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a b s t r a c t

We show that the arithmetical theory T 02 + Σ̂
b
1 -IND

|x |5 , formalized in the language of Buss,
i.e. with bx/2c but without the MSP function bx/2yc, does not prove that every nontrivial
divisor of a power of 2 is even. It follows that this theory proves neither NP = coNP nor
S02 .

Crown Copyright© 2009 Published by Elsevier B.V. All rights reserved.

Some arithmetical theories are not merely weak but very weak, in the sense that they do not prove some very basic
arithmetical fact or the totality of some extremely simple function. Among subsystems of Buss’ bounded arithmetic S2, the
very weak theories are the only ones which we can separate from all of S2 without using any unproven assumptions.
A few very weak theories have been known for a long time, but more recent discoveries of very weak (first-order)

fragments of S2 can be roughly divided into two groups. The first of these consists of induction schemes for Σbn formulae,
n ≥ 1, restricted to very short initial segments. For example, Pollett proved in [9] that the theory Σ̂b1 -IND

|x|4 (induction for
strictΣb1 formulae restricted to the range of the fourth iteration of the logarithm function), or more generally Σ̂

b
n -IND

|x|n+3 ,
is very weak, as it does not prove the totality of the function bx/3c. The result holds even if the language contains theMSP
function, where MSP(x, y) = bx/2yc. The bound on length of the induction can be improved: in [2], it was shown that Σb1
induction restricted to |x|3 (indeed, almost to |x|2) is still very weak, although the proof of that result no longer works with
MSP in the language.
The second group of veryweak theories contains systems axiomatized by various schemes of induction forΣb0 , i.e. sharply

bounded, formulae. It has been known since [11] that S02 , or polynomial induction for sharply bounded formulae, does not
prove the totality of the predecessor function. The theory remains very weak even if the language is expanded by symbols
for predecessor, subtraction, MSP and counting [6]. Sharply bounded length induction, L02, is also very weak [7]. However,
none of themethods applied to prove independence results for S02 , L

0
2 and related theories have worked for the usual sharply

bounded induction scheme, T 02 . Moreover, in a recent paper [5] Jeřábek showed that T
0
2 (MSP), that is, sharply bounded

induction withMSP in the language, is surprisingly strong: it is equivalent to the well-known theory PV , and hence proves
e.g. all the ∀Σb1 consequences of S

1
2 . The presence ofMSP is essential for Jeřábek’s argument, so the status of T

0
2 formulated

in Buss’ original bounded arithmetic language of #, | · | and b ·2c has remained an open problem.
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The main theorem of the present paper solves this open problem and additionally provides a bridge between the two
groups of results on very weak theories mentioned above. We show that Buss’ original T 02 , complemented by induction for
strictΣb1 formulae up to |x|5, is very weak: it does not prove that all nontrivial divisors of powers of 2 are even. The theorem
has two interesting corollaries: the theory T 02 + Σ̂

b
1 -IND

|x|5 does not prove S02 and (a certain formalization of) NP = coNP . A
more general conclusion which can be drawn from our work is that the strength of severely restricted induction schemes
depends crucially on the exact choice of language, and in particular on the presence ofMSP .
Our methods are model-theoretic and rely strongly on [2]. We also need to extend Shepherdson’s [10] classical analysis

of sets defined by open formulae with+ and× to sharply bounded formulae involving also #, | · | and b ·2c. After discussing
notational preliminaries in Section 1, we review relevant material from [2] in Section 2, present the analysis of sharply
bounded formulae in Section 3, and prove our main theorem in Section 4. The final Section 5 contains proofs of the
aforementioned corollaries and mentions a few open problems.

1. Definitions and notation

We assume that the reader is familiar with the basic notions and results of bounded arithmetic as presented in e.g. [3,4,
8]. In particular, we assume some familiarity with the operations # and | · |, the formula classesΣbn andΠ

b
n , the theory BASIC

and notions such as ‘‘sharply bounded quantifier’’ etc. We work in the usual language of bounded arithmetic, with symbols
for 0, 1,≤,+,×, #, | · |, and b ·2c.
Recall the difference between (general) Σb1 and strict Σ

b
1 , or Σ̂

b
1 . Σ

b
1 formulae are built from sharply bounded formulae

using &,∨, bounded existential quantifiers and sharply bounded universal quantifiers. A Σ̂b1 formula has to be of the form

∃x1< t1 ∃x2< t2 . . . ∃xm< tm ψ,

whereψ is sharply bounded (nouniversal sharply boundedquantifiers allowedwithin the initial existential block). Awitness
for a Σ̂b1 formula is then simply a finite tuple of elements witnessing the initial existential quantifiers. The distinction
betweenΣbn and Σ̂

b
n also makes sense for n > 1, but we will not use it.

For n ≥ 0, the theory T n2 is axiomatized by BASIC and the induction scheme forΣ
b
n formulae. In S

n
2 , induction is replaced

by the polynomial induction scheme,

ϕ(0) & ∀x (ϕ(bx/2c)⇒ ϕ(x))⇒ ∀xϕ(x).

For any k, |x|k denotes the k-th iteration of the | · | function on x, and Σ̂b1 -IND
|x|5 is the induction scheme for Σ̂b1 formulae

with the conclusion restricted to the range of |x|5.
Throughout the paper, N ,R are countable structures such that (N ,R) is a nonstandard model of Th(N,Ralg), where

Ralg stands for the real algebraic numbers. Thus, R is a real-closed field, N has induction for all formulae involving R or
parameters fromR, and we can code (N -)finite sets of elements ofR by elements of N . Q is the fraction field of (the ring
generated by) N , and a is a nonstandard element of N . Naturally, we have N ⊆ Q ⊆ R, and Q can be interpreted in N
in the usual way. Notation like [b, c) represents the appropriate interval in N — we write [b, c)Q or [b, c)R to denote the
corresponding interval in Q orR, respectively. Notation like cω , 2c

ω
etc. represents the appropriate cuts in N , but b < cω

does not imply that b ∈ N .
For b ∈ R \N , |b| is defined to equal |bbc|, where bbc is the ‘‘true’’ integer part of b, contained inN .
In any model of BASIC , a power of 2 is an element x satisfying ∃y x = y#1. Being a power 2 can be equivalently expressed

by the quantifier-free formula 2x = x#1.
A bar, as in x̄, indicates a tuple, always of standard finite length. Notation like x̄ < y and x̄ ∈ X means that all elements

of x̄ are smaller than y or belong to X , respectively.

2. Log-euclidean chains

The present section contains a resume of relevant notions and results from [2]. In the simpler cases, we also provide brief
sketches of proofs.
The key technical notion is that of a log-euclidean chain (l.e. chain for short). An l.e. chain is a coded (inN ) sequence (Ai)i≤d

of subsets ofQ satisfying the following conditions:

(i) {a} ∪ [0, |a|] ⊆ A0,
(ii) for every i < d,

(Ai + Ai) ∪ (Ai · Ai) ∪ (Ai − Ai) ∪ [0, |a|2
i+1
] ∪ {2c : c ∈ [0, |a|i+1]} ⊆ Ai+1,

(iii) for every i < d, x ∈ Ai, and integer q ≤ |a|2
i
, Ai+1 contains an integer part of x/q, i.e. a (unique) number y such that

y ≤ x/q < y+ 1,
(iv) for every i < d and x ∈ (Ai)+, Ai+1 contains [0, |x|].
(v) Ad is discrete, i.e. Ad ∩ (0, 1)Q = ∅.
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An l.e. chain may contain both negative numbers and non-integers. In particular, the ‘‘integer part’’ of x/q in the sense of
the chain does not have to be an integer. Nevertheless, we still use the notation bx/qc in the hope that it does not lead to
confusion.
We also often write (Ai) instead of (Ai)i≤d if no confusion arises. We say that (Bi)i≤d′ extends (Ai)i≤d levelwise (written

(Ai)i≤d ⊆` (Bi)i≤d′) if d′ ≤ d and for every i ≤ d′, Ai ⊆ Bi. Loosely speaking, (Bi) is ‘‘shorter but wider’’ than (Ai).
Whenever (Ai)i≤d is an l.e. chain and I < d is a cut, AI :=

⋃
i∈I Ai ∩ 2

|a|ω is a model of BASIC . This can be verified in a
straightforward way: the least obvious axiom to check is |2x+ 1| = |x| + 1. But the only case in which |2x+ 1| > |x| + 1
occurs is when 2|x| − 1/2 ≤ x < 2|x|, which cannot happen for x ∈ AI since Ad is discrete and 2|x| ∈ Aω .
Additionally, for each (Bi)i≤d′ ⊇` (Ai) and I < d′, the range of the | · | function in BI is always exactly equal to the cut |a|ω

in N . This means that for x̄ ∈ Aω and ϕ ∈ Σb0 , the truth value of ϕ(x̄) in BI depends only on Aω . So, it makes sense to speak
of the satisfaction of a sharply bounded formula ‘‘in the sense of the chain’’.

Proposition 2.1. If (Ai)i≤d is an l.e. chain and k < d, then (Ai+k)i≤d−k is also an l.e. chain.

In other words, the ‘‘tail’’ of an l.e. chain is an l.e. chain as well. This follows immediately from the definition.

Proposition 2.2 (‘‘Kernel Lemma’’ in [2]). If {a} ∪ [0, |a|] ⊆ A ⊆ 2|a|ω , then for each d ∈ N there exists an l.e. chain (Ai)i≤d and
a number K ∈ ω with A0 = A and card Ai ≤ (card A)2

Ki
for each i.

To obtain the l.e. chain whose existence is claimed, construct Ai+1 from Ai simply by performing the requisite operations
in N . Note that the only situation in which (Ai) could fail to obey the stated size bound is if we need to include [0, |b|] in
Ai+1 for some very large b ∈ Ai. This problem is avoided thanks to the additional assumption that A ⊆ 2|a|

ω
.

Proposition 2.3. Let (Ai)i≤d be an l.e. chain and let b1, . . . , bl be a tuple of elements of Q+, bi < 2|a|
ω
for each i. Assume that

there exists an l.e. chain (B̃i)i≤d̃ ⊇` (Ai) with {b1, . . . , bl} ⊆ B̃0. Then there exists k ∈ ω and an l.e. chain (Bi)i≤d̃−k ⊇` (Ai) with

{b1, . . . , bl} ⊆ B0 and card Bi ≤ (card Ai)2
Ki
for some K ∈ ω and each i.

So, whenever we can build an l.e. chain extending (Ai) levelwise and containing a fixed tuple of elements at the bottom
level, we can build a similar l.e. chain, of almost the same length, whose levels additionally satisfy some size bounds.
The basic idea used in the construction of the newchain is to takeA0∪{b1, . . . , bl} as the bottom level and build successive

levels as the minimal sets which contain corresponding levels of (Ai) and satisfy clauses (ii), (iii) of the definition of l.e.
chain (integer parts are taken in the sense of (B̃i)). It then remains to make the resultant chain satisfy clause (iv): when
b1, . . . , bl < 2|a|

ω
, it turns out that it is enough to cut off the first finitely many levels and renumber the rest. The details are

presented in the proof of Fact 2.2 part 2 in [2].
We conclude this section by stating without proof two much more difficult results which concern two important ways

in which a given l.e. chain may be extended. In accordance with the practice of [2] and with the intuitive meaning of the
results, we will refer to them as ‘‘Division Lemma’’ and ‘‘Integer Part Lemma’’, respectively.

Lemma 2.4 (‘‘Division Lemma’’). Let (Ai)i≤d be an l.e. chain such that for some K ∈ ω, card Ai ≤ |a|2
Ki
for each i, and |a|2

ωd
< a.

Then there is r ∈ Q+, r 6= 1, and an l.e. chain (Bi)i≤ 3√d ⊇` (Ai) such that:

• r, ar ∈ B0,
•
r−1
2 ∈ B2 (i.e. r is odd in the sense of (Bi)),

• for some L ∈ ω, card Bi ≤ |a|2
Li
for each i.

Lemma 2.5 (‘‘Integer Part Lemma’’). Let (Ai)i≤d be an l.e. chain such that for some K ∈ ω, card Ai ≤ |a|2
Ki
for each i. Let β ∈ Q+,

β < 2|a|
ω
. Then there is b ∈ Q, β − 1 < b ≤ β , and an l.e. chain (Bi)i≤ 3√d ⊇` (Ai) such that

• b ∈ B0,
• for some L ∈ ω, card Bi ≤ |a|2

Li
for each i.

3. Translating sharply bounded formulae

Our aim now is to prove a technical lemma stating that the set of elements which, if added to an l.e. chain, will satisfy a
sharply bounded formula in the sense of that chain, has a relatively simple structure:

Lemma 3.1. Let (Ai)i≤d be an l.e. chain. Let ϕ(x, p̄) be a Σb0 formula, where p̄ is a tuple of parameters from Aω . Let n be the
maximal nesting of b ·2c in ϕ. For every k ∈ ω there exists K ∈ ω and a set U of the form⋃

i<|a|K
Ii,

where Ii are disjoint intervals inR, such that for every x ∈ Q+, x < 2|a|
k
, and every l.e. chain (Bi)i<d′ ⊇` (Ai) with x contained

in Bω as a number divisible by 2n: ϕ(x, p̄) is true in Bω iff x ∈ U.
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Note that it is not claimed that membership in U corresponds to satisfaction of ϕ for all potential x, but only for those
which will be included in a given l.e. chain as numbers divisible by 2n. This restriction is nontrivial only if the formula ϕ
contains applications of b ·2c.
The main ingredient of the proof of Lemma 3.1 is:

Lemma 3.2. Let (Ai)i≤d be an l.e. chain. Let ϕ(x, p̄) be a Σb0 formula, where p̄ is a tuple of parameters from Aω . Let n be the
maximal nesting of b ·2c in ϕ. Let r < 2

n. For every k ∈ ω there exists a number K ∈ ω and a formula ϕ̃r(x, p̄) of the form:

Q1i1 < |a|KQ2i2 < |a|K . . .Qmim < |a|Kψ(x, p̄, ī, 2i1 , . . . , 2im , 2i1·i1 , 2i1·i2 , . . . , 2im·im , 1/2),

where the Qj are quantifiers and ψ is open in the language of 0, 1,≤,+,×,−, such that:
for every x ∈ Q, x < 2|a|

k
, and any chain (Bi)i<d′ ⊇` (Ai)i≤d with x contained in Bω as a number congruent to r mod 2n, ϕ(x, p̄)

is true in Bω iff ϕ̃r(x, p̄) is true (inQ or equivalentlyR, but with the quantifiers interpreted inN ).

Proof. Fix r . The argument is by induction on the complexity of ϕ, but the steps for connectives and sharply bounded
quantifiers are unproblematic, so essentially the only difficulty is the step for atomic formulae. Since t1 = t2 is equivalent
to t1 ≤ t2 & t2 ≤ t1, it is enough to define a correct translation of t1(x, p̄) ≤ t2(x, p̄), where t1, t2 are terms of L2. In what
follows, we restrict our attention to just this task.
Let K ∈ ω be such that for x < 2|a|

k
, the formula t1(x, p̄) ≤ t2(x, p̄) refers only to numbers below 2|a|

K
(note that p̄ < 2|a|

ω

by the definition of Aω). Let T be the set of those terms t for which |t|, t# or #t appears in t1 or t2. Let ī be a tuple of numbers
< |a|K indexed by T (intended interpretation: it fixes the length | · | of the value of t).
For each subterm t of t1 or t2 wewill define a term reprī(t) and a pair remī(t) of the form 〈u, ñ〉, where ñ ≤ n and u < 2

ñ

(intended interpretation: reprī(t) represents t in the translation and has the same value as t if the lengths are as given by ī,
while u is the value of t mod 2ñ).
The definition of reprī(t) is as follows:

• reprī(x) = x,
• reprī(p) = p for p among p̄
• reprī(t + s) = reprī(t)+ reprī(s),
• reprī(t · s) = reprī(t) · reprī(s),
• reprī(|t|) = it ,
• reprī(t#s) = 2

it ·is ,

• reprī(b
t
2c) =

{
reprī(t)
2 if remī(t) = 〈2v, ·〉,

reprī(t)
2 −

1
2 if remī(t) = 〈2v + 1, ·〉.

The definition of remī(t) is:

• remī(x) = 〈r, n〉,
• remī(p) = 〈p mod 2

n, n〉where p mod 2n is taken in Aω ,
• remī(t + s) = 〈u1 + u2 mod 2

min(ñ1,ñ2),min(ñ1, ñ2)〉where remī(t) = 〈u1, ñ1〉, remī(s) = 〈u2, ñ2〉,
• remī(t · s) is defined analogously,
• remī(|t|) = 〈it mod 2

n, n〉,
• remī(t#s) = 〈2

it ·is mod 2n, n〉,
• remī(b

t
2c) = 〈b

u
2c, ñ− 1〉where remī(t) = 〈u, ñ〉.

Note that by the choice of n, the second element of remī(t) is strictly positive whenever b
t
2c appears in t1 or t2, so that

we always know whether to treat the value of t as even or odd.
The translation of t1(x, p̄) ≤ t2(x, p̄) is now simply

∃ī ≤ |a|K
[(∧

t∈T

2it−1 ≤ reprī(t) < 2
it

)
& reprī(t1) ≤ reprī(t2)

]
.

This can be written as a single formula even though the shape of reprī(t) depends on ī. The reason is that to determine how
to write each reprī(t) we only need a finite amount of information about ī: the remainders of each it modulo 2

n (to know
remī(|t|)) and the information whether the value of each it is 0, 1, . . . , n− 1 or above n (to know remī(t#s)).
In order to see that the translation is correct, note first that there exists exactly one tuple ī, dependent on x, r and p̄ but

independent of the chain (Bi), such that
∧
t∈T (2

it−1 ≤ reprī(t) < 2
it ) holds. Given this tuple ī, one may use induction on

the complexity of a term to prove the following for all subterms t of t1 or t2: the value of t(x, p̄) in the sense of the chain (Bi)
is equal to reprī(t), and its remainder mod 2

ñ in the sense of (Bi) is u, where remī(t) = 〈u, ñ〉. The details of the inductive
proof are rather straightforward and we leave them to the reader. �
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Proof of Lemma 3.1. We only need to show that for each ϕ(x, p̄) ∈ Σb0 , the set defined inR by ϕ̃0, or, more generally, ϕ̃r
for any r < 2n, is of the required form. The proof is by induction on the complexity of subformulae of ϕ̃r .
In the base step, ψ(x, p̄) is an (in)equality between two polynomials from Q[x], which defines a finite union of disjoint

intervals in R since R is real-closed. The step for negation is easy, as the complement of a disjoint union of at most
logarithmically many intervals is also a disjoint union of at most logarithmically many intervals.
Thus, it is enough to deal with the steps for conjunction and the sharply bounded universal quantifier. To this end, we

make the following:
Claim. Assume that {I0i }i<r and {I

1
i }i<s are families of pairwise disjoint intervals. Then the set (I

0
0∪· · ·∪I

0
r−1)∩(I

1
0∪· · ·∪I

1
s−1)

can be presented as a disjoint union of at most r + s intervals J0 ∪ · · · ∪ Jr+s−1.
Except for the trivial case when both r and s are 0, the number of intervals needed is actually r + s − 1. The claim

is readily proved by induction on r + s. The base step is obvious. In the induction step, assume that in each of the
two families the intervals are numbered from left to right and consider the interval with the rightmost left end among
I00 , . . . , I

0
r−1, I

1
0 , . . . , I

1
s−1, say I

0
r−1. By the inductive assumption, we know that (I

0
0 ∪ · · · ∪ I

0
r−2)∩ (I

1
0 ∪ · · · ∪ I

1
s−1) is a disjoint

union of at most r + s − 1 intervals. I0r−1 cannot intersect any of the I
1
i other than I

1
s−1, so it contributes at most one more

interval to that union.
By the claim, the number of disjoint intervals increases by a factor which is standard in the step for conjunction and a

standard power of |a| in the step for sharply bounded universal quantifier. This is exactly what we need to complete the
proof. �

4. The main construction

Theorem 4.1. The theory T 02 + Σ̂
b
1 -IND

|x|5 does not prove that every nontrivial divisor of a power of 2 is even.

To prove the theorem, we start with an l.e. chain (A0i )i≤d obtained by applying the Division Lemma 2.4 to a power of 2.
That is, A00 contains a, r,

a
r where a = 2

|a|−1 and r 6= 1 is odd in the sense of (A0i ). The Division Lemma lets d be any number

satisfying |a|2
ωd3

< a, which is equivalent to ωd3 < |a|2.
Define b0 := 2 and d0 := d. Choose s such that 22

sω
< d. In particular, for large enough d, s can be ≥ |a|5. Note that by

overspill, 2c
sc
< d for some small nonstandard c (since 2c

sc
< 22

sc+1
for sufficiently small c).

Our construction has ω stages. At each stagem, we will have bm, dm and an l.e. chain (Ami )i≤dm such that:

• the sequence (bm)m<ω is increasing, (dm)m<ω is decreasing,
• bm2

sω
< dm,

• (Am−1i )i≤dm−1 ⊆` (A
m
i )i≤dm ,

• for some L ∈ ω dependent onm, card Ami ≤ |a|
2Li for each i .

Our final model will be
⋃
m<ω A

m
ω . We will use the odd stages to guarantee that this structure satisfies induction for Σ

b
0

formulae, and the even stages to make sure that it satisfies induction for Σ̂b1 formulae up to s.
Fix an enumeration of pairs consisting of a Σb0 formula with parameters from Q and a number from [0, 2|a|

ω
)Q . Fix

separately an enumeration of Σ̂b1 formulae with parameters from Q. We may assume that in both enumerations each
element occurs infinitely often.
Stagem odd. Let ϕ(x, p̄) be the m−12 -th Σ

b
0 formula and q the

m−1
2 -th number from [0, 2

|a|ω )Q . Put bm := bm−1 and
dm := 3

√
dm−1. If p̄ /∈ Am−1ω , q /∈ Am−1ω or Am−1ω |= ¬ϕ(0, p̄)∨ϕ(q, p̄), do nothing else (i.e. let the Ams be the Am−1s). Otherwise

we have one of the following three cases:

(i) there exists y < |a|ω such that Am−1ω |= ¬ϕ(y, p̄),
(ii) there exists y < |a|ω such that Am−1ω |= ϕ(q− y, p̄),
(iii) none of the above.

In cases (i) and (ii), we again do nothing: an element witnessing induction for ϕ(x, p̄) is already in Am−1ω . This can be proved
using induction in N , since for x ∈ [0, y] the properties Am−1ω |= ϕ(x, p̄) and Am−1ω |= ϕ(q − x, p̄), both of which refer only
to finitely many levels of Am−1ω and to a bounded fragment of 2|a|

ω
, can be expressed inN .

If case (iii) occurs, let n be the nesting depth of b ·2c in ϕ, let k be such that q < 2
|a|k and consider the set

⋃
i<|a|K Ii given

by Lemma 3.1. Since there are more than |a|K numbers divisible by 2n+1 below |a|ω , at least two of them have to be in the
same Ii, which must therefore have length at least 2n+1.
The complement of

⋃
i<|a|K Ii in [0, q]R is also a disjoint union of intervals

⋃
j<|a|K Jj. Again, as there are more than |a|

K

numbers of the form q− x, x < |a|ω , divisible by 2n+1 in the sense of (Am−1i ), there exists a Jj of length at least 2n+1.
Call intervals of length ≥ 2n+1 large. Among the Ii and Jj such that Ii, Jj are large and Ii < Jj, choose those for which the

distance between Ii and Jj is minimal. Since there are fewer than 2|a|K intervals in between, and all of them are small, the
distance between Ii and Jj is smaller than 2n+2|a|K — in particular, it is smaller than |a|ω .
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By the Integer Part Lemma and the fact that Q is dense in R, there exists y ∈ Ii ∩ Q and an l.e. chain (Bi)i≤dm ⊇`
(Am−1i )i≤dm−1 obeying the required size bound such that y is contained in B0. Due to the length of Ii, this implies that some
ỹ ∈ Ii is contained in B1 as a number divisible by 2n, so that Bω |= ϕ(ỹ, p̄).
We may assume that the distance between ỹ and the right end of Ii is smaller than 2n+1, so the distance between ỹ and

Jj is smaller than 2n+2|a|K + 2n+1. Thus, by the definition of an l.e. chain and the length of Jj, some element of Jj of the
form ỹ + z, where z is an integer smaller than |a|ω , is contained in B|K |+1 as number divisible by 2n. But this means that
Bω |= ¬ϕ(ỹ + z, p̄), and, like in cases (i) and (ii), induction in N finds an element witnessing induction for ϕ(x, p̄) in Bω .
Hence, we may take (Ami ) to be (Bi).
Stagem > 0 even. Letψ(x, p̄) be the m2 -th Σ̂

b
1 formula. Assume p̄ ∈ A

m−1
ω (otherwise we do not have to do anything). We

want to divide the interval [bm−1, dm−1) in a definable way into s+ 2 disjoint intervals [βj, βj+1) so that βj2
sω
< βj+1. This

can be done: if (bm−1)c
(s+2)c

< dm−1 for a small nonstandard c , take βj := (bm−1)c
j(s+2)c−1

.
We will now use the pigeonhole principle in a similar way as in [1,2]. Consider the definable function which sends r ≤ s

to the smallest j ≤ s + 1 for which there is no l.e. chain (Bi)i≤βj+1 ⊇` (A
m−1
i ) with a witness for ψ(r, p̄) contained in B0

(send r to s+ 1 if no such j exists). By the pigeonhole principle inN , this function cannot be surjective, so there exists some
j ≤ s+ 1 such that ∀r ≤ s (ξ(r, j)⇒ ξ(r, j+ 1)), where ξ(r, j) is the formula:

‘‘there exists an l.e. chain (Bi)i≤βj ⊇` (A
m−1
i )

such that B0 contains a witness for ψ(r, p̄).’’

Fix such a j, let bm := βj, and take dm to be some number < βj+1 − ω such that βj2
sω
< dm remains satisfied. By the

choice of j, for every r ≤ s such that there exists (Bi)i≤βj ⊇` (A
m−1
i )with a witness for ψ(r, p̄) in B0 and βj levels, there also

exists a similar chain with βj+1 levels, hence with more than dm + ω levels. So, using Proposition 2.3, take (Ami )i≤dm to be
some (Bi)i≤dm ⊇` (A

m−1
i ) obeying the required size bound such that:

(i) if ¬ξ(0, j), then Bt = Am−1t for each t ≤ dm,
(ii) if ξ(s, j), then B0 contains a witness for ψ(s, p̄),
(iii) if ξ(0, j) &¬ξ(s, j), which implies the existence of r < s such that ξ(r, j) &¬ξ(r + 1, j), then B0 contains a witness for

ψ(r, p̄) for some such r .

This completes the description of stagem for evenm.
Now letM be

⋃
m<ω A

m
ω . It is relatively easy to see thatM satisfies T

0
2 , and thatM contains a power of 2 which is divisible

by an odd number greater than 1. Additionally, the range of |x|5 inM is bounded by s. Thus, we only need to check that
M |= Σ̂b1 -IND

s.
Let ψ(x, p̄) be a Σ̂b1 formula with parameters fromM and choosem such that ψ(x, p̄)was considered at stagem and all

the parameters were already in Am−1ω . If at that point case (ii) occurred, then clearlyM |= ψ(s, p̄). On the other hand, if case
(i) occurred thenM |= ¬ψ(0, p̄). This can be seen as follows: if a witness for ψ(0, p̄) shows up inM, then it must already
be in some Ani ,m < n < ω, i < ω. But if we renumber Ani ⊆ · · · ⊆ A

n
dn as B0 ⊆ · · · ⊆ Bdn−i, then this chain of Bs contradicts

¬ξ(0, j) at stagem (note that the βj at stagem is bm, and bm < dn − ω).
A similar analysis shows that if case (iii) occurred, then M contains some r < s such that ψ(r, p̄) & ¬ψ(r + 1, p̄).

Altogether,M satisfies induction for ψ up to s, which completes the proof of the theorem.

Remark. The reader may wonder why our proof works for formulae containing bx/2c but does not work forMSP . The basic
difference is as follows. Consider a sharply bounded formula ϕ and an element x which we might want to add to some l.e.
chain. By Lemma 3.1, to determine what the value of ϕ(x)will be in the new chain it is enough to know the intended value
of x mod 2n, or equivalently bx/2nc, for some n ∈ ω. Additionally, for any specific choice of values of remainders modulo 2n,
an element with exactly those remainders can be found reasonably close to any given element of the chain (cf. case(iii) in
the odd stage in the proof of Theorem 4.1). If ϕ containedMSP , we would need to specify x mod 2y and bx/2yc for all y < |x|.
But remainders/integer parts of division by large powers of 2 in general do not exist in an l.e. chain, and even when they do,
elements with the ‘‘right’’ values of remainders are so sparsely distributed that we have very little control over them.
Although we have not checked the details, we believe that the borderline case to which our argument could be applied

is formulae with a symbol for bx/2||y||c. We also note that T 02 does prove the totality of the MSP function (already open
induction does) — the point is that this function cannot be freely used in induction formulae.

5. Corollaries and open problems

One consequence of our main theorem is that, somewhat informally speaking, the theory T 02 + Σ̂
b
1 -IND

|x|5 does not prove
that NP = coNP . The following corollary presents two precise versions of that statement.

Corollary 5.1. (1) There exists a modelM |= T 02 + Σ̂
b
1 -IND

|x|5 and a Π̂b1 formula ϕ(x) which is not equivalent inM to a Σ̂b1
formula, even with parameters.
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(2) The formula ‘‘x is a prime number’’ is not provably equivalent in T 02 + Σ̂
b
1 -IND

|x|5 to anyΣb1 formula ψ(x).

Proof. The basic idea behind both proofs is simple and has been applied before, for example in [2]. If (1) were false, then in
everyM |= T 02 + Σ̂

b
1 -IND

|x|5 each bounded formula would be equivalent to a Σ̂b1 formula with parameters. But this would
mean thatM satisfies bounded induction up to |x|5, hence full bounded induction, contradicting the fact that full bounded
induction proves that nontrivial divisors of powers of 2 are even.
To prove (2), assume that primality is equivalent in T 02 + Σ̂

b
1 -IND

|x|5 to a (not necessarily strict)Σb1 formula ψ(x). LetN
be a model of a strong arithmetic as before, but let a ∈ N now be a nonstandard prime instead of a power of 2.N |= ψ(a),
so we can now repeat the construction of the previous section with A00 containing a, a nontrivial divisor of a, and for any
interpretation of the universal quantifiers of ψ(a), a tuple witnessing all the existential quantifiers (this is possible by
Proposition 2.2, since we need < |a|ω witnesses, and each of them is < 2|a|

ω
). We get a model M in which ψ(a) is still

true, but a is no longer a prime. �

Remark. Parts (1) and (2) of the corollary are logically incomparable. The advantage of part (2) is that it speaks of a concrete
Πb1 formula not equivalent to a Σ

b
1 formula and that it deals with all Σ

b
1 formulae, not just the strict ones. However, part

(2) concerns only provable equivalence in the theory: it does not rule out the possibility that in every model of the theory
primality can be defined by aΣb1 formulawhich depends on themodel and perhaps contains parameters. To know that there
are models in which someΠb1 property really is not (strict)Σ

b
1 , we must use part (1).

We now turn to the problem whether T 02 proves S
0
2 . For n ≥ 1, it is easy to check that T

n
2 implies S

n
2 , but the argument

does not work for n = 0 withoutMSP in the language, and the question whether T 02 ` S
0
2 has been an open problem.

Corollary 5.2. S02 proves that every nontrivial divisor of a power of 2 is even. Hence, T
0
2 6̀ S

0
2 .

Proof. Work in S02 and assume that r > 1 is odd. We will use polynomial induction to prove that for every x ≥ 1, rx is not
a power of 2, where being a power of 2 is expressed by the open formula 2x = x#1. Thus, we need to show that r is not a
power of 2, and if rx is not a power of 2, then neither 2rx nor r(2x+ 1) is a power of 2.
It is easy to prove in S02 that all powers of 2 greater than 1 are even, so r ·1 = r is not a power of 2, and neither is r(2x+1)

for any x. Nowassume that rx is not a power of 2. If 2rx is, then 4rx = (2rx)#1. But by the BASIC axioms, (2rx)#1 = 2·((rx)#1),
so 2 · 2rx = 2 · ((rx)#1), which implies 2rx = (rx)#1, a contradiction. �

Remark. It follows from the corollary and results mentioned in the introduction that S02 and T
0
2 are incomparable.

A number of open problems related to very weak theories remain. For example, it would be nice to extend the amount of
Σ̂b1 induction in our theory to |x|3 or |x|4, or to drop the strictness condition onΣ

b
1 formulae. We also do not know whether

S02 remains very weak when complemented by some amount of Σ̂
b
1 induction. Finally, virtually nothing nontrivial is known

about the strength of T 02 + S
0
2 .
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