Bounded recursion and Δ_0 definability

Henri-Alex Esbelin

Clermont-Auvergne University

A function f is defined by bounded recursion in such a way:

$$\left\{ \begin{array}{l} \bar{f}(\vec{x},0) = g(\vec{x}) \\ \bar{f}(\vec{x},i+1) = h(\vec{x},\bar{f}(\vec{x},i),i) \\ \bar{f}(\vec{x},y) \leq \beta(\vec{x},y) \\ f(\vec{x}) = \bar{f}(\vec{x},\lambda(\vec{x})) \end{array} \right.$$

The log-shortened counting function $f_R^{ls}(\vec{x}) = Card\{i < lh_2(x_0); R(\vec{x}, i)\}$ is so defined with $g(\vec{x}) = 0, h(\vec{x}, z, i) = z + \chi_R(\vec{x}, i), \beta(\vec{x}, y) = x_0$ and $\lambda(\vec{x}) = lh_2(x_0)$ is the length of the binary expansion of x_0 (so that $lh_2(0) = 1$).

A major open question is the following: suppose that the graphs of g and h are Δ_0 -definable, and $\beta(\vec{x}, y)$ is a polynomial and $\lambda(\vec{x}) = x_0$. Is the graph of f Δ_0 -definable?

A few partial results are available (see [2]). The following one is provable by use of standard coding of the history of the recursive computation:

Theorem. (Woods 1981). Suppose that the relation R is Δ_0 -definable. The graph of f_R^{ls} is Δ_0 -definable.

It has some corollaries concerning sums $\sum_{i=0}^{i=lh_2(x_0)} \varphi(\vec{x}, i) \text{ or products } \prod_{i=0}^{i=lh_2(x_0)} \varphi(\vec{x}, i) \text{ which are } \Delta_0$ definable under reasonnable assumptions (see [1], [3], [4]).

Here we extend this result to families of functions recursively defined with transition functions h that are Δ_0 -piecewise linear and $\lambda(\vec{x}) = lh_2(x_0)$. This study leads to focus on recursion where the index i appears through the corresponding binary digit $(\bar{x})_i$ of one *control* parameter x:

$$\left\{ \begin{array}{l} \bar{F}(\vec{u},0) = g(\vec{u}) \\ \bar{F}(\vec{u},x,i+1) = H(\vec{u},(\bar{x})_i,\bar{F}(\vec{u},x,i)) \\ F(\vec{u},x,y) = \bar{F}(\vec{u},x,lh_2(y)) \end{array} \right.$$

[1] A. Berarducci, P. d'Aquino, Δ_0 -complexity of the relation $y = \prod_{i < n} F(i)$, Annals of Pure and Applied Logic, 75, 1995, pp. 49-56

[2] H.A. Esbelin, M. More, *Rudimentary relations: a toolbox*, Theoret. Comput. Sci., 193 (1998), pp. 129-148

[3] J.B. Paris, A.J. Wilkie and A.R. Woods, *Provability of the pigeonhole principle and the existence of infinitely many primes*, J. Symbolic Logic 53 (1988) 1235-1244

[4] A. Woods, Some problems in logic and number theory and their connections, Ph.D. thesis, University of Manchester, Manchester, 1981. Studies in Weak Arithmetics, Volume 2, Edited by P. Cégielski, C. Cornaros, and C. Dimitracopoulos, CSLI Lecture Notes 211, Stanford 2013