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A function f is defined by bounded recursion in such a way:

[(Z,0)=g(@)
f(& i+ 1) = W, f(7,1),1)
f(@y) < B(E,y)

f(&) = (@, A7)

The log-shortened counting function f&(¥) = Card{i < lha(xo); R(Z,i)} is so defined with
9(Z) = 0, h(Z, 2,1) = z + xr(Z,1), B(Z,y) = xo and A\(Z¥) = lha(zg) is the length of the binary
expansion of zq (so that lha(0) = 1).

A major open question is the following: suppose that the graphs of g and h are Ag-definable,
and B(Z,y) is a polynomial and \(Z) = xg. Is the graph of f Ag-definable?

A few partial results are available (see [2]). The following one is provable by use of standard coding
of the history of the recursive computation:
Theorem. (Woods 1981). Suppose that the relation R is Ag-definable. The graph of f}l%,/S 18 Ag-
definable.

i=lha(z0) i=lha(z0)
It has some corollaries concerning sums Z ©(Z, 1) or products H ©(Z, 1) which are Ag-

i=0 i=0

definable under reasonnable assumptions (see [1], [3], [4]).

Here we extend this result to families of functions recursively defined with transition functions h
that are Ap-piecewise linear and A(Z) = lha (o). This study leads to focus on recursion where the
index i appears through the corresponding binary digit (Z); of one control parameter x:

F(a,0) = g(a) _
F(ﬁ,x,i +1 = H(ﬁ, (f)za F(ﬂ',x, Z))
F(i,z,y) = F(i,,lha(y))
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