Quantifier Elimination Approach to Existential Linear Arithmetic with GCD

Mikhail R. Starchak

Saint-Petersburg State University, St. Petersburg, Russia m.starchak@spbu.ru

Keywords: Quantifier elimination \cdot Positive existential definability \cdot Coprimeness \cdot Greatest common divisor \cdot Decidability

1 Quasi-Quantifier Elimination

In this abstract we introduce a notion of quasi-quantifier elimination algorithm and then consider two such algorithms. The first one gives us a description of all positively existentially (P \exists -) definable relations in the structure $\langle \mathbb{Z}; 1, +, \perp \rangle$. The second one yields a decision procedure for $\exists Th\langle \mathbb{Z}; 1, +, -, \leq, GCD \rangle$.

Let S_1 and S_2 be two disjoint sorts of variables. For the variables from S_1 we use Latin letters (and will be named «Latin variables») and Greek letters for the variables from S_2 («Greek variables»). Let $L_{\sigma}^{1,2}$ be the first-order language with the signature σ and variables from $S_1 \cup S_2$. Denote L_{σ}^1 and L_{σ}^2 the first-order languages with the signature σ and variables from S_1 and S_2 , respectively.

Definition 1. Let $\langle M; \sigma \rangle$ be some structure with a signature σ , and we have some decidable set of existential formulas $L \subset L_{\sigma}^{1,2}$ such that all occurrences of Latin variables are free and all occurrences of Greek variables are bound. Let also for some variable $x \in S_1$ be defined a decidable set $L^x \subseteq L$ of L-formulas of elimination form and are given the following two steps:

Step 1. Transformation of every L-formula $\exists \overline{\alpha} \varphi(\overline{y}, \overline{\alpha})$ into an equi-satisfiable in $\langle M; \sigma \rangle$ disjunction $\bigvee_{j \in J} \exists \overline{\alpha} \widetilde{\varphi}_j(\overline{y_j}, \overline{\alpha})$ for some finite index set J and lists of Latin variables $\overline{y_j}$ such that for every $j \in J$ we have the following:

- 1. Every $\overline{y_j}$ for $j \in J$ comprises at most the same number of variables as \overline{y} .
- 2. If the list of variables $\overline{y_j}$ is non-empty, then there is a variable $\widetilde{x}_j \in \overline{y_j}$ such that $[\exists \overline{\alpha} \widetilde{\varphi}_i(\overline{y_j}, \overline{\alpha})]_x^{\widetilde{x}_j} \in L^x$.

Step 2. Transformation of every $\exists x \exists \overline{\alpha} \widetilde{\varphi}(x, \overline{z}, \overline{\alpha})$, where $\exists \overline{\alpha} \widetilde{\varphi}(x, \overline{z}, \overline{\alpha})$ is some L^x -formula, into an equivalent in the structure $\langle M; \sigma \rangle$ L-formula $\exists \overline{\alpha} \exists \overline{\beta} \psi(\overline{z}, \overline{\alpha}, \overline{\beta})$.

Now \mathcal{A} is a quasi-quantifier elimination algorithm (quasi-QE) for the language L in the structure $\langle M; \sigma \rangle$ if for a given L-formula $\exists \overline{\alpha} \varphi(\overline{y}, \overline{\alpha})$, where $\overline{y} = y_1, ..., y_k$, it first applies Step 1 and then Step 2 to every formula $\exists x [\exists \overline{\alpha} \widetilde{\varphi}_j(\overline{y_j}, \overline{\alpha})]_x^{\widetilde{x}_j}$. Thus we obtain an equi-satisfiable disjunction of L-formulas, where the number of Latin variables is less than k.

The language L will be called the language of quasi-QE algorithm A.

2M. R. Starchak

Positive Existential Definability with Unit, Addition $\mathbf{2}$ and Coprimeness

For a subset L of quantifier-free L_{σ} -formulas define a language $\exists L$ as the set of formulas of the form $\exists \overline{x} \varphi(\overline{x}, \overline{y})$ for every (quantifier-free) *L*-formula $\varphi(\overline{x}, \overline{y})$.

Let \mathcal{A} be a quasi-QE algorithm for $L_{\mathcal{A}}$ in $\langle M; \sigma \rangle$. If S_2 is the empty sort of variables and $L_{\mathcal{A}}^{x} = L_{\mathcal{A}}$ (Step 1 of algorithm \mathcal{A} becomes trivial) then the set of all the relations, $\exists L_{\mathcal{A}}$ -definable in $\langle M; \sigma \rangle$, is equal to the set of relations, (quantifier-free) $L_{\mathcal{A}}$ -definable in $\langle M; \sigma \rangle$. Using such kind of quasi-QE algorithm, in [4] we obtained a characterization of all relations, which are $P\exists$ -definable in the structure $\langle \mathbb{Z}; 1, +, \perp \rangle$.

The main elimination tool is a generalization of the Chinese remainder theorem to systems of the form

$$\bigwedge_{i \in [1..m]} \operatorname{GCD}(a_i, b_i + x) = d_i.$$
(1)

The following lemma is proved in [5].

Lemma 1. For the system (1) with $a_i, b_i, d_i \in \mathbb{Z}$, $a_i \neq 0$, $d_i > 0$ for every $i \in [1..m]$, we define for every prime p the integer $M_p = \max_{i \in [1..m]} v_p(d_i)$ and the index sets $J_p = \{i \in [1..m] : v_p(d_i) = M_p\}$ and $I_p = \{i \in J_p : v_p(a_i) > M_p\}.$ Then (1) has a solution in \mathbb{Z} iff the following conditions simultaneously hold:

- $(i) \bigwedge_{\substack{i \in [1..m] \\ i,j \in [1..m] \\ (iii) \qquad \bigwedge \\ i,j \in [1..m]}} \operatorname{GCD}(d_i, d_j) \mid b_i b_j$ $(iii) \bigwedge_{\substack{i,j \in [1..m] \\ i,j \in [1..m]}} \operatorname{GCD}(a_i, d_j, b_i b_j) \mid d_i$ $i, j \in [1..m]$
- (iv) For every prime $p \leq m$ and every $I \subseteq I_p$ such that |I| = p there are such $i, j \in I, i \neq j$ that $v_n(b_i - b_j) > M_n$.

Let $L_{\mathcal{A}}$ be the set of positive quantifier-free (PQF-) formulas of the firstorder language of the signature $\sigma = \langle 1, +, -, \neq, \bot, \text{GCD}_2, \text{GCD}_3, \text{GCD}_4, ... \rangle$. Here GCD_d for every $d \geq 2$ is a binary predicate symbol such that $\operatorname{GCD}_d(x, y) \rightleftharpoons$ GCD(x, y) = d. Applying Lemma 1, we can construct Step 2 of quasi-QE algorithm \mathcal{A} and thus prove that every relation, P \exists -definable in $\langle \mathbb{Z}; \sigma \rangle$ is also PQF-definable in this structure.

Since it is not difficult to prove P \exists -definability in the structure $\langle \mathbb{Z}; 1, +, \perp \rangle$ of the relations $x = 0, y = -x, x = y, x \neq 0, x \neq y$, and GCD(x, y) = d for every integer $d \geq 2$, we obtain the following theorem.

Theorem 1. A relation is P \exists -definable in the structure $\langle \mathbb{Z}; 1, +, \perp \rangle$ if and only if it is PQF-definable in the structure $\langle \mathbb{Z}; 1, +, -, \neq, \bot, \text{GCD}_2, \text{GCD}_3, \text{GCD}_4, ... \rangle$.

Having such a description, we can now reason about P∃-(un)definability in $\langle \mathbb{Z}; 1, +, \perp \rangle$. For example, Theorem 1 and D. Richard's undecidability result [3] for the elementary theory of this structure imply that the relation $x \not\perp y$ is not P \exists -definable in $\langle \mathbb{Z}; 1, +, \bot \rangle$.

3 A New Proof of Bel'tyukov-Lipshitz Theorem

A.P. Bel'tyukov [1] and L. Lipshitz [2] proved decidability of $\exists \text{Th}\langle \mathbb{Z}; 1, +, -, \leq, | \rangle$ by reduction to the existential linear theory of the *p*-adic integers with divisibility $x \text{ div } y \rightleftharpoons v_p(x) \leq v_p(y)$. It is not difficult to see that we can consider the graph of the GCD function instead of divisibility, since the decision problems for these theories are inter-reducible. We will now sketch a quasi-QE algorithm \mathcal{R} from [6], which performs a reduction to a fragment of Skolem Arithmetic with constants.

Again, let L be a subset of QFL_{σ} -formulas. Denote by E(L) the set of all closed $\exists L$ -formulas. In general, the main purpose of a quasi-QE algorithm \mathcal{A} can be described as follows. Since $L_{\mathcal{A}} \cap L_{\sigma}^{1}$ comprises only QFL_{σ} -formulas, we can define $E(L_{\mathcal{A}} \cap L_{\sigma}^{1})$, which will be denoted $L_{\mathcal{A}}^{1}$. Also let $L_{\mathcal{A}}^{2} \rightleftharpoons L_{\mathcal{A}} \cap L_{\sigma}^{2}$. Then the algorithm \mathcal{A} performs a reduction from the decision problem for $L_{\mathcal{A}}^{1}$ theory to the decision problem for $L_{\mathcal{A}}^{2}$ -theory. Indeed, for every (quantifier-free) $(L_{\mathcal{A}} \cap L_{\sigma}^{1})$ -formula φ , by repeatedly applying the algorithm to every $L_{\mathcal{A}}$ -formulas. This disjunction is true in $\langle M; \sigma \rangle$ if and only if φ is satisfiable in this structure.

Let $L_{\mathcal{R}}$ be the set of formulas $\exists \overline{\alpha} \bigvee_{j \in J} \varphi_j(\overline{y_j}, \overline{\alpha})$ for some finite index set J and

formulas $\varphi_j(\overline{y}, \overline{\alpha})$ of the form

$$\overline{\alpha} \ge 1 \land \overline{y} \ge 0 \land \bigwedge_{i \in [1..m_j]} \operatorname{GCD}(f_{i,j}(\overline{y}, \overline{\alpha}), g_{i,j}(\overline{y}, \overline{\alpha})) = h_{i,j}(\overline{y}, \overline{\alpha}), \qquad (2)$$

where all linear polynomials $h_{i,j}(\overline{y},\overline{\alpha})$ have non-negative integer coefficients, and every gcd-expression takes one of the following forms:

 $\begin{array}{l} (\mathcal{R}\text{-}1) \quad \operatorname{GCD}(f(\overline{y}), g(\overline{y})) = h(\overline{y}) \\ (\mathcal{R}\text{-}2) \quad \operatorname{GCD}(f(\overline{y}), g(\overline{y})) = a\zeta \\ (\mathcal{R}\text{-}3) \quad \operatorname{GCD}(a\zeta, g(\overline{y})) = b\eta \end{array}$

$$(\mathcal{R}-4) \ \operatorname{GCD}(a\zeta, b\eta) = c\theta,$$

where $f(\overline{y}), g(\overline{y}), h(\overline{y})$ are linear polynomials, ζ, η, θ are Greek variables and a, b, c are positive integers. Moreover, every Greek variable ζ , occurring in gcd-expression of the form $(\mathcal{R}\text{-}2)$, appears on the right-hand sides of $(\mathcal{R}\text{-}3)$ and $(\mathcal{R}\text{-}4)$ only in gcd-expressions of the form $\text{GCD}(a\zeta, g(\overline{y})) = b\zeta$ or $\text{GCD}(a\zeta, b\zeta) = c\zeta$. The language $L^x_{\mathcal{R}}$ can naturally be defined such that its formulas are «prepared» for application of Lemma 1. Step 1 of \mathcal{R} uses analogues of two lemmas from Lipshitz's proof, and rewriting conditions (ii) – (iv) from Lemma 1 at Step 2 will require introducing new variables. Finally we obtain the following theorem.

Theorem 2. The decision problem for $\exists \text{Th} \langle \mathbb{Z}; 1, +, -, \leq, \text{GCD} \rangle$ is reducible to the decision problem for $P \exists \text{Th} \langle \mathbb{Z}_{>0}; 1, \{a\cdot\}_{a \in \mathbb{Z}_{>0}}, \text{GCD} \rangle$, where $a \cdot is a unary functional symbol for multiplication by a positive integer <math>a$.

The proof of BL-theorem now follows from the decidability of Skolem Arithmetic with constants since GCD is easily definable in $\langle \mathbb{Z}_{>0}; \{a\}_{a \in \mathbb{Z}_{>0}}, \cdot, = \rangle$.

4 M. R. Starchak

References

- Beltyukov, A.P.: Decidability of the universal theory of natural numbers with addition and divisibility. Zapiski Nauchnyh Seminarov LOMI 60, 15–28 (1976), (in Russian)
- 2. Lipshitz, L.: The diophantine problem for addition and divisibility. Transactions of the American Mathematical Society **235**, 271–271 (1978)
- 3. Richard, D.: Definability in terms of the successor function and the coprimeness predicate in the set of arbitrary integers. The Journal of Symbolic Logic **54**(4), 1253–1287 (dec 1989)
- Starchak, M.R.: Positive existential definability with unit, addition and coprimeness. In: Proceedings of the 2021 on International Symposium on Symbolic and Algebraic Computation (ISSAC '21). pp. 353–360. ACM (jul 2021)
- Starchak, M.R.: A proof of Bel'tyukov–Lipshitz theorem by quasi-quantifier elimination. I. Definitions and GCD-Lemma. Vestnik St.Petersb. Univ. Math. 54(3), 264–272 (Jul 2021), to appear
- Starchak, M.R.: A proof of Bel'tyukov-Lipshitz theorem by quasi-quantifier elimination. II. The main reduction. Vestnik St.Petersb. Univ. Math. 54(4) (Oct 2021), to appear