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A program?

Problem

When is a countable nonstandard model of . . . expandable to a
model of . . . , and if there is an expansion, how hard is it to find it?

We will consider expansions of
1 models of Th(N, S) to models of Th(N, <), where S is a successor

relation;
2 models Th(N, <) to models of Presburger arithmetic Pr;
3 models of Pr to models of PA;
4 models of PA to models axiomatic theories of truth or satisfaction.
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Expansions of the standard model

Theorem

Let S be the successor relation in the set of natural numbers N.
1 (N, S) and (N, <) are minimal, i.e., every definable subset of N is

either finite or cofinite.

2 (N, <) is a proper expansion of (N, S)

3 Even numbers are definable in (N,+); hence, (N,+) is a proper
expansion of (N, <).

Theorem (Ginsburg-Spanier)

All subsets of N that are definable in (N,+) are ultimately periodic, i,e.,
for each definable X there is a p such that for sufficiently large x

x ∈ X ⇐⇒ x + p ∈ X.

Corollary

Squares are definable in (N,×); hence (N,+,×) is proper expansion
(N,+).
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Multiplication is not definable from addition

Observation

S is not definable in (N,×). There is f ∈ Aut(N,×) such that (2) = 3 and
f(3) = 2. However,

x + y = z ⇔ (zx + 1)(zy + 1) = z2(xy + 1) + 1.a

Hence, + is definable in (N,×, S).
aTarski-Robinson Identity. I found it in Axiomatic (and Non-Axiomatic) Mathematics by

Saeed Salehi, Rocky Mountain Journal of Mathematics 52:4 (2022).
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Truth and partial truth

Theorem (Tarski)

Tr = {pϕq : (N,+,×) |= ϕ} is undefinable. Hence (N,+,×,Tr) is a proper
expansion of (N,+,×).

Theorem (Kleene et al.)

For each n, Trn = {pϕq : ϕ ∈ Σn& (N,+,×) |= ϕ} is definable in (N,+,×).

Roman Kossak Absolute Undefinability in Arithmetic



More expressive power: infinite conjunctions and disjunctions

Definition

Lω1,ω is an extension of Lω,ω with one additional rule: if Φ is a
countable set of formulas with a fixed finite number of free variables,
then

∧
Φ and

∨
Φ are formulas.

Example

Let ϕ0(x) = ∀y¬S(y, x) and for all n, let ϕn+1(x) = ∃y[ϕn(y) ∧ S(y, x)].
Then, for every X ⊆ N,

{X = {x : (N, S) |=
∨
n∈X

ϕn(x)}.

In particular, addition is defined by∨
{ϕm(x) ∧ ϕn(y) ∧ ϕk(z) : m + n = k}.

Example

Tr(x) =
∨
{Trn(x) : n ∈ N}.
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Resplendence

Definition

A structure M is resplendent if for any first-order sentence ϕ(R) with a
new relation symbol R, if M has an elementary extension that is
expandable to a model of ϕ(R), then M is expandable to a model of
ϕ(R).
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Resplendence is relevant

Theorem (Presburger)

Satisfaction of additive reducts is definable in models of PA; hence, if
(M,+,×) is a nonstandard countable model of PA, then (M,+) is
resplendent.

Theorem (Cegielski, Nadel)

Satisfaction of multiplicative reducts is definable in models of PA;
hence, if (M,+,×) is a nonstandard countable model of PA, then
(M,×) is resplendent.

Theorem (Kotlarski, Krajewski, Lachlan)

A countable nonstandard model of PA carries a full satisfaction class if
and only if it is resplendent.
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Counting automorphic images

Theorem (Scott)

For every countable structure M = (M, . . . ) and every X ⊆Mn, t.f.a.e.
1 X is preserved by all automorphisms of M, i.e., f(X) = X for every

automorphism f .
2 X is Lω1,ω-definable in M.

Theorem (Kueker)

For every countable structure M = (M, . . . ) and every R ⊆Mn, t.f.a.e.
1 R has at most ℵ0 automorphic images.
2 R has less than 2ℵ0 automorphic images.
3 R is parametrically Lω1,ω-definable in M.

Corollary

If |Aut(M)| < 2ℵ0 , then every relation on M is parametrically
Lω1,ω-definable.
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Absolute undefinability

Corollary

If a relation R on a ct M is parametrically L definable, for some logic L,
the R is parametrically Lω1,ω definable.

Definition

A relation on the domain of a countable M is absolutely undefinable if
it has 2ℵ0 automorphic images.a.

aAthanassios Tzouvaras, in A note on real subsets of a recursively saturated model, Z.
Math. Logik Grundlag. Math. 37 (1991) called such R imaginary

Lemma (Kueker-Reyes Lemma)

Let M = (M, . . . ) be countable. If for for every tuple ā in M<ω there are
b ∈ R and c /∈ R such that tp(ā, b) = tp(ā, c), then R is absolutely
undefinable.
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Absolute undefinability cannot be avoided

Theorem (Barwise, Schlipf)

Every countable resplendent model has continuum many
automorphisms.

Theorem (Schlipf)

If (M, R) is countable, resplendent, and R is not parametrically
definable in M, then has 2ℵ0 automorphic images.

Corollary

It M is countable, resplendent, and there is a parametrically
undefinable R such that (M, R) |= ϕ(R), then there is an absolutely
undefinable R such that (M, R) |= ϕ(R).
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Absolutely undefinable expansions

1 A model of Th(N, S) to a model of Th(N, <). Always exist. All
expansions are absolutely undefinable when (M,S) is resplendent;
otherwise they are all Lω1,ω definable.

2 A model Th(N, <) to a model of Pr. Exist if an only if (M,<) is
resplendent and they are all absolutely undefinable [Emil
Jěrábek].

3 A model of Pr to a model of PA. Exist if an only if (M,+) is
resplendent and they are all absolutely undefinable [Alfred
Dolich, Simon Heller, based on the work of David Llewellyn-Jones
on automorphisms of models of Pr.]

4 A model of PA a model of one of the axiomatic theories of truth or
satisfaction. Exist if an only if (M,+,×) is resplendent and they are
all absolutely undefinable... a longer story.
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Counting Classes and Satisfaction Classes

Let M be a countable resplendent model of PA. The following sets are
absolutely undefinable in M:

(RK, Kotlarski) Inductive partial satisfaction classes.

(Schmerl) Undefinable classes.

X ⊆M is a class if for every a, {x ∈ X : x < a} is parametrically
definable. If (M,X) is a model of PA(X), we call X inductive. All
inductive sets are classes; hence all undefinable classes absolutely
undefinable.

(RK, Wcisło) Full satisfaction classes. Bartosz Wcisło, Full satisfaction
classes, definability, and automorphisms, arXiv:2104.09969.

(RK, Kotlarski) Graphs of nontrivial automorphisms.

(Schmerl) Cofinal elementary submodels.
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