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1 Quasi-Quantifier Elimination

In this abstract we introduce a notion of quasi-quantifier elimination algorithm
and then consider two such algorithms. The first one gives us a description of
all positively existentially (P∃-) definable relations in the structure ⟨Z; 1,+,⊥⟩.
The second one yields a decision procedure for ∃Th⟨Z; 1,+,−,≤,GCD⟩.

Let S1 and S2 be two disjoint sorts of variables. For the variables from S1 we
use Latin letters (and will be named «Latin variables») and Greek letters for the
variables from S2 («Greek variables»). Let L1,2

σ be the first-order language with
the signature σ and variables from S1 ∪ S2. Denote L1

σ and L2
σ the first-order

languages with the signature σ and variables from S1 and S2, respectively.

Definition 1. Let ⟨M ;σ⟩ be some structure with a signature σ, and we have
some decidable set of existential formulas L ⊂ L1,2

σ such that all occurrences of
Latin variables are free and all occurrences of Greek variables are bound. Let also
for some variable x ∈ S1 be defined a decidable set Lx ⊆ L of L-formulas of
elimination form and are given the following two steps:

Step 1. Transformation of every L-formula ∃αφ(y, α) into an equi-satisfiable
in ⟨M ;σ⟩ disjunction

∨
j∈J

∃αφ̃j(yj , α) for some finite index set J and lists of Latin

variables yj such that for every j ∈ J we have the following:

1. Every yj for j ∈ J comprises at most the same number of variables as y.
2. If the list of variables yj is non-empty, then there is a variable x̃j ∈ yj such

that [∃αφ̃j(yj , α)]
x̃j

x ∈ Lx.

Step 2. Transformation of every ∃x∃αφ̃(x, z, α), where ∃αφ̃(x, z, α) is some
Lx-formula, into an equivalent in the structure ⟨M ;σ⟩ L-formula ∃α∃βψ(z, α, β).

Now A is a quasi-quantifier elimination algorithm (quasi-QE) for
the language L in the structure ⟨M ;σ⟩ if for a given L-formula ∃αφ(y, α),
where y = y1, ..., yk, it first applies Step 1 and then Step 2 to every formula
∃x [∃αφ̃j(yj , α)]

x̃j

x . Thus we obtain an equi-satisfiable disjunction of L-formulas,
where the number of Latin variables is less than k.

The language L will be called the language of quasi-QE algorithm A.
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2 Positive Existential Definability with Unit, Addition
and Coprimeness

For a subset L of quantifier-free Lσ-formulas define a language ∃L as the set of
formulas of the form ∃xφ(x, y) for every (quantifier-free) L-formula φ(x, y).

Let A be a quasi-QE algorithm for LA in ⟨M ;σ⟩. If S2 is the empty sort
of variables and Lx

A = LA (Step 1 of algorithm A becomes trivial) then the
set of all the relations, ∃LA-definable in ⟨M ;σ⟩, is equal to the set of relations,
(quantifier-free) LA-definable in ⟨M ;σ⟩. Using such kind of quasi-QE algorithm,
in [4] we obtained a characterization of all relations, which are P∃-definable in
the structure ⟨Z; 1,+,⊥⟩.

The main elimination tool is a generalization of the Chinese remainder the-
orem to systems of the form∧

i∈[1..m]

GCD(ai, bi + x) = di. (1)

The following lemma is proved in [5].

Lemma 1. For the system (1) with ai, bi, di ∈ Z, ai ̸= 0, di > 0 for every
i ∈ [1..m], we define for every prime p the integer Mp = max

i∈[1..m]
vp(di) and the

index sets Jp = {i ∈ [1..m] : vp(di) =Mp} and Ip = {i ∈ Jp : vp(ai) > Mp}.
Then (1) has a solution in Z iff the following conditions simultaneously hold:

(i)
∧

i∈[1..m]

di | ai

(ii)
∧

i,j∈[1..m]

GCD(di, dj) | bi − bj

(iii)
∧

i,j∈[1..m]

GCD(ai, dj , bi − bj) | di

(iv) For every prime p ≤ m and every I ⊆ Ip such that |I| = p there are such
i, j ∈ I, i ̸= j that vp(bi − bj) > Mp.

Let LA be the set of positive quantifier-free (PQF-) formulas of the first-
order language of the signature σ = ⟨1,+,−, ̸=,⊥,GCD2,GCD3,GCD4, ...⟩.
Here GCDd for every d ≥ 2 is a binary predicate symbol such that GCDd(x, y) ⇌
GCD(x, y) = d. Applying Lemma 1, we can construct Step 2 of quasi-QE al-
gorithm A and thus prove that every relation, P∃-definable in ⟨Z;σ⟩ is also
PQF-definable in this structure.

Since it is not difficult to prove P∃-definability in the structure ⟨Z; 1,+,⊥⟩
of the relations x = 0, y = −x, x = y, x ̸= 0, x ̸= y, and GCD(x, y) = d for
every integer d ≥ 2, we obtain the following theorem.

Theorem 1. A relation is P∃-definable in the structure ⟨Z; 1,+,⊥⟩ if and only
if it is PQF-definable in the structure ⟨Z; 1,+,−, ̸=,⊥,GCD2,GCD3,GCD4, ...⟩.

Having such a description, we can now reason about P∃-(un)definability in
⟨Z; 1,+,⊥⟩. For example, Theorem 1 and D. Richard’s undecidability result [3]
for the elementary theory of this structure imply that the relation x ̸⊥ y is not
P∃-definable in ⟨Z; 1,+,⊥⟩.
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3 A New Proof of Bel’tyukov-Lipshitz Theorem

A.P. Bel’tyukov [1] and L. Lipshitz [2] proved decidability of ∃Th⟨Z; 1,+,−,≤, |⟩
by reduction to the existential linear theory of the p-adic integers with divisibility
x div y ⇌ vp(x) ≤ vp(y). It is not difficult to see that we can consider the graph
of the GCD function instead of divisibility, since the decision problems for these
theories are inter-reducible. We will now sketch a quasi-QE algorithm R from [6],
which performs a reduction to a fragment of Skolem Arithmetic with constants.

Again, let L be a subset of QFLσ-formulas. Denote by E(L) the set of all
closed ∃L-formulas. In general, the main purpose of a quasi-QE algorithm A
can be described as follows. Since LA ∩ L1

σ comprises only QFLσ-formulas, we
can define E(LA ∩ L1

σ), which will be denoted L1
A. Also let L2

A ⇌ LA ∩ L2
σ.

Then the algorithm A performs a reduction from the decision problem for L1
A-

theory to the decision problem for L2
A-theory. Indeed, for every (quantifier-free)

(LA∩L1
σ)-formula φ, by repeatedly applying the algorithm to every LA-formula

of the resulting disjunctions, we construct a disjunction of (closed) L2
A-formulas.

This disjunction is true in ⟨M ;σ⟩ if and only if φ is satisfiable in this structure.
Let LR be the set of formulas ∃α

∨
j∈J

φj(yj , α) for some finite index set J and

formulas φj(y, α) of the form

α ≥ 1 ∧ y ≥ 0 ∧
∧

i∈[1..mj ]

GCD(fi,j(y, α), gi,j(y, α)) = hi,j(y, α), (2)

where all linear polynomials hi,j(y, α) have non-negative integer coefficients, and
every gcd-expression takes one of the following forms:

(R-1) GCD(f(y), g(y)) = h(y)
(R-2) GCD(f(y), g(y)) = aζ
(R-3) GCD(aζ, g(y)) = bη
(R-4) GCD(aζ, bη) = cθ,

where f(y), g(y), h(y) are linear polynomials, ζ, η, θ are Greek variables and
a, b, c are positive integers. Moreover, every Greek variable ζ, occurring in gcd-
expression of the form (R-2), appears on the right-hand sides of (R-3) and (R-4)
only in gcd-expressions of the form GCD(aζ, g(y)) = bζ or GCD(aζ, bζ) = cζ.
The language Lx

R can naturally be defined such that its formulas are «prepared»
for application of Lemma 1. Step 1 of R uses analogues of two lemmas from Lip-
shitz’s proof, and rewriting conditions (ii) – (iv) from Lemma 1 at Step 2 will
require introducing new variables. Finally we obtain the following theorem.

Theorem 2. The decision problem for ∃Th⟨Z; 1,+,−,≤,GCD⟩ is reducible to
the decision problem for P∃Th⟨Z>0; 1, {a·}a∈Z>0

,GCD⟩, where a· is a unary
functional symbol for multiplication by a positive integer a.

The proof of BL-theorem now follows from the decidability of Skolem Arith-
metic with constants since GCD is easily definable in ⟨Z>0; {a}a∈Z>0

, ·,=⟩.
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