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Abstract 

Kaye, R., Hitbert’s tenth problem for weak theories of arithmetic, Annals of Pure and Applied 

Logic 61 (1993) 63-73. 

Hilbert’s tenth problem for a theory T asks if there is an algorithm which decides for a given 

polynomial p(X) from Z[Z] whether p(X) has a root in some model of T. We examine some of 

the model-theoretic consequences that an affirmative answer would have in cases such as 

T = Open Induction and others, and apply these methods by providing a negative answer in the 

cases when T is some particular finite fragment of the weak theories IE, (bounded existential 

induction) or I(/, (parameter-free bounded universal induction). 

1. Introduction 

Hilbert’s famous tenth problem asked if there is an algorithm A which, when 

given a polynomial p(X) from Z[.C], returns the output ‘yes’ or ‘no’ depending on 

whether there is a in N such that p(2) = 0. In 1970, MatijaseviE [8], using previous 

work by J. Robinson, Davis and Putnam answered this question negatively, 

proving: 

Result 1 (The MRDP theorem). For all r.e. predicates 0(Z) there is a polynomial 

p(% j3 from @, Yl such that for all X E N, f3(.1?) holds just in case 3yp(X, J) = 0. 

Even more famously, Hilbert also asked if certain strong theories of arithmetic 

(such as PA) were decidable. The well-known negative answer to this last 

question given by Gijdel and Rosser led Skolem, Kreisel, Schoenfield and 

Shepherdson in the 1950s and 60s to look at the free-variable system of arithmetic 

formulated in the usual language of arithmetic with nonlogical symbols +, ., <, 0, 

1, I, variables, and the usual logical connectives =, A, v , 1, +, but no 

Correspondence to: R. Kaye, Jesus College, Oxford OX1 3DW, United Kingdom 



64 R. Kaye 

quantifiers. The usual basic axioms, PA-, for the nonnegative parts of discretely 
ordered rings can be expressed in this language, and induction can be given as a 
rule rather than an axiom scheme. The first and most basic question along 
Hilbert’s lines is: is this quantifier-free fragment of PA decidable? 

In an obvious way, all theorems of the free-variable PA can be regarded as 
universal (or V,) statements about the standard model N. Shepherdson [ll] 
showed that in fact this system has exactly the same V, consequences as the 
ZA-theory ZOpen, where ZZ* is the full language of arithmetic with nonlogical 
symbols +, ., ‘1_, <, 0, 1 and quantifiers, and IOpen is axiomatized by PA- 
together with the usual axiom scheme of induction on all quantifier-free (or open) 
formulas 8: 

vii ((ky0, a) A vx (0(x, 5) -+ e(x + 1, a)))+ VX 0(X, a)). 

It is easy to check that any V, formula q(X) in Z* is equivalent (in PA-) to a 
formula of the form Vjp(i, 7) # 0, where p(X, J) is a polynomial with coefficients 
from Z. For example, u < u is equivalent to VW u + w - u # 0, while p(U) # 0 v 
q(G) # 0 is equivalent to p(C)’ + q(V)‘# 0, and p(G) # 0 A q(V) # 0 is equivalent 
to p(C) - q( 21) # 0. Thus, by Shepherdson’s result, the question about decidability 
of the free-variable PA is equivalent to asking whether there is an algorithm A 
such that, on input p(X) E Z[X], A answers ‘yes’ if there is (5 and ti E M k IOpen 
with M kp(a) = 0 (i.e., if IOpen X VXp(X) # 0) and answers ‘no’ otherwise. 
Because of its close similarity with Hilbert’s tenth problem, I shall refer to this as 
Hilbert’s tenth problem for IOpen, or the diophantine problem for IOpen, and the 
analogous problem when IOpen is replaced by another theory T, Hilbert’s tenth 
problem for T. Since the reduction above of V, formulas to formulas stating that a 
polynomial has no root, ‘Hilbert’s tenth problem for ZOpen’ is equivalent to 
asking whether the set of V, consequences of IOpen, V,(lOpen), is recursive. 
Notice that the set of p(Z) solvable in some model of IOpen is a co-r.e. set: the 
problem is to decide if it is r.e. 

In his 1964 paper, Shepherdson [12] constructed models of IOpen and showed 
in particular that ZOpen cannot prove the irrationality of fi, 

vx, y (x + 1)2 f 2(y + l)“, 

nor Fermat’s Last theorem for exponent 3, 

vx, y, z (x + 1)’ + (y + 1)3 f z3, 

and in his 1965 paper [13] he announced a free-variable system with no induction 
axioms and the same V, consequences as IOpen. Wilkie [15] found a much more 
useful algebraic characterization of V,(IOpen), and van den Dries [2] used 
Wilkie’s characterization to find an algorithm that decides for each two-variable 
polynomial p(x, y) for Z[x, y] whether or not there is a ring 2 whose nonnegative 



Hilbert’s tenth problem 65 

part is a model of IOpen and p(x, y) has a zero in 2. ’ Note that the original tenth 

Hilbert problem for two-variable polynomials and solvability over N (or Z) is still 

open! 

Despite a great deal of work, Hilbert’s tenth problem for ZOpen is still 

unsolved. The theory IOpen is known not to prove the MRDP theorem on the 

diophantine representation of r.e. predicates, but this seems to be of little help 

here. Both Wilkie and van den Dries have provided strong evidence that 

diophantine equations over IOpen should be decidable, and so they conjecture 

that V,(IOpen) is a recursive set of formulas. My object in this paper, however, is 

to examine this conjecture from what may seem to be a rather ‘negative’ point of 

view: I shall examine what it means for a theory T to have a decidable 
diophantine problem. In this way I shall derive independence results of a rather 

general nature from the van den Dries-Wilkie conjecture, and also show that 

rather modest-seeming extensions of ZOpen-extensions that are known not to 

prove the MRDP theorem-have undeciable diophantine problem. As the 

referee has commented this article can be read as a discussion about how 

independence results of this kind can be attained for weak theories-whether one 

agrees with my approach or not. 

The techniques I shall use combine the negative solution to Hilbert’s original 

problem for the standard model N by Matijasevic, J. Robinson, Davis and 

Putnam, Tennenbaum’s method of showing a nonstandard model of arithmetic to 

be nonrecursive, and a model-theoretic construction going back to A. Robinson 

and Henkin applied to this setting in a careful way. These methods will allow the 

role of the induction axioms to be investigated, and it will turn out that a 

sufficient condition for V,(T) not to be recursive is if T together with a rather 

strong induction rule applied to an 3, formula can prove a fragment of the 

MRDP theorem. The main undecidability result of the paper, that neither the 

theory IEi of Wilmers [16] nor ZU; of Kaye [5] have decidable diophantine 

problem then follows from this and the main result of Kaye (61. This unde- 

cidability result was first announced in Kaye [5] and its proof appears here for the 

first time. 

The results and ideas in this paper formed the basis for my talk at Utrecht, and 

I gave an earlier exposition of these ideas at the weekend conference at Baruch 

College, New York, in December 1988. I am grateful to the organizers of both 

conferences for their invitations and hospitality, and to the organizers of the 

Utrecht meeting in particular for arranging that the conference proceedings could 

be published in the present form. 

’ There is a minor technical detail here concerning the difference between solvability in the full ring 

and in the nonnegative part of the ring. For solvability in N, the two problems are equivalent by 

Lagrange’s theorem that every nonnegative integer is the sum of four squares. It turns out that these 
two problems are also equivalent even in the case of IOpen, since by a result of Otero [lo], the V, 

consequences of IOpen and of IOpen + Langrange’s theorem are identical. It is not clear to me if van 
den Dries’ result applies to solvability of two-variable polynomials in the nonnegative part of the rings 

associated with models of IOpen. 
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The rest of this introduction recalls some definitions that have become 
more-or-less standard in the study of models of arithmetic and the Tennenbaum 
phenomena. For more details on the notation used here, see Kaye [6]. 

We have already mentioned that J&A denotes the usual first-order language of 
arithmetic, and PA- the 3* theory axiomatizing the nonnegative parts of 
discretely ordered rings. The formulas classes 3i, Vi, El and U, are, respectively, 
the classes of purely existential, universal, bounded existential, and bounded 
universal formulas of .Y*. Modulo PA- these formula classes are equivalent to 
the classes of formulas of the form 

3YP(% r) = 4% 3 (31) VYP(% 7) f 4(% P) (VI), 

3Y < r(Z) p(% j-) = q(f, Y) (E,), and VJ < r(z) p(X, Y) Z q(% Y) (U,), 

where p, q and Y are terms involving 0, 1, +, . only. 
If Z is a class of 3A-formulas, IT denotes the zA-theory with axioms PA- and 

all induction axioms 

Va ((e(0, 5) A vx (0(x, ci)+ 0(X + 1, fi)))--,Vx t&r, a)) 

for 8 from r IT- is the same, except the formulas 8 in the induction axioms are 
not allowed to have any parameters if. LT and LT- are defined similarly except 
that the least number principle, 

va (3~ e(~, a)-+ 3~ (e(~, a) A vy <xle(y, a))) 

is used instead of the induction scheme. 
An 3* structure (M, +, L, 0, 0, 1, <) is recursive iff there is an isomorphism 

(M, +, I, ., 0, 1, <)-t (N @, 0, 0, %, n,, <<) where C3, 0, 0 and << are re- 
cursive operations on N. 

2. The results 

Let T be an _YA-theory. We say that T is diophantine decidable if it extends 
PA- and Hilbert’s tenth problem for T has an affirmative answer, equivalently if 
its universal consequence V,(T) forms a recursive set. Throughout the discussion 
in this section we shall fix attention on one such theory T and examine the effects 
for T, although for clarity we shall repeat the global assumptions on T in the 
statement of the theorems. 

Given such a theory T, there is a rather standard way of building models of the 
El consequences of T, V,(T), which is due to A. Robinson (and is a modification 
of Henkin’s proof of the completeness theorem), called Robinson forcing or, 
more descriptively, model-theoretic forcing with quantifier-free conditions. This 
construction and others like it are described in detail in Wilfrid Hodges’ book, 
Building models by games [4]. I shall describe an effective version of the 
construction, and leave the reader to check that the resulting model K does 
indeed have the properties I claim. 
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The main ingredients for the construction are: 

l a set of constants W = {w(,, wl, w2, . . .} called witnesses; 

l a fixed recursive enumeration of all quantifier-free Z*(W) formulas Oo(W, X), 

&(W, x), &(W, Z), . . . . 

At any stage i of the construction, we will have a condition p,(W), i.e., a finite 

set of quantifier-free Z*(W) sentences such that T Upi is consistent. (We take 

p,, to be the empty set.) At stage i the following is performed: 

l if T Up,(W) U (3X B,(W, X)} is consistent, then let pi+,(W, V) be p,(W) U 
{ tli(W, ti)} where ij is the first tuple of witnesses from W not already present in 

p,(W) or O,(W, X); otherwise pi+,(W) is p,(W) itself, and if this happens, note that 

Tproves Vj (/jpi(j)-+VZ18,Cy, X)). 

At the end of the construction, we take any model M of T U lJipi and let 

Kc M be the submodel whose domain is the set of elements on M that realise 

one of the constants wj. 

Notice that the construction outlined above is effective, since the decision at 

stage i only depends on the consistency of a T together with a certain 3i sentence 

of 34, and we assumed that V,(T) was recursive. It is easily checked that K 
satisfies V,(T) together with all p,(W). Thus the model K is recursive, for every 

basic atomic sentence of the form wj = wj, wi + wi = w,, or w, . wi = w, appears in 

the list Bi (i E N), so it can be decided whether it is true in K or not by examining 

p,(W) for sufficiently large i. Putting all this together (and choosing the list Oi so 

that O. is the quantifier-free matrix of a) we obtain: 

Theorem 2. Suppose T is a diophantine decidable _YA-theory. Then for all 3, 
sentences u consistent with T there is a recursive model K of V2 T + o such that: 

(i) for all a E K’“, the 3, type of a, 

3,-tp,(a)Ef (q(2) E 3,: K k &a)}, 

is recursive; 
(ii) K is existentially closed (e.c.) in the class of all models of T, i.e., if 

a E K E L k T and L k 3X 8(a, X) where 8 is quantifier-free, then K k 3X 8(a, X). 

In the particular case of ZOpen, note that ZOpen is naturally V2 axiomatized, 

and so the construction above gives a model of the full theory. 

In general, the model K obtained by the construction depends on T and the 

choice of enumeration O&C, W) (i E N) of the quantifier-free Z*(W) formulas. For 

the remarks and results below, however, the ordering of the 8, is immaterial, and 

I will refer to this model ambiguously as K(T), or occasionally as K(T, a) when 

13~) is the quantifier-free matrix of the 3, sentence o. 

Examining the model constructed in the last theorem then, we have: 

Theorem 3. Let T be diophantine decidable and let K = K(T) as above. Then K is 
nonstandard. More generally, K satisfies overspill for 3, formulas with parameters 
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from K, i.e., whenever 8 is quantifier-free, ci E K, and 

N G {x E K: K k 3j 0(x, jj, a)} 

then 

Proof. To see that K is nonstandard, note that if K = N then for each polynomial 

p(X), p(2) has a solution in N if and only if Sp(Z) = 0 is in 3,-tpK(0). This 

type is recursive by supposition, contradicting the negative solution of Hilbert’s 

tenth problem. The argument for 3,-overspill is similar: if N = {x E K: K k 
3j f3(x, p, a)} then p(Z) has a solution in N if and only if 

32 (0 3y e(x;, y, ci) A p(X) = 0) 

is in 3,-tp,(C). Cl 

It is well known from Tennenbaum’s theorem [14] and more recent work on 

this type of result that if a nonstandard model K has sufficient overspill it must be 

nonrecursive. In fact the argument in Wilmers [16] can be modified to show that, 

given some nonstandard model M FlOpen which satisfies overspill for both E, 

formulas and CJ, formulas, the addition function of the model is not recursive. 

This suggests a model-theoretic approach to Hilbert’s tenth problem for weak 

theories, which seems particularly natural when one considers the tight relation- 

ship between Tennebaum’s theorem and the Godel-Rosser theorem (see Kaye 

[7, pp. 189-901). But, unfortunately, a result due to Otero [lo] shows that there is 

a Ui formula r/~(x) (more precisely, one can take ~/J(X) to be Vu, v, w <X 

(3u2 # v2 + w2 v uvw = 0)) such that, in any e.c. model A4 of ZOpen, the standard 

model N is definable by $J, and so M fails to satisfy U,-overspill. (Incidently, the 

same result, together with a simple compactness argument and the construction of 

e.c. models over a given model by a union-of-chains, shows that any e.c. model of 

ZOpen satisfies 3,-overspill, irrespective of whether the van den Dries-Wilkie 

conjecture holds. Otero’s result is, however, rather specific to ZOpen and 

ZOpen + normality, while 1 will want to use the last two theorems above in cases 

when T is not of this form.) 

There is still some hope though of obtaining interesting results for, in N at 

least, the 3,-definable sets include all of the U,-definable sets (by the MRDP 

theorem) and there may be ways of restricting the domain of the model K(T) to 

mimic or (loosely speaking) ‘interpret’ a sufficient amount of the MRDP theorem 

for the Tennenbaum trick to work. The prototype argument (including the 

Tennenbaum trick) that we shall use is that in the next theorem, but first we need 

a definition. 



Hilbert’s tenth problem 69 

Definition 4. A polynomial p(U ; V ; w) over Z in the free-variables shown bisects 

disjoint r.e. sets A and B iff, for some polynomials pA(U, W) and ps(V, w) over Z 

we have 

A = {n E N: N k 3iip,(d, n) = 0}, 

B={nEN:N~3Up~(~,n)=o} 

and 

p(U; 0; w) =p/q(U, W)2+pe(fi, w)? 

Note that the definition depends on not just the polynomial, but also some 

partition U; 17; w of its free variables; when this partition is likely to be unclear, 

we shall indicate it using semicolons. Note also that if p does bisect disjoint sets A 
and B then p has no roots at all in N. 

Theorem 5. Let K be a nonstandard model of PA-, let A and B be disjoint, r.e., 
recursively inseparable subsets of N, suppose p(ii; 13; w) bisects A and B, 
k = len(E) and there is 6 E K and an existential formula A(& b) such that 

N“ G {X E Kk: K F A(.& 6)) 

and, for all i, n E N, 

K k Vu (A(& b)+p(cz; i; n) # 0). 

Then the type 3,-tp,(6) is not recursive. 

Proof. Let pA(U, w) and pB(b, w) be polynomials such that 

A = {n E N: 3iipA(ii, n) = 0}, 

B = {n E N: 3Vp,(V, n) = 0} 

and 

p(U; 0; w) =pA(ii, w)2+pB(2r, w)“. 

Then 

NbVzz, v, wp(U, 0, w)#O 

since A and B are disjoint. Put k = len(E) and suppose that A is as given in the 

statement of the theorem. Define 

C = {n E N: K 13U (n(ti, 6) A ~~(6, n) = 0)). 

Then C ?A since K k n(ti, 6) for all U in Nk, and B fl C = 0 since p(U, i, n) # 0 
for all i, n E N and all U E K satisfying K L A(ti, 6). But C is Turing reducible to 

El,-tpK(6), and separates A and B so is not recursive, hence I11-tpK(6) cannot 

be recursive either. q 



70 R. Kaye 

From the van den Dries-Wilkie conjecture and the results given so far, we can 

immediately deduce independence results for ZOpen, the next corollary being a 

sample. 

Corollary 6. Suppose V,(ZOpen) is recursive, and suppose further that A, B are 

r.e., recursively inseparable, 

A = {n E N: 3iip,(ii, n) = 0} 

and 

B = {n E N: 3vp,(b, n) = 0) 

where pA and pe are polynomials over Z. Then, for all 3, sentences o consistent 

with IOpen, 

IOpen + aX Vx, j, Z (pA(x, J)’ + p&, 2)’ Z 0). 

Proof. If not, take K = K(lOpen, a) and ii(U) to be true for all ii in Kk and apply 

Theorems 2 and 5. 0 

I consider the possibility of finding a suitable formula A. from a proof of (part 

of) the MRDP theorem to be much more important than the last corollary. From 

now on, we fix attention on a particular pair of r.e., recursively inseparable sets A 
and B and a bisecting polynomial p(ii; 3; w) =pA(ii, w)’ +pe(v, w)’ as above. 

(No part of the following discussion will depend on the particular choice of A and 

B, although it is conceivable that future applications showing the diophantine 

problem for a specific theory T to be undecidable might depend on certain pA and 

pe being ‘simple’ in some sense.) We shall also use the tuple I to denote the 

concatenation ii; 0; w, writing p(ii; 0; w) as p(R). 

Theorem 7. Let T be a consistent ZA theory extending PA-, suppose p(i) is as 

above, and suppose that there are 3, formulas 0(y, z), +(x; y, 2) satisfying: 
(1) NLVy ((Vx<yp(q#O)-,32 qy, 5)) 
(2) TFVy, ZVZ<y (8(y, 2) A q(x;y, z)+p(x)#O) 
(3) Tttly#OVZ(B(y,Z)+1@(0,0,. . . ,O;y,Z)) 
(4) for all 0 G i < k = len(3) and all n E N, 

Tt~~,y,z[(B(y,i)~x<yr\n<y~ 

V’(~O, . . . j X,-I, 0, Xi+lr . . . j xk-l;y, 5)) 

+ v(.h . . . , %lr nj x;+l, . . . , xk--I;yr 211. 

Then T has undecidable diophantine problem. 

Proof. We shall apply Theorem 5. Note first that all the sentences that T is 

required to prove in (2)-(4) b a ove are V, so we may assume without loss of 

generality that T = V,(T), i.e., that T is V2 axiomatized. 
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Assume that V,(T) is recursive. Then by Theorems 2 and 3 there is a 

non-standard model K = K(T) of T with recursive 3, types and 3,-overspill. 

Since N kp(.C) # 0 for all X E N we have from (1) that 

for all n E N, so by the preservation upwards of 3, formulas to extensions of N 

and by overspill in K there is CY > N and p in K so that K k @a, p). Now writing X 

as U; V; w as before we consider the 3, formula ,I(U, (Y, fi) logically equivalent to 

rjI(U; 0; 0; cy, p> A u < a 

where 0 is a tuple of the same length as V and each entry being the constant 0. 

Then for all ti E N, K k A(fi, a, fl) (by (3) and (4), and the choice of (Y > N), and 

if i, n E N and 12 E K k A(& a, p) then 

Kh+Y(fi;i;n;cu, p> 

(by (3) and (4) g a ain and the fact that (Y is nonstandard) and so 

Kkp(ii, i, n)#O 

(by (2)). Thus the conditions of Theorem 5 are satisfied. and we obtain the 

required contradiction. 0 

The conditions (l)-(4) in the last theorem may seem at first glance to be rather 

abstract and divorced from the MRDP theorem, but in fact they will hold if a part 

of the MRDP theorem is derivable from T together with a certain infinitary rule 

of derivation. Part (1) states that one direction of the equivalence 

vy ((VZ<yp(Z)#O)‘++32 8(y, 2)) (t) 

is true in N, that is: a U, formula is equivalent to an existential one, and the 

formula 0 may be the usual one derived from the usual proof of the MRDP 

theorem, or indeed it may also include extra existential properties of the numbers 

y, Z not derivable from T-provided of course that these properties are true in N. 

Parts (2)-(4) state that the other direction of (?_) is derivable in T together with a 

single application of an infinitary rule similar to the o-rule or the rule for 

induction on the existential formula $I. To see the relationship with induction, 

note that to verify (2)-(4) it would be sufficient to prove 

Vy ((32 B(y, Z))+ (Vi <y&i) #O)) ($) 

using the axioms of T together with the induction rule 

fromyfOA 8(y,i)-,qJ(O,O,. . . ,O,y,Z) 

and,foreachi, 8(y,z)Ax~yAxi+l<yA~(x,,,x I,..., q_,,y,Z) 

+ WO, . . . 7 xi-l1 xi + l, xi+l, . . . 2 X/.--l> .Y, 2) 

deduce X <y A B(y, Z)+ $J(X, y, 2) 
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but, unfortunately, this rule can only be used once. However, it does suggest to 
me that Hilbert’s tenth problem for weak theories is not so much about how 
much induction is present in the weak theory, but rather about whether the 
theory has enough to use this extra induction rule effectively. It is known [6] that 
the full MRDP theorem is provable in unrestricted parameter-free existential 
induction, but to prove undecidability results using this result and Theorem 7 
needs extra knowledge about the theory T. 

3. Applications to I& and I& 

In this section I will discuss some rather trivial applications of Theorem 7 to ZEi 
and ZU;. Note that ZU; does not prove the MRDP theorem (indeed, the 
nonnegative part of the discretely ordered ring Z[X] satisfies ZU;) although 
whether ZE, proves the MRDP theorem is still open. We start with ZEr. Recall 
the following ideas and result from [6]. 

Definition 8. Let $(a, b, x, y) be the J8A formula 

~(a,x,y)=Or\x~yr\x=bmod(a-l)Ay=b+lmod(a-1) 

where q(a, x, y) is x2 + y2 - 2uxy - 1. Let ~(u, b) be 

3c s b @(a + 2, a, c, b). 

Note that x is an g1 ,fe, formula. The idea is that ~(a, b) states that b is 
‘exponentially larger’ than a. 

Result 9 (Kaye [6]). (1) The theory IA0 + exp of Guifmun and Dimitrucopoulos 

[3] is equivalent to ZEI + Vx 3y x(x, y). 
(2) For all ~(2) in gl, IA0 + exp t V.? n(j) if and only if there is k E N such that 

ZEIIVY [Y&I X(Yi, Yi+d-+V~ <Yo a(X)]. 

Theorem 10. For some finite fragment T of ZE, , any consistent extension of T has 
undecidable diophantine problem. 

Proof. We check that the conditions of Theorem 7 are satisfied. Let p(.? 
given and take a quantifier-free 0’(y, Z) such that 

ZA,,+expt_Vy(V2<yp(2)#0~3i8’(y,Z)) 

1 be 

using the fact that ZAO + exp proves the MRDP theorem [3]. By the result from 
[6] applied to 
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k-l 
e’(y,z)~wn=max(y,Z)+l A ;/Jx(w~, wi+l)+Vj<yp(f)#O > 

. 

Then let 0(y, Z, ti) be 

k-l 

o’(y, 2) A WI = m&y, 2) + 1 A ,oo Xtwi9 wi+l> 

and I@ be 0 = 0 and note that the conditions of Theorem 7 are satisfied. q 

Corollary 11. There is a finite fragment T of IU; such that any consistent extension 
of it has an undecidable diophantine problem. 

Proof. The undecidability of the diophantine problem for ZCJ; follows by the 
conservation result in [5] that ZU; and IE, share the same V, consequences. The 
fact that this undecidability is also true of a finite fragment of IU; is because, in 
the proof of the last theorem, the formula I/I was allowed to be trivial, and hence 
the only part of Theorem 7 that must be checked for ZU; is part (2), and this is a 
universal sentence. 0 
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