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Indiscernibles

Indiscernibles were introduced in model theory in the celebrated work of
Ehrenfeucht and Mostowski 1956. The motivation for their work was a
question of Hasenjaeger: Is there a model of true arithmetic that admits a
nontrivial automorphism?

Theorem. (Ehrenfeucht and Mostwoski). Every first order theory with an
infinite model has a model that admits a nontrivial automorphism.

Definition. Given an L-structureM, and some linear order (I , <) where
I ⊆ M, we say that (I , <) is a set of order indiscernibles inM if for any
L-formula φ(x1, · · ·, xn), and any two n-tuples i and j from [I ]n, we have:

M |= φ(i1, · · ·, in)↔ φ(j1, · · ·, jn).
Theorem. (Ehrenfeucht and Mostowski). Given a first order theory T with
an infinite model, and any linearly ordered set (X , <), there is a model M of
T that has a copy of (X , <) as order indiscernibles.

Indiscernibles have proved to be pervasive in both model theory, and
indispensible in the study of large cardinals in set theory.
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Indiscernibles and PA

Every extension of PA has a model that carries no pair of indiscernibles.
Indeed such models can be arranged to be of any infinite power ≤ 2ℵ0 , using
”Gaifman’s machinery”.

Every recursively saturated modelM of PA (of any cardinality) carries an
infinite set of indiscernibles.

Indiscernibles naturally arise in models of PA obtained by ”iterating a
Gaifman minimal type”.

By a 1982 theorem of Schmerl, which answered a question of Macintyre,
given a countable recursively satuated modelM of PA, we can even find a
set of order indiscernibles that generateM (via the definable terms).
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Axioms of PAI

Let LPA(I ) = LPA ∪ {I}, where I is a unary predicate.
PAI is the theory formulated in LPA(I ) whose axioms consist of the three groups
below.

Note that we often write x ∈ I instead of I (x).

(1) PA∗, i.e., PA(L) for L = LPA(I ).

(2) The sentence expressing “I is a unbounded in the universe” .

(3) The scheme Indis(I ) = {Indisφ(I ) : φ is a formula of LPA}. More explicitly,
for each n-ary formula φ(v1, · · ·, vn) in the language of PA, Indisφ(I ) is the
sentence:

∀x1 ∈ I · · · ∀xn ∈ I ∀y1 ∈ I · · · ∀yn ∈ I

[(x1 < · · · < xn) ∧ (y1 < · · · < yn)→ (φ(x1, · · ·, xn)↔ φ(y1, · · ·, yn))].
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Elementary considerations (1)

(M, I ) |= PAI iff the following three conditions are satisfied:
(1) (M, I ) |= PA∗,
(2) I is unbounded inM, and
(3) (I , <) is a set of order indiscernibles overM.

Let PAI◦ be the weakening of PAI in which the scheme IndisLA
(I ) is

weakened to the scheme Indis◦(I ) = {Indis◦φ(I ) : φ is an LPA-formula},
where Indis◦φ(I ) is the following sentence:

∀x1 ∈ I · · · ∀xn ∈ I ∀y1 ∈ I · · · ∀yn ∈ I
[(x1 < · · · < xn) ∧ (y1 < · · · < yn) ∧ (⌜φ⌝ < x1 ∧ ⌜φ⌝ < y1)

→ (φ(x1, · · ·, xn)↔ φ(y1, · · ·, yn))].
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Elementary considerations (2)

Proposition. Let N be the standard model of PA.

1 N does not have an expansion to a model of PAI (equivalently: Every
model of PAI is nonstandard).

2 N has an expansion to PAI◦.

3 If (M, I ) is a nonstandard model of PAI◦, and c is any nonstandard
element of M, then (M, I>c) |= PAI, where I>c = {i ∈ I : i > c}.
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The interpretability lemma

Interpretability Lemma. Given anyM |= PA, and any finite set F of
axioms of PAI, there is a parameter free definable subset I ofM such that
(M, I ) |= F . More succinctly: Each finite subtheory of PAI has an
“ω-interpretation” in PA.

Corollary 1. PAI is a conservative extension of PA.

Corollary 2. PAI is interpretable in PA, hence PA and PAI are mutually
interpretable. But they are not bi-interpretable.

Corollary 3. PAI is interpretable in ACA0, but not vice versa.
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Satisfaction classes and Truth classes

Let Sat(S , x) be a formula in the language LPA ∪ {S} (where S is a binary
predicate) that expresses “S satisfies Tarski’s compositional clauses for all
formulae of length ≤ x”.

UTB is the theory formulated in LPA ∪ {T} (where T is a unary predicate)
whose axioms consist of PA* plus uniform Tarski biconditionals, i.e.,
sentences of the form ∀x [φ(x)↔ T (⌜φ(ẋ)⌝)], as φ ranges in the
metatheory over arithmetical formulae.

Given a nonstandard modelM of PA, and a subset S of M, we say that S is
a partial inductive satisfaction class if (M,S) |= PA∗ and for some
nonstandard c ∈ M, (M,S) |= ∀i < c Sat(S , i).

Folklore Proposition. A nonstandard modelM of PA carries a partial
inductive satisfaction class iffM has an expansion to UTB.

Theorem (Barwise and Schlipf 1978). SupposeM is a model of PA.
(1) IfM is nonstandard (of any cardinality) and expandable to UTB, then
M is recursively saturated.
(2) IfM is countable and recursively saturated, thenM has an expansion
to UTB.
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Theorem A

Theorem A. A nonstandard model M of PA (of any cardinality) has an
expansion to a model of PAI iff M carries a partial inductive satisfaction class.

Proof. We first verify the right-to-left direction. Suppose S is a partial inductive
satisfaction class overM. Consider the formula φ(S , x) in the extended
language, where the predicate S is added to LPA, that expresses:

“there is a definable (in the sense of S) unbounded homogeneous set for all
LPA-formulae of length at most x”.

By the schematic provability of Ramsey’s theorem in PA, for each n ∈ ω,
(M,S) |= φ(n), so by overspill, (M,S) |= φ(c) holds for some nonstandard
c ∈ M. Hence there is an unbounded subset I of M that is indiscernibles overM
such that I is parametrically definable in (M,S), thus (M, I ) |= PAI.

The above argument first appeared in a 1982 paper of Roman Kossak.
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Tools needed for for the other direction of Theorem A (1)

For each n + 1-ary arithmetical formula φ(x , y), Apartφ is the following
LPA(I ) formula:

∀i ∈ I ∀j ∈ I [i < j → ∀x1, · · ·, xn < i (∃yφ(x , y)→ ∃y < j φ(x , y))].

Apartness Lemma. For every arithmetical formula φ,

PAI ⊢ Apartφ.

Thus in a model of PAI, IF i < j are both in I and f (x) is an arithmetically
definable function, THEN f (a) < j for every a < i .
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Tools needed for the other direction of Theorem A (2)

Suppose φ(x , z0, z1, · · ·, zr ) be an (n + 1 + r)-ary arithmetical formula.

Let Indis+φ be the following sentence of LPA(I ):

∀i ∈ I ∀j ∈ [I ]r ∀k ∈ [I ]r [(i < j1) ∧ (i < k1)]−→

[∀x1, · · ·, xn < i (φ(x , i , j1, · · ·, jr )↔ φ(x , i , k1, · · ·, kr ))] .

Diagonal Indiscernibility Lemma. For every arithmetical formula φ,

PAI ⊢ Indis+φ .
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Picture for diagonal indiscernibility
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Tools needed for the other direction of Theorem A (3)

Theorem. There is a formula σ(x) in the language LPA(I ) such that for
all models (M, I ) |= PAI, σM is an inductive partial satisfaction class on
M.

Proof. We first define a recursive function that transforms each formula
φ(x) ∈ Formn(LPA) into a ∆0-formula φ∗(x , z1, · · ·, zk), where
{zn : 1 ≤ n ∈ ω} is a fresh supply of variables added to the syntax of first
order logic (the definition of φ∗ below will make it clear that k is the
∃-depth of φ). In what follows x and y range over the set of variables
before the addition of the fresh stock of zns. We assume that the only
logical constants used in φ are {¬,∨,∃} and none of the fresh variables zn
occurs in φ.

(1) If φ is atomic, then φ∗ = φ.

(2) (¬φ)∗ = ¬φ∗.

(3) (φ1 ∨ φ2)
∗ = φ∗

1 ∨ φ∗
2 .

(4) (∃y φ)∗ = ∃y < z1 φ̃∗, where φ∗ = φ∗(x , y , z1, · · ·, zk), and φ̃∗ is the result
of replacing zi with zi+1 in φ∗ for each 1 ≤ i ≤ k .
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Another view of the transformation φ 7→ φ∗

The transformation φ 7→ φ∗ can be reformulated as follows: Given
φ(x) ∈ Formn(LPA), first find an equivalent formula φ′(x) in the
prenex normal form:

φ′(x) = ∀v1∃w1 · · · δ(v1,w1 · ··, vk ,wk , x),

where δ ∈ ∆0, and then define (φ(x))∗ to be:

∀v1< z1∃w1< z2 · · · δ(v1,w1, · · ·, vk ,wk , x).

A similar transformation is found in the proof of the Paris-Harrington
Theorem.

Enayat Indiscernibles and satisfaction
Sep 27, 2023 JAF42, Karlovassi, Greece
14 / 22



Tools needed for the other direction of Theorem A (4)

Lemma. Suppose φ = φ(x) ∈ Formn(LPA), and φ∗ = φ∗(x , z1, · · ·, zk),
(M, I ) |= PAI, a ∈ Mn, and (i1, · · ·, ik) ∈ [I ]k such that there is some j ∈ I with
j < i1 and each ai < j Then:

M |= φ(a)←→ φ∗(a, i1, · · ·, ik).

The following definition takes place in (M, I ): Given any φ(x) ∈ Formn(LPA)
and any n-tuple a, calculate (φ(x))∗ = φ∗(x , z1, · · ·, zk), and let j ∈ I be the first
element of I such that each ai < j , and then let and i1, · · ·, ik to be the first k
elements of I that are above j . Then define S by:

φ(a) ∈ S iff φ∗(a, i1, · · ·, ik) ∈ Sat∆0 ,

where Sat∆0 is the canonical Σ1-definable satisfaction predicate for ∆0 formulae
of arithmetic.

S is an inductive partial satisfaction class by the lemma. QED (Theorem A).
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Corollaries of Theorem A

Corollary. Suppose M |= PA.

(a) There is no parametrically M-definable subset I of M such that
(M, I ) |= PAI. Therefore no rather classless model of PA has an expansion to a
model of PAI.

(b) If M has an expansion to a model of PAI, thenM is recursively saturated;
and the converse holds if M is countable.

(c) If M has an expansion (M, I ) |= PAI, then M ̸= MI , where MI consists of
elements of M that are definable in (M, i)i∈I , in constrast with Schmerl’s result
from the first page.

Remark. Every countable recursively saturated modelM of PA has an expansion
(M, I ) |= PAI such that (M, I ) is pointwise definable.
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Preparations for Theorem B

S is an inductive full satisfaction class on a modelM of PA if
(M,S) |= PA∗ , and S satisfies Tarski’s compositional clauses for a truth
predicate for all arithmetical formulae in the sense ofM.This corresponds to
the truth predicate in the truth theory known as CT (compositional truth
with full induction).

Given a recursively axiomatized theory T extending I∆0 + Exp, the uniform
reflection scheme over T , denoted RFN(T ), is defined via:

RFN(T ) := {∀x(ProvT (⌜φ(
·
x)⌝)→ φ(x)) : φ(x) ∈ Form1}.

The sequence of schemes RFNα(T ), where α is recursive ordinal α, is
defined as follows:

1 RFN0(T ) = T ;

2 RFNα+1(T ) = RFN(RFNα+1(T ));
3 RFNγ(T ) =

⋃
α<γ

RFNα(T ).

Theorem. (Folklore) The arithmetical consequences of CT are axiomatized
by PA+ RFNε0(PA).

Enayat Indiscernibles and satisfaction
Sep 27, 2023 JAF42, Karlovassi, Greece
17 / 22



Theorem B.

Theorem B. There is a sentence α in the language obtained by adding a
unary predicate I (x) to the language of arithmetic such that given any
nonstandard model M of PA of any cardinality,

M has an expansion to PAI+α iff M has a inductive full satisfaction class.
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Fragments of PAI

For n ∈ ω, PAIn is the subsystem of PAI in which the extended induction
scheme involving I is limited to Σn(I )-formulae, i.e., the axioms of PAIn
consist of PA plus the fragment IΣn(I ) of PA(I ), plus axioms asserting the
unboundedness and indiscernibility of I .

PAI− is the subsystem of PAI0 with no extended induction scheme involving
I , so the axioms of PAI− consist of PA plus axioms asserting the
unboundedness and indiscernibility of I .

GivenM |= PA, it is evident that:
1 (M, I ) |= PAI− iff I is an unbounded set of indiscernibles inM, and
2 (M, I ) |= PAI0 iff PAI− holds and I is piecewise-coded inM.
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Two results about fragments of PAI

Theorem 1. Every model of PA has an elementary end extension that has
an expansion to a model of PAI0, but not to a model of PAI.

Theorem 2. If M is a model of countable cofinality of PA that is
expandable to a model of PAI−, thenM is expandable to a model of PAI0.
However, every countable model of PA has an uncountable elementary end
extension that is expandable to a model of PAI−, but not to PAI0.
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Questions

Question 1. Does Theorem 1 lend itself to a hierarchical generalization? In
other words, is it true that for every n ∈ ω, every model of PA has an
elementary end extension that has an expansion to a model of PAIn, but not
to a model of PAIn+1? It is not even clear how to build a model of PAIn for
n ∈ ω that is not a model of PAIn+1.

Question 2. Is there a modelM of PA such thatM has an expansion to a
model of PAIn for each n ∈ ω, BUTM has no expansion to a model of
PAI?

Question 3. Is there a set of sentences Σ in the language obtained by
adding a unary predicate I (x) to the language of arithmetic such that given
any nonstandard modelM of PA of any cardinality,M an expansion to a
model of PAI− + Σ iffM has a full satisfaction class?

This talk was based on my paper with the same title on arXiv 2022.
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Thank you for your attention
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