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A cofinal extension of a model of arithmetic is an extension in which every new
element is bounded above by some old element. A classic result from the 1980s
tells us that all such extensions are guaranteed some elementarity provided certain
amount of collection.

Theorem (Gaifman–Dimitracopoulos [2]). Let n ∈ ω and M be a model of the
Σn+1 collection scheme BΣn+1. Then all ∆0-elementary cofinal extensions of M
are Πn+2-elementary.

This guaranteed level of elementarity is optimal: a simple construction gives, for
each n ∈ ω, some model of BΣn+1 with a Πn+2-elementary cofinal extension that
is not Πn+3-elementary.

A natural question that follows is: can one similarly separate higher levels of
elementarity for such cofinal extensions? We answer this in the affirmative.

Theorem. For each m,n ∈ ω, there exists a model of BΣn+1 with a Πm+n+2-
elementary cofinal extension that is not Πm+n+3-elementary.

To prove this theorem, we want to ‘compress’ the truth of a model into its initial
segment. For this, we work in models of BΣn+1+exp+¬IΣn+1. We refine a recent
quantifier elimination result by Belanger, Chong, Li, Wong and Yang [1] to rewrite
arbitrary formulas into a ‘second-order-like’ normal form, and obtain a level-by-level
correspondence between truth in a model M |= BΣn+1 and second-order truth in
(I, SSyI(M)), where I is a Σn+1-definable initial segment in M .

Theorem. Fix m,n ∈ ω and M |= BΣn+1 + exp. Let I be an exponentially closed
Σn+1-definable proper initial segment of M , and K be a ∆0-elementary cofinal
extension of M . If J denotes the smallest initial segment of K that contains all the
elements of I, then

M ≼Πm+n+3
K ⇐⇒ (I, SSyI(M)) ≼rΠ1

m+n+1
(J, SSyJ(K)),

where rΠ1
m+n+1 is the set of all Π1

m+n+1 formulas in Kleene Normal Form.

This allows us to convert a problem of models of first-order arithmetic into a
problem of models of second-order arithmetic, and we may apply powerful ma-
chineries from second-order arithmetic to construct the required cofinal extensions.

Actually the correspondence above can be generalized to arbitrary extensions
under certain assumptions. There are also a number of other interesting conse-
quences from the correspondence.
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