Quantifier Elimination Approach to Existential
Linear Arithmetic with GCD

Mikhail R. Starchak

Saint-Petersburg State University, St. Petersburg, Russia
m.starchak@spbu.ru

Keywords: Quantifier elimination - Positive existential definability - Coprime-
ness - Greatest common divisor - Decidability

1 Quasi-Quantifier Elimination

In this abstract we introduce a notion of quasi-quantifier elimination algorithm
and then consider two such algorithms. The first one gives us a description of
all positively existentially (P3-) definable relations in the structure (Z;1,+, 1).
The second one yields a decision procedure for 3ITh(Z; 1,+, —, <, GCD).

Let S7 and S5 be two disjoint sorts of variables. For the variables from S; we
use Latin letters (and will be named «Latin variables») and Greek letters for the
variables from Sy («Greek variables»). Let L1:? be the first-order language with
the signature o and variables from S; U Sa. Denote L. and L2 the first-order
languages with the signature o and variables from S7 and Sy, respectively.

Definition 1. Let (M;o) be some structure with a signature o, and we have
some decidable set of existential formulas L C LL? such that all occurrences of
Latin variables are free and all occurrences of Greek variables are bound. Let also
for some variable x € Sy be defined a decidable set L* C L of L-formulas of
elimination form and are given the following two steps:

Step 1. Transformation of every L-formula Iap(y, @) into an equi-satisfiable
in (M; o) disjunction \/ Jap,;(7;, @) for some finite index set J and lists of Latin

jeJ

variables y; such that]for every j € J we have the following:

1. Bvery yj for j € J comprises at most the same number of variables as .
2. If the list of variables yj is non-empty, then there is a variable T; € yj such

that [3ag;(y;, @))%’ € L*.

Step 2. Transformation of every Ix3ag(x,z, @), where Jap(x,z, @) is some
L*-formula, into an equivalent in the structure (M; o) L-formula 3a3py(Z, @, ).

Now A is a quasi-quantifier elimination algorithm (quasi-QE) for
the language L in the structure (M;o) if for a given L-formula Jap(y, @),
where § = y1,..., Yk, it first applies Step 1 and then Step 2 to every formula
Ju [(Fag; (77, @)]7 . Thus we obtain an equi-satisfiable disjunction of L-formulas,
where the number of Latin variables is less than k.

The language L will be called the language of quasi-QFE algorithm A.
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2 Positive Existential Definability with Unit, Addition
and Coprimeness

For a subset L of quantifier-free L,-formulas define a language 3L as the set of
formulas of the form 3Ty (Z,7) for every (quantifier-free) L-formula ¢(ZT,7).

Let A be a quasi-QE algorithm for L4 in (M;o). If Sy is the empty sort
of variables and L% = L4 (Step 1 of algorithm A becomes trivial) then the
set of all the relations, 3L 4-definable in (M; o), is equal to the set of relations,
(quantifier-free) L 4-definable in (M o). Using such kind of quasi-QE algorithm,
in [4] we obtained a characterization of all relations, which are P3-definable in
the structure (Z;1,+, L).

The main elimination tool is a generalization of the Chinese remainder the-
orem to systems of the form

/\ GCD(a;,b; + z) = d;. (1)
i€[1l..m]
The following lemma is proved in [5].

Lemma 1. For the system (1) with a;,b;,d; € Z, a; # 0, d; > 0 for every

i € [1..m], we define for every prime p the integer M, = H[llax ]vp(di) and the
i€[l..m

index sets J, = {i € [L.m] : vp(d;) = Mp} and I, = {i € J, : vp(a;) > Mp}.

Then (1) has a solution in Z iff the following conditions simultaneously hold:

() N dila

1€[1..m]

(i) N GCD(d;,d;) | b —b;
1,j€[1..m]

(iii) N\ GCD(a;,dj,b; —bj) | d;
1,j€[1..m]

(iv) For every prime p < m and every I C I, such that |I| = p there are such
1,5 €1, Z?éj thatvp(bi —bj) > Mp.

Let L4 be the set of positive quantifier-free (PQF-) formulas of the first-
order language of the signature o = (1,4, —,#, L, GCDy, GCD3, GCDy, ...).
Here GCDy; for every d > 2 is a binary predicate symbol such that GCDy(z,y) =
GCD(z,y) = d. Applying Lemma 1, we can construct Step 2 of quasi-QE al-
gorithm A and thus prove that every relation, P3-definable in (Z;c) is also
PQF-definable in this structure.

Since it is not difficult to prove P3-definability in the structure (Z; 1,4+, L)
of the relations ¢ = 0, y = —z, z = y, « # 0, z # y, and GCD(z,y) = d for
every integer d > 2, we obtain the following theorem.

Theorem 1. A relation is P3-definable in the structure (Z;1,+, L) if and only
if it is PQF -definable in the structure (Z;1,+,—,#, L, GCDy, GCD3, GCDy, ...).

Having such a description, we can now reason about P3-(un)definability in
(Z;1,+, L). For example, Theorem 1 and D. Richard’s undecidability result [3]
for the elementary theory of this structure imply that the relation = Y y is not
P3-definable in (Z;1,+, 1).
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3 A New Proof of Bel’tyukov-Lipshitz Theorem

A.P. Bel'tyukov [1| and L. Lipshitz [2] proved decidability of 3Th(Z; 1, +, —, <, |}
by reduction to the existential linear theory of the p-adic integers with divisibility
z div y = vp(z) < vp(y). It is not difficult to see that we can consider the graph
of the GCD function instead of divisibility, since the decision problems for these
theories are inter-reducible. We will now sketch a quasi-QE algorithm R from [6],
which performs a reduction to a fragment of Skolem Arithmetic with constants.

Again, let L be a subset of QFL,-formulas. Denote by E(L) the set of all
closed dL-formulas. In general, the main purpose of a quasi-QE algorithm A
can be described as follows. Since L4 N LL comprises only QF L,-formulas, we
can define E(L4 N L}), which will be denoted LY. Also let L% = L4 N LZ.
Then the algorithm A performs a reduction from the decision problem for L1,-
theory to the decision problem for L%-theory. Indeed, for every (quantifier-free)
(L4N LL)-formula ¢, by repeatedly applying the algorithm to every L 4-formula
of the resulting disjunctions, we construct a disjunction of (closed) L?-formulas.
This disjunction is true in (M; o) if and only if ¢ is satisfiable in this structure.

Let L be the set of formulas 3@ \/ ¢; (75, @) for some finite index set J and
jed
formulas ¢, (7, @) of the form

a > 1A ? > 0A /\ GCD(fl,] (yv a): 9i,j (?7 a)) = h’i,j (?7 a)? (2)

i€[1..m;]

where all linear polynomials h; ;(7, @) have non-negative integer coefficients, and
every gcd-expression takes one of the following forms:

where f(7),9(7),h(y) are linear polynomials, ¢,7n,0 are Greek variables and
a, b, c are positive integers. Moreover, every Greek variable (, occurring in ged-
expression of the form (R-2), appears on the right-hand sides of (R-3) and (R-4)
only in ged-expressions of the form GCD(a(, g(7)) = b¢ or GCD(a(,b() = <.
The language L% can naturally be defined such that its formulas are «prepared»
for application of Lemma 1. Step 1 of R uses analogues of two lemmas from Lip-
shitz’s proof, and rewriting conditions (ii) - (iv) from Lemma 1 at Step 2 will
require introducing new variables. Finally we obtain the following theorem.

Theorem 2. The decision problem for ITh(Z;1,+, —, <, GCD) is reducible to
the decision problem for P3Th(Zso;1,{a }acz.,, GCD), where a- is a unary
functional symbol for multiplication by a positive integer a.

The proof of BL-theorem now follows from the decidability of Skolem Arith-
metic with constants since GCD is easily definable in (Z~o;{a}tacz.,,,=)-
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