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a Finite Field

Alla Sirokofskich

??Hausdorff Research Institute for Mathematics
Poppelsdorfer Allee 45, D-53115, Bonn, Germany
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University of Crete, 714 09 Heraklion, Greece

asirokof@math.uoc.gr

Abstract. Let Fq be a finite field with q elements. We produce an (effec-
tive) elimination of quantifiers for the structure of the set of polynomials,
Fq[t], of one variable, in the language which contains symbols for addi-
tion, multiplication by t, inequalities of degrees, divisibility of degrees by
a positive integer and, for each d ∈ Fq[t], a symbol for divisibility by d.
We discuss the possibility of extending our results to the structure which
results if one includes a predicate for the relation “x is a power of t”.

1 Introduction

In what follows Fq is a finite field with q = pn, p a prime; Fq[t] is the ring
of polynomials over Fq in the variable t. By N we denote the set of positive
integers and by N0 the set of non-negative integers. In what follows + denotes
regular addition in Fq[t] and ft is a one placed functional symbol interpreted by
ft(x) = tx (in other words, we allow multiplication by t). The constant symbols
0 and 1 are interpreted in the usual way. We work in the language

Definition 1.

L = {+, 0, 1, ft} ∪ {|α : α ∈ Fq[t]} ∪ {D<} ∪ {Dn : n ∈ N}

where

D<(ω1, ω2) stands for “deg ω1 < deg ω2”,

Dn(ω) stands for “n|deg ω”,

|α(ω) stands for “ ∃x(x · α = ω)”.
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2009



We consider the structure A with universe Fq[t] in the language L, where the
symbols are interpreted as above. We show that the first-order theory ofA admits
elimination of quantifiers, i.e., each first-order formula of L is equivalent in A to
a quantifier-free formula. The elimination is constructive. As a consequence we
obtain that the first-order theory of A is decidable, that is, there is an algorithm
which, given any formula of L, decides whether that is true or not in A. Our
main Theorem is

Theorem 1. The theory of the structure A in the language L admits elimination
of quantifiers and is decidable.

Since Goedel’s Incompleteness Theorem which asserts undecidability of the
ring-theory of the rational integers, many researchers have investigated various
rings of interest from the point of view of decidability of their theories. In [9] R.
Robinson proved that the theory of a ring of polynomials A[t] of the variable t
in the language of rings, augmented by a symbol for t, is undecidable. Following
the negative answer to ‘Hilbert’s Tenth Problem’, Denef in [1] and [2] showed
that the existential theory of A[t] is undecidable, if A is a domain. In conse-
quence, decidability can be a property of theories weaker, only, than the ring
theory of A[t]. The situation is analogous to the ring of integers: Since no general
algorithms can exist for the ring theory of Z, one can look into sub-theories that
correspond to structures on Z weaker than the ring structure. Two examples are:
(a) (L. Lipshitz in [3]) the existential theory of Z in the language of addition
and divisibility is decidable (but the full first order theory is undecidable), and
(b) (A. Semenov in [10] and [11]) the elementary theory of addition and the
function n → 2n over Z is decidable. Th. Pheidas proved a result analogous to
those of Lipshitz in (a) for polynomials in one variable over a field with decidable
existential theory (in his Ph. D. Thesis) - but the similar problem for polynomi-
als in two variables has an undecidable existential theory. Th. Pheidas and K.
Zahidi in [6] showed that the theory of the structure (Fq[t]; +;x→ xp; ft; 0, 1) is
model complete and therefore decidable (x→ xp is the Frobenius function). For
surveys on relevant decidability questions and results the reader may consult [4],
[5], [6], [7] and [8].

Our results provide a mild strengthening of the analogue, for polynomials over
finite fields, of the decidability of ‘Presburger Arithmetic’ (which is, essentially,
the theory of addition and order) for N.

1.1 A List of Open Problems

1. Presently we do not have any estimate for the complexity of the decision
algorithm. The existential theory of the structure A is already exponential
and NP -hard since it contains the problem of dynamic programming over
polynomials. At the moment it is unclear what the complexity of the whole
theory is.

2. Does the similar problem for polynomial rings F [t] have a similar answer
(decidability) for any field F with a decidable theory?



2 Analogue of Presburger Arithmetic in Fq[t]

By ∧,∨,¬ we mean the usual logical connectives and deg x stands for the degree
of the polynomial x. In what follows, addition, multiplication and degree are
meant in Fq[t].

Consider any quantifier free formula ψ(x̄) in L, where x̄ = (x1, . . . , xn). Then
ψ(x̄) is equivalent to a quantifier-free formula in disjunctive-normal form with
literals among the following relations:

D<(ω1, ω2), |c(ω), Dn(ω), ω = 0

and their negations, where ω, ω1, ω2 are terms of the language L with variables
among x1, . . . , xn. The following negations can be eliminated:

• ¬D<(ω1, ω2) is equivalent to D<(ω2, ω1) ∨ [D<(ω1, t · ω2) ∧D<(ω2, t · ω1)].
• ¬Dn(ω) is equivalent to a finite disjunction of Dn(tiω) for 1 ≤ i < n.
• 6 |c(ω) can be replaced by ∨

r 6=0,deg(r)<deg(c)

|c(ω + r).

• ω 6= 0 is equivalent to D<(0, ω), (recall that deg(0) = −∞).

This can be summarized in the next Proposition.

Proposition 1. Every existential formula of L is equivalent to a finite disjunc-
tion of formulas of the form

σ(ω̄) : σ0 ∧ ∃x̄ = (x1, . . . , xn)σ1 ∧ σ2 ∧ σ3 ∧ σ4 (1)

where σ0 is an open formula with parameters ω̄ = (ω1, . . . , ωk),

σ1(x̄, ω̄) :
∧
i

fi(x̄) = hi(ω̄) , (2)

σ2(x̄, ω̄) :
∧
ρ

D<(π1,ρ(x̄, ω̄), π2,ρ(x̄, ω̄)) , (3)

σ3(x̄, ω̄) :
∧
λ

|cλ(χλ(x̄, ω̄)) , (4)

σ4(x̄, ω̄) :
∧
ξ

Dnξ(gξ(x̄, ω̄)) , (5)

where
each index among i, ρ, λ, ξ ranges over a finite set, nξ ∈ N, each of fi, hi, π1,ρ,
π2,ρ, χλ, gξ is a degree-one polynomial of the indicated variables over Fq[t], and
each fi is a homogeneous polynomial.



D=(X,Y ) is an abbreviation for the formula D<(X, tY ) ∧ D<(Y, tX). Also
D≤(X,Y ) stands for the formula D<(X,Y ) ∨D=(X,Y ).

Definition 2. Let X,Y, Z ∈ F[t], with deg(X) = deg(Y ) = deg(Z). We define
the depth of the cancellation in the sum X + Y to be

dc(X + Y ) = deg(Y )− deg(X + Y ).

We say that X fits better into Y than into Z, if dc(X + Y ) > dc(X + Z).

We continue with several facts about the depth of the cancellation. Let

a1x =
∑
i≤k

uit
i, ω1 =

∑
i≤k

vit
i, ω2 =

∑
i≤k

wit
i,

with ui, vi, wi ∈ Fq. Assume that there is some λ ≤ k such that ui = −vi for all
i ≥ λ. Let λ1 be the least such λ. If λ1 ≥ 1, then the degree of a1x+ω1 is λ1− 1
and thus dc(a1x+ ω1) = k − λ1 + 1. Note that in case λ1 = 0, then a1x = −ω1

and the degree of a1x+ ω1 is −∞.
Assume that dc(a1x+ω1) > 0. Consider any ω2 with the properties deg(a1x)

= deg(ω2) and dc(a1x+ ω1) < dc(a1x+ ω2). The crucial observation is that for
any i such that ∀j ≥ i(uj = −wj), we have that i should be greater than λ1.
Therefore dc(a1x+ ω1) > dc(ω2 + (−ω1)). Thus deg(a1x+ ω1) < deg(ω2 − ω1)

For the sake of completeness we list several facts for the relation of the form
D<(a1x + ω1, a2x + ω2), where ai ∈ Fq[t] \ {0}, ωi are parameters and x is a
variable.

Lemma 1. The relation D=(a1x+ω1, a1x+ω2) is equivalent to the disjunction
of

(1.1) D<(a1x, ω1) ∧D<(a1x, ω2) ∧D=(ω1, ω2),
(1.2) D<(ω1, a1x) ∧D<(ω2, a1x),
(1.3) D=(a1x+ ω1, ω1) ∧D=(a1x, ω1) ∧D<(ω2, ω1),
(1.4) D=(a1x+ ω1, ω1) ∧D=(a1x+ ω2, ω2) ∧D=(a1x, ω1) ∧D=(ω1, ω2),
(1.5) D<(a1x+ω1, ω1)∧D<(a1x+ω2, ω2)∧D≤(ω1−ω2, a1x+ω1)∧D=(a1x, ω1)∧

D=(ω1, ω2) ∧D≤(ω1 − ω2, a1x+ ω2),
(1.6) D=(a1x+ ω2, ω2) ∧D=(a1x, ω2) ∧D<(ω1, ω2).

Proof. “⇐”
• Assume that (1.1) holds. Then D=(a1x + ω1, ω1) and D=(a1x + ω2, ω2),

therefore D=(a1x+ ω1, a1x+ ω2) holds.
• Assume that (1.2) holds. Then D=(a1x+ ω1, a1x) and D=(a1x+ ω2, a1x),

therefore D=(a1x+ ω1, a1x+ ω2) holds.
• Assume that (1.3) holds. Then D=(a1x+ ω1, a1x) and D=(a1x+ ω2, a1x),

therefore D=(a1x+ ω1, a1x+ ω2) holds.
• Assume that (1.4) holds. Then it is obvious that D=(a1x + ω1, a1x + ω2)

holds true.



• Assume that (1.5) holds. Following the notation given after Definition 2,
let λ1 be as defined and λ2 be the least λ such that ui = −wi for all i ≥ λ. Note
that if λ1 < λ2, then deg(a1x + ω1) < deg(ω1 − ω2) and this contradicts the
assumption. Similarly if λ2 < λ1, we have that deg(a1x + ω2) < deg(ω1 − ω2)
and this also contradicts the assumption. Thus λ1 = λ2, therefore we have that
D=(a1x+ ω1, a1x+ ω2) holds.
• Assume that (1.6) holds. Then D=(a1x+ ω1, a1x) and D=(a1x+ ω2, a1x),

therefore D=(a1x+ ω1, a1x+ ω2) holds.

“⇒” Assume that D=(a1x + ω1, a1x + ω2) holds. We examine all possible
linear orderings of the set {a1x, ω1, ω2}.
• Let D<(a1x, ω2). The cases D=(a1x, ω1) and D<(ω1, a1x) are impossible.

If D<(a1x, ω1), then (1.1) holds.
• Let D<(ω2, a1x). Then either D<(ω1, a1x), thus (1.2) holds, or D=(ω1, a1x)

and deg(a1x+ ω1) = deg(ω1) i.e., (1.3) holds.
• Let D=(ω2, a1x). The case D<(a1x, ω1) is impossible. If D<(ω1, a1x), then

(1.6) holds. If D=(ω1, a1x), then we dc(a1x+ω1) = dc(a1x+ω2). If both depths
are zero, then (1.4) holds. If the depths are non-zero, then we have that vi = wi,
for all i ≥ λ1 = λ2. Note that vi, wi might be equal and for some i < λ1, i.e.,
deg(ω2 − ω1) ≤ λ1 − 1 = λ2 − 1. Therefore (1.5) holds. ut

Lemma 2. For k ∈ N and X,Y ∈ Fq[t], we define D<k(X,Y ) to be D<(tk−1X,Y ).
With this notation the formula D<k(a1x+ω1, a1x+ω2) is equivalent to the dis-
junction of

(2.1) D<(a1x, ω1) ∧D<(a1x, ω2) ∧D<k(ω1, ω2),
(2.2) D<(ω1, a1x) ∧D<k(a1x, ω2),
(2.3) D≤(a1x+ ω1, ω1) ∧D=(a1x, ω1) ∧D<(ω1, ω2) ∧D<k(a1x+ ω1, ω2),
(2.4) D≤(a1x+ ω1, ω1) ∧D=(a1x, ω1) ∧D<(ω2, ω1) ∧D<k(a1x+ ω1, ω1),
(2.5) D<(a1x+ ω1, ω1) ∧D=(a1x, ω1) ∧D=(a1x, ω2) ∧D<k(a1x+ ω1, ω2 − ω1).

Proof. “⇐”
• Assume that (2.1) holds. Then D=(a1x + ω1, ω1) and D=(a1x + ω2, ω2),

therefore D<k(a1x+ ω1, a1x+ ω2) holds.
• Assume that (2.2) holds. Then D=(a1x+ω1, a1x), D<(a1x, ω2), k ≥ 1 and

D=(a1x+ ω2, ω2), therefore D<k(a1x+ ω1, a1x+ ω2) holds.
• Assume that (2.3) holds. Then for the reasons given above, we have that

D<k(a1x+ ω1, a1x+ ω2) holds.
• Assume that (2.4) holds. Then D=(a1x+ω2, ω1) and D=(a1x, ω1), therefore

D<k(a1x+ ω1, a1x+ ω2) holds.
• Assume that (2.5) holds. Then we have that there is a cancellation in the

sum a1x + ω1. Also the cancellation, if there is any, in the sum ω2 + (−ω1) is
smaller from the former one. Thus the cancellation (if there is) in the sum a1x+ω2

is smaller than the cancellation in the sum a1x + ω1. Therefore D<k(a1x +
ω1, a1x+ ω2) holds.



“⇒” Assume that D<k(a1x+ ω1, a1x+ ω2) holds.
• Let D<(a1x, ω2). If D=(a1x, ω1), then (2.3) holds. If D<(a1x, ω1), then

(2.1) holds. If D<(ω1, a1x), then (2.2) holds.
• Let D<(ω2, a1x). Then we must have a cancellation at least of depth k in

the sum a1x+ ω1, i.e., deg(a1x+ ω1) ≤ deg(ω1) + k, i.e., (2.4) holds.
• Let D=(ω2, a1x). Then we must have a cancellation in the sum a1x + ω1

of at least depth k plus the depth of cancellation in the sum a1x+ω2, i.e., (2.5)
holds. ut

Lemma 3. For k ∈ N and X,Y ∈ Fq[t], we define D<k(X,Y ) to be D<(X,Y tk).
With this notation the formula D<k(a1x + ω1, a1x + ω2) is equivalent to the
disjunction of

(3.1) D<(a1x, ω2) ∧D<k(a1x+ ω1, ω2),
(3.2) D≤(ω1, a1x) ∧D<(ω2, a1x),
(3.3) D<(a1x, ω1) ∧D<(ω2, a1x) ∧D<k(ω1, a1x),
(3.4) D=(a1x, ω2) ∧D<(a1x, ω1) ∧D<k(ω1, a1x+ ω2),
(3.5) D=(a1x, ω2) ∧D<(ω1, a1x) ∧ [D<k((ω2, a1x+ ω2)],
(4.6) D=(a1x, ω2) ∧D=(ω1, a1x) ∧D≤(a1x+ ω1, a1x+ ω2),

(4.7) D=(a1x, ω2)∧D=(ω1, ω2)∧D=(a1x+ω1, ω2−ω1)∧
[∨k−1

i=1 D=(a1x+ω2, t
i(ω2−

ω1))
]
.

The purpose of the above Lemmas is to show that when the coefficients of
x in the relation D<(a1x + ω1, a2x + ω2) are the same, then this relation is
equivalent to a disjunction of relations of the form D<, where we have at most
one appearance of x in each relation D<. Our next goal is to deal with the
relation D<(a1x+ ω1, a2x+ ω2), where the coefficients of x are not the same.

Lemma 4. Consider the relation D<(a1x + ω1, a2x + ω2), with a1 6= a2. Then
it is equivalent to the disjunction of

(4.1) D<(a1, a2) ∧D<k1 (a1a2x+ a2ω1, a1a2x+ a1ω2),
(4.2) D<(a2, a1) ∧D<k2

(a1a2x+ a2ω1, a1a2x+ a1ω2),
(4.3) D=(a1, a2) ∧D<(a1a2x+ a2ω1, a1a2x+ a1ω2),

where k1 = deg(a2)− deg(a1), k2 = deg(a1)− deg(a2) + 1,

In order to proceed with the elimination of quantifiers, we need to prove one
fact.

Proposition 2. Consider σ as given in Proposition 1 for n = 1 (i.e. x̄ = x1 =
x). Then there are quantifier-free formulae σ̃0, σ̃1, σ̃2, σ̃3 and σ̃4 such that

σ0 ∧ ∃x (σ1 ∧ σ2 ∧ σ3 ∧ σ4) ⇐⇒
∨

(σ̃0 ∧ ∃z (σ̃1 ∧ σ̃2 ∧ σ̃3 ∧ σ̃4)),



where σ̃0 is a quantifier-free formula with parameters ω̄,

σ̃1(z, ω̄) :
∧
i

z = h̃i(ω̄) , (6)

σ̃2(z, ω̄) :
∧
ρ

D<(z, π̃2,ρ(ω̄)) ∧D<(π̃′1,ρ(ω̄), z), (7)

σ̃3(z) :
∧
λ

|cλ(χ̃λ(z)) , (8)

σ̃4(z) :
∧
ξ

Dnξ(z) (9)

where
each index among i, ρ, λ, ξ ranges over a finite set, each of h̃i, π̃2,ρ, π̃′1,ρ is a
degree-one polynomial in the parameters ω̄ over Fq[t], each of χ̃λ is a degree-one
polynomial in the variable z over Fq[t].

Proof. Let σ be as in the hypothesis. We follow the notation as given in Propo-
sition 1. According to the above Lemmas, we can assume that for every ρ in
the formula σ2, the coefficient of x is non-zero in exactly one of the polynomials
π1,ρ, π2,ρ.

Consider A to be the set of all coefficients of x in σ. Let a′ be the least
common multiple of all coefficients of x in σ. Let a be the least element in Fq[t]
such that a′|a and nξ|deg(ab ), for all nξ given in σ4 and for all b ∈ A. Next we
modify σ in the following way.
• By multiplying suitably, we arrange the coefficient of x in the terms fi(x)

to be a. Thus we may assume that fi(x) = ax, for all i.
• Consider any relation of the form |cλ(χλ(x, ω̄)) and let a1 be the coefficient

of x. Then
|cλ(χλ(x, ω̄)) if and only if | a·cλ

a1
(
a

a1
χλ(x, ω̄)).

Therefore we may assume that χλ(x, ω̄) = ax+ χ′λ(ω̄).
• Consider any relation of the form Dnξ(gξ(x, ω̄)) and let a1 be the coefficient

of x. Then
Dnξ(gξ(x, ω̄)) if and only if Dnξ(

a

a1
gξ(x, ω̄)),

because deg
(
a
a1
gξ(x, ω̄)

)
= deg( aa1

) + deg(gξ(x, ω̄)) and nξ|deg( aa1
) Therefore we

may assume that gξ(x, ω̄) = ax+ g′ξ(ω̄).
• Consider any relation of the form D<(π1,ρ(x, ω̄), π2,ρ(x, ω̄)). As we men-

tioned before, due to Lemmas 1 -4 for every ρ exactly one of the polynomials
π1,ρ, π2,ρ has a non-trivial appearance of x. Let a1 be the non-zero coefficient of
x. Then

D<(π1,ρ(x, ω̄), π2,ρ(x, ω̄)) if and only if D<(
a

a1
π1,ρ(x, ω̄),

a

a1
π2,ρ(x, ω̄)).

Therefore we may assume that either π1,ρ(x, ω̄) = ax + π′1,ρ(ω̄), π2,ρ(x, ω̄) =
π′2,ρ(ω̄), or π1,ρ(x, ω̄) = π′1,ρ(ω̄), π2,ρ(x, ω̄) = ax+ π′2,ρ(ω̄) .



We take a disjunction over all possible total orderings of the degrees of the
terms ax, ax+π′1,ρ(ω̄), ax+π′2,ρ(ω̄), π′1,ρ(ω̄), π′2,ρ(ω̄), ax+χ′λ(ω̄), ax+ g′ξ(ω̄) that
occur in σ. Since the existential quantifier ∃x distributes over ∨ we may assume,
without loss of generality, that σ2 implies such an ordering. Let T be a term
of lowest degree (according to this ordering), in which x occurs non-trivially.
Clearly, T must be of the form ax+u(ω̄) where u is a term of L in which x does
not occur. We perform the change of variables z = ax + u and we substitute
each occurrence of ax in the above terms by the resulting value of ax, z−u. We
adjoin in σ3 the divisibility |a(z − u). In detail,

• each formula of the form ax = hi(ω̄) is replaced by z = h̃(ω̄), where h̃(ω̄) =
hi(ω̄) + u(ω̄),

• each formula of the form |c(ax+χ′λ(ω̄)) is replaced by
∨
r |c(z+r)∧|c(χ′(ω̄)−

u(ω̄)− r)), where r runs over all polynomials with degree less then deg(c),
• each formula of the form D<(ax + π′1,ρ(ω̄), π′2,ρ(ω̄)) ∧ D<(ax + u(ω̄), ax +
π′1,ρ(ω̄)) is replaced by D≤(π′1,ρ(ω̄)− u(ω̄), z) ∧D<(z, π′2,ρ(ω̄)),

• each formula of the form D<(ax + π′1,ρ(ω̄), π′2,ρ(ω̄)) ∧ D=(ax + u(ω̄), ax +
π′1,ρ(ω̄)) is replaced by D<(z, π′2,ρ(ω̄)) ∧D≤(π′1,ρ(ω̄)− u(ω̄), z),

• each formula of the form D<(π′1,ρ(ω̄), ax + π′2,ρ(ω̄)) ∧ D<(ax + u(ω̄), ax +
π′2,ρ(ω̄)) is replaced by D<(z, π′2,ρ(ω̄)− u(ω̄))∧D<(π′1,ρ(ω̄), π′2,ρ(ω̄))− u(ω̄),

• each formula of the form D<(π′1,ρ(ω̄), ax + π′2,ρ(ω̄)) ∧ D=(ax + u(ω̄), ax +
π′2,ρ(ω̄)) is replaced by D<(π′1,ρ(ω̄), z) ∧D≤(π′2,ρ(ω̄)− u(ω̄), z),

• each formula of the form Dn(ax + g′ξ(ω̄)) ∧ D<(ax + u(ω̄), ax + g′ξ(ω̄)) is
replaced by Dn(g′ξ(ω̄)− u(ω̄)) ∧D<(z, g′ξ(ω̄)− u(ω̄),

• each formula of the form Dn(ax + g′ξ(ω̄)) ∧ D=(ax + u(ω̄), ax + g′ξ(ω̄)) is
replaced by Dn(z) ∧D≤(g′ξ(ω̄)− u(ω̄), z).

This completes the proof of the separation of x from ω̄. ut

We are ready to eliminate the existential quantifiers over the variables x̄ in
the existential formula σ of Proposition 1.

Theorem 2. Every formula σ of L is equivalent over Fq[t] to an open formula
of L.

Proof. Let σ be as in Proposition 1. If σ1 is not void (i.e. equivalent to 1 = 1)
then solve for one of the variables in terms of the remaining ones over Fq(t),
substitute each occurrence of it by the value implied by the equations and adjoin
the corresponding divisibility to σ3 as indicated in the proof of Proposition 2.
Iterate until there are no equations. Hence we assume that σ1 is void.

According to Proposition 1 we assume that σ2∧σ3∧σ4 has the form indicated
in Proposition 2, with respect to the variable xn.

In order to achieve the elimination of xn, we separate the variable xn from
the rest of the variables x1, . . . , xn−1, by considering x1, . . . , xn−1, ω1, . . . , ωm as
parameters. Thus after applying Proposition 2 to σ, we may assume from the
beginning that each σi (as given in Proposition 1) is already in separated form



with x̄ = xn and that the coefficient of every nontrivial appearance of xn in σ is
equal to 1.

Let x1, . . . , xn−1 and ω̄ be given. First, we observe that we may substitute the
relations of σ4 by only one divisibility Dnξ0

(xn), where nξ0 is the least common
multiple of all nξ appearing in σ4.

Case 1: There is no upper bound for the degree of xn. Then xn can be
eliminated if and only if the conditions for the Generalized Chinese Theorem
hold for σ3.

Case 2: There is an upper bound for the degree of xn. Now note that

D<(xn, θ1(x1, ..., xn−1, ω̄)) ∧D<(xn, θ2(x1, ..., xn−1, ω̄)) ⇐⇒

[D<(θ1(x1, ..., xn−1, ω̄), θ2(x1, ..., xn−1, ω̄)) ∧D<(xn, θ1(x1, ..., xn−1, ω̄))]∨
[D<(θ2(x1, ..., xn−1, ω̄), tθ1(x1, ..., xn−1, ω̄)) ∧D<(xn, θ2(x1, ..., xn−1, ω̄))].

Let θm2(x1, ..., xn−1, ω̄) be such that its degree is the least upper bound for the
degree of xn. Using the Generalized Chinese Theorem, we check if the system
of divisibilities of σ3 has some solution xn ∈ Fq[t]. If it does, then there is a
solution xn ∈ Fq[t] such that Dnξ0

(xn).
Case 2(a): Assume that there is no θ(x1, ..., xn−1, ω̄) such that

D<(θ(x1, ..., xn−1, ω̄), xn). Then xn should be a constant polynomial, i.e., there
is an elimination of xn.

Case 2(b): There are θ1(x1, ..., xn−1, ω̄) and θ2(x1, ..., xn−1, ω̄) such that

D<(θ1(x1, ..., xn−1, ω̄), xn) ∧D<(xn, θ2(x1, ..., xn−1, ω̄)).

Let θm2(x1, ..., xn−1, ω̄) be as defined above and θm1(x1, ..., xn−1, ω̄) such that
its degree is the least lower bound for the degree of xn. For simplicity we denote
θm1(x1, ..., xn−1, ω̄), θm2(x1, ..., xn−1, ω̄) by θm1 , θm2 respectively. We repeat the
previous algorithm to decide if there exists a xn that satisfies σ3 ∧Dnξ0

(xn). If
there is such xn ∈ Fq[t], then let d be the least positive integer with the property:
if xn is a solution of σ3 ∧Dnξ0

(xn), then the next solution of σ3 ∧Dnξ0
(xn) is

of degree deg(xn) + d. Such d exists due to the Generalized Chinese Theorem.
Thus

∃xn(σ2 ∧ σ3 ∧ σ4) ⇐⇒
d−1∨
i=0

[Dd(td−iθm1) ∧D<(td−iθm1 , θm2)].

Thus by induction on n we obtain the required statement of elimination. ut

3 An Enrichment for (Fq[t]; +; |a; P ; ft; 0, 1)

We start by augmenting the language of the structure A to a language LP .

Definition 3. Let q and t be given. We define the language

LP = L ∪ {P}

where the predicate P (ω) stands for “ω is a power of t”.



This extension of a language L is an analogue to the extension of Presburger
arithmetic by the relation “x is a power of 2”, which, over N, has a decidable
theory, as mentioned in the Introduction.

Currently, we are investigating the theory of Fq[t] in LP from the point of
view of decidability. Our results so far indicate that this theory may be model-
complete.
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