The Reverse Mathematics of CAC for trees

Julien Cervelle ${ }^{1}$ William Gaudelier ${ }^{1}$ Ludovic Patey ${ }^{2}$
JAF42 • Karlovassi • 2023-09-27
'LACL• Université Paris-Est Créteil
2Équipe de Logique • CNRS • Université Paris-Cité

Reverse mathematics

- Second order arithmetics
- Order classical theorems of arithmetics by power
- Need a weak arithmetic to compare them:
- T_{1} is weaker than T_{2} is $\mathrm{RCA}_{0} \vdash T_{2} \Rightarrow T_{1}$ and $\mathrm{RCA}_{0} \nvdash T_{1} \Rightarrow T_{2}$
- Big five
- $\mathrm{RCA}_{0}=\mathrm{Q}+I \Sigma_{1}^{0}+C \Delta_{1}^{0}$, "constructive mathematics"
- $\mathrm{WKL}_{0}=\mathrm{RCA}_{0}+\mathrm{WKL}$
- $\mathrm{ACA}_{0}=\mathrm{RCA}_{0}+C \Sigma_{1}^{0}$ (\Leftrightarrow comprehension over all first order arithmetic formula)
- $\mathrm{ATR}_{0}=\mathrm{ACA}_{0}+T F$ (TF is transfinite constructions)
- $\Pi_{1}^{1}-\mathrm{CA}_{0}=\mathrm{RCA}_{0}+C \Pi_{1}^{1}$
- For \vdash uses direct constructive proofs
- For \nVdash, one can use computability arguments

Turing ideal

Definition

A model \mathcal{M} of second order arithmetic is an ω-structure if its first order elements are standard

Definition (Turing ideal)

The set \mathcal{J} is a Turing ideal if it is closed by Turing reduction and join:

- $\forall X \in \mathcal{J}, \forall Y, Y \leqslant_{T} X \Rightarrow Y \in \mathcal{J}$
- $\forall X, Y \in \mathcal{J}, X \oplus Y \in \mathcal{J}$ where $X \oplus Y=2 X \cup(2 Y+1)$

Proposition (Friedman)

An ω-model is a model of $R C A_{0}$ if and only if its second order part is a Turing ideal

Reductions

- We consider statements $P=\forall X .(I(X) \Rightarrow \exists Y . Q(X, Y))$ where I and Q are first order formulas
- It makes P a problem: for all set X such that $I(X)$ (the instance), any set Y such that $Q(X, Y)$ is a solution to the instance X of P

Definition

A Turing ideal \mathcal{J} satisfies a problem P, denoted by $\mathcal{J} \vDash P$ if all instance $X \in \mathcal{J}$ of P has a solution in \mathcal{J}

Definition (ω-reduction)

A problem P is ω-reducible to a problem Q, denoted by $P \leqslant_{\omega} Q$, if for all Turing ideal $\mathcal{J}, \mathcal{J} \vDash Q \Longrightarrow \mathcal{J} \vDash P$

Proving $\mathrm{RCA}_{0}+Q \nvdash P$

Call an ω-model a theory of model which is an ω-structure. A corollary of Friedman's result is

Claim

$P \leqslant_{\omega} Q$ if and only if any ω-model of $\mathrm{RCA}_{0}+Q$ is also a model of $\mathrm{RCA}_{0}+P$

Claim

```
P* }\mp@subsup{\omega}{\omega}{}Q\mathrm{ implies RCA 
```

We have a tool to prove that a statement is weaker than another: find a Turing ideal \mathcal{J} which satisfies Q but not P

For a (partial) order $\langle E, \prec\rangle$, a chain is a set X such that $\langle X, \prec\rangle$ is total; an antichain is a set X such that $\forall x, y \in X, x \perp y$ (meaning $x \nprec y \wedge y \nprec x$)

Statement (CAC - Chain/Antichain theorem)

All infinite partial order has either an infinite chain or an infinite antichain

Statement (RT_{2}^{2} - Ramsey theorem pour pairs and two colors)

All coloring of pairs of integers $c:[\mathbb{N}]^{2} \rightarrow 2$ has a monochromatic $X \subseteq \mathbb{N}$ that is $\exists i \in 2, \forall x, y \in X, c(\{x, y\})=i$

Theorem (Cholak, Jockusch and Slaman)

$$
R C A_{0} \nVdash C A C \Rightarrow R_{2}^{2}
$$

$\mathrm{RCA}_{0} \vdash \mathrm{RT}_{2}^{2} \Rightarrow \mathrm{CAC}$: define a coloring such that $\{x, y\}$ has color 1 if its elements are comparable, and 0 otherwise

A (binary) tree is a subset of $\mathbb{N}^{<\omega}\left(2^{<\omega}\right)$ closed by prefix.
Statement (CAC for (c.e.) (binary) trees, Binns et al.)
Every (c.e.) (binary) infinite tree has an infinite path or an infinite antichain.
Computably enumerable means that the set is not in the model but can be approximated by elements in the model

Theorem (Binns et al.)

RCA $_{0}+$ WKL $\nVdash C A C$ for binary trees

We will see that this statement is robust w.r.t reverse mathematics and is equivalent to several problems

Definition (Completely branching tree)

A node σ of a tree is a split node when there is $n_{0}, n_{1} \in \mathbb{N}$ such that $\sigma n_{0} \in T \wedge \sigma n_{1} \in T$. A tree is completely branching if all its nodes are either a split node or a leaf.

The following statement was introduced by Conidis, motivated by the reverse mathematics of commutative nœtherian rings.
Definition (TAC, Conidis, tree antichain theorem)
Any infinite c.e. binary tree which is completely branching, contains an infinite antichain.

CAC for trees equivalent statements

Theorem

The following are equivalent over RCA_{0} :

1. CAC for trees
2. CAC for c.e. trees
3. CAC for binary c.e. trees
4. $T A C+B \Sigma_{2}^{0}$

TAC and WKL

Theorem

For any low set P, there exists a computable instance of TAC with no P-computable solution.

Corollary

```
RCA }+\mathrm{ +WKL }\not\VdashTA
```

since there exists a model of $R C A_{0}+$ WKL below a low set.

Using measure

Proposition

The measure of the oracles computing a solution for a computable instance of TAC is 1.
COH states that for sets A_{n} there is a set U almost included in A_{n} or $\mathbb{N} \backslash A_{n}$ for all n.

Corollary

$R C A A_{0}+$ TAC $\nVdash \mathrm{COH}$.

COH has a computable instance such that the measure of the oracles computing a solution is 0 (Astor et al).

Proposition

```
RCA }+\mathrm{ TAC }\not>B\mp@subsup{\Sigma}{2}{0}\mathrm{ and RCA }+\mathrm{ TAC }\not~\mathrm{ CAC for trees
```

from a result from Slaman about a combinatorial statement named 2 RAN we proved stronger than TAC and which dœs not implies $B \Sigma_{2}^{0}$ over $R C A_{0}$

ADS and EM

RT_{2}^{2} admits a famous decomposition over RCA_{0} : into the Ascending Descending Sequence theorem (ADS) and the Erdös-Moser theorem (EM).

Disjunctive part

Statement (ADS)

All infinite linear order admits an infinite increasing sequence or an infinite decreasing sequence

Compacity part

Statement (EM- Erdös-Moser)

A tournament is an irreflexive binary relation such that for all $x \neq y$, either $x \mathcal{R} y$ or $y \mathcal{R} x$. Every infinite tournament T has an infinite transitive subtournament.

ADS and EM

Theorem (Lerman, Solomon and Towsner + Hirschfeldt and Shore)
$R C A_{0} \vdash E M+A D S \Rightarrow T_{2}^{2}$ but $R C A_{0} \nvdash E M \Rightarrow R_{2}^{2}$ and $R C A_{0} \nLeftarrow A D S \Rightarrow R T_{2}^{2}$
A tournament can be seen as a coloring: for $x<y, x \mathcal{R} y$ means $c(\{x, y\})=1$ and $y \mathcal{R} x$ means $c(\{x, y\})=0$

Coloring -EM \rightarrow transitive coloring -ADS \rightarrow homogeneous set.

Proposition

RCA ${ }_{0} \vdash \mathrm{ADS} \Rightarrow \mathrm{CAC}$ for trees and $\mathrm{RCA}_{0} \vdash \mathrm{EM} \Rightarrow \mathrm{CAC}$ for trees

Statements with forbidden patterns

Several statement (EM, RT ${ }_{2}^{2}$, ADS) follow the same pattern: for some coloring with one type of restriction, one can find an infinite set which makes the coloring of another type of restriction.

Here restriction $=$ some set of forbidden patterns. This allows to produce new statements.

Definition (Semi-heredity)

A coloring $f:[\mathbb{N}]^{2} \rightarrow 2$ is semi-hereditary for the color $i<2$ if $\forall x<y<z, f(x, z)=f(y, z)=i \Rightarrow f(x, y)=i$.

Statement (SHER Dorais et al.)

For any semi-hereditary coloring, there exists an infinite homogeneous set.

Theorem

SHER and CAC for trees are equivalent over RCA_{0}.

Stable variants

Definition

A coloring $f:[\mathbb{N}]^{2} \rightarrow k$ is stable if for every $x \in \mathbb{N}, \lim _{y} f(x, y)$ exists. A linear order $\mathcal{L}=\left(\mathbb{N},<_{\mathcal{L}}\right)$ is stable if it is of order type $\omega+\omega^{*}$.

A tree $T \subseteq \mathbb{N}^{<\omega}$ is stable when for every $\sigma \in T$ either $\forall^{\infty} \tau \in T, \sigma \perp \tau$ or $\forall \infty_{\tau} \in T, \sigma \notin \tau$

Proposition

```
RCA}\vdash\mathrm{ SADS }\Longrightarrow\mathrm{ CAC for stable c.e. trees
```


Corollary

The following are equivalent over RCA ${ }_{0}$:

1. CAC for stable trees
2. CAC for stable c.e. trees
3. SHER for stable colorings

Summary

Open questions

Question

What is the first-order part of TAC?

Question

Dœs every computable instance of CAC for trees admit a low solution?

Question

Is there some X such that for every computable instance T of CAC for trees, every DNC function relative to X computes a solution to T ?

