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Reverse mathematics

▸ Second order arithmetics

▸ Order classical theorems of arithmetics by power
▸ Need a weak arithmetic to compare them:

▸ 𝑇1 is weaker than 𝑇2 is RCA0 ⊢ 𝑇2 ⇒ 𝑇1 and RCA0 ⊬ 𝑇1 ⇒ 𝑇2

▸ Big five
▸ RCA0 = Q + 𝐼Σ0

1 + 𝐶Δ0
1, “constructive mathematics”

▸ WKL0 = RCA0 + WKL
▸ ACA0 = RCA0 + 𝐶Σ0

1 (⇔ comprehension over all first order arithmetic formula)
▸ ATR0 = ACA0 + 𝑇 𝐹 (𝑇 𝐹 is transfinite constructions)
▸ Π1

1 − CA0 = RCA0 + 𝐶Π1
1

▸ For ⊢ uses direct constructive proofs

▸ For ⊬, one can use computability arguments
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Turing ideal

Definition
A model ℳ of second order arithmetic is an 𝜔-structure if its first order elements
are standard

Definition (Turing ideal)
The set ℐ is a Turing ideal if it is closed by Turing reduction and join :

▸ ∀𝑋 ∈ ℐ, ∀𝑌 , 𝑌 ⩽𝑇 𝑋 ⇒ 𝑌 ∈ ℐ
▸ ∀𝑋, 𝑌 ∈ ℐ, 𝑋 ⊕ 𝑌 ∈ ℐ where 𝑋 ⊕ 𝑌 = 2𝑋 ∪ (2𝑌 + 1)

Proposition (Friedman)
An 𝜔-model is a model of 𝑅𝐶𝐴0 if and only if its second order part is a Turing ideal
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Reductions

▸ We consider statements 𝑃 = ∀𝑋.(𝐼(𝑋) ⇒ ∃𝑌 .𝑄(𝑋, 𝑌 )) where 𝐼 and 𝑄 are first
order formulas

▸ It makes 𝑃 a problem: for all set 𝑋 such that 𝐼(𝑋) (the instance), any set 𝑌 such
that 𝑄(𝑋, 𝑌 ) is a solution to the instance 𝑋 of 𝑃

Definition
A Turing ideal ℐ satisfies a problem 𝑃, denoted by ℐ ⊨ 𝑃 if all instance 𝑋 ∈ ℐ of 𝑃
has a solution in ℐ

Definition (𝜔-reduction)
A problem 𝑃 is 𝜔-reducible to a problem 𝑄, denoted by 𝑃 ⩽𝜔 𝑄, if for all Turing ideal
ℐ, ℐ ⊨ 𝑄 ⟹ ℐ ⊨ 𝑃

3



Proving RCA0 + 𝑄 ⊬ 𝑃

Call an 𝜔-model a theory of model which is an 𝜔-structure. A corollary of Friedman’s
result is
Claim
𝑃 ⩽𝜔 𝑄 if and only if any 𝜔-model of RCA0 + 𝑄 is also a model of RCA0 + 𝑃

Claim
𝑃⩽̸𝜔𝑄 implies RCA0 + 𝑄 ⊬ 𝑃

We have a tool to prove that a statement is weaker than another: find a Turing ideal ℐ
which satisfies 𝑄 but not 𝑃
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CAC

For a (partial) order ⟨𝐸, ≺⟩, a chain is a set 𝑋 such that ⟨𝑋, ≺⟩ is total; an antichain is a
set 𝑋 such that ∀𝑥, 𝑦 ∈ 𝑋, 𝑥⊥𝑦 (meaning 𝑥 ⊀ 𝑦 ∧ 𝑦 ⊀ 𝑥)
Statement (CAC – Chain/Antichain theorem)
All infinite partial order has either an infinite chain or an infinite antichain

Statement (RT2
2 – Ramsey theorem pour pairs and two colors)

All coloring of pairs of integers 𝑐 ∶ [ℕ]2 → 2 has a monochromatic 𝑋 ⊆ ℕ that is
∃𝑖 ∈ 2, ∀𝑥, 𝑦 ∈ 𝑋, 𝑐({𝑥, 𝑦}) = 𝑖

Theorem (Cholak, Jockusch and Slaman)

RCA0 ⊬ CAC ⇒ RT2
2

RCA0 ⊢ RT2
2 ⇒ CAC: define a coloring such that {𝑥, 𝑦} has color 1 if its elements are

comparable, and 0 otherwise 5



CAC for trees

A (binary) tree is a subset of ℕ<𝜔 (2<𝜔) closed by prefix.

Statement (CAC for (c.e.) (binary) trees, Binns et al.)
Every (c.e.) (binary) infinite tree has an infinite path or an infinite antichain.

Computably enumerable means that the set is not in the model but can be
approximated by elements in the model

Theorem (Binns et al.)
RCA0 + WKL ⊬ CAC for binary trees

We will see that this statement is robust w.r.t reverse mathematics and is equivalent to
several problems
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TAC

Definition (Completely branching tree)
A node 𝜎 of a tree is a split node when there is 𝑛0, 𝑛1 ∈ ℕ such that
𝜎𝑛0 ∈ 𝑇 ∧ 𝜎𝑛1 ∈ 𝑇. A tree is completely branching if all its nodes are either a split
node or a leaf.

The following statement was introduced by Conidis, motivated by the reverse
mathematics of commutative nœtherian rings.

Definition (TAC, Conidis, tree antichain theorem)
Any infinite c.e. binary tree which is completely branching, contains an infinite
antichain.
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CAC for trees equivalent statements

Theorem
The following are equivalent over RCA0:

1. CAC for trees

2. CAC for c.e. trees
3. CAC for binary c.e. trees
4. TAC + 𝐵Σ0

2
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TAC and WKL

Theorem
For any low set 𝑃, there exists a computable instance of TAC with no 𝑃-computable
solution.

Corollary
RCA0 + WKL ⊬ TAC

since there exists a model of RCA0 + WKL below a low set.
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Using measure

Proposition
The measure of the oracles computing a solution for a computable instance of TAC is 1.

COH states that for sets 𝐴𝑛 there is a set 𝑈 almost included in 𝐴𝑛 or ℕ ∖ 𝐴𝑛 for all 𝑛.
Corollary
RCA0 + TAC ⊬ COH.

COH has a computable instance such that the measure of the oracles computing a
solution is 0 (Astor et al).
Proposition

RCA0 + TAC ⊬ 𝐵Σ0
2 and RCA0 + TAC ⊬ CAC for trees

from a result from Slaman about a combinatorial statement named 2RAN we proved
stronger than TAC and which dœs not implies 𝐵Σ0

2 over RCA0 10



ADS and EM

RT2
2 admits a famous decomposition over RCA0: into the Ascending Descending

Sequence theorem (ADS) and the Erdös-Moser theorem (EM).

Disjunctive part

Statement (ADS)
All infinite linear order admits an infinite increasing sequence or an infinite decreasing
sequence

Compacity part

Statement (EM- Erdös–Moser)
A tournament is an irreflexive binary relation such that for all 𝑥 ≠ 𝑦, either 𝑥ℛ𝑦 or 𝑦ℛ𝑥.
Every infinite tournament 𝑇 has an infinite transitive subtournament.
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ADS and EM

Theorem (Lerman, Solomon and Towsner + Hirschfeldt and Shore)

RCA0 ⊢ EM + ADS ⇒ RT2
2 but RCA0 ⊬ EM ⇒ RT2

2 and RCA0 ⊬ ADS ⇒ RT2
2

A tournament can be seen as a coloring: for 𝑥 < 𝑦, 𝑥ℛ𝑦 means 𝑐({𝑥, 𝑦}) = 1 and 𝑦ℛ𝑥
means 𝑐({𝑥, 𝑦}) = 0

Coloring −EM → transitive coloring −ADS → homogeneous set.

Proposition
RCA0 ⊢ ADS ⇒ CAC for trees and RCA0 ⊢ EM ⇒ CAC for trees
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Statements with forbidden patterns

Several statement (EM, RT2
2, ADS) follow the same pattern: for some coloring with one

type of restriction, one can find an infinite set which makes the coloring of another
type of restriction.

Here restriction = some set of forbidden patterns. This allows to produce new
statements.
Definition (Semi-heredity)

A coloring 𝑓 ∶ [ℕ]2 → 2 is semi-hereditary for the color 𝑖 < 2 if
∀𝑥 < 𝑦 < 𝑧, 𝑓(𝑥, 𝑧) = 𝑓(𝑦, 𝑧) = 𝑖 ⇒ 𝑓(𝑥, 𝑦) = 𝑖.

Statement (SHER Dorais et al.)
For any semi-hereditary coloring, there exists an infinite homogeneous set.

Theorem
SHER and CAC for trees are equivalent over RCA0. 13



Stable variants

Definition

A coloring 𝑓 ∶ [ℕ]2 → 𝑘 is stable if for every 𝑥 ∈ ℕ, lim𝑦 𝑓(𝑥, 𝑦) exists. A linear order
ℒ = (ℕ, <ℒ) is stable if it is of order type 𝜔 + 𝜔∗.

A tree 𝑇 ⊆ ℕ<𝜔 is stable when for every 𝜎 ∈ 𝑇 either ∀∞𝜏 ∈ 𝑇 , 𝜎⊥𝜏
or ∀∞𝜏 ∈ 𝑇 , 𝜎⊥̸𝜏

Proposition
RCA0 ⊢ SADS ⟹ CAC for stable c.e. trees

Corollary
The following are equivalent over RCA0:

1. CAC for stable trees

2. CAC for stable c.e. trees
3. SHER for stable colorings 14



Summary

EM CAC for trees ADS

TAC + 𝐵Σ0
2 CAC for c.e. trees SHER

CAC for c.e. binary trees

CAC for stable c.e. trees SADS

CAC for stable trees SHER for stable colorings
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Open questions

Question
What is the first-order part of TAC?

Question
Dœs every computable instance of CAC for trees admit a low solution?

Question
Is there some 𝑋 such that for every computable instance 𝑇 of CAC for trees, every DNC
function relative to 𝑋 computes a solution to 𝑇?

16


