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A major open problem

Ay C &

Equality or not ?



A major open problem in other terms

Q 1. Let us suppose that

f(& 0) = Up
{ f(u,i+1) = h(a,i f(i)
and
{ f(d,y) < Max{u,y}

The graph of his Ay — definable

Is the graph of f Aq-definable ?



A major open problem in other terms

Q 2. Find (if any) a function h with a Ag-definable graph such
that, for

f(l._j, 0) = Up
{ f(d,i+1) = h(d,i, (i)
with
f(d,y) < Max{u,y}

the graph of f is not Ay-definable.



A major open problem in other terms

Q 3. Find a significant class of functions h with a Ay-definable
graph such that f defined by

f(U,O) = Up

f(u,i+1) = h(a,i f(i)
has a Aq-definable graph.

This is the question considered her.
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Basic informations on Ay—definability

e z = xV IS Ag—definable

e The graph of the following function f

f(0) =0
{ f(i+1)
f(i+1)

IS NOT KNOWN TO BE Ap—definable

(f(i)+1) mod2 if /is prime
f(i) if / is not prime

e BUT the graph of f(lhy(x)) IS Ag—definable

N.B. Iho(x) is the length of the binary representation of x.



Basic informations on Ay—definability

The method of proof :



Basic informations on Ay—definability

The method of proof :

f(0)=0
f(i+1 (f(/)+1) mod2 ifiis prime
+1 f(i) if i is not prime



Basic informations on Ay—definability

The method of proof :

f(0)=0
f(i+1)= (f(i)+1) mod2 ifiis prime
i+1)= f(i) if i is not prime
z = f(y) iff (20,21, .-, 2y) € {0,1}Y T exists such that
z=0
Vi<y-—1 {

Zip1= (zi+1) mod2 if/is prime
Ziyq1 = Zj if i is not



Basic informations on Ay—definability

The method of proof :

f(0)=0
f(i+1)= (f(i)+1) mod2 ifiis prime
i+1)= f(i) if i is not prime

z = f(y) iff (20, 21, ..., zy) € {0,1} T exists such that 3Z < 2Y*

. Zi,1= (Zi+1) mod2 ifis prime
visy-1 {z,-H: Z if  is not
N. B. Z; is the i-th digit of the binary representation of Z.



Basic informations on Ay—definability

The method of proof :

f(0)=0
f(i+1)= (f(i)+1) mod2 ifiis prime
i+1)

f( = (i) if i is not prime
z = f(y) iff 3z < 2yt
Zy =
. Zii1= (Zi+1) mod2 ifis prime
<vy-—
visy-1 { Zi1= Z if i is not

N. B. If y is (bounded by) a logarithm of some variable,
the quantification is bounded by a polynomial (of this variable)



Basic informations on Ag—definability and recursions

Short recursions, long recursions

f(lj, 0) = U
f(d,i+1) = h(ad,i f(d,i))
long recursions short recursions

7(d.y) 1(d, x) = (8, Iha(x))



Basic informations on Ag—definability and recursions

transition function long rec | short rec
z+1if R(d,i),else z  Ris Ao Al Ao [1]
az ais a variable A [2]
. b(d, i) < polyn(d)
z+ b(,i) ALI3] | A [4]
Graph(b) is Ay

a(u,i) x z Graph(a) is A Ag [5]
(axz)modm  a marevariables | Ay [6]




Basic informations on Ag—definability and recursions

Sequences issued from Euclid’s algorithm
f(a,b,0) =a fla,b,1)=b

f(a,b,i+2) = f(a, b,i) mod f(a,b,i+ 1)

It is essentially a short recursion and the graph of f is
Ag—definable [7]



Basic informations on Ag—definability and recursions

Linear recurrence sequences

k—1
L(X,i+k)=> ax L(X,i+j)
j=0

(k is a constant).

The graph of L is Ap—definable [8]



Main results and ideas of proofs



Main results and ideas of proofs
Result |

The short recursion with transition function

az+bif x; =1

H(a,c,b,d,x, z,i) —{ cz+difx;=0

defines a function with a Ap- definable graph.
N. B. x; the i-th binary digit of x



Main results and ideas of proofs

Result | : some ideas of the proof

N. B. X € {0,1}* is the binary expansion of x

% — 02(x0)1B8(x0)galx1)  {B(x,Iha(x)—-2)galx,Iha(x)—1)4 B(X.Iha(x)—1)



Main results and ideas of proofs

F(a,c,b,d, x,L(i)) =

al1(x.h) CLo(Xvi)[_-_(a7 ¢, b,d, x,0)

+ d (Z aL1 (Xvi)_L1 (X,j)CLo(X,i)—Lo(X,j+1)(C(X(X,j) — 1))

c—11\+4
j=0

o

j=i
a1 (Z gk ()= L1 06) gLo()~Lo(x) (2800) _ ))

=0



Main results and ideas of proofs

And similar formulas for
L(x, 1) <y < L(x, i) + a(x,i +1)

and
Lix,)+a(i+1)<y<L(x,i+1)



Main results and ideas of proofs

z = L(x,i) is equivalent to
X)z=1AN(X)z_1=0Ai=card{j <i;(X)j=1A(X)jr1 =0}

with i < lha(x)

a(x, i)+ B(x, i) = L(x,i+1) — L(x,i)

z = B(x, ) is equivalent to without paying attention to borders !

W ((u=Lx,i+1)+1)Az=card{j < u;(X)i=1A(X)i_1 =1})



Main results and ideas of proofs

F(a,c,b,d, x,L(i)) =

al1(x.h) CLo(Xvi)[_-_(a7 ¢, b,d, x,0)

+ d (Z aL1 (Xvi)_L1 (X,j)CLo(X,i)—Lo(X,j+1)(C(X(X,j) — 1))

c—11\+4
j=0

o

j=i
a1 (Z gk ()= L1 06) gLo()~Lo(x) (2800) _ ))

=0



Main results and ideas of proofs

The main step for studying the case where a, b, c,d are va-
riables :

Lemma. the following relation is Ay—definable

j=i
§
j:
where

*Vj < i(v(x.)) < b(x.y))
= log,(b(x, y)) is a polylog. of the variables
* the graph of v and b are Ap—definable

1

V(ij)) A (i < Iha(y)

o



Main results and ideas of proofs

is equivalent to :
(I < lha(y)) N Z < b(x,y) x Iha(y) and

Vp < 2log, (b(x,y) x Iha(y)), p prime

J=i—1
(z = fy(x,/)) mod p
j:

o



Main results and ideas of proofs

now

is equal to

k:p—1
( > kxCard{j<i—1;4(x,)) = kmodp}) mod p
k=0



Main results and ideas of proofs



Main results and ideas of proofs

Result Il

The short recursion with transition function

ha, a,(My, My, ) = (&2 (@12 mod my) mod my)

defines a function with a Ag- definable graph.



Main results and ideas of proofs

Result Il : some ideas of the proof

N. B. u is the initial value of the recursion
Z = fay 2, (M1, Mo, u,y)and 0 < u < mp — 1
is equivalent to

zc{0,1,...,my — 1}Y*+1 exists such that
O0<z<m-1)ANO0<u<<m—-1)A (2o =U)A(Zy = 2)A

Vi < Y- 1 zj+1 = ha1,a2(m17m27zj)



Main results and ideas of proofs

Z' = hg g,(M,me,z)and 0 < z < mp — 1

is equivalent to

0<z<m—1and k1 <m,—1and k> < a, — 1 exist such that
0<ZzZ<m—1
Z'+ komp < ax(my — 1)

a1a0z — Z' = ackymy + komo



Main results and ideas of proofs
Z = fa, a,(My, Mo, u,y)and 0 < x < my — 1

is equivalent to



Main results and ideas of proofs

Exist ky € {0,1,....,m, — 1}V and ko € {0,1,...,a — 1}Y and
zc{0,1,...,mp — 1}*! such that

0<z<m-N)ANO0<Su<m—1)A (20 =U)A(Zy = Z)A
Vi<y
{ z,+8k2(i—2)m2+a28k1(i— 1)m1 < (a1ag)’(m1 — 1)

2 + S, (i — 1)mo + @Sk, (i — 1)my = (ara)'x

j=i
where S(i) = > ki_j(ajaz)
j=0



Main results and ideas of proofs

Exist ky € {0,1,....mo — 1}V and 3K, < x7 and
zc{0,1,...,mp, — 1}Y* such that

O<z<m-N)ANO0<Su<m—1)A (20 =U)A(Zy = Z)A
Vi<y

2, + Sk, (i — 2)mp 4 @Sk, (i — 1)my < (aya)'(my — 1)
{ 2 + S, (i — 1)mo + @Sk, (i — 1)my = (ara)'x

N.B. ify is some logarithm of the variable x, - is a constant



Main results and ideas of proofs

An easy and essential remark :
If mo>1+as(my —1)then

ha1,az(m1 ) m27z) = a» (a1Z mod m1)

Ag-definability comes from Hesse theorem ([6] in the previous
table), even for

h(ay, a, m,z) = ay (822 mod m)

N.B. we suppose now mo < as(my — 1)



Main results and ideas of proofs

Exist ky € {0,1,....m> — 1}V and 3K, < x; and
zc{0,1,...,my — 1}Y*1 such that

O<z<m—-1N)ANO0<u<m—1)A (20 =U)A(Zy = 2Z)A
Vi<y
{ z,-+8k2(i—2)m2+a28k1(i— 1)m1 < (a1a2)’(m1 — 1)

2 + Sg, (i — 1)mo + @Sk, (i — 1)my = (ara)'x



Main results and ideas of proofs

(O§z§m2—1)/\

Vi<y

{ 2+ ap S, (i —1)my = (a1a2)'x — Sy, (I — 1)mp

NB aszi<m,—1<a(m —1)—1
z; is a remainder and S, (i — 1) a quotient



Main results and ideas of proofs

ElKg < Xg

(0§z§m2—1)/\(0§x§m2—1)

Vi<y Hggmzfﬂxg(mszw

arap—1
{ C+ xMo + @Sk, (i — 1)my < (a1az)'(my — 1)

C+ XMy + @Sk, (i — 1)my = (ara)'x

j=i
. . Ko
— o j_— | "2
and ¢ = ((ara2)'x — mS, (i — 1)) mod (a2my)

(a182)' x—mp Sy, (i—1)
- am

andx—{



Some generalizations and conclusion



Some generalizations and conclusion

Consequence 1 :

The short recursion for transition function

az + bif R(d,1,z)

hR.(a,c) (b,a) (U Z, 1) = { cz + dif =R(U, i, z)

defines a function with a Ap-definable graph.



Some generalizations and conclusion

Consequence 1 : some ideas of the proof

The idea is that if we define a relation R’ as
R'(4, i) iff R(, 1, Fa (ac) (b,a)(Us 1))

then for all 0 < i < y, we have

Fr,ac).(b,d)(Us 1) = fia ar (a.6), (b, (U 1)



Some generalizations and conclusion

Z = FRj (ac) (b,d)(U: Ih2(x)) is equivalent to
3m € {0, 1317209 (Vi) oy [R(G, 1, Fig, R (2,0)(0,c) (8 1)) > My = 1]

N[z = fa, (ac). (b.a) (U, 12(X))]

where Rp(i) is define by m; = 1.



Some generalizations and conclusion

Variant :

The long recursion for transition function

az+ bif R(4,i,z)

hR(av c, b7 d’ u,z, I) - { cz+d lf_‘R(Ua i7 Z)

defines a function with a A’-definable graph.



Some generalizations and conclusion

Consequence :

The short recursion for transition function

a(i)z + b(@) it R, 1, z)

ha(ac),(b,a) (U, 1, 2) =
o((B)z + d((@) if ~R(, i, 2)

defines a function with a Ay-definable graph.



Some generalizations and conclusion

Generalization (work in progress)

The short recursion for transition function
h(Ry Ry.....Re)(a1,60), (82,02, (0 (U3 1, Z) =

{ aj (U)z + by (U) if Ry (U, i,Z)

ax(U)z + by (0) if R(U, i, 2)

defines a function with a Ap-definable graph.



Some generalizations and conclusion

Generalization of the second result.
The short recursion for transition function

ha, by ap,b, (M1, M2, 2) = (82 ((@1x + by) mod my) + bo) mod my

defines a function with a Ay-definable graph.



Some generalizations and conclusion

Conclusion

A question is now to give a natural characterization of a class of
functions h with a Ag-definable graph such that f defined by

f(ﬁ70) = Up

f(u,i+1) = h(a,i f(i)

has a Aq-definable graph.
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