(Short) bounded recursions and Δ_0 -definability

Henri-Alex Esbelin

Clermont Auvergne Université

JAF 42, SAMOS 2023

A major open problem

$\Delta_0^{\mathbb{N}} \subseteq \mathcal{E}_\star^0$

Equality or not?

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 = のへで

A major open problem in other terms

Q 1. Let us suppose that

$$\begin{cases} f(\vec{u}, 0) = u_0 \\ f(\vec{u}, i+1) = h(\vec{u}, i, f(i)) \end{cases}$$

and

$$\begin{cases} f(\vec{u}, y) \le Max\{\vec{u}, y\} \\ \\ \text{The graph of } h \text{ is } \Delta_0 - \text{definable} \end{cases}$$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 = のへで

Is the graph of $f \Delta_0$ -definable?

A major open problem in other terms

Q 2. Find (if any) a function *h* with a Δ_0 -definable graph such that, for

$$\begin{cases} f(\vec{u}, 0) = u_0 \\ f(\vec{u}, i+1) = h(\vec{u}, i, f(i)) \end{cases}$$

with

$$f(\vec{u}, y) \leq Max\{\vec{u}, y\}$$

the graph of *f* is not Δ_0 -definable.

A major open problem in other terms

Q 3. Find a significant class of functions *h* with a Δ_0 -definable graph such that *f* defined by

$$\begin{cases} f(\vec{u}, 0) = u_0 \\ f(\vec{u}, i+1) = h(\vec{u}, i, f(i)) \end{cases}$$

has a Δ_0 -definable graph.

This is the question considered her.

Plan

- Basic informations on Δ_0 -definability
- Bounded recursions : known results

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Main results and ideas of proofs
- Conclusion
- References

- $z = x^{y}$ IS Δ_0 -definable
- The graph of the following function f

$$\begin{cases} f(0) = 0 \\ f(i+1) = (f(i)+1) \mod 2 & \text{if } i \text{ is prime} \\ f(i+1) = f(i) & \text{if } i \text{ is not prime} \end{cases}$$

IS NOT KNOWN TO BE Δ_0 -definable

• BUT the graph of $f(lh_2(x))$ IS Δ_0 -definable

N.B. $Ih_2(x)$ is the length of the binary representation of x.

The method of proof :

The method of proof :

$$\begin{cases} f(0) = 0\\ f(i+1) = (f(i)+1) \mod 2 & \text{if i is prime}\\ f(i+1) = f(i) & \text{if i is not prime} \end{cases}$$

z = f(y) iff

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The method of proof :

$$\begin{cases} f(0) = 0 \\ f(i+1) = (f(i)+1) \mod 2 & \text{if i is prime} \\ f(i+1) = f(i) & \text{if i is not prime} \end{cases}$$

$$z = f(y) \text{ iff } (z_0, z_1, ..., z_y) \in \{0, 1\}^{y+1} \text{ exists such that} \\\begin{cases} z_0 = 0 \\ \forall i \le y - 1 \end{cases} \begin{cases} z_{i+1} = (z_i + 1) \mod 2 & \text{if } i \text{ is prime} \\ z_{i+1} = z_i & \text{if } i \text{ is not} \end{cases}$$

The method of proof :

$$\begin{cases} f(0) = 0 \\ f(i+1) = (f(i)+1) \mod 2 & \text{if i is prime} \\ f(i+1) = f(i) & \text{if i is not prime} \end{cases}$$

$$z = f(y) \text{ iff } (z_0, z_1, ..., z_y) \in \{0, 1\}^{y+1} \text{ exists such that } \exists Z \leq 2^{y+1}$$

$$\begin{cases} Z_0 = 0 \\ \forall i \leq y - 1 \\ Z_{i+1} = Z_i & \text{if } i \text{ is prime} \\ Z_{i+1} = Z_i & \text{if } i \text{ is not} \end{cases}$$

$$z = Z_y$$

$$N. B. Z_i \text{ is the } i\text{-th digit of the binary representation of } Z.$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

The method of proof :

$$\begin{cases} f(0) = 0 \\ f(i+1) = (f(i)+1) \mod 2 & \text{if i is prime} \\ f(i+1) = f(i) & \text{if i is not prime} \end{cases}$$

$$z = f(y) \text{ iff} \qquad \exists Z \leq 2^{y+1} \\ \begin{cases} Z_0 = 0 \\ \forall i \leq y-1 \\ Z_{i+1} = Z_i & \text{if } i \text{ is prime} \\ Z_{i+1} = Z_i & \text{if } i \text{ is not} \end{cases}$$

$$z = Z_y$$
N. B. If y is (bounded by) a logarithm of some vertices

N. B. If y is (bounded by) a logarithm of some variable, the quantification is bounded by a polynomial (of this variable) $\log (1 + 1) \log (1 + 1) \log$

Short recursions, long recursions

$$\begin{cases} \overline{f}(\vec{u},0) = u_0\\ \overline{f}(\vec{u},i+1) = h(\vec{u},i,\overline{f}(\vec{u},i)) \end{cases}$$

long recursionsshort recursions $\bar{f}(\vec{u}, y)$ $f(\vec{u}, x) = \bar{f}(\vec{u}, lh_2(x))$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

transition function		long rec	short rec
$z+1$ if $R(\vec{u},i)$, else z R is Δ_0		Δ_0^{\sharp}	Δ ₀ [1]
az	<i>a</i> is a variable	Δ ₀ [2]	
$z+b(\vec{u},i)$	$b(ec{u}, i) \leq \textit{polyn}(ec{u})$	∆ ₀ [♯] [3]	∆ ₀ [4]
	$Graph(b)$ is Δ_0		
$a(\vec{u},i) imes z$	$Graph(a)$ is Δ_0	Δ ₀ [5]	
$(a \times z) \mod m$	a, m are variables	Δ ₀ [6]	

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Sequences issued from Euclid's algorithm

f(a, b, 0) = a f(a, b, 1) = b

 $f(a, b, i + 2) = f(a, b, i) \mod f(a, b, i + 1)$

It is essentially a short recursion and the graph of f is Δ_0 -definable [7]

Linear recurrence sequences

$$L(\vec{x}, i+k) = \sum_{j=0}^{k-1} a_j \times L(\vec{x}, i+j)$$

(*k* is a constant).

The graph of *L* is Δ_0 -definable [8]

Result I

The short recursion with transition function

$$H(a,c,b,d,x,z,i) = \begin{cases} az+b \text{ if } x_i = 1\\ cz+d \text{ if } x_i = 0 \end{cases}$$

defines a function with a Δ_0 - definable graph.

N. B. x_i the i-th binary digit of x

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Result I : some ideas of the proof

N. B. $\bar{x} \in \{0, 1\}^*$ is the binary expansion of x

$$\bar{x} = 0^{\alpha(x,0)} 1^{\beta(x,0)} 0^{\alpha(x,1)} \dots 1^{\beta(x,lh_2(x)-2)} 0^{\alpha(x,lh_2(x)-1)} 1^{\beta(x,lh_2(x)-1)}$$

$$L(x,i) = \sum_{j=0}^{j=i-1} \alpha(x,j) + \beta(x,j)$$
$$L_0(x,i) = \sum_{j=0}^{j=i-1} \alpha(x,j) \qquad L_1(x,i) = \sum_{j=0}^{j=i-1} \beta(x,j)$$

$$F(a, c, b, d, x, L(i)) =$$

 $a^{L_1(x,i)}c^{L_0(x,i)}\overline{F}(a, c, b, d, x, 0)$

$$+\frac{d}{c-1}\left(\sum_{j=0}^{j=i}a^{L_{1}(x,i)-L_{1}(x,j)}c^{L_{0}(x,i)-L_{0}(x,j+1)}(c^{\alpha(x,j)}-1)\right) +\frac{b}{a-1}\left(\sum_{j=0}^{j=i}a^{L_{1}(x,i)-L_{1}(x,j)}c^{L_{0}(x,i)-L_{0}(x,j)}(a^{\beta(x,j)}-1)\right)$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

And similar formulas for

$$L(x,i) \leq y < L(x,i) + \alpha(x,i+1)$$

and

$$L(x,i) + \alpha(i+1) \leq y < L(x,i+1)$$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 = のへで

z = L(x, i) is equivalent to $(\bar{x})_z = 1 \land (\bar{x})_{z-1} = 0 \land i = card\{j < i; (\bar{x})_i = 1 \land (\bar{x})_{i+1} = 0\}$ with $i \le lh_2(x)$

$$\alpha(\mathbf{x}, \mathbf{i}) + \beta(\mathbf{x}, \mathbf{i}) = L(\mathbf{x}, \mathbf{i} + 1) - L(\mathbf{x}, \mathbf{i})$$

 $z = \beta(x, i)$ is equivalent to without paying attention to borders ! $\exists u ((u = L(x, i + 1) + 1) \land z = card\{j < u; (\bar{x})_i = 1 \land (\bar{x})_{i-1} = 1\})$

$$F(a, c, b, d, x, L(i)) =$$

 $a^{L_1(x,i)}c^{L_0(x,i)}\overline{F}(a, c, b, d, x, 0)$

$$+\frac{d}{c-1}\left(\sum_{j=0}^{j=i}a^{L_{1}(x,i)-L_{1}(x,j)}c^{L_{0}(x,i)-L_{0}(x,j+1)}(c^{\alpha(x,j)}-1)\right) +\frac{b}{a-1}\left(\sum_{j=0}^{j=i}a^{L_{1}(x,i)-L_{1}(x,j)}c^{L_{0}(x,i)-L_{0}(x,j)}(a^{\beta(x,j)}-1)\right)$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The main step for studying the case where a, b, c, d are variables :

Lemma. the following relation is Δ_0 -definable

$$\left(Z = \sum_{j=0}^{j=i-1} \gamma(x,j)\right) \land (i \leq lh_2(y))$$

where

* $\forall j \leq i (\gamma(x, j) \leq b(x, y))$ * $\log_2(b(x, y))$ is a polylog. of the variables * the graph of γ and *b* are Δ_0 -definable

- ロト - 4 目 ト - 4 目 ト - 4 目 - 9 9 9

$$\left(Z = \sum_{j=0}^{j=i-1} \gamma(x,j)\right) \land (i \leq lh_2(y))$$

is equivalent to :

 $(i \le lh_2(y)) \land Z \le b(x, y) \times lh_2(y)$ and $\forall p \le 2\log_2(b(x, y) \times lh_2(y)), p$ prime $\left(Z \equiv \sum_{j=0}^{j=i-1} \gamma(x, j)\right) \mod p$

◆ロ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

now

$$\left(\sum_{j=0}^{j=i-1}\gamma(x,j)\right) \mod p$$

is equal to

$$\left(\sum_{k=0}^{k=p-1} k \times Card\{j \le i-1; \gamma(x,j) \equiv k \mod p\}\right) \mod p$$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 = のへで

Result II

The short recursion with transition function

$$h_{a_1,a_2}(m_1,m_2,z) = (a_2(a_1z \mod m_1) \mod m_2)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

defines a function with a Δ_0 - definable graph.

Result II : some ideas of the proof

N. B. u is the initial value of the recursion

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$z = \overline{f}_{a_1,a_2}(m_1,m_2,u,y)$$
 and $0 \le u \le m_2 - 1$

is equivalent to

 $\boldsymbol{z} \in \{0,1,...,\textit{m}_2-1\}^{\textit{y}+1}$ exists such that

 $(0 \leq z \leq m_2 - 1) \land (0 \leq u \leq m_2 - 1) \land (\mathbf{z}_0 = u) \land (\mathbf{z}_y = z) \land$

$$\forall i \leq y - 1 \; \mathbf{z}_{j+1} = h_{a_1,a_2}(m_1,m_2,\mathbf{z}_j)$$

$$z' = h_{a_1,a_2}(m_1,m_2,z)$$
 and $0 \le z \le m_2 - 1$

is equivalent to

 $0 \le z \le m_2 - 1$ and $k_1 \le m_2 - 1$ and $k_2 \le a_2 - 1$ exist such that $\begin{cases}
0 \le z' \le m_2 - 1 \\
z' + k_2 m_2 \le a_2(m_1 - 1) \\
a_1 a_2 z - z' = a_2 k_1 m_1 + k_2 m_2
\end{cases}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$z = \overline{f}_{a_1,a_2}(m_1,m_2,u,y)$$
 and $0 \le x \le m_2 - 1$

is equivalent to

Exist $\mathbf{k_1} \in \{0, 1, ..., m_2 - 1\}^y$ and $\mathbf{k_2} \in \{0, 1, ..., a_2 - 1\}^y$ and $\mathbf{z} \in \{0, 1, ..., m_2 - 1\}^{y+1}$ such that

$$(0 \leq z \leq m_2 - 1) \land (0 \leq u \leq m_2 - 1) \land (\mathbf{z}_0 = u) \land (\mathbf{z}_y = z) \land$$

$$\forall i \leq y$$

$$\begin{cases} \mathbf{z}_i + S_{\mathbf{k}_2}(i-2)m_2 + a_2 S_{\mathbf{k}_1}(i-1)m_1 \le (a_1 a_2)^i (m_1 - 1) \\ \mathbf{z}_i + S_{\mathbf{k}_2}(i-1)m_2 + a_2 S_{\mathbf{k}_1}(i-1)m_1 = (a_1 a_2)^i x \end{cases}$$

where
$$\mathcal{S}_{\mathbf{k}}(i) = \sum_{j=0}^{j=i} \mathbf{k}_{i-j} (a_1 a_2)^j$$

▲□▶▲□▶▲□▶▲□▶ □ のへで

Exist $\mathbf{k_1} \in \{0, 1, ..., m_2 - 1\}^y$ and $\exists K_2 \leq x^{\gamma}$ and $\mathbf{z} \in \{0, 1, ..., m_2 - 1\}^{y+1}$ such that

$$(0 \le z \le m_2 - 1) \land (0 \le u \le m_2 - 1) \land (\mathbf{z}_0 = u) \land (\mathbf{z}_y = z) \land$$

$$\forall i \leq y$$

$$\begin{cases} \mathbf{z}_i + S_{\mathbf{k}_2}(i-2)m_2 + a_2 S_{\mathbf{k}_1}(i-1)m_1 \le (a_1 a_2)^i (m_1 - 1) \\ \mathbf{z}_i + S_{\mathbf{k}_2}(i-1)m_2 + a_2 S_{\mathbf{k}_1}(i-1)m_1 = (a_1 a_2)^i x \end{cases}$$

N.B. if y is some logarithm of the variable x, γ *is a constant*

An easy and essential remark :

If $m_2 \ge 1 + a_2(m_1 - 1)$ then

$$h_{a_1,a_2}(m_1,m_2,z) = a_2(a_1z \mod m_1)$$

 Δ_0 -definability comes from Hesse theorem ([6] in the previous table), even for

$$h(a_1, a_2, m, z) = a_1 (a_2 z \mod m)$$

N.B. we suppose now $m_2 \leq a_2(m_1 - 1)$

・ロト・西ト・ヨト・ヨト・日下 ひゃつ

Exist
$$\mathbf{k_1} \in \{0, 1, ..., m_2 - 1\}^y$$
 and $\exists K_2 \le x_0^{\gamma}$ and $\mathbf{z} \in \{0, 1, ..., m_2 - 1\}^{y+1}$ such that

$$(0 \le z \le m_2 - 1) \land (0 \le u \le m_2 - 1) \land (\mathbf{z}_0 = u) \land (\mathbf{z}_y = z) \land$$

$$\forall i \leq y$$

$$\begin{cases} \mathbf{z}_i + S_{\mathbf{k}_2}(i-2)m_2 + a_2 S_{\mathbf{k}_1}(i-1)m_1 \le (a_1 a_2)^i (m_1 - 1) \\ \mathbf{z}_i + S_{\mathbf{k}_2}(i-1)m_2 + a_2 S_{\mathbf{k}_1}(i-1)m_1 = (a_1 a_2)^i x \end{cases}$$

<ロト < 四ト < 巨ト < 巨ト -

в

Sac

$$(0 \le z \le m_2 - 1) \land$$

$$\forall i \le y$$

$$\begin{cases} \mathbf{z}_i + a_2 S_{\mathbf{k}_1}(i-1)m_1 = (a_1 a_2)^i x - S_{\mathbf{k}_2}(i-1)m_2 \end{cases}$$

N.B. as $z_i \leq m_2 - 1 \leq a_2(m_1 - 1) - 1$ z_i is a remainder and $S_{k_1}(i - 1)$ a quotient $a_{2,\infty,\infty}$

 $\exists K_2 \leq x_0^{\gamma}$ $(0 < z < m_2 - 1) \land (0 < x < m_2 - 1)$ $\forall i \leq y \quad \exists \zeta \leq m_2 - 1 \exists \chi \leq (m_2 - 1) \frac{(a_1 a_2)^{i+1} - 1}{2 \cdot 2 \cdot 1}$ $\begin{cases} \zeta + \chi m_2 + a_2 S_{\mathbf{k}_2}(i-1)m_1 \leq (a_1 a_2)^i (m_1 - 1) \\ \\ \zeta + \chi m_2 + a_2 S_{\mathbf{k}_2}(i-1)m_1 = (a_1 a_2)^i x \end{cases}$ where $S_{\mathbf{k}_{2}}(i) = \sum_{j=0}^{j=i} \mathbf{k}_{2i-j} (a_{1}a_{2})^{j} = \left\lfloor \frac{K_{2}}{(a_{1}a_{2})^{i+1}} \right\rfloor$ and $\zeta = \left((a_{1}a_{2})^{i}x - m_{2}S_{\mathbf{k}_{2}}(i-1) \right) \mod (a_{2}m_{1})$ and $\chi = \left| \frac{(a_1 a_2)^i x - m_2 S_{\mathbf{k_2}}(i-1)}{a_2 m_1} \right|$ < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Consequence 1 :

The short recursion for transition function

$$h_{R,(a,c),(b,d)}(\vec{u},z,i) = \begin{cases} az+b \text{ if } R(\vec{u},i,z) \\ cz+d \text{ if } \neg R(\vec{u},i,z) \end{cases}$$

<ロト < 同ト < 三ト < 三ト < 三 ・ へのく

defines a function with a Δ_0 -definable graph.

Consequence 1 : some ideas of the proof

The idea is that if we define a relation R' as

$$R'(\vec{u}, i)$$
 iff $R(\vec{u}, i, \bar{F}_{R,(a,c),(b,d)}(\vec{u}, i))$

then for all $0 \le i \le y$, we have

$$ar{\mathcal{F}}_{R,(a,c),(b,d)}(ec{u},i) = ar{f}_{Id,R',(a,c),(b,d)}(ec{u},i)$$

▲ロト ▲ □ ト ▲ 三 ト ▲ 三 三 つへぐ

$$egin{aligned} & z = ar{F}_{R,i,(a,c),(b,d)}(ec{u}, \mathit{lh}_2(x)) ext{ is equivalent to} \ & \exists m \in \{0,1\}^{\mathit{lh}_2(x)} \, (orall i)_{i \leq \mathit{lh}_2(x)} \left[R'(ec{u}, i, ar{f}_{\mathit{ld},R_m,(a,c),(b,d)}(ec{u}, i)) \leftrightarrow m_i = 1
ight] \ & \wedge \left[z = ar{f}_{R_m,(a,c),(b,d)}(ec{u}, \mathit{lh}_2(x))
ight] \end{aligned}$$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ □豆 = のへで

where $R_m(i)$ is define by $m_i = 1$.

Variant :

The long recursion for transition function

$$h_R(a,c,b,d,\vec{u},z,i) = \begin{cases} az+b \text{ if } R(\vec{u},i,z) \\ cz+d \text{ if } \neg R(\vec{u},i,z) \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

defines a function with a Δ_0^{\sharp} -definable graph.

Consequence :

The short recursion for transition function

$$h_{R,(a,c),(b,d)}(\vec{u},i,z) = \begin{cases} a(\vec{u})z + b(\vec{u}) \text{ if } R(\vec{u},i,z) \\ c((\vec{u})z + d((\vec{u}) \text{ if } \neg R(\vec{u},i,z)) \end{cases}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへ⊙

defines a function with a Δ_0 -definable graph.

Generalization (work in progress)

The short recursion for transition function $h_{(R_1,R_2,...,R_k),(a_1,c_1),(a_2,c_2),...,(a_k,c_k)}(\vec{u},i,z) = \begin{cases} a_1(\vec{u})z + b_1(\vec{u}) \text{ if } R_1(\vec{u},i,z) \\ \dots \\ a_k(\vec{u})z + b_k(\vec{u}) \text{ if } R_k(\vec{u},i,z) \end{cases}$

defines a function with a Δ_0 -definable graph.

Generalization of the second result.

The short recursion for transition function

$$h_{a_1,b_1,a_2,b_2}(m_1,m_2,z) = (a_2((a_1x+b_1) \mod m_1) + b_2) \mod m_2$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

defines a function with a Δ_0 -definable graph.

Conclusion

A question is now to give a natural characterization of a class of functions *h* with a Δ_0 -definable graph such that *f* defined by

$$\begin{cases} f(\vec{u}, 0) = u_0 \\ f(\vec{u}, i+1) = h(\vec{u}, i, f(i)) \end{cases}$$

-

Sac

has a Δ_0 -definable graph.

References

[1] and [4]) A. Woods, *Some problems in logic and number theory and their connections*, Ph.D. thesis, University of Manchester, Manchester, 1981, in *Studies in Weak Arithmetics, Vol. 2*, ed. Edited by P. Cégielski, Ch. Cornaros, and C. Dimitracopoulos, CSLI Lecture Notes (211), 2013.

[2] J. Bennett, *On spectra*, Ph.D. thesis, Princeton University, Princeton, New Jersey, USA, 1962, and H. Gaifman and C. Dimitracopoulos. *Fragments of Peano's arithmetic and the MRDP Theorem*, in Logic and Algorithmic, Geneve, pp. 187-206, 1982.

[3] H.-A. E. and M. More, *Rudimentary relations and primitive recursion : a toolbox*, T. C. S., vol. 193, n. 1-2, pp. 129-148, 1998.

References

[5] A. Berarducci & P. D'Aquino, Δ_0 -complexity of the relation $y = \prod_{i \le n} F$, APAL 75 (1-2) :49-56, 1995.

[6] W. Hesse, E. Allender, D.A.M. Barrington, *Uniform constant-depth threshold circuits for division and iterated multiplication*, J. Comput. Syst. Sci. 65, pp. 695-716, 2002.

[7] H.-A. E. Δ_0 -definability of the denumerant with one plus three variables, in Studies in Weak Arithmetics, ... Vol. 2 (opt. cit.)

[8] H.-A. E. & M. More, (opt. cit.) and independently A. Berarducci & B. Intrigila *Linear Recurrence Relations are* Δ_0 *Definable* in *Logic and Foundations of Mathematics Selected Contributed Papers of the Tenth International Congress of Logic, Methodology and Philosophy of Science, Florence, 1995*, 1999.