ON INTERPRETATIONS IN BÜCHI ARITHMETICS

ALEXANDER ZAPRYAGAEV

Büchi arithmetics $\mathbf{BA}_n, n \geq 2$, are the theories $\mathbf{Th}(\mathbb{N}; =, +, V_n)$ where V_n is an additional unary functional symbol such that $V_n(x)$ is the largest power of n that divides x. By convention, we put $V_n(0) = 0$. They are a series of natural extensions of Presburger arithmetic $\mathbf{PrA} = \mathbf{Th}(\mathbb{N}; =, +)$ [7] that are also complete and decidable. The theories \mathbf{BA}_n were proposed by J. Büchi [2] in order to describe the sets of natural numbers recognizable by finite automata through definability in some arithmetical language.

Let $Digit_n(x, y)$ be the digit corresponding to n^y in the *n*-are expansion of *x*. We consider automata over the alphabet $\{0, \ldots, n-1\}^m$. Assume that at step *k*, the automaton receives the input $(Digit_n(x_1, k), \ldots, Digit_n(x_m, k))$, containing the digits corresponding to n^k in the *n*-ary expansion of numbers (x_1, \ldots, x_m) . We say the automaton accepts the tuple (x_1, \ldots, x_m) if it accepts the corresponding sequence of tuples $(Digit_n(x_1, k), \ldots, Digit_n(x_m, k))$. Then the following well-known result by V. Bruyère ([3, 4]) holds:

Proposition 1. Let $\varphi(x_1, \ldots, x_m)$ be a **BA**_n-formula. Then there is an effectively constructed automaton \mathcal{A} such that (a_1, \ldots, a_m) is accepted by \mathcal{A} iff $\mathbb{N} \models \varphi(a_1, \ldots, a_m)$.

Contrariwise, let \mathcal{A} be a finite automaton working on m-tuples of n-ary natural numbers. Then there is an effectively constructed \mathbf{BA}_n -formula $\varphi(x_1, \ldots, x_m)$ such that $\mathbb{N} \models \varphi(a_1, \ldots, a_m)$ iff (a_1, \ldots, a_m) is accepted by \mathcal{A} .

Let **T** and **U** be two first-order theories. We call an m_1 -dimensional interpretation ι_1 and m_2 dimensional interpretation ι_2 from **T** to **U** provably isomorphic, if in the language of **U** there is a formula $F(\bar{x}, \bar{y})$ expressing an isomorphism f between the corresponding internal models \mathfrak{A}_1 and \mathfrak{A}_2 , and the statement that f is an isomorphism must be provable in **U**.

Note that two interpretations into the elementary theory of a model \mathfrak{B} are provably isomorphic iff there is an isomorphism between their internal models in \mathfrak{B} expressible in the language of \mathfrak{B} . As \mathbf{BA}_n is the elementary theory of the model (\mathbb{N} ; =, +, V_n) respectively, it is sufficient to study the interpretations in this model when studying interpretations up to a provable isomorphism.

A. Visser has asked the following question: given an weak arithmetical theory \mathbf{T} without ability to encode syntax but with full induction, does it hold that each interpretation (one-dimensional or multidimensional) of \mathbf{T} into itself is provably isomorphic to the trivial one? This question was previously answered positively for Presburger arithmetic **PrA** in the author's joint work [6] with F. Pakhomov. We show that

Lemma 2. Each \mathbf{BA}_k is interpretable in any of \mathbf{BA}_l , $k, l \geq 2$.

Hence, it is sufficient to consider a particular Büchi arithmetic, such as \mathbf{BA}_2 .

In the talk, we establish that each interpretation of \mathbf{BA}_n in itself is isomorphic to the trivial one [8]. Furthermore, we show this result holds already for the interpretations of Presburger arithmetic in \mathbf{BA}_n :

Theorem 3. Let ι be a (one- or multi-dimensional) interpretation of **PrA** in $(\mathbb{N}; =, +, V_n)$. Then the internal model induced by ι is isomorphic to the standard one.

From Proposition 1 it follows that an algebraic structure is interpretable in \mathbf{BA}_n iff it has an automatic [5] presentation. Hence, in automatic terms, the statement proved implies there is no automatic non-standard model of any Büchi arithmetic.

The proof is based on the contradiction between the Kemeny-style description of the order types of non-standard models of Büchi arithmetics and the following condition on automatic torsion-free abelian groups established by Braun and Strüngmann [1]:

Proposition 4. Let (A, +) be an automatic torsion-free abelian group. Then there exists a subgroup B of A isomorphic to \mathbb{Z}^m for some natural m such that the orders of the elements in C = A/B are only divisible by a finite number of different primes p_1, \ldots, p_s .

This gives a partial positive answer to the question of Visser.

Whether the isomorphism of Theorem 3 is always definable by a \mathbf{BA}_n -formula remains a problem for future research.

Acknowledgements. This work is an output of a research project implemented as part of the Basic Research Program at the National Research University Higher School of Economics (HSE University).

References

- Braun, Gábor, and Lutz Strüngmann. "Breaking up finite automata presentable torsion-free abelian groups." International Journal of Algebra and Computation 21, no. 08 (2011): 1463-1472. DOI: 10.1142/S0218196711006625.
- Büchi, J. Richard. "Weak second-order arithmetic and finite automata." Mathematical Logic Quarterly 6, no. 1-6 (1960). DOI: 10.1007/978-1-4613-8928-6_22.
- [3] Bruyère, Véronique. "Entiers et automates finis." Mémoire de fin d'études (1985).
- [4] Bruyere, Véronique, Georges Hansel, Christian Michaux, and Roger Villemaire. "Logic and p-recognizable sets of integers." Bulletin of the Belgian Mathematical Society Simon Stevin 1, no. 2 (1994): 191-238. DOI: 10.36045/bbms/1103408547.
- [5] Khoussainov, Bakhadyr, and Anil Nerode. "Automatic presentations of structures." In International Workshop on Logic and Computational Complexity, pp. 367-392. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. DOI: 10.1007/3-540-60178-3_93.
- [6] Pakhomov, Fedor, and Alexander Zapryagaev. "Multi-dimensional interpretations of Presburger arithmetic in itself." Journal of Logic and Computation 30, no. 8 (2020): 1681-1693. DOI: 10.1093/logcom/exaa050.
- [7] Presburger, Mojżesz. "Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt." In Comptes Rendus du I congrès de Mathématiciens des Pays Slaves, pp. 92-101. 1929.
- [8] Zapryagaev, Alexander. "Interpretations of Presburger Arithmetic in Büchi Arithmetics." Doklady Mathematics 107, no. 2 (2023): 89-92. DOI: 10.1134/S1064562423700655. Accepted for publication.

NATIONAL RESEARCH UNIVERSITY HIGHER SCHOOL OF ECONOMICS, MOSCOW, RUSSIA *Email address*: azapryagaev@hse.ru