(Short) bounded recursions and Δ_{0}-definability

Henri-Alex Esbelin

Clermont Auvergne Université
JAF 42, SAMOS 2023

A major open problem

$$
\Delta_{0}^{\mathbb{N}} \subseteq \mathcal{E}_{\star}^{0}
$$

Equality or not?

A major open problem in other terms

Q 1. Let us suppose that

$$
\left\{\begin{array}{l}
f(\vec{u}, 0)=u_{0} \\
f(\vec{u}, i+1)=h(\vec{u}, i, f(i))
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
f(\vec{u}, y) \leq \operatorname{Max}\{\vec{u}, y\} \\
\text { The graph of } h \text { is } \Delta_{0}-\text { definable }
\end{array}\right.
$$

Is the graph of $f \Delta_{0}$-definable?

A major open problem in other terms

Q 2. Find (if any) a function h with a Δ_{0}-definable graph such that, for

$$
\left\{\begin{array}{l}
f(\vec{u}, 0)=u_{0} \\
f(\vec{u}, i+1)=h(\vec{u}, i, f(i))
\end{array}\right.
$$

with

$$
f(\vec{u}, y) \leq \operatorname{Max}\{\vec{u}, y\}
$$

the graph of f is not Δ_{0}-definable.

A major open problem in other terms

Q 3. Find a significant class of functions h with a Δ_{0}-definable graph such that f defined by

$$
\left\{\begin{array}{l}
f(\vec{u}, 0)=u_{0} \\
f(\vec{u}, i+1)=h(\vec{u}, i, f(i))
\end{array}\right.
$$

has a Δ_{0}-definable graph.

This is the question considered her.

Plan

- Basic informations on Δ_{0}-definability
- Bounded recursions : known results
- Main results and ideas of proofs
- Conclusion
- References

Basic informations on Δ_{0}-definability

- $z=x^{y}$ IS Δ_{0}-definable
- The graph of the following function f

$$
\begin{cases}f(0)=0 & \\ f(i+1)=(f(i)+1) \bmod 2 & \text { if } i \text { is prime } \\ f(i+1)= & f(i)\end{cases}
$$

IS NOT KNOWN TO BE Δ_{0}-definable

- BUT the graph of $f\left(I_{2}(x)\right)$ IS Δ_{0}-definable
N.B. $I_{2}(x)$ is the length of the binary representation of x.

Basic informations on Δ_{0}-definability

The method of proof :

Basic informations on Δ_{0}-definability

The method of proof :

$$
\begin{aligned}
& \begin{cases}f(0)=0 \\
f(i+1)= & (f(i)+1) \bmod 2 \\
f(i+1)= & \text { if } i \text { is prime } \\
f(i) & \text { if } i \text { is not prime }\end{cases} \\
& z=f(y) \text { iff }
\end{aligned}
$$

Basic informations on Δ_{0}-definability

The method of proof :
$\begin{cases}f(0)=0 & \\ f(i+1)= & f(i)+1) \bmod 2 \\ f(i+1)= & \text { if } i \text { is prime } \\ f(i) & \text { if } i \text { is not prime }\end{cases}$
$z=f(y)$ iff $\left(z_{0}, z_{1}, \ldots, z_{y}\right) \in\{0,1\}^{y+1}$ exists such that

$$
\left\{\begin{array} { l }
{ z _ { 0 } = 0 } \\
{ \forall i \leq y - 1 } \\
{ z = z _ { y } }
\end{array} \quad \left\{\begin{array}{ll}
z_{i+1}=\left(z_{i}+1\right) \bmod 2 & \text { if } i \text { is prime } \\
z_{i+1}= & z_{i}
\end{array} \text { if } i\right.\right. \text { is not }
$$

Basic informations on Δ_{0}-definability

The method of proof :

$$
z=f(y) \text { iff }\left(z_{0}, z_{1}, \ldots, z_{y}\right) \in\{0,1\}^{y+1} \text { exists such that } \exists Z \leq 2^{y+1}
$$

$$
\left\{\begin{array} { l }
{ Z _ { 0 } = 0 } \\
{ \forall i \leq y - 1 }
\end{array} \left\{\begin{array}{ll}
Z_{i+1}= & \left(Z_{i}+1\right) \bmod 2 \\
Z_{i+1}= & \text { if } i \text { is prime } \\
Z_{i} & \text { if } i \text { is not }
\end{array}\right.\right.
$$

$$
z=Z_{y}
$$

$N . B . Z_{i}$ is the i-th digit of the binary representation of Z.

$$
\begin{aligned}
& \left\{\begin{array}{l}
f(0)=0 \\
f(i+1)=(f(i)+1) \bmod 2 \quad \text { if } i \text { is prime }
\end{array}\right. \\
& f(i+1)=\quad f(i) \quad \text { if } i \text { is not prime }
\end{aligned}
$$

Basic informations on Δ_{0}-definability

The method of proof :

$$
\left.\begin{array}{l}
\left\{\begin{array}{l}
f(0)=0 \\
f(i+1)= \\
f(i+1)=
\end{array}(f(i)+1) \bmod 2\right. \\
f(i)
\end{array} \begin{array}{l}
\text { if } i \text { is prime } \\
\text { if } i \text { is not prime }
\end{array}\right\}
$$

N. B. If y is (bounded by) a logarithm of some variable, the quantification is bounded by a polynomial (of this variable)

Basic informations on Δ_{0}-definability and recursions

Short recursions, long recursions

$$
\left\{\begin{array}{l}
\bar{f}(\vec{u}, 0)=u_{0} \\
\bar{f}(\vec{u}, i+1)=h(\vec{u}, i, \bar{f}(\vec{u}, i))
\end{array}\right.
$$

long recursions

$$
\bar{f}(\vec{u}, y)
$$

$$
f(\vec{u}, x)=\bar{f}\left(\vec{u}, l h_{2}(x)\right)
$$

Basic informations on Δ_{0}-definability and recursions

transition function	long rec	short rec
$z+1$ if $R(\vec{u}, i)$, else $z \quad R$ is Δ_{0}	Δ_{0}^{\sharp}	$\Delta_{0}[1]$
$a z$	a is a variable	$\Delta_{0}[2]$

Basic informations on Δ_{0}-definability and recursions

Sequences issued from Euclid's algorithm
$f(a, b, 0)=a$
$f(a, b, 1)=b$

$$
f(a, b, i+2)=f(a, b, i) \bmod f(a, b, i+1)
$$

It is essentially a short recursion and the graph of f is Δ_{0}-definable [7]

Basic informations on Δ_{0}-definability and recursions

Linear recurrence sequences

$$
L(\vec{x}, i+k)=\sum_{j=0}^{k-1} a_{j} \times L(\vec{x}, i+j)
$$

(k is a constant).
The graph of L is Δ_{0}-definable [8]

Main results and ideas of proofs

Main results and ideas of proofs

Result I

The short recursion with transition function

$$
H(a, c, b, d, x, z, i)=\left\{\begin{array}{l}
a z+b \text { if } x_{i}=1 \\
c z+d \text { if } x_{i}=0
\end{array}\right.
$$

defines a function with a Δ_{0} - definable graph.
N. B. x_{i} the i-th binary digit of x

Main results and ideas of proofs

Result I : some ideas of the proof
N. B. $\bar{x} \in\{0,1\}^{\star}$ is the binary expansion of x

$$
\bar{x}=0^{\alpha(x, 0)} 1^{\beta(x, 0)} 0^{\alpha(x, 1)} \ldots 1^{\beta\left(x, l h_{2}(x)-2\right)} 0^{\alpha\left(x, l h_{2}(x)-1\right)} 1^{\beta\left(x, l h_{2}(x)-1\right)}
$$

$$
\begin{gathered}
L(x, i)=\sum_{j=0}^{j=i-1} \alpha(x, j)+\beta(x, j) \\
L_{0}(x, i)=\sum_{j=0}^{j=i-1} \alpha(x, j) \quad L_{1}(x, i)=\sum_{j=0}^{j=i-1} \beta(x, j)
\end{gathered}
$$

Main results and ideas of proofs

$$
\begin{aligned}
& \bar{F}(a, c, b, d, x, L(i))= \\
& a^{L_{1}(x, i)} c_{0}^{L_{0}(x, i)} \bar{F}(a, c, b, d, x, 0)
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{d}{c-1}\left(\sum_{j=0}^{j=i} a^{L_{1}(x, i)-L_{1}(x, j)} c^{L_{0}(x, i)-L_{0}(x, j+1)}\left(c^{\alpha(x, j)}-1\right)\right) \\
& \quad+\frac{b}{a-1}\left(\sum_{j=0}^{j=i} a^{L_{1}(x, i)-L_{1}(x, j)} c^{L_{0}(x, i)-L_{0}(x, j)}\left(a^{\beta(x, j)}-1\right)\right)
\end{aligned}
$$

Main results and ideas of proofs

And similar formulas for

$$
L(x, i) \leq y<L(x, i)+\alpha(x, i+1)
$$

and

$$
L(x, i)+\alpha(i+1) \leq y<L(x, i+1)
$$

Main results and ideas of proofs

$z=L(x, i)$ is equivalent to

$$
(\bar{x})_{z}=1 \wedge(\bar{x})_{z-1}=0 \wedge i=\operatorname{card}\left\{j<i ;(\bar{x})_{i}=1 \wedge(\bar{x})_{i+1}=0\right\}
$$

with $i \leq l h_{2}(x)$
$\alpha(x, i)+\beta(x, i)=L(x, i+1)-L(x, i)$
$z=\beta(x, i)$ is equivalent to without paying attention to borders!
$\exists u\left((u=L(x, i+1)+1) \wedge z=\operatorname{card}\left\{j<u ;(\bar{x})_{i}=1 \wedge(\bar{x})_{i-1}=1\right\}\right)$

Main results and ideas of proofs

$$
\begin{aligned}
& \bar{F}(a, c, b, d, x, L(i))= \\
& a^{L_{1}(x, i)} c_{0}^{L_{0}(x, i)} \bar{F}(a, c, b, d, x, 0)
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{d}{c-1}\left(\sum_{j=0}^{j=i} a^{L_{1}(x, i)-L_{1}(x, j)} c^{L_{0}(x, i)-L_{0}(x, j+1)}\left(c^{\alpha(x, j)}-1\right)\right) \\
& \quad+\frac{b}{a-1}\left(\sum_{j=0}^{j=i} a^{L_{1}(x, i)-L_{1}(x, j)} c^{L_{0}(x, i)-L_{0}(x, j)}\left(a^{\beta(x, j)}-1\right)\right)
\end{aligned}
$$

Main results and ideas of proofs

The main step for studying the case where a, b, c, d are variables:

Lemma. the following relation is Δ_{0}-definable

$$
\left(z=\sum_{j=0}^{j=i-1} \gamma(x, j)\right) \wedge\left(i \leq I h_{2}(y)\right)
$$

where
$\star \forall j \leq i(\gamma(x, j) \leq b(x, y))$
$\star \log _{2}(b(x, y))$ is a polylog. of the variables
\star the graph of γ and b are Δ_{0}-definable

Main results and ideas of proofs

$$
\left(Z=\sum_{j=0}^{j=i-1} \gamma(x, j)\right) \wedge\left(i \leq I h_{2}(y)\right)
$$

is equivalent to :
$\left(i \leq I h_{2}(y)\right) \wedge Z \leq b(x, y) \times I h_{2}(y)$ and

$$
\forall p \leq 2 \log _{2}\left(b(x, y) \times I_{2}(y)\right), p \text { prime }
$$

$$
\left(z \equiv \sum_{j=0}^{j=i-1} \gamma(x, j)\right) \bmod p
$$

Main results and ideas of proofs
now

$$
\left(\sum_{j=0}^{j=i-1} \gamma(x, j)\right) \bmod p
$$

is equal to

$$
\left(\sum_{k=0}^{k=p-1} k \times \operatorname{Card}\{j \leq i-1 ; \gamma(x, j) \equiv k \bmod p\}\right) \bmod p
$$

Main results and ideas of proofs

Main results and ideas of proofs

Result II

The short recursion with transition function

$$
h_{a_{1}, a_{2}}\left(m_{1}, m_{2}, z\right)=\left(a_{2}\left(a_{1} z \bmod m_{1}\right) \bmod m_{2}\right)
$$

defines a function with a Δ_{0} - definable graph.

Main results and ideas of proofs

Result II : some ideas of the proof
N. B. u is the initial value of the recursion
$z=\bar{f}_{a_{1}, a_{2}}\left(m_{1}, m_{2}, u, y\right)$ and $0 \leq u \leq m_{2}-1$
is equivalent to
$\mathbf{z} \in\left\{0,1, \ldots, m_{2}-1\right\}^{y+1}$ exists such that

$$
\begin{gathered}
\left(0 \leq z \leq m_{2}-1\right) \wedge\left(0 \leq u \leq m_{2}-1\right) \wedge\left(\mathbf{z}_{0}=u\right) \wedge\left(\mathbf{z}_{y}=z\right) \wedge \\
\forall i \leq y-1 \mathbf{z}_{j+1}=h_{a_{1}, a_{2}}\left(m_{1}, m_{2}, \mathbf{z}_{j}\right)
\end{gathered}
$$

Main results and ideas of proofs

$z^{\prime}=h_{a_{1}, a_{2}}\left(m_{1}, m_{2}, z\right)$ and $0 \leq z \leq m_{2}-1$
is equivalent to
$0 \leq z \leq m_{2}-1$ and $k_{1} \leq m_{2}-1$ and $k_{2} \leq a_{2}-1$ exist such that

$$
\left\{\begin{array}{l}
0 \leq z^{\prime} \leq m_{2}-1 \\
z^{\prime}+k_{2} m_{2} \leq a_{2}\left(m_{1}-1\right) \\
a_{1} a_{2} z-z^{\prime}=a_{2} k_{1} m_{1}+k_{2} m_{2}
\end{array}\right.
$$

Main results and ideas of proofs

$$
z=\bar{f}_{a_{1}, a_{2}}\left(m_{1}, m_{2}, u, y\right) \text { and } 0 \leq x \leq m_{2}-1
$$

is equivalent to

Main results and ideas of proofs

Exist $\mathbf{k}_{1} \in\left\{0,1, \ldots, m_{2}-1\right\}^{y}$ and $\mathbf{k}_{2} \in\left\{0,1, \ldots, a_{2}-1\right\}^{y}$ and $\mathbf{z} \in\left\{0,1, \ldots, m_{2}-1\right\}^{y+1}$ such that

$$
\begin{aligned}
& \left(0 \leq z \leq m_{2}-1\right) \wedge\left(0 \leq u \leq m_{2}-1\right) \wedge\left(\mathbf{z}_{0}=u\right) \wedge\left(\mathbf{z}_{y}=z\right) \wedge \\
& \forall i \leq y \\
& \left\{\begin{array}{l}
\mathbf{z}_{i}+S_{\mathbf{k}_{2}}(i-2) m_{2}+a_{2} S_{\mathbf{k}_{1}}(i-1) m_{1} \leq\left(a_{1} a_{2}\right)^{i}\left(m_{1}-1\right) \\
\mathbf{z}_{i}+S_{\mathbf{k}_{2}}(i-1) m_{2}+a_{2} S_{\mathbf{k}_{1}}(i-1) m_{1}=\left(a_{1} a_{2}\right)^{i} x
\end{array}\right.
\end{aligned}
$$

$$
\text { where } S_{\mathbf{k}}(i)=\sum_{j=0}^{j=i} \mathbf{k}_{i-j}\left(a_{1} a_{2}\right)^{j}
$$

Main results and ideas of proofs

Exist $\mathbf{k}_{1} \in\left\{0,1, \ldots, m_{2}-1\right\}^{y} \quad$ and $\exists K_{2} \leq x^{\gamma} \quad$ and $\mathbf{z} \in\left\{0,1, \ldots, m_{2}-1\right\}^{y+1}$ such that

$$
\begin{aligned}
& \left(0 \leq z \leq m_{2}-1\right) \wedge\left(0 \leq u \leq m_{2}-1\right) \wedge\left(\mathbf{z}_{0}=u\right) \wedge\left(\mathbf{z}_{y}=z\right) \wedge \\
& \forall i \leq y \\
& \left\{\begin{array}{l}
\mathbf{z}_{i}+S_{\mathbf{k}_{2}}(i-2) m_{2}+a_{2} S_{\mathbf{k}_{1}}(i-1) m_{1} \leq\left(a_{1} a_{2}\right)^{i}\left(m_{1}-1\right) \\
\mathbf{z}_{i}+S_{\mathbf{k}_{2}}(i-1) m_{2}+a_{2} S_{\mathbf{k}_{1}}(i-1) m_{1}=\left(a_{1} a_{2}\right)^{i} x
\end{array}\right.
\end{aligned}
$$

N.B. if y is some logarithm of the variable x, γ is a constant

Main results and ideas of proofs

An easy and essential remark :

If $m_{2} \geq 1+a_{2}\left(m_{1}-1\right)$ then

$$
h_{a_{1}, a_{2}}\left(m_{1}, m_{2}, z\right)=a_{2}\left(a_{1} z \bmod m_{1}\right)
$$

Δ_{0}-definability comes from Hesse theorem ([6] in the previous table), even for

$$
h\left(a_{1}, a_{2}, m, z\right)=a_{1}\left(a_{2} z \bmod m\right)
$$

$N . B$. we suppose now $m_{2} \leq a_{2}\left(m_{1}-1\right)$

Main results and ideas of proofs
Exist $\mathbf{k}_{1} \in\left\{0,1, \ldots, m_{2}-1\right\}^{y} \quad$ and $\exists K_{2} \leq x_{0}^{\gamma} \quad$ and $\mathbf{z} \in\left\{0,1, \ldots, m_{2}-1\right\}^{y+1}$ such that

$$
\begin{aligned}
& \left(0 \leq z \leq m_{2}-1\right) \wedge\left(0 \leq u \leq m_{2}-1\right) \wedge\left(\mathbf{z}_{0}=u\right) \wedge\left(\mathbf{z}_{y}=z\right) \wedge \\
& \forall i \leq y \\
& \left\{\begin{array}{l}
\mathbf{z}_{i}+S_{\mathbf{k}_{2}}(i-2) m_{2}+a_{2} S_{\mathbf{k}_{1}}(i-1) m_{1} \leq\left(a_{1} a_{2}\right)^{i}\left(m_{1}-1\right) \\
\mathbf{z}_{i}+S_{\mathbf{k}_{\mathbf{2}}}(i-1) m_{2}+a_{2} S_{\mathbf{k}_{1}}(i-1) m_{1}=\left(a_{1} a_{2}\right)^{i} x
\end{array}\right.
\end{aligned}
$$

Main results and ideas of proofs

$$
\begin{aligned}
& \left(0 \leq z \leq m_{2}-1\right) \wedge \\
& \forall i \leq y \\
& \left\{\begin{array}{l}
\mathbf{z}_{i}+a_{2} S_{\mathbf{k}_{1}}(i-1) m_{1}=\left(a_{1} a_{2}\right)^{i} x-S_{\mathbf{k}_{2}}(i-1) m_{2}
\end{array}\right.
\end{aligned}
$$

N.B. as $\mathbf{z}_{i} \leq m_{2}-1 \leq a_{2}\left(m_{1}-1\right)-1$
\mathbf{z}_{i} is a remainder and $S_{\mathbf{k}_{1}}(\dot{j}-1)$ a quotient

Main results and ideas of proofs

$$
\begin{aligned}
& \exists K_{2} \leq x_{0}^{\gamma} \\
& \left(0 \leq z \leq m_{2}-1\right) \wedge\left(0 \leq x \leq m_{2}-1\right) \\
& \forall i \leq y \quad \exists \zeta \leq m_{2}-1 \exists \chi \leq\left(m_{2}-1\right) \frac{\left(a_{1} a_{2}\right)^{2+1}-1}{a_{1} a_{2}-1} \\
& \left\{\begin{array}{l}
\zeta+\chi m_{2}+a_{2} S_{\mathbf{k}_{2}}(i-1) m_{1} \leq\left(a_{1} a_{2}\right)^{i}\left(m_{1}-1\right) \\
\zeta+\chi m_{2}+a_{2} S_{\mathbf{k}_{2}}(i-1) m_{1}=\left(a_{1} a_{2}\right)^{i} x
\end{array}\right. \\
& \text { where } S_{\mathbf{k}_{\mathbf{2}}}(i)=\sum_{j=0}^{j=i} \mathbf{k}_{\mathbf{2}_{i-j}}\left(a_{1} a_{2}\right)^{j}=\left\lfloor\frac{K_{2}}{\left(a_{1} a_{2}\right)^{i+1}}\right\rfloor \\
& \text { and } \zeta=\left(\left(a_{1} a_{2}\right)^{i} x-m_{2} S_{k_{2}}(i-1)\right) \bmod \left(a_{2} m_{1}\right)
\end{aligned}
$$

Some generalizations and conclusion

Some generalizations and conclusion

Consequence 1:

The short recursion for transition function

$$
h_{R,(a, c),(b, d)}(\vec{u}, z, i)=\left\{\begin{array}{l}
a z+b \text { if } R(\vec{u}, i, z) \\
c z+d \text { if } \neg R(\vec{u}, i, z)
\end{array}\right.
$$

defines a function with a Δ_{0}-definable graph.

Some generalizations and conclusion

Consequence 1 : some ideas of the proof
The idea is that if we define a relation R^{\prime} as

$$
R^{\prime}(\vec{u}, i) \operatorname{iff} R\left(\vec{u}, i, \bar{F}_{R,(a, c),(b, d)}(\vec{u}, i)\right)
$$

then for all $0 \leq i \leq y$, we have

$$
\bar{F}_{R,(a, c),(b, d)}(\vec{u}, i)=\bar{f}_{l d, R^{\prime},(a, c),(b, d)}(\vec{u}, i)
$$

Some generalizations and conclusion

$z=\bar{F}_{R, i,(a, c),(b, d)}\left(\vec{u}, I_{2}(x)\right)$ is equivalent to

$$
\begin{aligned}
& \exists m \in\{0,1\}^{l_{2}(x)}(\forall i)_{i \leq 1 m_{2}(x)}\left[R^{\prime}\left(\vec{u}, i, \bar{f}_{l d, R_{m},(a, c),(b, d)}(\vec{u}, i)\right) \leftrightarrow m_{i}=1\right] \\
& \wedge\left[z=\bar{f}_{R_{m,(},(a, c),(b, d)}\left(\vec{u}, I h_{2}(x)\right)\right]
\end{aligned}
$$

where $R_{m}(i)$ is define by $m_{i}=1$.

Some generalizations and conclusion

Variant :

The long recursion for transition function

$$
h_{R}(a, c, b, d, \vec{u}, z, i)=\left\{\begin{array}{l}
a z+b \text { if } R(\vec{u}, i, z) \\
c z+d \text { if } \neg R(\vec{u}, i, z)
\end{array}\right.
$$

defines a function with a Δ_{0}^{\sharp}-definable graph.

Some generalizations and conclusion

Consequence :

The short recursion for transition function

$$
h_{R,(a, c),(b, d)}(\vec{u}, i, z)=\left\{\begin{array}{l}
a(\vec{u}) z+b(\vec{u}) \text { if } R(\vec{u}, i, z) \\
c((\vec{u}) z+d((\vec{u}) \text { if } \neg R(\vec{u}, i, z)
\end{array}\right.
$$

defines a function with a Δ_{0}-definable graph.

Some generalizations and conclusion

Generalization (work in progress)
The short recursion for transition function $h_{\left(R_{1}, R_{2}, \ldots, R_{k}\right),\left(a_{1}, c_{1}\right),\left(a_{2}, c_{2}\right), \ldots,\left(a_{k}, c_{k}\right)}(\vec{u}, i, z)=$

$$
\left\{\begin{array}{l}
a_{1}(\vec{u}) z+b_{1}(\vec{u}) \text { if } R_{1}(\vec{u}, i, z) \\
\ldots \\
a_{k}(\vec{u}) z+b_{k}(\vec{u}) \text { if } R_{k}(\vec{u}, i, z)
\end{array}\right.
$$

defines a function with a Δ_{0}-definable graph.

Some generalizations and conclusion

Generalization of the second result.

The short recursion for transition function

$$
h_{a_{1}, b_{1}, a_{2}, b_{2}}\left(m_{1}, m_{2}, z\right)=\left(a_{2}\left(\left(a_{1} x+b_{1}\right) \bmod m_{1}\right)+b_{2}\right) \bmod m_{2}
$$

defines a function with a Δ_{0}-definable graph.

Some generalizations and conclusion

Conclusion

A question is now to give a natural characterization of a class of functions h with a Δ_{0}-definable graph such that f defined by

$$
\left\{\begin{array}{l}
f(\vec{u}, 0)=u_{0} \\
f(\vec{u}, i+1)=h(\vec{u}, i, f(i))
\end{array}\right.
$$

has a Δ_{0}-definable graph.

References

[1] and [4]) A. Woods, Some problems in logic and number theory and their connections, Ph.D. thesis, University of Manchester, Manchester, 1981, in Studies in Weak Arithmetics, Vol. 2, ed. Edited by P. Cégielski, Ch. Cornaros, and C. Dimitracopoulos, CSLI Lecture Notes (211), 2013.
[2] J. Bennett, On spectra, Ph.D. thesis, Princeton University, Princeton, New Jersey, USA, 1962, and H. Gaifman and C. Dimitracopoulos. Fragments of Peano's arithmetic and the MRDP Theorem, in Logic and Algorithmic, Geneve, pp. 187-206, 1982.
[3] H.-A. E. and M. More, Rudimentary relations and primitive recursion : a toolbox, T. C. S., vol. 193, n. 1-2, pp. 129-148, 1998.

References

[5] A. Berarducci \& P. D'Aquino, Δ_{0}-complexity of the relation $y=$ $\prod_{i \leq n} F$, APAL 75 (1-2) :49-56, 1995.
[6] W. Hesse, E. Allender, D.A.M. Barrington, Uniform constant-depth threshold circuits for division and iterated multiplication, J. Comput. Syst. Sci. 65, pp. 695-716, 2002.
[7] H.-A. E. Δ_{0}-definability of the denumerant with one plus three variables, in Studies in Weak Arithmetics, ... Vol. 2 (opt. cit.)
[8] H.-A. E. \& M. More, (opt. cit.) and independently A. Berarducci \& B. Intrigila Linear Recurrence Relations are Δ_{0} Definable in Logic and Foundations of Mathematics Selected Contributed Papers of the Tenth International Congress of Logic, Methodology and Philosophy of Science, Florence, 1995, 1999.

