Indiscernibles and Satisfaction Classes in Arithmetic

Ali Enayat

Abstract. This talk focuses on the theory PAI (Peano Arithmetic with Indiscernibles), a theory extending Peano Arithmetic that is formulated in the language obtained by adding a unary predicate I(x) to the language of PA. Models of PAI are of the form (\mathcal{M}, I) , where \mathcal{M} is a model of PA, I is an unbounded set of order indiscernibles over \mathcal{M} , and (\mathcal{M}, I) satisfies the extended induction scheme for formulae mentioning I. As indicated by the following results, there is a close connection between models of PAI and satisfaction classes.

Theorem A. Let \mathcal{M} be a nonstandard model of PA of any cardinality. \mathcal{M} has an expansion to a model of PAI iff \mathcal{M} has an inductive partial satisfaction class.

Theorem A yields the following corollary, which provides a new characterization of countable recursively saturated models of PA:

Corollary. A countable model \mathcal{M} of PA is recursively saturated iff \mathcal{M} has an expansion to a model of PAI.

Theorem B. There is a sentence α in the language obtained by adding a unary predicate I(x) to the language of arithmetic such that given any nonstandard model \mathcal{M} of PA of any cardinality, \mathcal{M} has an expansion to a model of PAI + α iff \mathcal{M} has a inductive full satisfaction class.

The talk is based on a preprint available on arXiv: https://arxiv.org/abs/2212.08411