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Wednesday, May 30 2018

9h30: Micha l Tomasz Godziszewski (Warzaw) Π0
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10h: Pierre Valarcher (Paris 12) Primitive recursion and algorithmically-
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11h15: Mateusz  Le lyk (Poland) How useful are pure compositional axioms for
the truth predicate?
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Further reflections on candidate
“rule-them-al” Diophantine equations

Domenico Cantone aand Eugenio G. Omodeo b

If the quaternary quartic equation

9
(
u2 + 7 v2

)2 − 7
(
r2 + 7 s2

)2
= 2 (*)

which M. Davis put forward in 1968 has only finitely many solutions in integers,
then—as observed by M. Davis, J. Robinson, and Yu. V. Matiyasevich in 1976—
every listable set would turn out to admit a single-fold Diophantine representation.

In 2017, we proposed another candidate for the role of “rule-them-all” equation,
namely the quaternary quartic equation
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(
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)2 − (u2 + 3 v2
)2

= 2 , (†)

whose significance can be supported by much the same arguments found in Davis’s
original paper. Directly from the unproven assertion that this novel equation has
only finitely many solutions in integers, and closely following Davis’s ‘recipe’, we
showed how to construct a Diophantine relation of exponential growth. Short after
the JAF 36 conference in St. Petersburg, two non-trivial solutions to (†) were found
by Dr. Boris Z. Moroz and by Carsten Roschinski, and kindly communicated to us.

Then we sought further candidate “rule-them-all” equations, in the hope that one
would prove easier to analyze than the others. Pietro Corvaja gave us clues on how
to proceed systematically: When d > 1 is a square-free rational integer for which
the integers of the quadratic field Q(

√
−d) form a unique-factorization ring, Davis’s

approach can be pursued without difficulty; in absence of unique factorization, the
situation becomes more cumbersome but nonetheless viable for infinitely many dis-
criminants −d. Following those clues, we have successfully tackled the relatively
unproblematic cases d = 2 and d = 11, obtaining the following rule-them-all equa-
tions:
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Polishness of some topologies related
to automata

Olivier Cartona, Olivier Finkelb and Dominique Lecomtec

The languages of infinite words, also called ω-languages, accepted by finite au-
tomata were first studied by Büchi to prove the decidability of the monadic
second order theory of one successor over the integers. Since then regular ω-
languages have been much studied and used for specification and verification of
non-terminating systems [9, 7].

The Cantor topology is a very natural topology on the set Σω of infinite words
over a finite alphabet Σ which is induced by the prefix metric. It has been used
in particular to study the topological complexity of languages of infinite words
accepted by various kinds of automata, and firstly to locate them with regard to
the Borel and the projective hierarchies [9].

However, as noticed in [8] by Schwarz and Staiger and in [3] by Hoffmann and
Staiger, it turned out that for several purposes some other topologies on a space
Σω are useful, for instance for studying fragments of first-order logic over infinite
words or for a topological characterisation of random infinite words (see also [4]).
In particular, Schwarz and Staiger studied four topologies on the space Σω of
infinite words over a finite alphabet Σ which are all related to automata, and
refine the Cantor topology on Σω: the Büchi topology, the automatic topology,
the alphabetic topology, and the strong alphabetic topology. These four topologies
are shown to be metrizable in [8].

We prove that the Büchi topology, the automatic topology, the alphabetic topol-
ogy and the strong alphabetic topology are Polish, and provide consequences of
this. We also show that this cannot be fully extended to the case of a space of
infinite labelled binary trees; in particular, the Büchi and the Muller topologies
in that case are not Polish.

aIRIF, Université Paris Diderot, Paris, France; Olivier.Carton@irif.fr
bCNRS et Institut de Mathématiques de Jussieu-Paris Rive Gauche, Université Paris

Diderot, Paris, France; finkel@math.univ-paris-diderot.fr
cInstitut de Mathématiques de Jussieu-Paris Rive Gauche, Sorbonne Université, Paris,

France; dominique.lecomte@upmc.fr
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Study of stepwise simulation between
ASMs

Patrick Cégielski a and Julien Cervelle b

Yuri Gurevich gave a schema of languages which is not only a Turing-complete
language (a language allowing to program each computable function), but which also
allows to describe step-by-step the behavior of all algorithms for each computable
function (it is an algorithmically complete language).

ASM (Abstract State Machine) is the only known model of computation to have the
property of capturing any execution of a model of computation. However, some other
models of computation are interesting because they respect a weaker variant of this
property. The idea is to liberalize a condition: Instead of requiring perfect matching
of the runs, one allows the runs to be only equivalent in a sense that there exists k
and k′ such that equality holds for only an element every k elements for the first run,
and an element every k′ elements for the second run (defined as k, k′-equivalence in
the paper). As ASM can be sped up by any linear factor, it corresponds to some
weak algorithmic completeness.

Moreover, some authors (see for instance [2]), proving this weaker property for their
model, insist on having regularly an element every k elements (for instance 2, 4, 6,
... for k = 2) and not just allowing to discard at most k − 1 elements (for instance
1, 3, 4, 5, 7, ...). No explanation is given to justify such a constraint but this causes
them to add some skip instructions (steps during which the machine does nothing)
to align things precisely.

Then a natural question arises: Is it essential to force the regularity? One way of
getting enlightenment about the question is to see if we can build two ASMs A and
B whose traces are all equal up to irregular dilatation but such that the set of points
to be removed is not a recursive set. This means that the two computations are
equivalent but that, somehow, one of the ASMs computes something more in its run
than the other one.

The authors proves that one can build two ASMs whose runs are equivalent but
without the regularity and such that the positions to be removed (at most two of
them) are not computable from the input. This proves that enforcing the regularity is
essential since it takes into account the computation time and not only the computed
values.

aLACL, Université Paris-Est Créteil, France; patrick.cegielski@u-pec.fr
bLACL, Université Paris-Est Créteil, France; julien.cervelle@u-pec.fr
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Products of primes in weak systems of
arithmetic

Charalambos Cornaros
University of the Aegean, Greece

kornaros@aegean.gr

We study the strength of axioms asserting the existence of products of primes∏
p prime,p≤x p for various x (x greater than a logarithm). Variations of these ax-

ioms can also be formulated when we enumerate the primes inside the product:

∃p∃s

p is the x-th prime ≥ 2 ∧ s =
∏

q prime, q≤p

q


The axiom

∀x∃t

t =
∏

p prime, p≤x

p


cannot be proven from I∆0. This axiom is equivalent with the axiom PRO:

(∀p)(prime(p)→ ∃x(x =
∏

q prime, q≤p q))

studied in [1] and so is equivalent with exp over I∆0. From the proof of

Lemma 6.1 in [4], we know that there are two fixed standard numbers C,D ∈ N,
such that

I∆0 ` ∀x∃y

y =
∏

p prime, p≤C log(x)

p ∧ x < y < xD

 ,

where log(x) denotes [log2(x)]. It follows that all products
∏

p prime, p≤log(x) p do

exist for all x in any model of I∆0. The log(x) in the bound of the factors of this
product can be replaced with bigger quantities less than x, like

log(x) log(2)(x), log2(x), log(x)log(2)(x), log(x)log(2)(x)log
(3)(x)

. . .

We study the strength of axioms expressing the existence of these products and
prove some results in relation to the (Ωn), n ∈ N, hierarchy(see, eg, [3]). For
example, we prove that the axiom

∀x ≥ 2∃y

y =
∏

p prime, p≤log2(x)

p


is equivalent with Ω1 over I∆0 and, under Bertrand’s Postulate, the axiom

∀x ≥ 2∃y

y =
∏

p prime, p≤p(x)

p


is equivalent with Ω1 over I∆0. p(x) is the log2(x)-th prime in an increasing
enumeration of primes p1 = 2, p2 = 3, . . . and prove some equivalences in relation
to the Ω hierarchy.

Taking any model of I∆0 +¬Ω1, we conclude that there exist models of I∆0 such
that all products of the form

∀x ≥ 2∃y

y =
∏

p prime, p≤log(x)

p, x ≥ 2,


exist, but which do not satisfy

∀x ≥ 2∃y

y =
∏

p prime, p≤log2(x)

p

 .
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End extensions of models
of fragments of PA

Costas Dimitracopoulos a and Vasileios Paschalis b

In this paper, we prove results concerning the existence of proper end extensions
of arbitrary models of fragments of Peano arithmetic (PA). In particular, we give
alternative proofs of two results concerning the end extendability of arbitrary models
of fragments of PA. Our proofs concern (a) a result of P. Clote (see [1] and [2]), on
the end extendability of arbitrary models of Σn-induction, for n≥2, and (b) the fact
that every model of Σ1-induction has a proper end extension satisfying ∆0-induction
(although this fact was not explicitly stated before, it follows by earlier results of A.
Enayat and T. L. Wong - see [4] and [5]).
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Models of arithmetics
with linear induction

Jana Glivická
University of Economics, Prague, Czech Republic

jana.glivicka@gmail.com

We say that a formula ϕ(x, y1, . . . , yn) in the language of arithmetic is x-linear if
every multiplication occurring in ϕ(x, ȳ) is of the form yi · t or t · yi, for some i < n,
where t is a term. Linear induction is then induction over x for x-linear formulas and
the theory extending Robinson arithmetic by full linear induction is denoted ILin. In
the talk, we will present some results of an ongoing research on ILin and its models
conducted in collaboration with Petr Glivický, Josef Mlček and Jan Šaroch.

We focus mainly on a certain class of models of ILin that can be obtained as substruc-
tures of nonstandard models of Peano arithmetic generated from one nonstandard
element by operations of addition, multiplication and standard division (if possible).
Such structures are, up to isomorphism, determined by one parameter τ , describing
the moduli of the generator after division by standard powers of standard primes.

We show how the choice of τ impacts validity of certain natural arithmetical prop-
erties, in particular we show how to construct models such that a) prime pairs are
cofinal in the model, b) primes are cofinal, but prime pairs are not, c) primes are
not cofinal. We also present a connection between cofinality of prime pairs and defin-
ability of elements of the model and further results about related theories concerning
decidability, quantifier elimination or existence of prime models.



Fermat’s last theorem and Catalan’s
conjecture in arithmetics with weak

exponentiation

Petr Glivický
University of Economics, Prague, Czech Republic

petrglivicky@gmail.com

Wiles’s proof of Fermat’s Last Theorem (FLT) has stimulated a lively discussion on
how much is actually needed for the proof. Despite the fact that the original proof uses
set-theoretical assumptions unprovable in Zermelo-Fraenkel set theory with axiom of
choice (ZFC) - namely, the existence of Grothendieck universes - it is widely believed
that ”certainly much less than ZFC is used in principle, probably nothing beyond
Peano arithmetic, and perhaps much less than that.” (McLarty)

In this talk, I will present a joint work with V. Kala. We studied (un)provabiliy of
FLT and Catalan’s conjecture in arithmetical theories with weak exponentiation, i.e.
in theories in the language L = (0, 1,+, ·, exp,<) where the (0, 1,+, ·, <)-fragment is
usually very strong (often even the complete theory Th(N) of natural numbers in that
language) but the exponentiation satisfies only basic arithmetical properties and not
much of induction. In such theories, Diophantine problems such as FLT or Catalan’s
conjecture, are formalized using the exponentiation exp instead of the exponentiation
definable in the (0, 1,+, ·, <)-fragment.

I will present a natural basic set of axioms Exp for exponentiation (consisting mostly
of elementary identities) and show that the theory T = Th(N)+Exp is strong enough
to prove Catalan’s conjecture, while FLT is still unprovable in T . This gives an inter-
esting separation of strengths of the two famous Diophantine problems. Nevertheless,
I show that by adding just one more axiom for exponentiation (the, so called, ”copri-
mality” of exp) the theory becomes strong enough to prove FLT, i.e. FLT is provable
in T+”coprimality”. (Of course, in the proof of this, we use the Wiles’s result too.)
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Π0
1-computable quotient presentation

of a nonstandard model of arithmetic

Micha l Tomasz Godziszewski
University of Varsaw, Poland
mtgodziszewski@gmail.com

https://uw.academia.edu/MichalGodziszewski

Introduction

A computable quotient presentation of a mathematical structure A consists of a com-
putable structure on the natural numbers 〈N, ?, ∗, ...〉 meaning that the operations
and relations of the structure are computable, and an equivalence relation E on N,
not necessarily computable but which is a congruence with respect to this structure,
such that the quotient 〈N, ?, ∗, ...〉/E is isomorphic to the given structure A. Thus,
one may consider computable quotient presentations of graphs, groups, orders, rings
and so on, for any kind of mathematical structure. In a language with relations, it
is also natural to relax the concept somewhat by considering the computably enu-
merable quotient presentations, which allow the pre-quotient relations to be merely
computably enumerable, rather than insisting that they must be computable.

At the 2016 conference Mathematical Logic and its Applications at the Research In-
stitute for Mathematical Sciences (RIMS) in Kyoto, Bakhadyr Khoussainov outlined
a sweeping vision for the use of computable quotient presentations as a fruitful alter-
native approach to the subject of computable model theory. In his talk, he outlined a
program of guiding questions and results in this emerging area. Part of this program
concerns the investigation, for a fixed equivalence relation E or type of equivalence
relation, which kind of computable quotient presentations are possible with respect
to quotients modulo E.

Khoussainov had made two specific conjectures in Kyoto:

Conjecture (Khoussainov).

1. No nonstandard model of arithmetic admits a computable quotient presentation
by a computably enumerable equivalence relation on the natural numbers.

2. Some nonstandard model of arithmetic admits a computable quotient presen-
tation by a co-c.e. equivalence relation.

I will report on the proof of first conjecture and present in details:

1. refutations of several natural variations of the second conjecture - obtained in
a joint work with J. D. Hamkins,

2. proof of the central case of the second conjecture - obtained in a joint work
with T. Slaman and L. Harrington.



In addition, I consider and settle the natural analogues of the conjectures for models
of set theory.

Observation 1. Every consistent c.e. theory T in a functional language admits a
computable quotient presentation by an equivalence relation E of low Turing degree.

The observation is closely connected with a fundamental fact of universal algebra,
namely, the fact that every algebraic structure is a quotient of the term algebra on
a sufficient number of generators. Every countable group, for example, is a quotient
of the free group on countably many generators, and more generally, every countable
algebra (a structure in a language with no relations) arises as the quotient of the term
algebra on a countable number of generators. Since the term algebra of a computable
language is a com- putable structure, it follows that every countable algebra in a
computable language admits a computable quotient presentation.
One of the guiding ideas of the theory of computable quotients is to take from this
observation the perspective that the complexity of an algebraic structure is contained
not in its atomic diagram, often studied in computable model theory, but rather
solely in its equality relation. The algebraic structure on the term algebra, after all,
is computable; what is difficult is knowing when two terms represent the same object.
Thus, the program is to inves- tigate which equivalence relations E or classes of
equivalence relations can give rise to a domain N/E for a given type of mathematical
structure. There are many open questions and the theory is just emerging.

The following results confirms that Khoussainov’s first conjecture is true.

Theorem 2. No nonstandard model of arithmetic has a computable quotient presen-
tation by a c.e. equivalence relation. Indeed, this is true even in the restricted (but
fully expressive) language {+, .} with only addition and multiplication: there is no
computable structure 〈N,⊕,�〉 and a c.e. equivalence relation E, which is a congru-
ence with respect to this structure, such that the quotient 〈N,⊕,�〉/E is a nonstandard
model of arithmetic.

Theorem 3. There is no computable structure 〈N,⊕,�〉 and a co-c.e. equivalence
relation E, which is a congruence with respect to this structure, such that the quotient
〈N,⊕,�〉/E is a nonstandard model of true arithmetic.

Theorem 4. There is no computable structure 〈N,⊕,�〉 and a co-c.e. equivalence
relation E, which is a congruence with respect to this structure, such that the quo-
tient 〈N,⊕,�〉/E is a Σ1-sound nonstandard model of arithmetic, or even merely a
nonstandard model of arithmetic with 0′ in the standard system of the model.

Corollary 5 No nonstandard model of arithmetic in the language {+, ., 0, 1, <} and
with 0′ in its standard system has a computably enumerable quotient presentation by
any equivalence relation, of any complexity.

Note that containing 0′ in the standard system is a strictly weaker property than being
Σ1-sound, since a simple compactness argument allows us to insert any particular
set into the standard system of an elementary extension of any particular model of
arithmetic.

Main result

The results above have not settled what might be considered the central case of the
second conjecture:

Question 6. Is there a nonstandard model of PA in the usual language of arith-
metic {+, ., 0, 1, <} that has a computably enumerable quotient presentation by some
co-c.e. equivalence relation? Equivalently, is there a nonstandard model of PA in
that language with a computably enumerable quotient presentation by any equivalence
relation, of any complexity?

The answer is given by the following:

Theorem 7. There exists a nonstandard model M |= PA s.t.

M ∼= 〈N,⊕,⊗, S, 0, 1〉/E,

where 〈N,⊕,⊗, S, 0, 1〉 is computable and E is co-c.e., i.e. Π0
1

The idea of the proof consists in extending the language LPA to L+ = LPA + {ci :
i ∈ ω}, letting T+ = PA+¬ConPA and simulating the Henkin construction via finite
injury priority argument, doing two things:

1. building a Henkin tree,

2. enumerating inequalities, which will give us a c.e. complement of E, making E
co-c.e.

Doing it carefully, and using Hilbert’s Basis Theorem we obtain the following lemmas:

Lemma 8 (Injury Lemma). For every l (level of the tree) there is a stage s such
that for all t ≥ s the Boolean value of ϕl does not change at stage t and the Henkin
witness assigned to ϕl does not change.

Lemma 9 (Completeness Lemma). Let

Γ = PA+ ¬ConPA + {ϕi : ϕiis stabilized with Boolean value 1}

Γ is a complete, consistent theory and Γ = Th(〈N,⊕,⊗, S, 0, 1〉/E) for some com-
putable 〈N,⊕,⊗, S, 0, 1〉 and a Π0

1 equivalence E.



LOGIC in computer science, computer
engineering and mathematics

Yuri Gurevich
University of Michigan, Ann Arbor, MI, USA

gurevich@umich.edu

In software industry, engineers do formal logic day in and day out, even though they
may not and usually do not realize that. As a rule, they have not studied logic.
Instead, they studed calculus which they use rarely, if ever.

We illustrate why logic is so relevant to computer science and to computer industry
and why it is so hard for software engineers to pick it up.

At the end we discuss the uses of formal logic in mathematics and the prospects of
logic in mathematics departments.

Bounded finite set theory

Laurence Kirby
Baruch College, City University of New York, USA

Laurence.Kirby@baruch.cuny.edu

We define a theory of bounded induction on sets, I∆0S, which is analogous to I∆0

in arithmetic. We establish some independence results for basic set-theoretic axioms
over this theory, and consider the question: given a model M of I∆0, is there a model
of I∆0S whose ordinals are isomorphic to M?

How useful are pure compositional
axioms for the truth predicate?

Mateusz  Le lyk
University of Warsaw, Poland
mlelyk@student.uw.edu.pl

The next natural question to ask when establishing the conservativity of a theory
Th1 over its subtheory Th2, is whether the former allows easier proofs of theorems
of the latter. In order to formally grasp when one proof is easier then another, we
measure the number of symbols used when writing them. The shorter the proof, the
better. Next definition clarifies this intuition:

Definition Let Th1 and Th2 be two theories and Φ a set of functions N → N. We
shall say that Th2 has a speed-up over Th1 with respect to Φ (or super Φ speed-up)
if there exists an infinite sequence of formulae φ0, φ1, . . . , provable in both Th1 and
Th2 such that for every function f ∈ Φ there exists k ∈ N such that for every n ≥ k
we have

‖ φn ‖Th1> f(‖ φn ‖Th2),

where ‖ φn ‖Th denotes the length of the shortest proof of φ in Th.

One can show e.g. that ACA0 has a super-elementary speed-up over PA, while being
very conservative over it (not only proof-theoretically, but also model-theoretically).
The same is the case with the pair GB and ZFC. These results together with the
above definition were given in [5]. In general, if a theory admits a super-polynomial
speed-up over its subtheory Th, we can treat it as a useful extension of Th.

In the talk we discuss the situation with the theory of basic compositional truth for the
language of arithmetic, known as CT−(a). This theory is formulated with the use of a
fresh unary predicate T and extends PA with finitely many axioms being the natural
arithmetization of Tarski’s inductive definition of truth (in the extended language but
only for the language of arithmetic). CT− is well-known to be conservative over PA
and three essentially different proofs demonstrating this can be found in [3] (KKL
Theorem), [4] and [1].

In our presentation we sketch the proof that CT− does not have a superpolynomial
speed-up over PA. The proof idea has been given by Ali Enayat and it consists in
a neat arithmetization of the model-theoretic conservativity proof of CT− over PA,
given in [1]. More concretely, it can be shown that there exists a feasible interpretation
of CT− in PA, i.e. one in which the translation of every axiom is provable in PA with
a proof of length polynomial in the length of the axiom.

aCalled also CT� in [2] and CT[PA] in [4]
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Abstract

We study weak Π2-axiomatizable set theories. We give two criteria
of whether a given theory T could be Π2-conservatively extended by
∆0-Collection axiom. We also develop class existence principle that
is an analogue of Weak König’s Lemma in our setting. We prove
that any T that could be Π2-conservatively extended by ∆0-Collection
axiom also could be Π2-conservatively extended by our analogue of
Weak König’s Lemma. Our conservation results are quite general
and could be applied to easily achieve several already known con-
servation results for both first and second order arithmetic. In par-
ticular EA ≡Π2 EA + BΣ1 ≡Π2 WKL?

0 and ACA0 ≡Π1
2

Σ1
1-AC0 ≡Π1

2

Σ1
1-AC0 + ”there is a non-principal ultrafilter”.

aThis work is supported by the Russian Science Foundation under grant 16-11-10252

Conservativity of collection for systems of first order arithmetic is a well-known phe-
nomenon. J. Paris [10] and H. Friedman showed that theories BΣn+1 are Πn+2 con-
servative over IΣn. Latter Beklemishev have [4] generalized this result and showed
that a Πn+2-axiomatizable theory could be Πn+2 conservatively extended by axiom
BΣn+1 iff it is closed under Σn+1-Collection Rule.

The study of conservation results for axioms of choice in systems of second-order
arithmetic were initiated by Friedman [5]. The system Σ1

1-AC0 is known to be Π1
2-

conservative extension of ACA0, the system Σ1
2-AC0 is known to be Π1

3-conservative
extension of Π1

1-CA0 and further Σ1
k+3-AC0 is known to be Π1

4-conservative extension
of Π1

k+2-CA0 (see [12, Section IX.4])

Kripke Platek set theory with urelements KPU in its current form were introduced by
J. Barwise in his book [3]. The theory KPU is known to be quite strong from proof-
theoretic point of view. Namely, base KPU have the same proof-theoretic power
as Peano arithmetic PA and the proof-theoretic strength of KPU with the axiom of
Infinity exceeds the proof-theoretic strength of predicative theories [8]. This strength
is the result of interplay of the schemes of ∆0-Collection and Foundation.

The versions of Kripke-Platek without Foundation were studied by G. Jäger [7, 8].
The conservation results of this paper could be regarded as extention and generaliza-
tion of conservativity of a version of Kripke Platek over PA [8]. K. Sato [11] studied
set theories with restrictions on Foundation, Extensionality, and ∆0-Separation. We
note that Sato’s setting is somewhat different from our’s. In particular, we consider
only theories with full ∆0-Separation and allow urelements. And his main focus were
on revers mathematical kind of results rather than conservation results. Nevertheless
like in Sato’s work we develop uniform set theoretical context to incoroprate bresults
for first-order and second-order arithmetic.

We follow standard conventions with regard to set theories with urelements, see [3]
(note that we use x, y, z, . . . for arbitrary objects, a, b, c, . . . for sets, and p, q, . . . for
urelements). The axioms of our base theory ES are

1. ∃a (x ∈ a ∧ y ∈ a) (Pair);

2. ∃b ∀c ∈ a ∀x ∈ c x ∈ b (Union);

3. ∃b (∀x ∈ b (x ∈ a) ∧ ∀x ∈ a (ϕ(x) ↔ x ∈ b)), for all ∆0 formulas without free
occurrences of b (∆0-Sep).

The scheme of ∆0-Coll is

∀x ∈ a ∃y ϕ(x, y)→ ∃b ∀x ∈ a ∃y ∈ b ϕ(x, y),

for all ∆0[Ω] formulas without free occurrences of b The theory KPU− is ES+∆0-Coll.



We also consider larger signatures Ω ⊇ Ω0 = {=,∈,Ur} and relativized theories ES[Ω],
KPU−[Ω], where we extend all schemes to relativized classes. Note that if Ω contains
functional symbols then bounded quantifiers in ∆0[Ω] formulas are term-bounded.

The ∆0[Ω] collection rule (∆0[Ω]-CollR):

∀x ∃y ϕ(x, y)

∀a ∃b ∀x ∈ a ∃y ∈ b ϕ(x, y)
,

where ϕ(x, y) is ∆0[Ω] formula without free variables other than x and y.

We say that a term t′(y1, . . . , yn) is a collecting term for a term t(x1, . . . , xn) in theory
T if

T ` x1 ∈ y1 ∧ . . . ∧ xn ∈ yn → t(x1, . . . , xn) ∈ t′(y1, . . . , yn).

We say that a theory T ⊇ ES[Ω] of signature Ω have witnessed collection property if

1. T is Π1[Ω] axiomatizable;

2. for each functional symbol of Ω there is a collecting term;

3. there are T-terms ∅, ∪(x), and {x, y} without other free variables such that T
proves natural properties for them.

Theorem 1. For any theory T ⊇ ES[Ω] axiomatizable by Π2[Ω]-sentences the follow-
ing conditions are equivalent:

1. the theory T + KPU−[Ω] is Π2[Ω]-conservative over T;

2. the theory T is closed under ∆0[Ω]-CollR;

3. there is a conservative extension U ⊇ T with witnessed collection property.

We note that somewhat similar approach of extending base language of set theory
by witnessing function were used by J. Avigad in his approach to ordinal analysis of
KPω [2]

We also investigate class theories over our set theories. The axiom scheme ∆0
1[Ω]-CA

is
∀x (ϕΠ(x)↔ ϕΣ(x))→ ∃X ∀x (x ∈ X ↔ ϕΠ(x)),

where ϕΠ and ϕΣ are Π0
1[Ω] and Σ0

1[Ω], respectively (they may contain additional free
variables).

We introduce the axiom CCP of Class Compactness Principle. It statesa that if there
is a class of pairs C such that

1. for each 〈a, b〉 ∈ C we have b ⊆ a;

2. for each a some pair 〈a, b〉 is in C;

3. for each a′ ⊆ a and 〈a, b〉 ∈ C the pair 〈a′, b ∩ a′〉 ∈ C;

then there is a class P such that ∀a∃b(a ∩ P = b ∧ 〈a, b〉 ∈ C). We note that CCP
could be regarded as a generalization of Weak König’s Lemma.

Theorem 2. Suppose T ⊇ ES[Ω] is Π2[Ω]-axiomatizable theory for which any(all)
items of Theorem 1. hold. Then T is Π2[Ω] conservative over T + ∆0

0[Ω]-Coll +
∆0

1[Ω]-CA + CCP.

Finally we demonstrate how we apply our result about set theories to theories in other
signatures. Let us outline the reduction of a conservation result for ACA0 (essentially
it is A. Keruzer’s result [9]) to our general Theorem 2.

Theorem 3. ACA0 is Π1
2 conservative over third-order theory

Σ1
1-AC0 + ”there exists a non-principal ultrafilter”.

Proof. We consider signature Ωar that is the extension of Ω0 by relational signature
of arithmetic. Theory ESar is ES[Ωar] plus axioms of Q for urelements, plus axiom
of set-induction over naturals, plus existence of the set of all naturals. We naturally
extend ESar by new functions to obtain ESWar with witnessed collection property
that is conservative over ESar + ∆0[Ωar]-CollR (see [?]). By restricting consideration
of sets to subsets of N, the language of second-order arithmetic could be regarded as
a sublanguage of ESWar. Thus we regard ACA0 as a subsystem of ESWar. On the
other hand ACA0 naturally interprets ESWar, most importantly the interpretation of
∈ is

X ∈I Y
def⇐⇒ ∃n∀m (〈n,m〉 ∈ Y ↔ n ∈ X).

Thus ESWar is a conservative extension of ACA0. Hence the theory T = ESWar +
∆0

0[Ωar]-Coll + ∆0
1[Ωar]-CA + CCP is Π1

2 conservative extension of ACA0. Now we just
build an appropriate interpretation of the third-order theory
Σ1

1-AC0 + ”there exists a non-principal ultrafilter” in T.

anote that in the sake of simplicity we give formulation in the case of presence of Exten-
sionality
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[8] Gerhard Jäger, A version of Kripke-Platek set theory which is conservative over
Peano arithmetic. Mathematical Logic Quarterly, 30(1-6):3–9, 1984.

[9] Alexander Kreuzer, Non-principal ultrafilters, program extraction and higher-
order reverse mathematics. Journal of Mathematical Logic, 12(01), 2012.

[10] Jeff Paris, A hierarchy of cuts in models of arithmetic. In Model theory of algebra
and arithmetic, pages 312–337. Springer, 1980.

[11] Kentaro Sato, The strength of extensionality Π-weak weak set theories without
infinity. Annals of Pure and Applied Logic, 162(8):579–646, 2011.

[12] Stephen Simpson, Subsystems of second order arithmetic, volume 1. Cambridge
University Press, 2009.

Recognisable sets, profinite topologies
and weak arithmetic

Jean-Éric Pin a

IRIF, CNRS and Université Paris-Diderot, France.
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If A is a one-letter alphabet, the free monoid A∗ is isomorphic to the additive monoid
N. One can therefore expect that any result on A∗ trivializes for a one-letter alphabet.
But surprisingly enough, this is not always the case. The aim of this survey is to
present such cases, which lead to unexpected results on weak arithmetic.

1 Definitions

1.1 Recognisable subsets

Let M be a monoid. A subset P of a monoid M is recognisable if there exist a
finite monoid F , a monoid morphism ϕ : M → F and a subset Q of F such that
P = ϕ−1(Q). According to Kleene theorem, a subset of A∗ is recognisable if and only
if it is regular.

1.2 Regular languages

A lattice of languages is a set L of regular languages of A∗ containing ∅ and A∗ and
closed under finite union and finite intersection. It is closed under quotients if, for
each L ∈ L and u ∈ A∗, the languages u−1L and Lu−1 are also in L.
A renaming or length-preserving morphism is a morphism ϕ from A∗ into B∗, such
that, for each word u, the words u and ϕ(u) have the same length. It is equivalent
to require that, for each letter a, ϕ(a) is also a letter, that is, ϕ(A) ⊆ B. Similarly,
a morphism is length-decreasing if the image of each letter is either a letter or the
empty word.

aThe author is partially funded by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No
670624) and by the DeLTA project (ANR-16-CE40-0007)



A class of languages is a correspondence C which associates with each alphabet A
a set C(A∗) of regular languages of A∗. A positive variety of languages is a class of
regular languages V such that (a) for every alphabet A, V(A∗) is a lattice of languages
closed under quotients and (b) if ϕ : A∗ → B∗ is a morphism, L ∈ V(B∗) implies
ϕ−1(L) ∈ V(A∗). If Condition (b) is only satisfied by length-decreasing [length-
preserving] morphisms, the class V is a positive ld-variety [lp-variety] of languages.
A variety of languages is a positive variety V such that each lattice V(A∗) is closed
under complement. The following result is proved in [1].

Theorem 4. Every commutative positive ld-variety of languages is a positive variety
of languages.

Setting, for each subset L of N and each positive integer k,

L− 1 = {n ∈ N | n+ 1 ∈ L}
L÷ k = {n ∈ N | kn ∈ L}

one gets the following corollary [4].

Corollary 1. Let L be a lattice of regular subsets of N such that if L ∈ L, then
L− 1 ∈ L. Then for each positive integer k, L ∈ L implies L÷ k ∈ L.

1.3 Profinite metrics

A monoid F separates two elements x, y ∈M if there exists a morphism ϕ : M → F
such that ϕ(x) 6= ϕ(y).
A monoid is residually finite if any pair of distinct elements of M can be separated by
a finite monoid. Finite monoids, free monoids, free groups and products of residually
finite monoids are residually finite.
Let M be a residually finite monoid. The profinite metric d on M is defined by
setting, for u, v ∈M :

r(u, v) = min
{
|F | F separates u and v

}
d(u, v) = 2−r(u,v)

with the conventions min ∅ = +∞ and 2−∞ = 0. One can show that d is not
only a metric, but an ultrametric, that is, satisfies the stronger inequality d(u,w) 6
max(d(u, v), d(v, w)).

1.4 p-group languages

A profinite metric can be actually attached to any Boolean algebra of regular subsets
of M . An interesting case occurs when the Boolean algebra is the set of p-group
languages of a free monoid.
Let p be a prime number. A p-group is a group whose order is a power of p. A p-group
language is a language whose syntactic monoid is a p-group. Let Gp be the Boolean
algebra of p-group languages.
A word u = a1a2 · · · an (where a1, . . . , an are letters) is a subword of a word v if v can
be factored as v = v0a1v1 · · · anvn. For instance, ab is a subword of cacbc. Given two
words u and v, we denote by

(
v
u

)
the number of distinct ways to write u as a subword

of v. More formally, if u = a1a2 · · · an, then(
v

u

)
= Card{(v0, v1, . . . , vn) | v0a1v1 · · · anvn = v}

Eilenberg and Schützenberger [7] have proved that a language of A∗ is a p-group
language if and only if it is a Boolean combination of languages of the form

L(x, r, p) = {u ∈ A∗ |

(
u

x

)
≡ r mod p}, (1)

where 0 6 r < p and x ∈ A∗.

2 Regularity-preserving functions

A function f : A∗ → B∗ is regularity-preserving if, for each regular language L of B∗,
f−1(L) is also regular. More generally, if C is a class of regular languages, f is said to
be C-preserving if, for each L ∈ C, f−1(L) is also in C. A long term objective is the
following:

Find a complete description of regularity-preserving (respectively C-
preserving) functions.

The problem can be extended to functions between arbitrary monoid as follows. Let
M and N be monoids. A function f : M → N is recognisability-preserving if, for each
recognisable language L of B∗, f−1(L) is also recognisable. The following result [10]
gives a topological characterization of these functions.

Theorem 5. Let M and N be two finitely generated, residually finite monoids. A
function M → N is recognisability-preserving if and only if it is uniformly continuous
for the profinite metrics.

Further properties are discussed in [5, 6, 10, 11, 12].



The characterization of Gp-preserving functions is also an interesting problem. For
functions from N to N, the solution boils down to a famous result of Mahler in p-adic
analysis [8, 9]. The case of functions from A∗ to N was settled by Silva and the
author [12] and the general case (functions from A∗ to B∗) was recently solved by
Reutenauer and the author.

3 Back to integers

It is well-known that a set S of nonnegative integers is regular if and only if it is a
finite union of arithmetic progressions.

Example 1. Let S = {1, 3, 4, 9, 11} ∪ {7 + 5n | n > 0} ∪ {8 + 5n | n > 0} =
{1, 3, 4, 7, 8, 9, 11, 12, 13, 17, 18, 22, 23, 27, 28, . . .}. Then S is a finite union of arith-
metic progressions.

A function f : N → N is said to be ultimately periodic modulo n if the function n →
f(n) mod n is ultimately periodic. It is cyclically ultimately periodic if it is ultimately
periodic modulo n for all n > 0. The following result, which has been rediscovered
several times, goes back at least to Siefkes [?] and to Seiferas-MacNaughton [14].

Proposition 2. A function f : N→ N is ultimately periodic modulo n if and only if
for 0 6 k < n, the set f−1(k + nN) is regular.

Corollary 3. A function f : N → N is regularity-preserving if and only if it is
cyclically ultimately periodic and, for every k ∈ N, the set f−1(k) is regular.

Properties of cyclically ultimately periodic (cup) functions have been studied or used
by various authors, see [2, 3, 14, 15, 16]. The notion of a cup function can be extended
to functions from Nk to N. Siefkes [15] has shown that cup functions satisfy a recursion
scheme, which can be used to prove the following result:

Theorem 6. Let f, g : N → N be cyclically ultimately periodic functions. Then so
are the following functions:

1. g ◦ f , f + g, fg, fg, and f − g provided that f > g and lim
n→∞

(f − g)(n) = +∞,

2. ( generalised sum) n→
∑

06i6g(n) f(i),

3. ( generalised product) n→
∏

06i6g(n) f(i).

For instance, the functions n → 2n and n → 222
. . .

2

(exponential stack of 2’s of
height n) are cyclically ultimately periodic. However, the function n →

(
2n
n

)
is not

ultimately periodic modulo 4 since
(

2n
n

)
≡ 2 mod 4 if and only if n is a power of 2,

and
(

2n
n

)
is divisible by 4 otherwise.

It is an interesting open problem to know whether all primitive recursive cup functions
can be generated by using Siefkes’ recursive scheme.
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We will consider time-complexity of two sets defined by a system of linear divisibilities.
The study of such sets followed the results of A.P. Bel’tyukov [1] and L. Lipshitz
[2] on the decidability of the existential theory of the structure 〈N; +, 1, | 〉. Some
number-theoretical and time-complexity properties of sets, existentially definable in
this structure, were studied in [3] and [4].

Recall the definition from [4] of subdivisibility sets as projections of a finite union of
basic divisibility sets of the form{

x ∈ Zn :

m1∧
i=1

fi(x) | gi(x) ∧
m2∧
j=1

hj(x) ≥ 0

}
, (1)

where every fi, gi, hj is linear in x over Z. In non-deterministic polynomial time (see
[5]) the decision problem for every subdivisibility set is reducible to the problem of
deciding sets of the form{

y ∈ Zl : ∃x
k∨

j=1

(
m∧
i=1

fi,j(x, y) | gi,j(x, y)

)
∧ x ≥ 0 ∧ y ≥ 0

}
, (2)

for polynomials fi,j , gi,j linear in x, y over Z with non-negative integer coefficients.

When we study decision problem for this theory we have to consider families of
divisibility formulas. This leads us to the following definition. Analogously we define
divisibility family as a finite union of basic divisibility families, defined as{

y ∈ Nl : ∃x
m∧
i=1

fi,j(x, y) | gi,j(x, y) ∧ x ≥ 0

}
, (3)

for quadratic polynomials fi,j , gi,j with non-negative integer coefficients, linear in x
over Z[y] and in y over Z[x].

Every subdivisibility set is obviously a divisibility family but this is not true in the
other direction. For example, graph of squaring function is a basic divisibility fam-
ily and not a subdivisibility set. We will further consider complexity of deciding
basic divisibility families. Note that after introducing some bound variables, every
such family can be regarded as a set of pairs of matrices (A,B) with non-negative
integer entries, where every such pair corresponds to the set of coefficients of linear
polynomials in the divisibility system

m∧
i=1

ai,0 + ai,1x1 + ...+ ai,nxn | bi,0 + bi,1x1 + ...+ bi,nxn. (4)

This form is more convenient when we study various classes of basic divisibility fami-
lies as it is easier to formulate restrictions on the elements of some divisibility family.
In this case a class is a non-empty set of the decision problems for some basic divisi-
bility families.

In [3] it was shown that the problem of deciding basic divisibility families is NP-hard
for every number of divisibilities m ≥ 5 and is in the class NP for every fixed number
of divisibilities. The general problem is not known to be in NP, and the tight upper
bound on the length of the minimum satisfying assignment for an arbitrary divisibility
system is exponential in the length of the input, as was shown in [5]. This gives
NEXPTIME upper bound for the problem.

In the following two classes of basic divisibility families we consider one number-
theoretical problem from P and prove that for some class of basic divisibility families
the decision problem for every family from this class is in NP. In both these cases
the number of divisibilities will be arbitrary.

Let we have a problem of consistency in N of a system of linear congruences and
linear inequalities. This problem defines some basic divisibility family as we can
think of a given system of congruences as of a divisibility system (4) with ai,j = 0
for i = 1..m, j = 1..n, introducing some bound variables we can transform given
inequalities into a system of divisibilities. Without lost of generality we may assume
that a1,0 = ... = am,0 = k for some positive integer k. We can denote this problem
kLCLI.

Proposition 1. For every fixed number of the variables n and fixed number of distinct
prime factors of k, the problem kLCLI is in the class P.

If we will not fix the number of the variables it is sufficiently to allow only two non-zero
coefficients among bi,j for i = 1..m, j = 1..n in linear divisibilities and inequalities

of the form
n∧

i=1

xi ≤ d for some d < k, to make the problem NP-complete as was

shown in [6]. The author doesn’t know whether this proposition is true without any
restriction on the number of prime factors of k.
The second problem concerns such restrictions on values of non-negative entries of
the matrices (A,B) that the decision problem for the corresponding family is in the
class NP.



Proposition 2. The problem of deciding basic divisibility families, satisfying the
restriction (bi,j 6= 0⇒ ai,j 6= 0) for i = 1..m, j = 0..n is in the class NP.

One corollary from this result is that every divisibility family that comprises only
pairs of matrices that have all positive integer entries is in NP. This restriction
was imposed on systems of divisibilities in [7] in the problem denoted simultaneous
divisibility of linear polynomials. This problem was marked NP-hard with reference
to [3]. In order not to confuse this special case with the general decision problem, we
denote the problem SDLP+. Using NP-hardness result from [6] we conclude that

Corollary 1 from Proposition 2. The problem SDLP+ is NP-complete.

This subclass is apparently much easier than the decision problem for an arbitrary
basic divisibility family.
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Primitive recursion and
algorithmically-completeness for

Primitive Recursive Class of functions

Patrick Cégielski a, Serge Grigorieff b,
Julien Cervelle c and Pierre Valarcher d

One wonders whether certain complexity classes are attainable by some programming
languages that implement only the class of recursive primitive functions. For example,
we show that the complexity class O(log) is not accessible in the PRC language : there
is no program that compute anything in time O(log). On the other hand, the class
O(n. log(n)) is reachable with the LOOP language.
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