Indiscernibles and Satisfaction Classes in Arithmetic

Ali Enayat

Sep 27, 2023 JAF42, Karlovassi, Greece

Indiscernibles

- Indiscernibles were introduced in model theory in the celebrated work of Ehrenfeucht and Mostowski 1956. The motivation for their work was a question of Hasenjaeger: Is there a model of true arithmetic that admits a nontrivial automorphism?
- **Theorem.** (Ehrenfeucht and Mostwoski). Every first order theory with an infinite model has a model that admits a nontrivial automorphism.
- Definition. Given an *L*-structure *M*, and some linear order (*I*, <) where
 I ⊆ *M*, we say that (*I*, <) is a set of order indiscernibles in *M* if for any
 L-formula φ(x₁, ···, x_n), and any two *n*-tuples *i* and *j* from [*I*]ⁿ, we have:

 $\mathcal{M} \models \varphi(i_1, \cdots, i_n) \leftrightarrow \varphi(j_1, \cdots, j_n).$

- **Theorem.** (Ehrenfeucht and Mostowski). Given a first order theory T with an infinite model, and any linearly ordered set (X, <), there is a model M of T that has a copy of (X, <) as order indiscernibles.
- Indiscernibles have proved to be pervasive in both model theory, and indispensible in the study of large cardinals in set theory.

- Every extension of PA has a model that carries no pair of indiscernibles. Indeed such models can be arranged to be of any infinite power $\leq 2^{\aleph_0}$, using "Gaifman's machinery".
- Every recursively saturated model \mathcal{M} of PA (of any cardinality) carries an infinite set of indiscernibles.
- Indiscernibles naturally arise in models of PA obtained by "iterating a Gaifman minimal type".
- By a 1982 theorem of Schmerl, which answered a question of Macintyre, given a countable recursively satuated model \mathcal{M} of PA, we can even find a set of order indiscernibles that generate \mathcal{M} (via the definable terms).

Axioms of PAI

Let $\mathcal{L}_{PA}(I) = \mathcal{L}_{PA} \cup \{I\}$, where I is a unary predicate. PAI is the theory formulated in $\mathcal{L}_{PA}(I)$ whose axioms consist of the three groups below.

• Note that we often write $x \in I$ instead of I(x).

(1)
$$\mathbf{PA}^*$$
, i.e., $\mathrm{PA}(\mathcal{L})$ for $\mathcal{L} = \mathcal{L}_{\mathrm{PA}}(I)$.

(2) The sentence expressing "I is a unbounded in the universe".

(3) The scheme $\operatorname{Indis}(I) = {\operatorname{Indis}_{\varphi}(I) : \varphi \text{ is a formula of } \mathcal{L}_{\operatorname{PA}} }$. More explicitly, for each *n*-ary formula $\varphi(v_1, \dots, v_n)$ in the language of PA, $\operatorname{Indis}_{\varphi}(I)$ is the sentence:

$$\forall x_1 \in I \cdots \forall x_n \in I \ \forall y_1 \in I \cdots \ \forall y_n \in I \\ [(x_1 < \cdots < x_n) \land (y_1 < \cdots < y_n) \rightarrow (\varphi(x_1, \cdots, x_n) \leftrightarrow \varphi(y_1, \cdots, y_n))].$$

- (M, I) ⊨ PAI iff the following three conditions are satisfied:
 (1) (M, I) ⊨ PA*,
 (2) I is unbounded in M, and
 (3) (I, <) is a set of order indiscernibles over M.
- Let PAI° be the weakening of PAI in which the scheme Indis_{LA}(I) is weakened to the scheme Indis°(I) = {Indis°_φ(I) : φ is an L_{PA}-formula}, where Indis°_φ(I) is the following sentence:

$$\begin{array}{l} \forall x_1 \in I \cdots \forall x_n \in I \ \forall y_1 \in I \cdots \forall y_n \in I \\ [(x_1 < \cdots < x_n) \land (y_1 < \cdots < y_n) \land (\ulcorner \varphi \urcorner < x_1 \land \ulcorner \varphi \urcorner < y_1) \\ \rightarrow (\varphi(x_1, \cdots, x_n) \leftrightarrow \varphi(y_1, \cdots, y_n))]. \end{array}$$

Proposition. Let \mathbb{N} be the standard model of PA.

- In the second secon
- **2** \mathbb{N} has an expansion to PAI° .
- If (M, I) is a nonstandard model of PAI°, and c is any nonstandard element of M, then (M, I^{>c}) ⊨ PAI, where I^{>c} = {i ∈ I : i > c}.

- Interpretability Lemma. Given any M ⊨ PA, and any finite set F of axioms of PAI, there is a parameter free definable subset I of M such that (M, I) ⊨ F. More succinctly: Each finite subtheory of PAI has an "ω-interpretation" in PA.
- Corollary 1. PAI is a conservative extension of PA.
- **Corollary 2.** PAI is interpretable in PA, hence PA and PAI are mutually interpretable. But they are not bi-interpretable.
- **Corollary 3.** PAI is interpretable in ACA₀, but not vice versa.

Satisfaction classes and Truth classes

- Let Sat(S, x) be a formula in the language L_{PA} ∪ {S} (where S is a binary predicate) that expresses "S satisfies Tarski's compositional clauses for all formulae of length ≤ x".
- UTB is the theory formulated in L_{PA} ∪ {T} (where T is a unary predicate) whose axioms consist of PA* plus uniform Tarski biconditionals, i.e., sentences of the form ∀x[φ(x) ↔ T(¬φ(x)¬)], as φ ranges in the metatheory over arithmetical formulae.
- Given a nonstandard model M of PA, and a subset S of M, we say that S is a partial inductive satisfaction class if (M, S) ⊨ PA* and for some nonstandard c ∈ M, (M, S) ⊨ ∀i < c Sat(S, i).
- Folklore Proposition. A nonstandard model \mathcal{M} of PA carries a partial inductive satisfaction class iff \mathcal{M} has an expansion to UTB.
- Theorem (Barwise and Schlipf 1978). Suppose *M* is a model of PA.
 (1) If *M* is nonstandard (of any cardinality) and expandable to UTB, then *M* is recursively saturated.

(2) If \mathcal{M} is countable and recursively saturated, then \mathcal{M} has an expansion to UTB.

Theorem A. A nonstandard model \mathcal{M} of PA (of any cardinality) has an expansion to a model of PAI iff \mathcal{M} carries a partial inductive satisfaction class.

Proof. We first verify the right-to-left direction. Suppose *S* is a partial inductive satisfaction class over \mathcal{M} . Consider the formula $\varphi(S, x)$ in the extended language, where the predicate *S* is added to \mathcal{L}_{PA} , that expresses:

"there is a definable (in the sense of S) unbounded homogeneous set for all $\mathcal{L}_{\mathrm{PA}}$ -formulae of length at most x".

By the schematic provability of Ramsey's theorem in PA, for each $n \in \omega$, $(\mathcal{M}, S) \models \varphi(n)$, so by overspill, $(\mathcal{M}, S) \models \varphi(c)$ holds for some nonstandard $c \in M$. Hence there is an unbounded subset I of M that is indiscernibles over \mathcal{M} such that I is parametrically definable in (\mathcal{M}, S) , thus $(\mathcal{M}, I) \models PAI$.

The above argument first appeared in a 1982 paper of Roman Kossak.

For each n + 1-ary arithmetical formula φ(x̄, y), Apart_φ is the following L_{PA}(I) formula:

 $\forall i \in I \ \forall j \in I \ [i < j \rightarrow \forall x_1, \cdots, x_n < i \ (\exists y \varphi(\overline{x}, y) \rightarrow \exists y < j \ \varphi(\overline{x}, y))].$

• Apartness Lemma. For every arithmetical formula φ ,

 $PAI \vdash Apart_{\varphi}.$

• Thus in a model of PAI, IF i < j are both in I and $f(\overline{x})$ is an arithmetically definable function, THEN $f(\overline{a}) < j$ for every $\overline{a} < i$.

- Suppose φ(x̄, z₀, z₁, ···, z_r) be an (n + 1 + r)-ary arithmetical formula.
 Let Indis⁺_φ be the following sentence of L_{PA}(I): ∀i ∈ I ∀j̄ ∈ [I]^r ∀k̄ ∈ [I]^r [(i < j₁) ∧ (i < k₁)] → [∀x₁, ···, x_n < i (φ(x̄, i, j₁, ···, j_r) ↔ φ(x̄, i, k₁, ···, k_r))].
- Diagonal Indiscernibility Lemma. For every arithmetical formula φ ,

 $PAI \vdash Indis_{\varphi}^+$.

Picture for diagonal indiscernibility

Tools needed for the other direction of Theorem A (3)

Theorem. There is a formula $\sigma(x)$ in the language $\mathcal{L}_{PA}(I)$ such that for all models $(\mathcal{M}, I) \models PAI, \sigma^{\mathcal{M}}$ is an inductive partial satisfaction class on \mathcal{M} .

Proof. We first define a recursive function that transforms each formula $\varphi(\overline{x}) \in \operatorname{Form}_n(\mathcal{L}_{\operatorname{PA}})$ into a Δ_0 -formula $\varphi^*(\overline{x}, z_1, \dots, z_k)$, where $\{z_n : 1 \leq n \in \omega\}$ is a fresh supply of variables added to the syntax of first order logic (the definition of φ^* below will make it clear that k is the \exists -depth of φ). In what follows x and y range over the set of variables before the addition of the fresh stock of z_n s. We assume that the only logical constants used in φ are $\{\neg, \lor, \exists\}$ and none of the fresh variables z_n occurs in φ .

(1) If
$$\varphi$$
 is atomic, then $\varphi^* = \varphi$.
(2) $(\neg \varphi)^* = \neg \varphi^*$.
(3) $(\varphi_1 \lor \varphi_2)^* = \varphi_1^* \lor \varphi_2^*$.
(4) $(\exists y \ \varphi)^* = \exists y < z_1 \ \widetilde{\varphi^*}$, where $\varphi^* = \varphi^*(\overline{x}, y, z_1, \cdots, z_k)$, and $\widetilde{\varphi^*}$ is the result of replacing z_i with z_{i+1} in φ^* for each $1 \le i \le k$.
JAF42, Karlovassi, Greece

Enayat

• The transformation $\varphi \mapsto \varphi^*$ can be reformulated as follows: Given $\varphi(\overline{x}) \in \operatorname{Form}_n(\mathcal{L}_{\operatorname{PA}})$, first find an equivalent formula $\varphi'(\overline{x})$ in the prenex normal form:

$$\varphi'(\overline{x}) = \forall v_1 \exists w_1 \cdots \delta(v_1, w_1 \cdots, v_k, w_k, \overline{x}),$$

where $\delta \in \Delta_0$, and then define $(\varphi(\overline{x}))^*$ to be:

$$\forall v_1 < z_1 \exists w_1 < z_2 \cdots \delta(v_1, w_1, \cdots, v_k, w_k, \overline{x}).$$

• A similar transformation is found in the proof of the Paris-Harrington Theorem.

Lemma. Suppose $\varphi = \varphi(\overline{x}) \in \operatorname{Form}_n(\mathcal{L}_{\operatorname{PA}})$, and $\varphi^* = \varphi^*(\overline{x}, z_1, \dots, z_k)$, $(\mathcal{M}, I) \models \operatorname{PAI}$, $\overline{a} \in M^n$, and $(i_1, \dots, i_k) \in [I]^k$ such that there is some $j \in I$ with $j < i_1$ and each $a_i < j$ Then:

$$\mathcal{M}\models\varphi(\overline{a})\longleftrightarrow\varphi^*(\overline{a},i_1,\cdots,i_k).$$

The following definition takes place in (\mathcal{M}, I) : Given any $\varphi(\overline{x}) \in \operatorname{Form}_n(\mathcal{L}_{\operatorname{PA}})$ and any *n*-tuple \overline{a} , calculate $(\varphi(\overline{x}))^* = \varphi^*(\overline{x}, z_1, \dots, z_k)$, and let $j \in I$ be the first element of I such that each $a_i < j$, and then let and i_1, \dots, i_k to be the first kelements of I that are above j. Then define S by:

$$\varphi(\overline{a}) \in S \text{ iff } \varphi^*(\overline{a}, i_1, \cdots, i_k) \in \operatorname{Sat}_{\Delta_0},$$

where ${\rm Sat}_{\Delta_0}$ is the canonical Σ_1 -definable satisfaction predicate for Δ_0 formulae of arithmetic.

S is an inductive partial satisfaction class by the lemma. QED (Theorem A).

Corollary. Suppose $\mathcal{M} \models PA$.

(a) There is no parametrically \mathcal{M} -definable subset I of M such that $(\mathcal{M}, I) \models PAI$. Therefore no rather classless model of PA has an expansion to a model of PAI.

(b) If \mathcal{M} has an expansion to a model of PAI, then \mathcal{M} is recursively saturated; and the converse holds if \mathcal{M} is countable.

(c) If \mathcal{M} has an expansion $(\mathcal{M}, I) \models \text{PAI}$, then $M \neq M_I$, where M_I consists of elements of M that are definable in $(\mathcal{M}, i)_{i \in I}$, in constrast with Schmerl's result from the first page.

Remark. Every countable recursively saturated model \mathcal{M} of PA has an expansion $(\mathcal{M}, I) \models PAI$ such that (\mathcal{M}, I) is pointwise definable.

Preparations for Theorem B

- S is an inductive full satisfaction class on a model \mathcal{M} of PA if $(\mathcal{M}, S) \models PA^*$, and S satisfies Tarski's compositional clauses for a truth predicate for all arithmetical formulae in the sense of \mathcal{M} . This corresponds to the truth predicate in the truth theory known as CT (compositional truth with full induction).
- Given a recursively axiomatized theory T extending $I\Delta_0 + Exp$, the uniform reflection scheme over T, denoted RFN(T), is defined via:

 $\operatorname{RFN}(T) := \{ \forall x (\operatorname{Prov}_{T}(\ulcorner \varphi(x) \urcorner) \to \varphi(x)) : \varphi(x) \in \operatorname{Form}_{1} \}.$

The sequence of schemes $\operatorname{RFN}^{\alpha}(\mathcal{T})$, where α is recursive ordinal α , is defined as follows:

 Theorem. (Folklore) The arithmetical consequences of CT are axiomatized by PA + RFN^{ε0}(PA). • **Theorem B**. There is a sentence α in the language obtained by adding a unary predicate I(x) to the language of arithmetic such that given any nonstandard model \mathcal{M} of PA of any cardinality,

 \mathcal{M} has an expansion to $PAI + \alpha$ iff \mathcal{M} has a inductive full satisfaction class.

- For $n \in \omega$, PAI_n is the subsystem of PAI in which the extended induction scheme involving I is limited to $\Sigma_n(I)$ -formulae, i.e., the axioms of PAI_n consist of PA plus the fragment $I\Sigma_n(I)$ of PA(I), plus axioms asserting the unboundedness and indiscernibility of I.
- PAI⁻ is the subsystem of PAI₀ with no extended induction scheme involving *I*, so the axioms of PAI⁻ consist of PA plus axioms asserting the unboundedness and indiscernibility of *I*.
- Given $\mathcal{M} \models PA$, it is evident that:
 - **(** \mathcal{M} , *I*) \models PAI⁻ iff *I* is an unbounded set of indiscernibles in \mathcal{M} , and
 - 2 $(\mathcal{M}, I) \models \text{PAI}_0 \text{ iff } \text{PAI}^- \text{ holds and } I \text{ is piecewise-coded in } \mathcal{M}.$

- **Theorem 1.** Every model of PA has an elementary end extension that has an expansion to a model of PAI₀, but not to a model of PAI.
- Theorem 2. If \mathcal{M} is a model of countable cofinality of PA that is expandable to a model of PAI⁻, then \mathcal{M} is expandable to a model of PAI₀. However, every countable model of PA has an uncountable elementary end extension that is expandable to a model of PAI⁻, but not to PAI₀.

- Question 1. Does Theorem 1 lend itself to a hierarchical generalization? In other words, is it true that for every n ∈ ω, every model of PA has an elementary end extension that has an expansion to a model of PAI_n, but not to a model of PAI_{n+1}? It is not even clear how to build a model of PAI_n for n ∈ ω that is not a model of PAI_{n+1}.
- Question 2. Is there a model *M* of PA such that *M* has an expansion to a model of PAI_n for each n ∈ ω, BUT *M* has no expansion to a model of PAI?
- Question 3. Is there a set of sentences Σ in the language obtained by adding a unary predicate *I*(*x*) to the language of arithmetic such that given any nonstandard model *M* of PA of any cardinality, *M* an expansion to a model of PAI⁻ + Σ iff *M* has a full satisfaction class?
- This talk was based on my paper with the same title on arXiv 2022.

Thank you for your attention

JAF42, Karlovassi, Greece