Absolute Undefinability in Arithmetic

Roman Kossak

City University of New York

JAF on Samos, September 2023

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Problem

When is a countable nonstandard model of ... expandable to a model of ..., and if there is an expansion, how hard is it to find it?

We will consider expansions of

- **(**) models of $Th(\mathbb{N}, S)$ to models of $Th(\mathbb{N}, <)$, where S is a successor relation;
- 2 models $Th(\mathbb{N}, <)$ to models of Presburger arithmetic Pr;
- Models of Pr to models of PA;
- In the second second

Theorem

Let S be the successor relation in the set of natural numbers \mathbb{N} .

- (ℝ, S) and (ℝ, <) are minimal, i.e., every definable subset of ℝ is either finite or cofinite.</p>
- 2 $(\mathbb{N}, <)$ is a proper expansion of (\mathbb{N}, S)
- Seven numbers are definable in (N,+); hence, (N,+) is a proper expansion of (N,<).</p>

Theorem (Ginsburg-Spanier)

All subsets of \mathbb{N} that are definable in $(\mathbb{N}, +)$ are ultimately periodic, i.e., for each definable X there is a p such that for sufficiently large x

$$x\in X \Longleftrightarrow x+p\in X.$$

Corollary

Squares are definable in $(\mathbb{N},\times);$ hence $(\mathbb{N},+,\times)$ is proper expansion $(\mathbb{N},+).$

Observation

S is not definable in (\mathbb{N}, \times) . There is $f \in Aut(\mathbb{N}, \times)$ such that (2) = 3 and f(3) = 2. However,

$$x + y = z \Leftrightarrow (zx + 1)(zy + 1) = z^2(xy + 1) + 1.^{a}$$

Hence, + is definable in (\mathbb{N}, \times, S) .

^aTarski-Robinson Identity. I found it in *Axiomatic (and Non-Axiomatic) Mathematics* by Saeed Salehi, Rocky Mountain Journal of Mathematics 52:4 (2022).

イロン イ理 とくほ とくほ とう

Theorem (Tarski)

$$\label{eq:rescaled} \begin{split} \mathsf{Tr} = \{\ulcorner \varphi \urcorner : (\mathbb{N}, +, \times) \models \varphi\} \text{ is undefinable. Hence } (\mathbb{N}, +, \times, \mathsf{Tr}) \text{ is a proper expansion of } (\mathbb{N}, +, \times). \end{split}$$

Theorem (Kleene et al.)

For each n, $\operatorname{Tr}_n = \{ \ulcorner \varphi \urcorner : \varphi \in \Sigma_n \& (\mathbb{N}, +, \times) \models \varphi \}$ is definable in $(\mathbb{N}, +, \times)$.

イロン イボン イヨン 一日

Definition

 $\mathcal{L}_{\omega_1,\omega}$ is an extension of $\mathcal{L}_{\omega,\omega}$ with one additional rule: if Φ is a countable set of formulas with a fixed finite number of free variables, then $\bigwedge \Phi$ and $\bigvee \Phi$ are formulas.

Example

Let $\varphi_0(x) = \forall y \neg S(y, x)$ and for all n, let $\varphi_{n+1}(x) = \exists y [\varphi_n(y) \land S(y, x)]$. Then, for every $X \subseteq \mathbb{N}$,

$$\{X = \{x : (\mathbb{N}, S) \models \bigvee_{n \in X} \varphi_n(x)\}.$$

In particular, addition is defined by

$$\bigvee \{\varphi_m(x) \land \varphi_n(y) \land \varphi_k(z) : m+n=k\}.$$

Example

 $\mathsf{Tr}(x) = \bigvee \{\mathsf{Tr}_n(x) : n \in \mathbb{N}\}.$

ヘロン ヘアン ヘビン ヘビン

Definition

A structure \mathfrak{M} is resplendent if for any first-order sentence $\varphi(R)$ with a new relation symbol R, if \mathfrak{M} has an elementary extension that is expandable to a model of $\varphi(R)$, then \mathfrak{M} is expandable to a model of $\varphi(R)$.

Theorem (Presburger)

Satisfaction of additive reducts is definable in models of PA; hence, if $(M, +, \times)$ is a nonstandard countable model of PA, then (M, +) is resplendent.

Theorem (Cegielski, Nadel)

Satisfaction of multiplicative reducts is definable in models of PA; hence, if $(M, +, \times)$ is a nonstandard countable model of PA, then (M, \times) is resplendent.

Theorem (Kotlarski, Krajewski, Lachlan)

A countable nonstandard model of PA carries a full satisfaction class if and only if it is resplendent.

Theorem (Scott)

For every countable structure $\mathfrak{M} = (M, ...)$ and every $X \subseteq M^n$, t.f.a.e.

- X is preserved by all automorphisms of \mathfrak{M} , i.e., f(X) = X for every automorphism f.
- 2 X is $\mathcal{L}_{\omega_1,\omega}$ -definable in \mathfrak{M} .

Theorem (Kueker)

For every countable structure $\mathfrak{M} = (M, ...)$ and every $R \subseteq M^n$, t.f.a.e.

- R has at most \aleph_0 automorphic images.
- 2 R has less than 2^{\aleph_0} automorphic images.
- R is parametrically $\mathcal{L}_{\omega_1,\omega}$ -definable in \mathfrak{M} .

Corollary

If $|\operatorname{Aut}(\mathfrak{M})| < 2^{\aleph_0}$, then every relation on \mathfrak{M} is parametrically $\mathcal{L}_{\omega_1,\omega}$ -definable.

Corollary

If a relation R on a ct \mathfrak{M} is parametrically \mathcal{L} definable, for some logic \mathcal{L} , the R is parametrically $\mathcal{L}_{\omega_1,\omega}$ definable.

Definition

A relation on the domain of a countable \mathfrak{M} is absolutely undefinable if it has 2^{\aleph_0} automorphic images.^a.

 a Athanassios Tzouvaras, in A note on real subsets of a recursively saturated model, Z. Math. Logik Grundlag. Math. 37 (1991) called such R imaginary

Lemma (Kueker-Reyes Lemma)

Let $\mathfrak{M} = (M, ...)$ be countable. If for for every tuple \overline{a} in $M^{<\omega}$ there are $b \in R$ and $c \notin R$ such that $\operatorname{tp}(\overline{a}, b) = \operatorname{tp}(\overline{a}, c)$, then R is absolutely undefinable.

ヘロン ヘアン ヘビン ヘビン

Theorem (Barwise, Schlipf)

Every countable resplendent model has continuum many automorphisms.

Theorem (Schlipf)

If (\mathfrak{M}, R) is countable, resplendent, and R is not parametrically definable in \mathfrak{M} , then has 2^{\aleph_0} automorphic images.

Corollary

It \mathfrak{M} is countable, resplendent, and there is a parametrically undefinable R such that $(\mathfrak{M}, R) \models \varphi(R)$, then there is an absolutely undefinable R such that $(\mathfrak{M}, R) \models \varphi(R)$.

イロト イポト イヨト イヨト

- A model of Th(N, S) to a model of Th(N, <). Always exist. All expansions are absolutely undefinable when (M, S) is resplendent; otherwise they are all L_{ω1,ω} definable.
- A model Th(N, <) to a model of Pr. Exist if an only if (M, <) is resplendent and they are all absolutely undefinable (Emil Jeřábek).
- Solution A model of Pr to a model of PA. Exist if an only if (M, +) is resplendent and they are all absolutely undefinable (Alfred Dolich, Simon Heller, based on the work of David Llewellyn-Jones on automorphisms of models of Pr.)
- A model of PA a model of one of the axiomatic theories of truth or satisfaction. Exist if an only if (M, +, ×) is resplendent and they are all absolutely undefinable... a longer story.

ヘロン ヘアン ヘビン ヘビン

Let \mathfrak{M} be a countable resplendent model of PA. The following sets are absolutely undefinable in \mathfrak{M} :

- (RK, Kotlarski) Inductive partial satisfaction classes.
- (Schmerl) Undefinable classes.

 $X \subseteq M$ is a class if for every a, $\{x \in X : x < a\}$ is parametrically definable. If (M, X) is a model of PA(X), we call X inductive. All inductive sets are classes; hence all undefinable classes absolutely undefinable.

- (RK, Wcisło) Full satisfaction classes. Bartosz Wcisło, Full satisfaction classes, definability, and automorphisms, arXiv:2104.09969.
- (RK, Kotlarski) Graphs of nontrivial automorphisms.
- (Schmerl) Cofinal elementary submodels.

《曰》《圖》 《臣》 《臣》