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0. Introduction 

In this talk I will summarize some of my results concerning first order theories of 

generalized Pascal triangles (GPT). Most of them are proved in [5-121. My talk will 

consist of the following parts: 

(1) 

(2) 

(3) 

(4) 

(5) 

Dejinition of GPT and a motivation. 

Generalized Pascal triangles (GPT) will be special binary partial operations on the 

set N of nonnegative integers. 

Structures associated to GPT. 

Several natural ways will be suggested how to associate a mathematical structure 

(a partial algebra or a relational system) to a GPT. By a theory of GPT we shall 

mean the first order theory of an associated structure. 

An example of a GPT for which decidability of its theory surprisingly strongly 

depends on the chosen structure. 

Decidability results for theories of GPT modulo an integer. 

In this case decidability or undecidability of the theory of a GPT mainly depends 

on the factorization of the modulus. 

Decidability results for theories of GPT of small algebras. 

The smallest cardinalities of the underlying algebras will be shown where the 

theories of corresponding GPT can be undecidable. 

1. Definition of GPT and a motivation 

The notion of Pascal’s triangle was generalized in many various ways; these ways can 

be roughly divided into arithmetical and algebraical ones. We shall deal with the later 

ones; they were considered in [4]. Many arithmetical generalizations are considered in 

[2]. The classification is neither strict nor exclusive: Pascal’s triangles modulo n belong 

to both types. 
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Generalized Pascal triangles (GPT) are mappings of the sets 

y1 > 0, into finite sets associated to some finite algebras analogously as the classical 

Pascal triangle can be associated to the (infinite) algebra (N; +, 0) and “the word” 1 

(of length 1). 

‘To every finite algebra d = (A; *, o) (with A C N to avoid some technical problems) 

such that o * o = o and every word w E A+ we shall construct G = GPT(&, w) as 

follows. The initial word w is written down into the initial row (with spaces between 

its letters). We imagine that the constant o is written in ail positions before and after 

w. Every further row is formed from the previous one by the operation * analogously 

as + is used in the classical Pascal triangle. At the margins o is used analogously as 

0 in the classical Pascal triangle. 

More formally, if w = wo . . WI,_~ then the function G = GPT(A, w) will be defined 

by the following formula: 

1 

undefined ifxfy < [WI- 1, 

WX ifx+y=jwl-1, 

G(x, v) = o*G(O,y- 1) if x = 0, y B Iw(, 

G(x - 1,O) * o if y = 0, x > /WI, 

G(x- l,y)*G(x,y- 1) ifx+y3 IwJ, x > 0, y > 0. 

The system of coordinates is chosen so that the whole GPT lies in the first (i.e., 

“positive”) quadrant of the plane. 

For example, if Z, is the additive group modulo n then B, = GPT(Z,, 1) is the 

Pascal triangle modulo n; we have 

MOD n for all x,y E N. 

The cases n = 2 and n = 3 are displayed in Fig. 1. 

And now several words to motivation. Physicists sometimes use cellular automata 

(CA) to simulate some physical processes. Of course, 3-dimensional CA will provide 

the most realistic models, but sometimes also one-dimensional CA suffice. GPT cor- 

respond to computations of one-dimensional CA from finite initial configurations. The 

computations of three-dimensional CA can be considered in (3 + I)-dimensional dis- 

crete space-time. Analogously GPT can be considered in (1 + 1)-dimensional discrete 

space-time. In the formal definition of GPT the sum x + y corresponds to the time 

coordinate and x - y to the space coordinate. The domain of a GPT will be considered 

as a “light cone”, which contains the whole interesting part of the CA computation; 

outside of it all automata states are o (or zero). In (1 + 1)-dimensional space-time the 

light cone is determined by two linear inequalities (and, maybe, the third one: time 

3 0). In the system of coordinates introduced here these inequalities are the simplest 

possible: x 3 0 and y 3 0. This is also advantageous when we associate mathematical 



I. Korec I Annals of’ Pure and Applied L.oqic 89 (1997) 45-52 47 

1 
I11 

.lll 

Ai11 
. . . 
. . .,A 1 

'O'H'. 
in GPT. 

. . . . . . ..A._ 

. . . . . . ..I111 
. . . . . ..l...i 
. . . . . ..ll 
. . . . ..I.1 

11 

. . . . . . 11 1 L1l.lll 
. . . . . 

. . . . . lll~.~.~.~.~.~ .lll 
. . ~. 

. ..I 
lli.lll. . .;li.lll 

. . . . 

'I'.'.' lli~.~.~lli~.~.~lll~.~.~lll 

lll~lll~lll-lll~lll~A~li~-l~l~ll~_ . . . . . . . . . . . . .,I, 

l*.-l'.'.'.~.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.' . 'l1.1l ll,l,l,il.~.~.~.~.~.~.~.~.~.~.~.,.~.~.,.~.~.~.,.,.,.~.~.~.~.~.’.~l,i~i~ll 
II.. l.lll.ll~.~l;.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~.~ 

. . . . . . . . . . . . , . . . . . . . . . . . .;;;.:1;.;1:.:: 

'0'k-k'. 

in GPT. 

Fig. 1 

structures to the CA computations: we can use the set N instead the set of all integers 

(and the inequalities need not be explicitly considered). 

2. Structures associated to GPT 

By the definition, a GPT G is a partial binary operation on the set N. There are 

many ways how to form a whole mathematical structure from it. We can consider the 



48 I. Korecl Annals of Pure and Applied Logic 89 (1997) 45-52 

following possibilities: 

(1) The simplest way is to consider the partial groupoid (N; G). Technical problems 

with partiality can be easily solved (remember that the domain of G is a cofinite 

subset of lV x lV>. 

(2) We can consider the relational structure (AJ; EqG), where EqG corresponds to the 

equivalence relation induced by G, i.e. 

EqG = {(x, y, z, w) E Dom( G) x Dom( G) ) G(x, y) = G(z, w)} 

(3) We can consider the two-sorted relational structure (lV, lV’; EqG) where Nx = 

NY = N and EqG is considered as a subset of N” x M’ x N” x V’. (The superscripts 

only distinguish the universes. Generally speaking the identical mapping of N” onto 

FV is not definable in the mentioned structure. If it is then distinguishing of types 

is unnecessary in essential.) 

(4) Analogously the three-sorted partial algebra (W, NJ’, A; G) where G is considered 

as a map of (a subset of) Nx x NY into A. The third sort A can be deleted (and 

replaced by NX where necessary). 

(5) In every case (l)-(4) we can add some operations or relations, e.g. s (the suc- 

cessor), < or +. For many-sorted structures the types of added objects must be 

determined; e.g., we can add the successor on Nx, and not on fV. 

In every statement about theories of GPT the considered possibility from the above 

must be specified. Usually (but not always) (1) M (2) and (3) z (4) from the decid- 

ability and definability point of view. 

3. An example 

It is almost obvious that adding new operations or relations into a structure associated 

to a GPT can cause that its theory changes from decidable to undecidable. Now we 

show that the change of number of sorts can have the same effect. We shall give 

an example of a GPT for which the theory of the associated two-sorted structure 

is decidable and that of one-sorted one is undecidable. No additional operations or 

relations will be used. The example is given in Fig. 2. 

Theorem 3.1. Let 8 = ({2,0, l}; x,2), where 

2*0=0, O*O=l, 1*0=2 and 

x * y = x otherwise (i.e., if y # 0). 

and let H = GPT(A?,O). Then 
(i) The addition and multiplication on N are first order de$nable in the structure 

(NH). 
(ii) The elementary theory of (N; H) is undecidable. 
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The same holds also for the structure (N; EqH), where 

EqH = {(x,y,z,~) E N41H(x,y) = H(.z,w)). 

However, the situation for many-sorted structures introduced above is quite different: 

Theorem 3.2. Let 8 = ({2,0,1}; *,2), H = GPT(B,O) and EqH be as in Theorem 

3.1. Then the elementary theory of (W, NY, (0, 1,2}; H) is decidable. 
The same holds also for the structure (N”, NY; EqH) where EqH is considered as 

a subset of NX x NY x N” x NY. 
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Instead of proofs we only explain the substantial difference between the situation 

in Theorem 3.1 and Theorem 3.2. (Both theorems are proved in [l I], the first one 

also in [8].) Let x Lk y mean that the k-ary digits of x are less than or equal to the 

corresponding k-ary digits of y. In the structures from Theorem 3.1 both & and & 

on N are definable; we can use them to define +, x. In the structures from Theorem 

3.2 we can define & on NY and & on NX, but these relations remain separated. 

Theorem 3.2 can be proved by reduction to the WMSO theory of successor (i.e., 

that of (N;s)). The elements of N” will be coded as ordered pairs of disjoint finite 

sets (using ternary number system) and the elements of NY as finite sets (using binary 

number system). 

Notice that the natural bijection between N” and NY is not first order definable in 

the structures from Theorem 3.2. Analogously, the relation 

{(X,+“y=@A c3’+2.c3i=c2*j 
IEX jGY kEZ 

is not definable in WMSO theory of successor. Informally, although we can speak 

about the binary and the ternary number system (and define the addition in each of 

them), we cannot define the natural relationship between them. 

4. Decidability results for theories of GPT modulo an integer 

In this case decidability or undecidability of the theory of a GPT mainly depends on 

the factorization of the modulus. The results are summarized in Table 1. Decidability 

results are obtained by reduction to the weak monadic second order (WMSO) theory 

of successor. 

The addition + is not definable in any structure (N; B,), n prime. However, it is 

definable in every such structure if n > 0 is composite. Moreover, if n > 0 has two 

distinct prime divisors then x is definable, too, and hence the elementary theory of 

(N;&) is undecidable (it was proved in [6]). 

Table 1 

Type of n Structure Definable Theory Nonhiv. 

+ X D/W autom. 

n prime (VB”) 
(W&s) 

PA&, x) 

W;&, Sq) 

n prime power (N;Bn) 
(exponent 22) (N;B,, x) 

(WB,, Sq) 

the other n > 1 (NBn) 

No No D YCS 

Yes No D No 

Yes Yes u No 

Yes Yes u No 

Yes (No) (D) No 
Yes Yes U NO 

Yes Yes 1J NO 

Yes Yes U No 
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By [9] addition is definable in the structures (N; B,, s), n prime, and by [ 121 the 

defining formula can be chosen independently on n. The elementary theory of every 

structure (N; B,, +) is decidable for every prime n. In the proof a reduction to WMSO 

theory of successor is used. 

The set of squares Sq and any B,, n > 1, suffice to define both addition and mul- 

tiplication. Two letters in parentheses in the table denote conjectures; however, they 

were proved by B&s in [l] (and also presented at Logic Colloquium’94). 

The table does not contain special results for n = 2. For example, the operations 

f, x are not WMSO definable in (Ni; Bz). Nevertheless, the WMSO theory of the 

structure (tY; BI) is undecidable; the elementary theory of (N; -t, x) can be interpreted 

in it. The same hold for every prime instead of 2. 

5. Decidability results for theories of GPT of small algebras 

The results given in Table 2 show by which cardinality of the underlying algebra the 

theory of a GPT or a class of GPT becomes undecidable. In all considered structures 

G can be replaced by EqG. The last column corresponds to classes of (structures 

associated to) GPT, the other columns to single GPT. First order theories are considered 

except of two last lines (whose concern WMSO theories). 

We explain the meaning of symbols in the table: 

‘V’ 

“D” 

“Vu” 

means “(sometimes) undecidable”, i.e.: There is an algebra of specified cardi- 

nality such that the (first order) theory of the corresponding structure (or class 

of structures) is undecidable. 

means “(always) decidable”, i.e.: For every algebra . . the theory . . is decidable. 

means “always undecidable”, i.e.: For every algebra the theory is un- 

decidable. 

Table 2 

Structure IAl G = GPT(d, w) for .id = (A; *, o), 

WEA w E A+ all w E A+ 

(N;G,+,x) 21 V U (not interesting here) 

(N G, x) I d d VU 

22 U u vu 

(N G,+) I d d D 

2 D d vu 

>3 U ” vu 

(N;G) 1 d d d 

2 d d u 

>3 u u ” 

WMSO theory 1 d d (?D) 
of (N;G) >2 U ” ” 



52 I KoreclAnnals of Pure and Applied Logic 89 (1997) 45-52 

Small letters d, u have the same meaning as capitals D, U but they denote less principal 
results or easy corollaries. (Of course, the classification can be very subjective.) The 
questionmark denotes a conjecture. 

We can see that the considered theories can be undecidable already for (A( = 3; 
this bound is exact, and does not depend on IwI and the presence of the additional 
operation s or +. It is diminished to 2 if the additional operation is x; the necessary 
GPT for that is B2. The same will happen if the additional relation is the divisibility 
relation or the set of squares as a unary relation. Smaller cardinalities also suffice when 
the theories of classes of structures are considered. (For /A( = 1 we have only the sets 
D, in essential.) The conjecture for WMSO theories is rather subtle because for the 
structures (N; Gi, Gz), where both Gi are GPT, “(? D)” ought to be replaced by “II”. 
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