$See \ discussions, stats, and author \ profiles \ for \ this \ publication \ at: \ https://www.researchgate.net/publication/221653000$

Decidability of Sub-theories of Polynomials over a Finite Field

reads 40

Conference Paper · July 2009

DOI: 10.1007/978-3-642-03073-4_45 · Source: DBLP

CITATIONS 3	
1 author:	
0	Alla Sirokofskich University of Crete 5 PUBLICATIONS 16 CITATIONS SEE PROFILE

All content following this page was uploaded by Alla Sirokofskich on 11 June 2014.

Decidability of Sub-theories of Polynomials over a Finite Field

Alla Sirokofskich

**Hausdorff Research Institute for Mathematics Poppelsdorfer Allee 45, D-53115, Bonn, Germany

Department of Mathematics University of Crete, 714 09 Heraklion, Greece asirokof@math.uoc.gr

Abstract. Let \mathbb{F}_q be a finite field with q elements. We produce an (effective) elimination of quantifiers for the structure of the set of polynomials, $\mathbb{F}_q[t]$, of one variable, in the language which contains symbols for addition, multiplication by t, inequalities of degrees, divisibility of degrees by a positive integer and, for each $d \in \mathbb{F}_q[t]$, a symbol for divisibility by d. We discuss the possibility of extending our results to the structure which results if one includes a predicate for the relation "x is a power of t".

1 Introduction

In what follows \mathbb{F}_q is a finite field with $q = p^n$, p a prime; $\mathbb{F}_q[t]$ is the ring of polynomials over \mathbb{F}_q in the variable t. By \mathbb{N} we denote the set of positive integers and by \mathbb{N}_0 the set of non-negative integers. In what follows + denotes regular addition in $\mathbb{F}_q[t]$ and f_t is a one placed functional symbol interpreted by $f_t(x) = tx$ (in other words, we allow multiplication by t). The constant symbols 0 and 1 are interpreted in the usual way. We work in the language

Definition 1.

$$L = \{+, 0, 1, f_t\} \cup \{|_{\alpha} : \alpha \in \mathbb{F}_q[t]\} \cup \{D_{<}\} \cup \{D_n : n \in \mathbb{N}\}$$

where

 $D_{\leq}(\omega_1, \omega_2)$ stands for "deg $\omega_1 < deg \omega_2$ ",

 $D_n(\omega)$ stands for "n|deg ω ",

 $|_{\alpha}(\omega)$ stands for " $\exists x(x \cdot \alpha = \omega)$ ".

 $^{^{\}star\star}$ Supported by the Trimester Program on Diophantine Equations, January - April 2009

We consider the structure \mathcal{A} with universe $\mathbb{F}_q[t]$ in the language L, where the symbols are interpreted as above. We show that the first-order theory of \mathcal{A} admits elimination of quantifiers, i.e., each first-order formula of L is equivalent in \mathcal{A} to a quantifier-free formula. The elimination is constructive. As a consequence we obtain that the first-order theory of \mathcal{A} is decidable, that is, there is an algorithm which, given any formula of L, decides whether that is true or not in \mathcal{A} . Our main Theorem is

Theorem 1. The theory of the structure \mathcal{A} in the language L admits elimination of quantifiers and is decidable.

Since Goedel's Incompleteness Theorem which asserts undecidability of the ring-theory of the rational integers, many researchers have investigated various rings of interest from the point of view of decidability of their theories. In [9] R. Robinson proved that the theory of a ring of polynomials A[t] of the variable t in the language of rings, augmented by a symbol for t, is undecidable. Following the negative answer to 'Hilbert's Tenth Problem', Denef in [1] and [2] showed that the existential theory of A[t] is undecidable, if A is a domain. In consequence, decidability can be a property of theories weaker, only, than the ring theory of A[t]. The situation is analogous to the ring of integers: Since no general algorithms can exist for the ring theory of \mathbb{Z} , one can look into sub-theories that correspond to structures on \mathbb{Z} weaker than the ring structure. Two examples are: (a) (L. Lipshitz in [3]) the existential theory of \mathbb{Z} in the language of addition and divisibility is decidable (but the full first order theory is undecidable), and (b) (A. Semenov in [10] and [11]) the elementary theory of addition and the function $n \to 2^n$ over \mathbb{Z} is decidable. The Pheidas proved a result analogous to those of Lipshitz in (a) for polynomials in one variable over a field with decidable existential theory (in his Ph. D. Thesis) - but the similar problem for polynomials in two variables has an undecidable existential theory. Th. Pheidas and K. Zahidi in [6] showed that the theory of the structure $(\mathbb{F}_q[t]; +; x \to x^p; f_t; 0, 1)$ is model complete and therefore decidable $(x \to x^p)$ is the Frobenius function). For surveys on relevant decidability questions and results the reader may consult [4], [5], [6], [7] and [8].

Our results provide a mild strengthening of the analogue, for polynomials over finite fields, of the decidability of 'Presburger Arithmetic' (which is, essentially, the theory of addition and order) for \mathbb{N} .

1.1 A List of Open Problems

- 1. Presently we do not have any estimate for the complexity of the decision algorithm. The existential theory of the structure \mathcal{A} is already exponential and NP-hard since it contains the problem of dynamic programming over polynomials. At the moment it is unclear what the complexity of the whole theory is.
- 2. Does the similar problem for polynomial rings F[t] have a similar answer (decidability) for any field F with a decidable theory?

2 Analogue of Presburger Arithmetic in $\mathbb{F}_{a}[t]$

By \wedge, \vee, \neg we mean the usual logical connectives and deg x stands for the degree of the polynomial x. In what follows, addition, multiplication and degree are meant in $\mathbb{F}_q[t]$.

Consider any quantifier free formula $\psi(\bar{x})$ in L, where $\bar{x} = (x_1, \ldots, x_n)$. Then $\psi(\bar{x})$ is equivalent to a quantifier-free formula in disjunctive-normal form with literals among the following relations:

$$D_{\leq}(\omega_1,\omega_2), \ |_c(\omega), \ D_n(\omega), \ \omega=0$$

and their negations, where $\omega, \omega_1, \omega_2$ are terms of the language L with variables among x_1, \ldots, x_n . The following negations can be eliminated:

- $\neg D_{\leq}(\omega_1, \omega_2)$ is equivalent to $D_{\leq}(\omega_2, \omega_1) \lor [D_{\leq}(\omega_1, t \cdot \omega_2) \land D_{\leq}(\omega_2, t \cdot \omega_1)].$
- $\neg D_n(\omega)$ is equivalent to a finite disjunction of $D_n(t^i \omega)$ for $1 \le i < n$.
- $/_{c}(\omega)$ can be replaced by

$$\bigvee_{r \neq 0, deg(r) < deg(c)} |_c(\omega + r).$$

• $\omega \neq 0$ is equivalent to $D_{\leq}(0,\omega)$, (recall that $\deg(0) = -\infty$).

This can be summarized in the next Proposition.

Proposition 1. Every existential formula of L is equivalent to a finite disjunction of formulas of the form

$$\sigma(\bar{\omega}): \ \sigma_0 \land \ \exists \bar{x} = (x_1, \dots, x_n) \sigma_1 \land \sigma_2 \land \sigma_3 \land \sigma_4 \tag{1}$$

where σ_0 is an open formula with parameters $\bar{\omega} = (\omega_1, \ldots, \omega_k)$,

$$\sigma_1(\bar{x},\bar{\omega}): \bigwedge_i f_i(\bar{x}) = h_i(\bar{\omega}) , \qquad (2)$$

$$\sigma_2(\bar{x},\bar{\omega}): \bigwedge_{\rho} D_{<}(\pi_{1,\rho}(\bar{x},\bar{\omega}),\pi_{2,\rho}(\bar{x},\bar{\omega})) , \qquad (3)$$

$$\sigma_3(\bar{x},\bar{\omega}): \bigwedge_{\lambda} \mid_{c_\lambda} (\chi_\lambda(\bar{x},\bar{\omega})) , \qquad (4)$$

$$\sigma_4(\bar{x},\bar{\omega}): \bigwedge_{\xi} D_{n_{\xi}}(g_{\xi}(\bar{x},\bar{\omega})) , \qquad (5)$$

where

each index among i, ρ, λ, ξ ranges over a finite set, $n_{\xi} \in \mathbb{N}$, each of $f_i, h_i, \pi_{1,\rho}, \pi_{2,\rho}, \chi_{\lambda}, g_{\xi}$ is a degree-one polynomial of the indicated variables over $\mathbb{F}_q[t]$, and each f_i is a homogeneous polynomial.

 $D_{=}(X,Y)$ is an abbreviation for the formula $D_{<}(X,tY) \wedge D_{<}(Y,tX)$. Also $D_{\leq}(X,Y)$ stands for the formula $D_{<}(X,Y) \vee D_{=}(X,Y)$.

Definition 2. Let $X, Y, Z \in \mathbb{F}[t]$, with $\deg(X) = \deg(Y) = \deg(Z)$. We define the depth of the cancellation in the sum X + Y to be

$$dc(X+Y) = \deg(Y) - \deg(X+Y).$$

We say that X fits better into Y than into Z, if dc(X+Y) > dc(X+Z).

We continue with several facts about the depth of the cancellation. Let

$$a_1 x = \sum_{i \le k} u_i t^i, \qquad \omega_1 = \sum_{i \le k} v_i t^i, \qquad \omega_2 = \sum_{i \le k} w_i t^i,$$

with $u_i, v_i, w_i \in \mathbb{F}_q$. Assume that there is some $\lambda \leq k$ such that $u_i = -v_i$ for all $i \geq \lambda$. Let λ_1 be the least such λ . If $\lambda_1 \geq 1$, then the degree of $a_1x + \omega_1$ is $\lambda_1 - 1$ and thus $dc(a_1x + \omega_1) = k - \lambda_1 + 1$. Note that in case $\lambda_1 = 0$, then $a_1x = -\omega_1$ and the degree of $a_1x + \omega_1$ is $-\infty$.

Assume that $dc(a_1x + \omega_1) > 0$. Consider any ω_2 with the properties $deg(a_1x) = deg(\omega_2)$ and $dc(a_1x + \omega_1) < dc(a_1x + \omega_2)$. The crucial observation is that for any *i* such that $\forall j \ge i(u_j = -w_j)$, we have that *i* should be greater than λ_1 . Therefore $dc(a_1x + \omega_1) > dc(\omega_2 + (-\omega_1))$. Thus $deg(a_1x + \omega_1) < deg(\omega_2 - \omega_1)$

For the sake of completeness we list several facts for the relation of the form $D_{\leq}(a_1x + \omega_1, a_2x + \omega_2)$, where $a_i \in \mathbb{F}_q[t] \setminus \{0\}$, ω_i are parameters and x is a variable.

Lemma 1. The relation $D_{=}(a_1x + \omega_1, a_1x + \omega_2)$ is equivalent to the disjunction of

 $\begin{array}{ll} (1.1) & D_{<}(a_{1}x,\omega_{1}) \wedge D_{<}(a_{1}x,\omega_{2}) \wedge D_{=}(\omega_{1},\omega_{2}), \\ (1.2) & D_{<}(\omega_{1},a_{1}x) \wedge D_{<}(\omega_{2},a_{1}x), \\ (1.3) & D_{=}(a_{1}x+\omega_{1},\omega_{1}) \wedge D_{=}(a_{1}x,\omega_{1}) \wedge D_{<}(\omega_{2},\omega_{1}), \\ (1.4) & D_{=}(a_{1}x+\omega_{1},\omega_{1}) \wedge D_{=}(a_{1}x+\omega_{2},\omega_{2}) \wedge D_{=}(a_{1}x,\omega_{1}) \wedge D_{=}(\omega_{1},\omega_{2}), \\ (1.5) & D_{<}(a_{1}x+\omega_{1},\omega_{1}) \wedge D_{<}(a_{1}x+\omega_{2},\omega_{2}) \wedge D_{\leq}(\omega_{1}-\omega_{2},a_{1}x+\omega_{1}) \wedge D_{=}(a_{1}x,\omega_{1}) \wedge D_{=}(a_{1}x,\omega_{1}) \wedge D_{=}(a_{1}x,\omega_{1}) \wedge D_{=}(a_{1}x,\omega_{2}) \wedge D_{\leq}(\omega_{1}-\omega_{2},a_{1}x+\omega_{2}), \\ (1.6) & D_{=}(a_{1}x+\omega_{2},\omega_{2}) \wedge D_{=}(a_{1}x,\omega_{2}) \wedge D_{<}(\omega_{1},\omega_{2}). \end{array}$

Proof. "\E

• Assume that (1.1) holds. Then $D_{=}(a_1x + \omega_1, \omega_1)$ and $D_{=}(a_1x + \omega_2, \omega_2)$, therefore $D_{=}(a_1x + \omega_1, a_1x + \omega_2)$ holds.

• Assume that (1.2) holds. Then $D_{=}(a_1x + \omega_1, a_1x)$ and $D_{=}(a_1x + \omega_2, a_1x)$, therefore $D_{=}(a_1x + \omega_1, a_1x + \omega_2)$ holds.

• Assume that (1.3) holds. Then $D_{=}(a_1x + \omega_1, a_1x)$ and $D_{=}(a_1x + \omega_2, a_1x)$, therefore $D_{=}(a_1x + \omega_1, a_1x + \omega_2)$ holds.

• Assume that (1.4) holds. Then it is obvious that $D_{=}(a_1x + \omega_1, a_1x + \omega_2)$ holds true.

• Assume that (1.5) holds. Following the notation given after Definition 2, let λ_1 be as defined and λ_2 be the least λ such that $u_i = -w_i$ for all $i \geq \lambda$. Note that if $\lambda_1 < \lambda_2$, then deg $(a_1x + \omega_1) < \deg(\omega_1 - \omega_2)$ and this contradicts the assumption. Similarly if $\lambda_2 < \lambda_1$, we have that deg $(a_1x + \omega_2) < \deg(\omega_1 - \omega_2)$ and this also contradicts the assumption. Thus $\lambda_1 = \lambda_2$, therefore we have that $D_{=}(a_1x + \omega_1, a_1x + \omega_2)$ holds.

• Assume that (1.6) holds. Then $D_{=}(a_1x + \omega_1, a_1x)$ and $D_{=}(a_1x + \omega_2, a_1x)$, therefore $D_{=}(a_1x + \omega_1, a_1x + \omega_2)$ holds.

"⇒" Assume that $D_{=}(a_1x + \omega_1, a_1x + \omega_2)$ holds. We examine all possible linear orderings of the set $\{a_1x, \omega_1, \omega_2\}$.

• Let $D_{\leq}(a_1x,\omega_2)$. The cases $D_{=}(a_1x,\omega_1)$ and $D_{\leq}(\omega_1,a_1x)$ are impossible. If $D_{\leq}(a_1x,\omega_1)$, then (1.1) holds.

• Let $D_{\leq}(\omega_2, a_1x)$. Then either $D_{\leq}(\omega_1, a_1x)$, thus (1.2) holds, or $D_{=}(\omega_1, a_1x)$ and $\deg(a_1x + \omega_1) = \deg(\omega_1)$ i.e., (1.3) holds.

• Let $D_{=}(\omega_{2}, a_{1}x)$. The case $D_{<}(a_{1}x, \omega_{1})$ is impossible. If $D_{<}(\omega_{1}, a_{1}x)$, then (1.6) holds. If $D_{=}(\omega_{1}, a_{1}x)$, then we $dc(a_{1}x + \omega_{1}) = dc(a_{1}x + \omega_{2})$. If both depths are zero, then (1.4) holds. If the depths are non-zero, then we have that $v_{i} = w_{i}$, for all $i \geq \lambda_{1} = \lambda_{2}$. Note that v_{i}, w_{i} might be equal and for some $i < \lambda_{1}$, i.e., $deg(\omega_{2} - \omega_{1}) \leq \lambda_{1} - 1 = \lambda_{2} - 1$. Therefore (1.5) holds.

Lemma 2. For $k \in \mathbb{N}$ and $X, Y \in \mathbb{F}_q[t]$, we define $D_{\leq_k}(X, Y)$ to be $D_{\leq}(t^{k-1}X, Y)$. With this notation the formula $D_{\leq_k}(a_1x + \omega_1, a_1x + \omega_2)$ is equivalent to the disjunction of

 $\begin{array}{l} (2.1) \quad D_{<}(a_{1}x,\omega_{1}) \wedge D_{<}(a_{1}x,\omega_{2}) \wedge D_{<_{k}}(\omega_{1},\omega_{2}), \\ (2.2) \quad D_{<}(\omega_{1},a_{1}x) \wedge D_{<_{k}}(a_{1}x,\omega_{2}), \\ (2.3) \quad D_{\leq}(a_{1}x+\omega_{1},\omega_{1}) \wedge D_{=}(a_{1}x,\omega_{1}) \wedge D_{<}(\omega_{1},\omega_{2}) \wedge D_{<_{k}}(a_{1}x+\omega_{1},\omega_{2}), \\ (2.4) \quad D_{\leq}(a_{1}x+\omega_{1},\omega_{1}) \wedge D_{=}(a_{1}x,\omega_{1}) \wedge D_{<}(\omega_{2},\omega_{1}) \wedge D_{<_{k}}(a_{1}x+\omega_{1},\omega_{1}), \\ (2.5) \quad D_{<}(a_{1}x+\omega_{1},\omega_{1}) \wedge D_{=}(a_{1}x,\omega_{1}) \wedge D_{=}(a_{1}x,\omega_{2}) \wedge D_{<_{k}}(a_{1}x+\omega_{1},\omega_{2}-\omega_{1}). \end{array}$

Proof. "⇐"

• Assume that (2.1) holds. Then $D_{=}(a_1x + \omega_1, \omega_1)$ and $D_{=}(a_1x + \omega_2, \omega_2)$, therefore $D_{<_k}(a_1x + \omega_1, a_1x + \omega_2)$ holds.

• Assume that (2.2) holds. Then $D_{=}(a_1x + \omega_1, a_1x)$, $D_{<}(a_1x, \omega_2)$, $k \ge 1$ and $D_{=}(a_1x + \omega_2, \omega_2)$, therefore $D_{<_k}(a_1x + \omega_1, a_1x + \omega_2)$ holds.

• Assume that (2.3) holds. Then for the reasons given above, we have that $D_{\leq_k}(a_1x + \omega_1, a_1x + \omega_2)$ holds.

• Assume that (2.4) holds. Then $D_{=}(a_1x+\omega_2,\omega_1)$ and $D_{=}(a_1x,\omega_1)$, therefore $D_{\leq_k}(a_1x+\omega_1,a_1x+\omega_2)$ holds.

• Assume that (2.5) holds. Then we have that there is a cancellation in the sum $a_1x + \omega_1$. Also the cancellation, if there is any, in the sum $\omega_2 + (-\omega_1)$ is smaller from the former one. Thus the cancellation (if there is) in the sum $a_1x + \omega_2$ is smaller than the cancellation in the sum $a_1x + \omega_1$. Therefore $D_{\leq k}(a_1x + \omega_1, a_1x + \omega_2)$ holds.

" \Rightarrow " Assume that $D_{\leq_k}(a_1x + \omega_1, a_1x + \omega_2)$ holds.

• Let $D_{\leq}(a_1x,\omega_2)$. If $D_{=}(a_1x,\omega_1)$, then (2.3) holds. If $D_{\leq}(a_1x,\omega_1)$, then (2.1) holds. If $D_{\leq}(\omega_1,a_1x)$, then (2.2) holds.

• Let $D_{\leq}(\omega_2, a_1x)$. Then we must have a cancellation at least of depth k in the sum $a_1x + \omega_1$, i.e., $\deg(a_1x + \omega_1) \leq \deg(\omega_1) + k$, i.e., (2.4) holds.

• Let $D_{=}(\omega_2, a_1x)$. Then we must have a cancellation in the sum $a_1x + \omega_1$ of at least depth k plus the depth of cancellation in the sum $a_1x + \omega_2$, i.e., (2.5) holds.

Lemma 3. For $k \in \mathbb{N}$ and $X, Y \in \mathbb{F}_q[t]$, we define $D_{<^k}(X,Y)$ to be $D_{<}(X,Yt^k)$. With this notation the formula $D_{<^k}(a_1x + \omega_1, a_1x + \omega_2)$ is equivalent to the disjunction of

$$\begin{array}{ll} (3.1) & D_{<}(a_{1}x,\omega_{2}) \wedge D_{<^{k}}(a_{1}x+\omega_{1},\omega_{2}), \\ (3.2) & D_{\leq}(\omega_{1},a_{1}x) \wedge D_{<}(\omega_{2},a_{1}x), \\ (3.3) & D_{<}(a_{1}x,\omega_{1}) \wedge D_{<}(\omega_{2},a_{1}x) \wedge D_{<^{k}}(\omega_{1},a_{1}x), \\ (3.4) & D_{=}(a_{1}x,\omega_{2}) \wedge D_{<}(a_{1}x,\omega_{1}) \wedge D_{<^{k}}(\omega_{1},a_{1}x+\omega_{2}), \\ (3.5) & D_{=}(a_{1}x,\omega_{2}) \wedge D_{<}(\omega_{1},a_{1}x) \wedge [D_{<^{k}}((\omega_{2},a_{1}x+\omega_{2})], \\ (4.6) & D_{=}(a_{1}x,\omega_{2}) \wedge D_{=}(\omega_{1},a_{1}x) \wedge D_{\leq}(a_{1}x+\omega_{1},a_{1}x+\omega_{2}), \\ (4.7) & D_{=}(a_{1}x,\omega_{2}) \wedge D_{=}(\omega_{1},\omega_{2}) \wedge D_{=}(a_{1}x+\omega_{1},\omega_{2}-\omega_{1}) \wedge \left[\bigvee_{i=1}^{k-1} D_{=}(a_{1}x+\omega_{2},t^{i}(\omega_{2}-\omega_{1})) \right]. \end{array}$$

The purpose of the above Lemmas is to show that when the coefficients of x in the relation $D_{<}(a_1x + \omega_1, a_2x + \omega_2)$ are the same, then this relation is equivalent to a disjunction of relations of the form $D_{<}$, where we have at most one appearance of x in each relation $D_{<}$. Our next goal is to deal with the relation $D_{<}(a_1x + \omega_1, a_2x + \omega_2)$, where the coefficients of x are not the same.

Lemma 4. Consider the relation $D_{\leq}(a_1x + \omega_1, a_2x + \omega_2)$, with $a_1 \neq a_2$. Then it is equivalent to the disjunction of

 $\begin{array}{l} (4.1) \quad D_{<}(a_{1},a_{2}) \wedge D_{<^{k_{1}}}(a_{1}a_{2}x+a_{2}\omega_{1},a_{1}a_{2}x+a_{1}\omega_{2}), \\ (4.2) \quad D_{<}(a_{2},a_{1}) \wedge D_{<_{k_{2}}}(a_{1}a_{2}x+a_{2}\omega_{1},a_{1}a_{2}x+a_{1}\omega_{2}), \\ (4.3) \quad D_{=}(a_{1},a_{2}) \wedge D_{<}(a_{1}a_{2}x+a_{2}\omega_{1},a_{1}a_{2}x+a_{1}\omega_{2}), \end{array}$

where $k_1 = \deg(a_2) - \deg(a_1)$, $k_2 = \deg(a_1) - \deg(a_2) + 1$,

In order to proceed with the elimination of quantifiers, we need to prove one fact.

Proposition 2. Consider σ as given in Proposition 1 for n = 1 (i.e. $\bar{x} = x_1 = x$). Then there are quantifier-free formulae $\tilde{\sigma}_0$, $\tilde{\sigma}_1$, $\tilde{\sigma}_2$, $\tilde{\sigma}_3$ and $\tilde{\sigma}_4$ such that

$$\sigma_0 \wedge \exists x \; (\sigma_1 \wedge \sigma_2 \wedge \sigma_3 \wedge \sigma_4) \iff \bigvee (\tilde{\sigma_0} \wedge \exists z \; (\tilde{\sigma_1} \wedge \tilde{\sigma_2} \wedge \tilde{\sigma_3} \wedge \tilde{\sigma_4}))$$

where $\tilde{\sigma_0}$ is a quantifier-free formula with parameters $\bar{\omega}$,

$$\tilde{\sigma_1}(z,\bar{\omega}): \bigwedge_i z = \tilde{h_i}(\bar{\omega}) , \qquad (6)$$

$$\tilde{\sigma_2}(z,\bar{\omega}): \bigwedge_{\rho} D_{<}(z,\tilde{\pi}_{2,\rho}(\bar{\omega})) \wedge D_{<}(\tilde{\pi'}_{1,\rho}(\bar{\omega}),z),$$
(7)

$$\tilde{\sigma}_{3}(z): \bigwedge_{\lambda} \mid_{c_{\lambda}} (\tilde{\chi}_{\lambda}(z)) , \qquad (8)$$

$$\tilde{\sigma_4}(z): \bigwedge_{\xi} D_{n_{\xi}}(z) \tag{9}$$

where

each index among i, ρ, λ, ξ ranges over a finite set, each of $\tilde{h}_i, \tilde{\pi}_{2,\rho}, \tilde{\pi'}_{1,\rho}$ is a degree-one polynomial in the parameters $\bar{\omega}$ over $\mathbb{F}_q[t]$, each of $\tilde{\chi}_{\lambda}$ is a degree-one polynomial in the variable z over $\mathbb{F}_q[t]$.

Proof. Let σ be as in the hypothesis. We follow the notation as given in Proposition 1. According to the above Lemmas, we can assume that for every ρ in the formula σ_2 , the coefficient of x is non-zero in exactly one of the polynomials $\pi_{1,\rho}, \pi_{2,\rho}$.

Consider A to be the set of all coefficients of x in σ . Let a' be the least common multiple of all coefficients of x in σ . Let a be the least element in $\mathbb{F}_q[t]$ such that a'|a and $n_{\xi}|deg(\frac{a}{b})$, for all n_{ξ} given in σ_4 and for all $b \in A$. Next we modify σ in the following way.

• By multiplying suitably, we arrange the coefficient of x in the terms $f_i(x)$ to be a. Thus we may assume that $f_i(x) = ax$, for all i.

• Consider any relation of the form $|_{c_{\lambda}}(\chi_{\lambda}(x,\bar{\omega}))$ and let a_1 be the coefficient of x. Then

$$|_{c_{\lambda}}(\chi_{\lambda}(x,\bar{\omega}))$$
 if and only if $|_{\frac{a\cdot c_{\lambda}}{a_{1}}}(\frac{a}{a_{1}}\chi_{\lambda}(x,\bar{\omega})).$

Therefore we may assume that $\chi_{\lambda}(x, \bar{\omega}) = ax + \chi'_{\lambda}(\bar{\omega}).$

• Consider any relation of the form $D_{n_{\xi}}(g_{\xi}(x,\bar{\omega}))$ and let a_1 be the coefficient of x. Then

$$D_{n_{\xi}}(g_{\xi}(x,\bar{\omega}))$$
 if and only if $D_{n_{\xi}}(\frac{a}{a_{1}}g_{\xi}(x,\bar{\omega})),$

because $deg(\frac{a}{a_1}g_{\xi}(x,\bar{\omega})) = deg(\frac{a}{a_1}) + deg(g_{\xi}(x,\bar{\omega}))$ and $n_{\xi}|deg(\frac{a}{a_1})$ Therefore we may assume that $g_{\xi}(x,\bar{\omega}) = ax + g'_{\xi}(\bar{\omega})$.

• Consider any relation of the form $D_{<}(\pi_{1,\rho}(x,\bar{\omega}),\pi_{2,\rho}(x,\bar{\omega}))$. As we mentioned before, due to Lemmas 1 -4 for every ρ exactly one of the polynomials $\pi_{1,\rho},\pi_{2,\rho}$ has a non-trivial appearance of x. Let a_1 be the non-zero coefficient of x. Then

$$D_{<}(\pi_{1,\rho}(x,\bar{\omega}),\pi_{2,\rho}(x,\bar{\omega}))$$
 if and only if $D_{<}(\frac{a}{a_{1}}\pi_{1,\rho}(x,\bar{\omega}),\frac{a}{a_{1}}\pi_{2,\rho}(x,\bar{\omega})).$

Therefore we may assume that either $\pi_{1,\rho}(x,\bar{\omega}) = ax + \pi'_{1,\rho}(\bar{\omega}), \ \pi_{2,\rho}(x,\bar{\omega}) = \pi'_{2,\rho}(\bar{\omega}), \text{ or } \pi_{1,\rho}(x,\bar{\omega}) = \pi'_{1,\rho}(\bar{\omega}), \ \pi_{2,\rho}(x,\bar{\omega}) = ax + \pi'_{2,\rho}(\bar{\omega}).$

We take a disjunction over all possible total orderings of the degrees of the terms $ax, ax + \pi'_{1,\rho}(\bar{\omega}), ax + \pi'_{2,\rho}(\bar{\omega}), \pi'_{1,\rho}(\bar{\omega}), \pi'_{2,\rho}(\bar{\omega}), ax + \chi'_{\lambda}(\bar{\omega}), ax + g'_{\xi}(\bar{\omega})$ that occur in σ . Since the existential quantifier $\exists x \text{ distributes over } \lor \text{ we may assume},$ without loss of generality, that σ_2 implies such an ordering. Let T be a term of lowest degree (according to this ordering), in which x occurs non-trivially. Clearly, T must be of the form $ax + u(\bar{\omega})$ where u is a term of L in which x does not occur. We perform the change of variables z = ax + u and we substitute each occurrence of ax in the above terms by the resulting value of ax, z-u. We adjoin in σ_3 the divisibility $|_a(z-u)$. In detail,

- each formula of the form $ax = h_i(\bar{\omega})$ is replaced by $z = \tilde{h}(\bar{\omega})$, where $\tilde{h}(\bar{\omega}) =$ $h_i(\bar{\omega}) + u(\bar{\omega}),$
- each formula of the form $|_c(ax+\chi'_\lambda(\bar{\omega}))$ is replaced by $\bigvee_r |_c(z+r) \wedge |_c(\chi'(\bar{\omega})$ $u(\bar{\omega}) - r)$, where r runs over all polynomials with degree less then deg(c),
- each formula of the form $D_{\leq}(ax + \pi'_{1,\rho}(\bar{\omega}), \pi'_{2,\rho}(\bar{\omega})) \wedge D_{\leq}(ax + u(\bar{\omega}), ax + u(\bar{\omega}))$ $\pi'_{1,\rho}(\bar{\omega})$ is replaced by $D_{\leq}(\pi'_{1,\rho}(\bar{\omega}) - u(\bar{\omega}), z) \wedge D_{<}(z, \pi'_{2,\rho}(\bar{\omega})),$
- each formula of the form $D_{\leq}(ax + \pi'_{1,\rho}(\bar{\omega}), \pi'_{2,\rho}(\bar{\omega})) \wedge D_{=}(ax + u(\bar{\omega}), ax + u(\bar{\omega}))$
- $\begin{aligned} \pi_{1,\rho}'(\bar{\omega})) \text{ is replaced by } D_{<}(z,\pi_{2,\rho}'(\bar{\omega})) &\land D_{\leq}(\pi_{1,\rho}'(\bar{\omega})-u(\bar{\omega}),z), \\ \bullet \text{ each formula of the form } D_{<}(\pi_{1,\rho}'(\bar{\omega}),ax+\pi_{2,\rho}'(\bar{\omega})) &\land D_{<}(ax+u(\bar{\omega}),ax+$ $\pi'_{2,\rho}(\bar{\omega})) \text{ is replaced by } D_{<}(z,\pi'_{2,\rho}(\bar{\omega})-u(\bar{\omega})) \bar{\wedge} D_{<}(\pi'_{1,\rho}(\bar{\omega}),\pi'_{2,\rho}(\bar{\omega}))-u(\bar{\omega}),$
- each formula of the form $D_{\leq}(\pi'_{1,\rho}(\bar{\omega}), ax + \pi'_{2,\rho}(\bar{\omega})) \wedge D_{=}(ax + u(\bar{\omega}), ax + u(\bar{\omega}))$ $\pi'_{2,\rho}(\bar{\omega})$ is replaced by $D_{\leq}(\pi'_{1,\rho}(\bar{\bar{\omega}}),z) \wedge D_{\leq}(\pi''_{2,\rho}(\bar{\omega})-u(\bar{\omega}),z),$
- each formula of the form $D_n(ax + g'_{\xi}(\bar{\omega})) \wedge D_{\leq}(ax + u(\bar{\omega}), ax + g'_{\xi}(\bar{\omega}))$ is replaced by $D_n(g'_{\xi}(\bar{\omega}) - u(\bar{\omega})) \wedge D_{\leq}(z, g'_{\xi}(\bar{\omega}) - u(\bar{\omega}))$,
- each formula of the form $D_n(ax + g'_{\xi}(\bar{\omega})) \wedge D_{=}(ax + u(\bar{\omega}), ax + g'_{\xi}(\bar{\omega}))$ is replaced by $D_n(z) \wedge D_{\leq}(g'_{\epsilon}(\bar{\omega}) - u(\bar{\omega}), z)$.

This completes the proof of the separation of x from $\bar{\omega}$.

We are ready to eliminate the existential quantifiers over the variables \bar{x} in the existential formula σ of Proposition 1.

Theorem 2. Every formula σ of L is equivalent over $\mathbb{F}_q[t]$ to an open formula of L.

Proof. Let σ be as in Proposition 1. If σ_1 is not void (i.e. equivalent to 1 = 1) then solve for one of the variables in terms of the remaining ones over $\mathbb{F}_q(t)$, substitute each occurrence of it by the value implied by the equations and adjoin the corresponding divisibility to σ_3 as indicated in the proof of Proposition 2. Iterate until there are no equations. Hence we assume that σ_1 is void.

According to Proposition 1 we assume that $\sigma_2 \wedge \sigma_3 \wedge \sigma_4$ has the form indicated in Proposition 2, with respect to the variable x_n .

In order to achieve the elimination of x_n , we separate the variable x_n from the rest of the variables x_1, \ldots, x_{n-1} , by considering $x_1, \ldots, x_{n-1}, \omega_1, \ldots, \omega_m$ as parameters. Thus after applying Proposition 2 to σ , we may assume from the beginning that each σ_i (as given in Proposition 1) is already in separated form with $\bar{x} = x_n$ and that the coefficient of every nontrivial appearance of x_n in σ is equal to 1.

Let x_1, \ldots, x_{n-1} and $\bar{\omega}$ be given. First, we observe that we may substitute the relations of σ_4 by only one divisibility $D_{n_{\xi_0}}(x_n)$, where n_{ξ_0} is the least common multiple of all n_{ξ} appearing in σ_4 .

Case 1: There is no upper bound for the degree of x_n . Then x_n can be eliminated if and only if the conditions for the Generalized Chinese Theorem hold for σ_3 .

Case 2: There is an upper bound for the degree of x_n . Now note that

$$D_{<}(x_{n},\theta_{1}(x_{1},...,x_{n-1},\bar{\omega})) \land D_{<}(x_{n},\theta_{2}(x_{1},...,x_{n-1},\bar{\omega})) \iff [D_{<}(\theta_{1}(x_{1},...,x_{n-1},\bar{\omega}),\theta_{2}(x_{1},...,x_{n-1},\bar{\omega})) \land D_{<}(x_{n},\theta_{1}(x_{1},...,x_{n-1},\bar{\omega}))] \lor [D_{<}(\theta_{2}(x_{1},...,x_{n-1},\bar{\omega}),t\theta_{1}(x_{1},...,x_{n-1},\bar{\omega})) \land D_{<}(x_{n},\theta_{2}(x_{1},...,x_{n-1},\bar{\omega}))].$$

Let $\theta_{m_2}(x_1, ..., x_{n-1}, \bar{\omega})$ be such that its degree is the least upper bound for the degree of x_n . Using the Generalized Chinese Theorem, we check if the system of divisibilities of σ_3 has some solution $x_n \in \mathbb{F}_q[t]$. If it does, then there is a solution $x_n \in \mathbb{F}_q[t]$ such that $D_{n_{\varepsilon_0}}(x_n)$.

Case 2(a): Assume that there is no $\theta(x_1, ..., x_{n-1}, \bar{\omega})$ such that $D_{<}(\theta(x_1, ..., x_{n-1}, \bar{\omega}), x_n)$. Then x_n should be a constant polynomial, i.e., there is an elimination of x_n .

Case 2(b): There are $\theta_1(x_1, ..., x_{n-1}, \bar{\omega})$ and $\theta_2(x_1, ..., x_{n-1}, \bar{\omega})$ such that

 $D_{\leq}(\theta_1(x_1,...,x_{n-1},\bar{\omega}),x_n) \wedge D_{\leq}(x_n,\theta_2(x_1,...,x_{n-1},\bar{\omega})).$

Let $\theta_{m_2}(x_1, ..., x_{n-1}, \bar{\omega})$ be as defined above and $\theta_{m_1}(x_1, ..., x_{n-1}, \bar{\omega})$ such that its degree is the least lower bound for the degree of x_n . For simplicity we denote $\theta_{m_1}(x_1, ..., x_{n-1}, \bar{\omega}), \theta_{m_2}(x_1, ..., x_{n-1}, \bar{\omega})$ by $\theta_{m_1}, \theta_{m_2}$ respectively. We repeat the previous algorithm to decide if there exists a x_n that satisfies $\sigma_3 \wedge D_{n_{\xi_0}}(x_n)$. If there is such $x_n \in \mathbb{F}_q[t]$, then let d be the least positive integer with the property: if x_n is a solution of $\sigma_3 \wedge D_{n_{\xi_0}}(x_n)$, then the next solution of $\sigma_3 \wedge D_{n_{\xi_0}}(x_n)$ is of degree $\deg(x_n) + d$. Such d exists due to the Generalized Chinese Theorem. Thus

$$\exists x_n(\sigma_2 \wedge \sigma_3 \wedge \sigma_4) \iff \bigvee_{i=0}^{d-1} [D_d(t^{d-i}\theta_{m_1}) \wedge D_{\leq}(t^{d-i}\theta_{m_1}, \theta_{m_2})].$$

Thus by induction on n we obtain the required statement of elimination. \Box

3 An Enrichment for $(\mathbb{F}_q[t]; +; |_a; P; f_t; 0, 1)$

We start by augmenting the language of the structure \mathcal{A} to a language L_P .

Definition 3. Let q and t be given. We define the language

$$L_P = L \cup \{P\}$$

where the predicate $P(\omega)$ stands for " ω is a power of t".

This extension of a language L is an analogue to the extension of Presburger arithmetic by the relation "x is a power of 2", which, over \mathbb{N} , has a decidable theory, as mentioned in the Introduction.

Currently, we are investigating the theory of $\mathbb{F}_q[t]$ in L_P from the point of view of decidability. Our results so far indicate that this theory may be model-complete.

3.1 Acknowledgments

The author would like to thank Th. Pheidas and the referees for helpful suggestions.

References

- 1. J. Denef, The diophantine problem for polynomial rings and fields of rational functions, Transactions of the American Mathematical Society **242** (1978), 391-399.
- J. Denef, The diophantine problem for polynomial rings of positive characteristic, Logic Colloquium 78, North Holland (1984), 131-145.
- 3. L. Lipshitz, *The diophantine problem for addition and divisibility*, Transactions of the American Mathematical Society **235** (1978), 271-283.
- T. Pheidas, Extensions of Hilbert's Tenth Problem, the Journal of Symbolic Logic 59-2 (1994), 372-397.
- T. Pheidas and K. Zahidi, Undecidability of existential theories of rings and fields: A survey, Contemporary Mathematics 270 (2000), 49-106.
- T. Pheidas and K. Zahidi, Elimination theory for addition and the Frobenius map in polynomial rings, the Journal of Symbolic Logic 69-4 (2004), 1006-1026.
- T. Pheidas and K. Zahidi, Analogues of Hilbert's tenth problem, Model theory with Applications to Algebra and Analysis Vol. 2 (Eds. Zoe Chatzidakis, Dugald Macpherson, Anand Pillay, Alex Wilkie), London Math Soc. Lecture Note Series Nr 350 (2008), 207-236.
- B. Poonen, Undecidability in Number Theory, Notices A.M.S. 55 (2008), no 3, 344-350.
- R. Robinson, Undecidable rings, Transactions of the American Mathematical Society 70 (1951), 137-159.
- A. Semenov Logical theories of one-place functions on the set of natural numbers, Math. USSR Izvestija 22 (1984), 587-618.
- A. Semenov, On the definability of arithmetic in its fragments, Soviet Math. Dokl. 25 (1982), 300-303.