Indiscernibles and Satisfaction Classes in Arithmetic

Ali Enayat
Sep 27, 2023
JAF42, Karlovassi, Greece

Indiscernibles

- Indiscernibles were introduced in model theory in the celebrated work of Ehrenfeucht and Mostowski 1956. The motivation for their work was a question of Hasenjaeger: Is there a model of true arithmetic that admits a nontrivial automorphism?
- Theorem. (Ehrenfeucht and Mostwoski). Every first order theory with an infinite model has a model that admits a nontrivial automorphism.
- Definition. Given an \mathcal{L}-structure \mathcal{M}, and some linear order $(I,<)$ where $I \subseteq M$, we say that $(I,<)$ is a set of order indiscernibles in \mathcal{M} if for any \mathcal{L}-formula $\varphi\left(x_{1}, \cdots, x_{n}\right)$, and any two n-tuples \bar{i} and \bar{j} from $[l]^{n}$, we have:

$$
\mathcal{M} \models \varphi\left(i_{1}, \cdots, i_{n}\right) \leftrightarrow \varphi\left(j_{1}, \cdots, j_{n}\right) .
$$

- Theorem. (Ehrenfeucht and Mostowski). Given a first order theory T with an infinite model, and any linearly ordered set $(X,<)$, there is a model M of T that has a copy of $(X,<)$ as order indiscernibles.
- Indiscernibles have proved to be pervasive in both model theory, and indispensible in the study of large cardinals in set theory.

Indiscernibles and PA

- Every extension of PA has a model that carries no pair of indiscernibles. Indeed such models can be arranged to be of any infinite power $\leq 2^{\aleph_{0}}$, using "Gaifman's machinery".
- Every recursively saturated model \mathcal{M} of PA (of any cardinality) carries an infinite set of indiscernibles.
- Indiscernibles naturally arise in models of PA obtained by "iterating a Gaifman minimal type".
- By a 1982 theorem of Schmerl, which answered a question of Macintyre, given a countable recursively satuated model \mathcal{M} of PA, we can even find a set of order indiscernibles that generate \mathcal{M} (via the definable terms).

Axioms of PAI

Let $\mathcal{L}_{\mathrm{PA}}(I)=\mathcal{L}_{\mathrm{PA}} \cup\{I\}$, where I is a unary predicate.
PAI is the theory formulated in $\mathcal{L}_{\mathrm{PA}}(I)$ whose axioms consist of the three groups below.

- Note that we often write $x \in I$ instead of $I(x)$.
(1) PA^{*}, i.e., $\operatorname{PA}(\mathcal{L})$ for $\mathcal{L}=\mathcal{L}_{\mathrm{PA}}(I)$.
(2) The sentence expressing " I is a unbounded in the universe" .
(3) The scheme $\operatorname{Indis}(I)=\left\{\operatorname{Indis}_{\varphi}(I): \varphi\right.$ is a formula of $\left.\mathcal{L}_{\mathrm{PA}}\right\}$. More explicitly, for each n-ary formula $\varphi\left(v_{1}, \cdots, v_{n}\right)$ in the language of $\operatorname{PA}, \operatorname{Indis}_{\varphi}(I)$ is the sentence:

$$
\begin{gathered}
\forall x_{1} \in I \cdots \forall x_{n} \in I \forall y_{1} \in I \cdots \forall y_{n} \in I \\
{\left[\left(x_{1}<\cdots<x_{n}\right) \wedge\left(y_{1}<\cdots<y_{n}\right) \rightarrow\left(\varphi\left(x_{1}, \cdots, x_{n}\right) \leftrightarrow \varphi\left(y_{1}, \cdots, y_{n}\right)\right)\right] .}
\end{gathered}
$$

Elementary considerations (1)

- $(\mathcal{M}, I) \models$ PAI iff the following three conditions are satisfied:
(1) $(\mathcal{M}, I) \models \mathrm{PA}^{*}$,
(2) I is unbounded in \mathcal{M}, and
(3) $(I,<)$ is a set of order indiscernibles over \mathcal{M}.
- Let PAI ${ }^{\circ}$ be the weakening of PAI in which the scheme $\operatorname{Indis}_{\mathcal{L}_{\mathrm{A}}}(I)$ is weakened to the scheme $\operatorname{Indis}^{\circ}(I)=\left\{\operatorname{Indis}_{\varphi}^{\circ}(I): \varphi\right.$ is an $\mathcal{L}_{\text {PA }}$-formula $\}$, where $\operatorname{Indis}_{\varphi}^{\circ}(I)$ is the following sentence:

$$
\begin{gathered}
\forall x_{1} \in I \cdots \forall x_{n} \in I \forall y_{1} \in I \cdots \forall y_{n} \in I \\
{\left[\left(x_{1}<\cdots<x_{n}\right) \wedge\left(y_{1}<\cdots<y_{n}\right) \wedge\left(\ulcorner\varphi\urcorner<x_{1} \wedge\ulcorner\varphi\urcorner<y_{1}\right)\right.} \\
\left.\rightarrow\left(\varphi\left(x_{1}, \cdots, x_{n}\right) \leftrightarrow \varphi\left(y_{1}, \cdots, y_{n}\right)\right)\right] .
\end{gathered}
$$

Elementary considerations (2)

Proposition. Let \mathbb{N} be the standard model of PA.
(1) \mathbb{N} does not have an expansion to a model of PAI (equivalently: Every model of PAI is nonstandard).
(2) \mathbb{N} has an expansion to PAI°.
(3) If (\mathcal{M}, I) is a nonstandard model of PAI°, and c is any nonstandard element of \mathcal{M}, then $\left(\mathcal{M}, I^{>c}\right) \models$ PAI, where $I^{>c}=\{i \in I: i>c\}$.

The interpretability lemma

- Interpretability Lemma. Given any $\mathcal{M} \vDash \mathrm{PA}$, and any finite set F of axioms of PAI, there is a parameter free definable subset I of \mathcal{M} such that $(\mathcal{M}, I) \models F$. More succinctly: Each finite subtheory of PAI has an " ω-interpretation" in PA.
- Corollary 1. PAI is a conservative extension of PA.
- Corollary 2. PAI is interpretable in PA, hence PA and PAI are mutually interpretable. But they are not bi-interpretable.
- Corollary 3. PAI is interpretable in ACA_{0}, but not vice versa.

Satisfaction classes and Truth classes

- Let $\operatorname{Sat}(S, x)$ be a formula in the language $\mathcal{L}_{\mathrm{PA}} \cup\{S\}$ (where S is a binary predicate) that expresses " S satisfies Tarski's compositional clauses for all formulae of length $\leq x$ ".
- UTB is the theory formulated in $\mathcal{L}_{\mathrm{PA}} \cup\{T\}$ (where T is a unary predicate) whose axioms consist of PA* plus uniform Tarski biconditionals, i.e., sentences of the form $\forall x[\varphi(x) \leftrightarrow T(\ulcorner\varphi(\dot{x})\urcorner)]$, as φ ranges in the metatheory over arithmetical formulae.
- Given a nonstandard model \mathcal{M} of PA, and a subset S of M, we say that S is a partial inductive satisfaction class if $(\mathcal{M}, S) \models \mathrm{PA}^{*}$ and for some nonstandard $c \in M$, $(\mathcal{M}, S) \models \forall i<c \operatorname{Sat}(S, i)$.
- Folklore Proposition. A nonstandard model \mathcal{M} of PA carries a partial inductive satisfaction class iff \mathcal{M} has an expansion to UTB.
- Theorem (Barwise and Schlipf 1978). Suppose \mathcal{M} is a model of PA. (1) If \mathcal{M} is nonstandard (of any cardinality) and expandable to UTB, then \mathcal{M} is recursively saturated.
(2) If \mathcal{M} is countable and recursively saturated, then \mathcal{M} has an expansion to UTB.

Theorem A

Theorem A. A nonstandard model \mathcal{M} of PA (of any cardinality) has an expansion to a model of PAI iff \mathcal{M} carries a partial inductive satisfaction class.

Proof. We first verify the right-to-left direction. Suppose S is a partial inductive satisfaction class over \mathcal{M}. Consider the formula $\varphi(S, x)$ in the extended language, where the predicate S is added to $\mathcal{L}_{\mathrm{PA}}$, that expresses:
"there is a definable (in the sense of S) unbounded homogeneous set for all $\mathcal{L}_{\mathrm{PA}}-$ formulae of length at most $x "$.

By the schematic provability of Ramsey's theorem in PA, for each $n \in \omega$, $(\mathcal{M}, S) \models \varphi(n)$, so by overspill, $(\mathcal{M}, S) \models \varphi(c)$ holds for some nonstandard $c \in M$. Hence there is an unbounded subset I of M that is indiscernibles over \mathcal{M} such that I is parametrically definable in (\mathcal{M}, S), thus $(\mathcal{M}, I) \models$ PAI.

The above argument first appeared in a 1982 paper of Roman Kossak.

Tools needed for for the other direction of Theorem A (1)

- For each $n+1$-ary arithmetical formula $\varphi(\bar{x}, y), \operatorname{Apart}_{\varphi}$ is the following $\mathcal{L}_{\mathrm{PA}}(I)$ formula:

$$
\forall i \in I \forall j \in I\left[i<j \rightarrow \forall x_{1}, \cdots, x_{n}<i(\exists y \varphi(\bar{x}, y) \rightarrow \exists y<j \varphi(\bar{x}, y))\right] .
$$

- Apartness Lemma. For every arithmetical formula φ,

$$
\text { PAI } \vdash \mathrm{Apart}_{\varphi} .
$$

- Thus in a model of PAI, IF $i<j$ are both in I and $f(\bar{x})$ is an arithmetically definable function, THEN $f(\bar{a})<j$ for every $\bar{a}<i$.

Tools needed for the other direction of Theorem A (2)

- Suppose $\varphi\left(\bar{x}, z_{0}, z_{1}, \cdots, z_{r}\right)$ be an $(n+1+r)$-ary arithmetical formula.
- Let Indis ${ }_{\varphi}^{+}$be the following sentence of $\mathcal{L}_{\mathrm{PA}}(I)$:

$$
\begin{gathered}
\forall i \in I \forall \bar{j} \in[I]^{r} \forall \bar{k} \in[I]^{r}\left[\left(i<j_{1}\right) \wedge\left(i<k_{1}\right)\right] \longrightarrow \\
{\left[\forall x_{1}, \cdots, x_{n}<i\left(\varphi\left(\bar{x}, i, j_{1}, \cdots, j_{r}\right) \leftrightarrow \varphi\left(\bar{x}, i, k_{1}, \cdots, k_{r}\right)\right)\right] .}
\end{gathered}
$$

- Diagonal Indiscernibility Lemma. For every arithmetical formula φ,

$$
\mathrm{PAI} \vdash \mathrm{Indis}_{\varphi}^{+} .
$$

Picture for diagonal indiscernibility

Tools needed for the other direction of Theorem A (3)

Theorem. There is a formula $\sigma(x)$ in the language $\mathcal{L}_{\mathrm{PA}}(I)$ such that for all models $(\mathcal{M}, I) \models \mathrm{PAI}, \sigma^{\mathcal{M}}$ is an inductive partial satisfaction class on \mathcal{M}.

Proof. We first define a recursive function that transforms each formula $\varphi(\bar{x}) \in \operatorname{Form}_{n}\left(\mathcal{L}_{\mathrm{PA}}\right)$ into a Δ_{0}-formula $\varphi^{*}\left(\bar{x}, z_{1}, \cdots, z_{k}\right)$, where $\left\{z_{n}: 1 \leq n \in \omega\right\}$ is a fresh supply of variables added to the syntax of first order logic (the definition of φ^{*} below will make it clear that k is the \exists-depth of φ). In what follows x and y range over the set of variables before the addition of the fresh stock of $z_{n} s$. We assume that the only logical constants used in φ are $\{\neg, \vee, \exists\}$ and none of the fresh variables z_{n} occurs in φ.
(1) If φ is atomic, then $\varphi^{*}=\varphi$.
(2) $(\neg \varphi)^{*}=\neg \varphi^{*}$.
(3) $\left(\varphi_{1} \vee \varphi_{2}\right)^{*}=\varphi_{1}^{*} \vee \varphi_{2}^{*}$.
(4) $(\exists y \varphi)^{*}=\exists y<z_{1} \widetilde{\varphi^{*}}$, where $\varphi^{*}=\varphi^{*}\left(\bar{x}, y, z_{1}, \cdots, z_{k}\right)$, and $\widetilde{\varphi^{*}}$ is the result of replacing z_{i} with z_{i+1} in φ^{*} for each $1 \leq i \leq k$.

Another view of the transformation $\varphi \mapsto \varphi^{*}$

- The transformation $\varphi \mapsto \varphi^{*}$ can be reformulated as follows: Given $\varphi(\bar{x}) \in \operatorname{Form}_{n}\left(\mathcal{L}_{\mathrm{PA}}\right)$, first find an equivalent formula $\varphi^{\prime}(\bar{x})$ in the prenex normal form:

$$
\varphi^{\prime}(\bar{x})=\forall v_{1} \exists w_{1} \cdots \delta\left(v_{1}, w_{1} \cdots, v_{k}, w_{k}, \bar{x}\right),
$$

where $\delta \in \Delta_{0}$, and then define $(\varphi(\bar{x}))^{*}$ to be:

$$
\forall v_{1}<z_{1} \exists w_{1}<z_{2} \cdots \delta\left(v_{1}, w_{1}, \cdots, v_{k}, w_{k}, \bar{x}\right)
$$

- A similar transformation is found in the proof of the Paris-Harrington Theorem.

Tools needed for the other direction of Theorem A (4)

Lemma. Suppose $\varphi=\varphi(\bar{x}) \in \operatorname{Form}_{n}\left(\mathcal{L}_{\mathrm{PA}}\right)$, and $\varphi^{*}=\varphi^{*}\left(\bar{x}, z_{1}, \cdots, z_{k}\right)$, $(\mathcal{M}, I) \models$ PAI, $\bar{a} \in M^{n}$, and $\left(i_{1}, \cdots, i_{k}\right) \in[I]^{k}$ such that there is some $j \in I$ with $j<i_{1}$ and each $a_{i}<j$ Then:

$$
\mathcal{M} \vDash \varphi(\bar{a}) \longleftrightarrow \varphi^{*}\left(\bar{a}, i_{1}, \cdots, i_{k}\right) .
$$

The following definition takes place in (\mathcal{M}, I) : Given any $\varphi(\bar{x}) \in \operatorname{Form}_{n}\left(\mathcal{L}_{\mathrm{PA}}\right)$ and any n-tuple \bar{a}, calculate $(\varphi(\bar{x}))^{*}=\varphi^{*}\left(\bar{x}, z_{1}, \cdots, z_{k}\right)$, and let $j \in I$ be the first element of I such that each $a_{i}<j$, and then let and i_{1}, \cdots, i_{k} to be the first k elements of I that are above j. Then define S by:

$$
\varphi(\bar{a}) \in S \text { iff } \varphi^{*}\left(\bar{a}, i_{1}, \cdots, i_{k}\right) \in \operatorname{Sat}_{\Delta_{0}},
$$

where $\operatorname{Sat}_{\Delta_{0}}$ is the canonical Σ_{1}-definable satisfaction predicate for Δ_{0} formulae of arithmetic.
S is an inductive partial satisfaction class by the lemma. QED (Theorem A).

Corollaries of Theorem A

Corollary. Suppose $\mathcal{M} \vDash \mathrm{PA}$.
(a) There is no parametrically \mathcal{M}-definable subset I of M such that $(\mathcal{M}, I) \models$ PAI. Therefore no rather classless model of PA has an expansion to a model of PAI.
(b) If \mathcal{M} has an expansion to a model of PAI, then \mathcal{M} is recursively saturated; and the converse holds if \mathcal{M} is countable.
(c) If \mathcal{M} has an expansion $(\mathcal{M}, I) \models$ PAI, then $M \neq M_{I}$, where M_{I} consists of elements of M that are definable in $(\mathcal{M}, i)_{i \in I}$, in constrast with Schmerl's result from the first page.

Remark. Every countable recursively saturated model \mathcal{M} of PA has an expansion $(\mathcal{M}, I) \models$ PAI such that (\mathcal{M}, I) is pointwise definable.

Preparations for Theorem B

- S is an inductive full satisfaction class on a model \mathcal{M} of PA if $(\mathcal{M}, S) \models \mathrm{PA}^{*}$, and S satisfies Tarski's compositional clauses for a truth predicate for all arithmetical formulae in the sense of \mathcal{M}.This corresponds to the truth predicate in the truth theory known as CT (compositional truth with full induction).
- Given a recursively axiomatized theory T extending $\mathrm{I} \Delta_{0}+\operatorname{Exp}$, the uniform reflection scheme over T, denoted $\operatorname{RFN}(T)$, is defined via:

$$
\operatorname{RFN}(T):=\left\{\forall x\left(\operatorname{Prov}_{T}(\ulcorner\varphi(\dot{x})\urcorner) \rightarrow \varphi(x)\right): \varphi(x) \in \operatorname{Form}_{1}\right\} .
$$

The sequence of schemes $\operatorname{RFN}^{\alpha}(T)$, where α is recursive ordinal α, is defined as follows:
(1) $\operatorname{RFN}^{0}(T)=T$;
(2) $\operatorname{RFN}^{\alpha+1}(T)=\operatorname{RFN}\left(\operatorname{RFN}^{\alpha+1}(T)\right)$;
(3) $\operatorname{RFN}^{\gamma}(T)=\bigcup_{\alpha<\gamma} \operatorname{RFN}^{\alpha}(T)$.

- Theorem. (Folklore) The arithmetical consequences of CT are axiomatized by $\mathrm{PA}+\mathrm{RFN}^{\varepsilon_{0}}(\mathrm{PA})$.

Theorem B.

- Theorem B. There is a sentence α in the language obtained by adding a unary predicate $I(x)$ to the language of arithmetic such that given any nonstandard model \mathcal{M} of PA of any cardinality,
\mathcal{M} has an expansion to PAI $+\alpha$ iff \mathcal{M} has a inductive full satisfaction class.

Fragments of PAI

- For $n \in \omega, \mathrm{PAI}_{n}$ is the subsystem of PAI in which the extended induction scheme involving I is limited to $\Sigma_{n}(I)$-formulae, i.e., the axioms of PAI_{n} consist of PA plus the fragment $\mathrm{I} \Sigma_{n}(I)$ of $\mathrm{PA}(I)$, plus axioms asserting the unboundedness and indiscernibility of I.
- PAI^{-}is the subsystem of PAI_{0} with no extended induction scheme involving I, so the axioms of PAI^{-}consist of PA plus axioms asserting the unboundedness and indiscernibility of I.
- Given $\mathcal{M} \vDash \mathrm{PA}$, it is evident that:
(1) $(\mathcal{M}, I) \models$ PAI $^{-}$iff I is an unbounded set of indiscernibles in \mathcal{M}, and
(2) $(\mathcal{M}, I) \models \mathrm{PAI}_{0}$ iff PAI^{-}holds and I is piecewise-coded in \mathcal{M}.

Two results about fragments of PAI

- Theorem 1. Every model of PA has an elementary end extension that has an expansion to a model of PAI_{0}, but not to a model of PAI.
- Theorem 2. If \mathcal{M} is a model of countable cofinality of PA that is expandable to a model of PAI^{-}, then \mathcal{M} is expandable to a model of PAI_{0}. However, every countable model of PA has an uncountable elementary end extension that is expandable to a model of PAI^{-}, but not to PAI_{0}.

Questions

- Question 1. Does Theorem 1 lend itself to a hierarchical generalization? In other words, is it true that for every $n \in \omega$, every model of PA has an elementary end extension that has an expansion to a model of PAI_{n}, but not to a model of PAI_{n+1} ? It is not even clear how to build a model of PAI_{n} for $n \in \omega$ that is not a model of PAI_{n+1}.
- Question 2. Is there a model \mathcal{M} of PA such that \mathcal{M} has an expansion to a model of PAI_{n} for each $n \in \omega$, BUT \mathcal{M} has no expansion to a model of PAI?
- Question 3. Is there a set of sentences Σ in the language obtained by adding a unary predicate $I(x)$ to the language of arithmetic such that given any nonstandard model \mathcal{M} of PA of any cardinality, \mathcal{M} an expansion to a model of $\mathrm{PAI}^{-}+\Sigma$ iff \mathcal{M} has a full satisfaction class?
- This talk was based on my paper with the same title on arXiv 2022.

Thank you for your attention

