple $\left(x_{1}, \ldots, x_{m}\right)$ if it accepts the corresponding sequence of tuples $\left(\operatorname{Digit}_{n}\left(x_{1}, k\right), \ldots, \operatorname{Digit}_{n}\left(x_{m}, k\right)\right)$. Then the following well-known result by V. Bruyère (3,4$]$) holds:

Proposition 1. Let $\varphi\left(x_{1}, \ldots, x_{m}\right)$ be a $\mathbf{B} \mathbf{A}_{n}$-formula. Then there is an effectively constructed automaton \mathcal{A} such that $\left(a_{1}, \ldots, a_{m}\right)$ is accepted by \mathcal{A} iff $\mathbb{N} \models \varphi\left(a_{1}, \ldots, a_{m}\right)$.

Contrariwise, let \mathcal{A} be a finite automaton working on m-tuples of n-ary natural numbers. Then there is an effectively constructed $\mathbf{B} \mathbf{A}_{n}$-formula $\varphi\left(x_{1}, \ldots, x_{m}\right)$ such that $\mathbb{N} \models \varphi\left(a_{1}, \ldots, a_{m}\right)$ iff $\left(a_{1}, \ldots, a_{m}\right)$ is accepted by \mathcal{A}.

Let \mathbf{T} and \mathbf{U} be two first-order theories. We call an m_{1}-dimensional interpretation ι_{1} and m_{2} dimensional interpretation ι_{2} from \mathbf{T} to \mathbf{U} provably isomorphic, if in the language of \mathbf{U} there is a formula $F(\bar{x}, \bar{y})$ expressing an isomorphism f between the corresponding internal models \mathfrak{A}_{1} and \mathfrak{A}_{2}, and the statement that f is an isomorphism must be provable in \mathbf{U}.

Note that two interpretations into the elementary theory of a model \mathfrak{B} are provably isomorphic iff there is an isomorphism between their internal models in \mathfrak{B} expressible in the language of \mathfrak{B}. As $\mathbf{B} \mathbf{A}_{n}$ is the elementary theory of the model $\left(\mathbb{N} ;=,+, V_{n}\right)$ respectively, it is sufficient to study the interpretations in this model when studying interpretations up to a provable isomorphism.
A. Visser has asked the following question: given an weak arithmetical theory \mathbf{T} without ability to encode syntax but with full induction, does it hold that each interpretation (one-dimensional or multidimensional) of \mathbf{T} into itself is provably isomorphic to the trivial one? This question was previously answered positively for Presburger arithmetic PrA in the author's joint work 6 with F. Pakhomov.

We show that
Lemma 2. Each $\mathbf{B A}_{k}$ is interpretable in any of $\mathbf{B} \mathbf{A}_{l}, k, l \geq 2$.
Hence, it is sufficient to consider a particular Büchi arithmetic, such as $\mathbf{B A}_{2}$.
In the talk, we establish that each interpretation of $\mathbf{B} \mathbf{A}_{n}$ in itself is isomorphic to the trivial one [8. Furthermore, we show this result holds already for the interpretations of Presburger arithmetic in $\mathbf{B A}_{n}$:

Theorem 3. Let ι be a (one- or multi-dimensional) interpretation of $\operatorname{Pr} \mathbf{A}$ in $\left(\mathbb{N} ;=,+, V_{n}\right)$. Then the internal model induced by ८ is isomorphic to the standard one.

From Proposition 1 it follows that an algebraic structure is interpretable in $\mathbf{B} \mathbf{A}_{n}$ iff it has an automatic [5] presentation. Hence, in automatic terms, the statement proved implies there is no automatic non-standard model of any Büchi arithmetic.

The proof is based on the contradiction between the Kemeny-style description of the order types of non-standard models of Büchi arithmetics and the following condition on automatic torsion-free abelian groups established by Braun and Strüngmann [1:

Proposition 4. Let $(A,+)$ be an automatic torsion-free abelian group. Then there exists a subgroup B of A isomorphic to \mathbb{Z}^{m} for some natural m such that the orders of the elements in $C=A / B$ are only divisible by a finite number of different primes p_{1}, \ldots, p_{s}.

This gives a partial positive answer to the question of Visser.
Whether the isomorphism of Theorem 3 is always definable by a $\mathbf{B} \mathbf{A}_{n}$-formula remains a problem for future research.
Acknowledgements. This work is an output of a research project implemented as part of the Basic Research Program at the National Research University Higher School of Economics (HSE University).

References

[1] Braun, Gábor, and Lutz Strüngmann. "Breaking up finite automata presentable torsion-free abelian groups." International Journal of Algebra and Computation 21, no. 08 (2011): 1463-1472. DOI: 10.1142/S0218196711006625.
[2] Büchi, J. Richard. "Weak second-order arithmetic and finite automata." Mathematical Logic Quarterly 6, no. 1-6 (1960). DOI: 10.1007/978-1-4613-8928-6_22.
[3] Bruyère, Véronique. "Entiers et automates finis." Mémoire de fin d'études (1985).
[4] Bruyere, Véronique, Georges Hansel, Christian Michaux, and Roger Villemaire. "Logic and p-recognizable sets of integers." Bulletin of the Belgian Mathematical Society Simon Stevin 1, no. 2 (1994): 191-238. DOI: 10.36045/bbms/1103408547.
[5] Khoussainov, Bakhadyr, and Anil Nerode. "Automatic presentations of structures." In International Workshop on Logic and Computational Complexity, pp. 367-392. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. DOI: 10.1007/3-540-60178-3_93.
[6] Pakhomov, Fedor, and Alexander Zapryagaev. "Multi-dimensional interpretations of Presburger arithmetic in itself." Journal of Logic and Computation 30, no. 8 (2020): 1681-1693. DOI: 10.1093/logcom/exaa050.
[7] Presburger, Mojżesz. "Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt." In Comptes Rendus du I congrès de Mathématiciens des Pays Slaves, pp. 92-101. 1929.
[8] Zapryagaev, Alexander. "Interpretations of Presburger Arithmetic in Büchi Arithmetics." Doklady Mathematics 107, no. 2 (2023): 89-92. DOI: 10.1134/S1064562423700655. - Accepted for publication.

National Research University Higher School of Economics, Moscow, Russia
Email address: azapryagaev@hse.ru

