
VERSIONS OF MATIJASEVIČ’S THEOREM IN SUBSYSTEMS
OF ARITHMETIC

CHARALAMPOS CORNAROS AND HENRI-ALEX ESBELIN

Matijasevič’s theorem (MT), also known as MRDP (Matijasevič-Robinson-
Davis-Putnam) theorem or DMPR theorem, states that Diophantine sets of
natural numbers are precisely the recursively enumerable sets of natural
numbers. This result is usually stated as follows (see [8]).
Theorem 1. For any Σ1 formula θ(x⃗) there exists a polynomial p(x⃗, y⃗)∈Z[x⃗, y⃗]
such that N |= ∀x⃗[θ(x⃗) ↔ ∃y⃗ p(x⃗, y⃗)=0].
Because of the MT’s considerable importance, due to the fact that it

was highly instrumental for proving that Hilbert’s Tenth Problem has a
negative solution, as well as for showing that several problems are un-
decidable (see [9]), it was thought worthwhile to study its provability in
subsystems of Peano Arithmetic, especially systems strictly weaker than
IΣ1, i.e., the theory of induction for Σ1 definable sets.
The first such result was proved by Gaifman and Dimitracopoulos (see

[4]) and states that MT is provable in the theory I∆0+exp. This result
raised many questions, including the following one (see Problem (d) in
section 1.1 in [3]):
Problem 1. Is the Matijasevič theorem for bounded formulas provable in I∆0?
That is: Is every bounded formula equivalent in I∆0 to an existential formula?
Given that the proof of MT involves heave use of coding means, while

the coding capability of I∆0 is very limited, attacking Problem 1 seems to
be a highly nontrivial aim. So, work focused on improving the Gaifman-
Dimitracopoulos result. In this direction, the following result was proved
by R. Kaye (see [5]).
Theorem 2. IE−

1 +E proves MT, where IE−
1 denotes the theory of parameter-

free bounded existential induction and E denotes an ∀∃ axiom expressing the
existence of a function of exponential growth.

At first sight, one might think that the theory IE−
1 +E is strictly weaker

than the theory I∆0+exp considered earlier by Gaifman and Dimitra-
copoulos. However, as proved by Kaye in [5], as a corollary of Theorem 2
we obtain
Theorem 3. IE−

1 +E is equivalent to I∆0+exp.
Work in the same direction was also done by P. D’Aquino, who studied

in [2] the following version of Problem 1.
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Problem 2. Is MT provable in I∆0+Ω1?

In particular, D’Aquino considered an E#1 formula defining the exponential
function in I∆0+exp, where # is an extra function symbol, but could not
obtain a formula of the same complexity that could define the function
(k + 1) . . . (2k).
We recall that the theory I∆0+Ω1 is conservatively extendable to Buss’s

theory S2 (or T2), i.e. the theory in the language L∗=L ∪ {⌊x2 ⌋, |x|, x#y},
where x#y denotes 2|x|.|y|, having axioms (a) a set BASIC expressing basic
properties of the non-logical symbols of L∗ and (b)

∪
n∈N S

n
2 , where Sn

2 is
the schema of induction for Σb

n formulas of L∗, i.e., formulas constructed
like En formulas, but allowing the use of sharply bounded quantifiers, i.e.,
quantifiers of the form ∃x<|t| and ∀x<|t|, in addition to regular bounded
quantifiers (for a precise definition, see, e.g., [7], p. 21).
We should note that A. J. Wilkie observed (see [12]) that, by a result

due to L. M. Adleman and K. Manders (see [1]), a positive solution to
either Problem 1 or to Problem 2 would imply that NP=co−NP .
Finally, we mention two negative results, the first of which was proved

by R. Kaye (see [6]) and the second by C. Pollett (see [10]), working in
the same direction of research.

Theorem 4. MT is not provable in IOpen, i.e., the theory of open induction.

Theorem 5. MT is not provable in I5E1, i.e., in the theory of five-lengths
induction on E1 definable predicates.

In view of the above results/problems, one wonders whether or not it
is possible to mimic the strategy used to obtain Theoremw 1 and 2, in
order to prove a partial version of MT in I∆0+Ω1. A first thought could
be to restrict our attention to subclasses of the class of Σ1 formulas, by
controlling in some way the kind of bounded quantifiers occurring in the
formulas. For example, we could allow the use of only sharply bounded
quantifiers or one kind of regular bounded quantifiers and one kind of
sharply bounded quantifiers.
The specific approach we have taken is based on the following assump-

tions:
(a) instead of considering Σ1 formulas, we will consider formulas of

the form ∃z⃗ψ(x⃗), where ψ(x⃗) is a formula involving (regular)
bounded existential quantifiers plus sharply bounded universal
quantifiers. We will denote this class of formulas by Σb

1,1, since
it reminds us of Buss’s class Σb

1, i.e., the class of formulas (of L∗)
closed under (regular) bounded existential quantifiers and sharply
bounded quantifiers of any kind.

(b) we employ a low complexity definition of exponentiation (for small
exponents), avoiding the use of binomial coefficients, and factorials
and
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(c) we allow the presence of a block of bounded universal quantifiers
in front of the polynomial equation p(x⃗, y⃗)=0,

we were able to prove the following version of MT in I∆0+Ω1.
Theorem 6. For any Σb

1,1 formula θ(x⃗, y⃗) there exists a polynomial p(x⃗, y⃗, z⃗, u⃗)∈
Z[x⃗, y⃗, z⃗, u⃗] such that

I∆0+Ω1 ⊢ ∀x⃗∀y⃗[“y⃗ are small” → (θ(x⃗, y⃗) ↔ ∃u⃗ Q(z⃗) p(x⃗, y⃗, z⃗, u⃗)=0)].
In this result, y⃗ are exactly the variables occurring as bounds of univer-
sal quantifiers in θ, Q(z⃗) denotes a block of (regular) bounded universal
quantifiers and “y⃗ are small” means that all numbers of the form ay

n
i exist,

where n∈N and yi is one of the y⃗’s.
We can replace the system I∆0+Ω1 in the above theorem with a suitable

system extending I∆0 that uses J. Robinson’s Diophantine equation (see
[11]) to define the notion of smallness and prove the same result. This
system is IΣb

1,1+Elog , where the axiom Elog ensures that “small” numbers
have all the standard properties of logarithms.
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